This quiz lasts 30 minutes. There are a total of 15 marks.

Answers must be written in **pen** in the boxes provided. Anything written in pencil or written outside the boxes will not be marked.

Your answers can be given in the form of an expression such as $4 \times 3 \times \binom{7}{2}$ or $S(9,5)$, if you wish, as long as it fits in the answer box – i.e. you are not required to find the numerical value.
1. Complete the following definitions and formulations of theorems.
 (a) If \(g : A \to B \) is a function and \(b \in B \), then the preimage \(g^{-1}(b) \) is
 \[
g^{-1}(b) = \{ a \in A \mid g(a) = b \}\]
 (b) If \(n, k \in \mathbb{N} \), then the Stirling number \(S(n, k) \) is defined as
 the number of partitions of the set \(\{1, \ldots, n\} \)
 into a disjoint union of \(k \) nonempty subsets.
 (c) The Binomial Theorem gives the expansion
 \[
 (x + y)^m = \sum_{k=0}^{m} \binom{m}{k} x^{m-k} y^k
 \]
 (3 marks)

2. Count the subsets of the set \(\{ n \in \mathbb{Z} \mid 1 \leq n \leq 70 \} \)
 (a) of cardinality 7
 \[
 \binom{70}{7}
 \]
 (b) of cardinality 7 whose elements are multiples of 6
 \[
 \binom{11}{7}
 \]
 (c) of cardinality 7 containing exactly 5 odd numbers
 \[
 \binom{35}{5} \binom{35}{2}
 \]
 (3 marks)
3. How many ways are there to put 13 different coins in 6 boxes B_1, \ldots, B_6 so that

(a) no box is left empty
(b) only two
of the six boxes are left empty
(c) each box
contains at least two coins

$$6! S(13, 6)$$
$$\binom{6}{2} 4! S(13, 4)$$
$$6 \binom{13}{3, 2, 2, 2, 2, 2}$$

(3 marks)

4. Count the number of sequences of digits 1, 2, 3 of length 10

(a) which increase weakly from left to right

$$\binom{12}{10} = 66$$

(b) which increase weakly from left to right and
each of the digits occurs at least once

36

(2 marks)
5. Consider the recurrence relation \(b_n = -6 b_{n-1} - 9 b_{n-2} \), for \(n \geq 2 \).

 (a) Write down its characteristic polynomial:

 \[
 x^2 + 6x + 9
 \]

 (b) Write down the general solution:

 \[
 b_n = C_1(-3)^n + C_2 n (-3)^n \text{ for some constants } C_1, C_2
 \]

 (c) Give the solution when \(b_0 = 1 \) and \(b_1 = 0 \):

 \[
 b_n = (-3)^n - n(-3)^n
 \] (3 marks)

6. Consider the recurrence relation \(a_n = r_1 a_{n-1} + r_2 a_{n-2} + r_3 a_{n-3} \), for \(n \geq 3 \). The roots of its characteristic polynomial are \(x = -2 \) of multiplicity 2 and \(x = 3 \) of multiplicity 1. Write down the general solution:

 \[
 a_n = C_1 (-2)^n + C_2 n (-2)^n + C_3 3^n \text{ for some constants } C_1, C_2, C_3
 \] (1 mark)

END OF QUIZ.