SMS scnews item created by Daniel Daners at Fri 30 Aug 2019 1532
Type: Seminar
Distribution: World
Expiry: 2 Sep 2019
Calendar1: 2 Sep 2019 1200-1300
CalLoc1: AGR Carslaw 829
CalTitle1: PDE Seminar: On the eigenvalues of the Robin Laplacian with a complex parameter (Kennedy)
Auth: daners@dora.maths.usyd.edu.au

PDE Seminar

On the eigenvalues of the Robin Laplacian with a complex parameter

Kennedy

James Kennedy
University of Lisbon, Portugal
Mon 2nd Sep 2019, 12-1pm, Carslaw Room 829 (AGR)

Abstract

We are interested in the eigenvalues of the Laplacian on a bounded domain with boundary conditions of the form u ν + αu = 0, where ν is the outer unit normal to the boundary and α should be considered a parameter on which the eigenvalues depend.

For positive α this operator, and in particular its eigenvalues, interpolate in a strong sense between those of the Neumann (α = 0) and Dirichlet (formally α = ) Laplacians. In recent years, however, the case of large negative α has been studied intensively, and in particular the asymptotics of the eigenvalues in the singular limit α - is well understood: there is a sequence of eigenvalues which diverges like - α2, independently of the geometry of the domain, while any non-divergent eigenvalues converge to points in the spectrum of the Dirichlet Laplacian.

Here, after giving a brief overview of what is known for real α, we will present a number of new results for the corresponding problem when α is a (usually large) complex parameter. This is based on ongoing joing work with Sabine Bögli (Imperial College London) and Robin Lang (University of Stuttgart).

For Seminar announcements you can now subscribe to the RSS Seminar RSS feed. Check also the PDE Seminar page.

Enquiries to Daniel Hauer or Daniel Daners.


If you are registered you may mark the scnews item as read.
School members may try to .