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Introduction

The aim of this thesis is to examine root systems associated with Coxeter
groups. We introduce the notions of dominance and elementary roots, and
employ them to show that the stabilizer of a root is the semidirect product of
a Coxeter group and a free group, as well as to obtain an automatic structure
for finitely generated Coxeter groups.

The structure of this thesis is as follows. We begin in Chapter 1 by
reviewing some well known facts about Coxeter groups and root systems. In
Chapter 2 a function from the root system to the integers is defined, which
is an analogue of the length function on the Coxeter group, and enables us
to use inductive proofs on the root system. This is then applied to give an
alternative proof of the Theorem, due to Deodhar [4] and Dyer [5], that each
reflection subgroup of a Coxeter group is itself a Coxeter group; furthermore,
we derive certain properties relating to the coefficients which occur when
roots are expressed as linear combinations of simple roots.

In Chapter 3 the concepts of dominance and elementary roots are in-
troduced, and we prove the principal result of this thesis, namely, that the
set of elementary roots is finite (provided the Coxeter group has finite rank).
We also prove the important technical result that if r17ro---7; is a reduced
expression for an element of the Coxeter group having the property that
(rire---1;) -« = [ for some simple roots o and (3, then (r;r;iq1---7) -« is
elementary for all 7. This is then used in the subsequent chapters to deal with
the stabilizer of a root and the automaticity of Coxeter groups respectively.

Finally, in Chapter 6 we use the properties of elementary roots obtained
in Chapter 3 to give an explicit description of the set of elementary roots in
every case.

In the interest of keeping this thesis as self-contained as possible, proofs
of various well-known properties of Coxeter groups are included in the early
chapters.



Chapter 1

Preliminaries

In this chapter some well known properties of Coxeter groups are presented
(see [1], [3] or [7]). We begin by introducing some notation. The set of real
numbers will be denoted by R, the set of positive integers by N, and the set
of nonnegative integers by Ny. For any set M, we denote the cardinality of
M by |M|; where appropriate, —M denotes the set { —x | z € M }. For sets
M and N, the set difference of M and N will be denoted by M \ N.

Throughout this thesis, W is a Cozeter group with distinguished gen-
erating set R; that is, W has a presentation

(reR|(rs)" =1forr,seR),

where m,,, = 1 for all » € R, and m,s = mg, > 2 or m,s = mg, = oo for
r, s € R with r # s. (Here (rs)> =1 is regarded as vacuously true).

The Cozxeter graph of W has vertex set in one-one correspondence
with R, and two distinct vertices corresponding to r and s are joined by
an edge or bond of weight m,.s if m,s # 2. For convenience of notation we
frequently identify » € R with the vertex corresponding to r. If r and s are
joined by an edge, r and s are said to be adjoined, and the edge is labelled
by m,.s; if m,.s = 3 this label is suppressed. We say that the bond adjoining
r and s is simple, non-simple, infinite if m,.s = 3, m.s # 3 and m,s = oo
respectively. By abuse of notation, S C R will denote both a subset of R,
and the subgraph of the Coxeter graph consisting of the vertices in S and
the bonds adjoining them.

For w € W, define the length l(w) of w by
l(w)=min{l€ Ny |w=ry---1; for some r1,...,11 € R}.

By definition of W, all elements of R are self inverse, and hence R is closed
under taking inverses. Thus I(w™?!) = I(w) and [(w) — 1 < I(wr) < l(w) + 1
for all w € W and r € R; moreover, if w is an element of W with I(w) > 1,
then there exists an r € R with [(wr) < l(w); that is, I(wr) = l(w) — 1.
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Let V' be an R-vector space with basis II in one-one correspondence with
R, and for » € R denote the basis element corresponding to r by «,.. The
vertex set of the Coxeter graph is by construction in one-one correspondence
with II, and as above for r, we will frequently identify «, with the vertex
corresponding to a,.; moreover, we use II’ C IT both to denote a subset of II,
and the subgraph of the Coxeter graph consisting of the vertices in I’ and
the bonds adjoining them.

Next, let (, ):V xV — R be a symmetric bilinear form which satisfies
(ay, ag) = —cos(m/mys) for all v, s € R with m,, finite, and (a,, a,) < —1
for r, s € R with m,, infinite; (in particular, (o, a,) = 1). Observe that (, )
is uniquely determined by the presentation of W if and only if there are no
infinite bonds in the Coxeter graph of W.

For r € R define p,: V — V by p,(v) = v — 2(v, a,)a,. Then
pr(v) = p, (U — 2(v, O‘T>O‘T)
= (v — 2(v, Ozr)ar) — 2<v — 2(v, ap Y, ar>ar
=0 —2(v, ap)a, — 2((v, ) — 2(v, o), o) )y
=0+ (—2(v, ar) — 2(v, ay) + 4(v, ay)) ar
=v
for all v € V; furthermore, for v, v’ € V,

(pr(v), pr(v))

= (v—2(v, )0, v = 2(v', ),
/

{
{

v, ) — 2(v, a){a, V') + 40, ap) (V) o) (e, )
v, ) + 4(v, ;) (V' )

—2(v', ar)
v, vy — 4, o)

So p, is self inverse and preserves the bilinear form, and is thus an element
of O(V), the orthogonal group of the bilinear form (, ) on V.

If r, s € R are distinct, it can be easily seen that p, and ps preserve
the space spanned by «, and ag. Denote 2(ca.., as) by ¢; then the matrices
of p,, ps and p,ps on this space with respect to the basis «,., as are

-1 e 1 0 and -1 ¢ espectivel
0 1 )7\ — -1 n —c _1rp1vy‘

The proof of the following assertion is a straightforward induction on
n, and will be omitted.
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(1.1) LEMMA Let o, B € V be linearly independent, and let A be a linear
map on the span of o and (3 with matrix

-1 ¢
—c -1
with respect to the basis a, 3. For n € N, let A™(«a) = A\ + pn 3 with
Ans i, € R. Then A™ () = —ppna — A\y—1 3 and
(i) if c = —2cos(0) for some 0 € (0,7),

sin((2n + 1)0) sin (2n6) '

n sin(6) and pin = sin(#)

(ii) if ¢ < =2, then A\, > pp, + 1 and ppp1 > A + 1.
Lemma (1.1) enables us to prove the following proposition.

(1.2) PROPOSITION  There is a representation p of W on V' with p(r) = p,
for all r € R.

Note that (1.1) yields for r, s € R that p,.ps has order at least m,.s. So
when (1.2) is established, it will follow that rs has order at least my.s. If m,.s
is finite, rs has order at most m,s by definition of W, therefore m,.s is in fact
the order of rs for all r, s € R.

Proof of (1.2). Let F(R) be the free group on R; the map r — p, from R
to O(V) extends to a homomorphism F'(R) — O(V). Further, let N be the
normal closure in F'(R) of the set

{ (rs)™mrs

so that W is isomorphic to the quotient F'(R)/N. It suffices to show that N
is in the kernel of the above homomorphism from F'(R) to O(V). This is the
case if (pr-ps)™ equals the identity for all r, s € R with m, finite. By an
earlier remark, p? equals the identity on V for all » € R. It remains to show
that (p.ps)™ is the identity for all r, s € R with r # s and m = m,.; finite.
Since IT is a basis for V, it suffices to show (p,ps)™(ar) = a; for all oy € I1.
If t € {r,s}, this is true by (1.1)(i) with § = 7/m and n = m. So suppose
that a.., a, o are linearly independent. The space spanned by these vectors
is obviously invariant under p,ps, and if M is the matrix corresponding to

r,sERwithmrs<oo},
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prps on this space with respect to the basis «,., a, o, it suffices to show that
M™ is the 3 x 3 identity matrix. A short calculation yields that

00 1
where A is the 2 x 2 matrix corresponding to p,.ps on the span of a,. and ay
with respect to the basis a,., as, and b is a 2 x 1 vector. An easy induction

yields that
o <A” bn>
00 1

for n € N, where b, = (A°+...+ A" 1)b. As A™ is the matrix of (p,ps)™ on
the span of a,. and a with respect to the basis ., ag, (1.1)(i) for § = 7 /m
and n = m gives that A™ equals I, the 2 x 2 identity matrix. Thus

(A—L)A+.. .+ A" ) =A™ — I, =0,
the 2 x 2 zero matrix. The determinant of A — I5 equals 4 sin®(7/m), which
is nonzero, and so A — I is invertible. Hence A°+ ...+ A™~! =0 and b,, is
the 2 x 1 zero vector. This yields that M™ is the 3 x 3 identity matrix, and
we have in fact a homomorphism p: W — O(V). O

The representation p of W on V defined in (1.2) will be called a standard
geometric realization of W. From now on we consider the action of W on V'
induced by a standard geometric realization of W on V. We have seen that
this action preserves (, ). For w € W and v € V, we denote the image of v
under p(w) by w-v. The set ® ={w-a, |w e W, r € R} is called the root
system of W in V', and the elements of Il are the simple roots. Note that
since (a;, o) = 1 for r € R, we have (a, ) =1 for all a € ®.

Every element v of V' can be uniquely written as ) . Aqc for some
Ao € R, and A, is said to be the coefficient of o in v. Define the support of v
to be the set of o € 11 such that the coefficient of « in v is nonzero, and denote
this set by supp(v). Furthermore, let I(v) denote the set of » € R in one-one
correspondence with elements of supp(v). The set PLC(II) of positive linear
combinations of 11 is the set of vectors in V' with all coefficients greater than
or equal to 0. The sets of positive roots ®* and negative roots ®~ are defined
to be @+ = &N PLC(II) and &~ = —PT respectively.
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(1.3) LEMMA  Suppose w € W and r € R with [(wr) > [(w). Then
w-a, € PT.

Proof. If l(w) = 0, then w = 1 and w - a;, = a, is in ®*. Next, suppose
that I(w) > 1, and let s € R with [(ws) = l(w) — 1; then r # s, since
l(wr) > l(w). Set I = {r, s}, and let W denote the subgroup of W generated
by I. Furthermore, let [; be the length function on W; with respect to I.
Since I C R, it is clear that I(z) < l;(z) for all z € W7.

Consider the set
A={ueW |utweWrand l(u) + (v w) = l(w) }.
Then ws € A, since (ws) lw = s =s € W and
Hws) + 1 ((ws) " w) = l(ws) + 1 = L(w).

So A is non-empty, and if we let x be an element of A of minimal length, then
I(z) < l(ws), and thus I(x) < l(w) — 1 < l[(w). Assume for a contradiction
that [(xr) < I(z); that is, [(xr) = [(z) — 1. Then zr ¢ A by minimality of x.
On the other hand, r=~'w € W; and

lw) = 1((zr)(ra w)) < l(zr) +1(ra” w)
<(zr) + I (re w) <U(z) =1+ 1 (z 7 w) + 1
= 1(z) + I; (7 w) = l(w),
and we must have equality everywhere; hence [(w) = I(2r)+17(rz ™ w), which

implies zr € A, a contradiction. So I(zr) > I(z) and similarly I(xs) > l(x),
and by induction x - o, and z - o are both positive roots.

Let y = 2~ 'w; then
Wz) + 1 (y) = l(w) < l(wr) = (zyr) < U(z) +1(yr) < Uz) + L (yr),

and hence l;(yr) > l;(y). Therefore y equals (rs)™ or s(rs)™ for some n € Nj.
If s has infinite order, (rs)™-a, = A, + pa, for some A > p > 0 by (1.1)(ii),
and hence s(rs)" - a, = Aa,. + p'as for some p > X > 0. If rs has order m,
then I;(yr) > I;(y) yields that 2n+1 < m if y = (rs)™, and that 2(n+1) < m
if y = s(rs)”, and we deduce from (1.1)(i) that y - o, = A, + pas for some
A, ;> 0. So in any case,

w-ap = (2y) o =z (A + pog) = Mz - ar) + p(z - a;)

for some A, p > 0. Since = - ., x - g € PLC(II), it follows that w - a. is in
PLC(II), and thus in ®*, as required. O
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It is clear that ®7 is a subset of ®, and since - a,, = —qv, for r € R,
also &~ C ®. In fact,

O=pTUD .

For if a € ®, then by definition of ® there exists a w € W and an r € R with
a=w-a.. Ifl(wr)>Il(w), then & = w- . € T by the previous lemma,
while if I(wr) < l(w) = I((wr)r), then (wr) - o, € ®F by (1.3) with wr in
place of w; hence w - o, = —(wr) - o € &~

A trivial, but very useful, consequence of this is the following result.
(1.4) CoROLLARY 7+ (®"\ {a,}) C®* forr € R.

Next, let w € W and r € R. By definition of the root system, w - a,.
is a root, and since ® equals the union of ®* and ®~, we find that w - a. is
either positive or negative. If w-a, € ®~, then I(wr) # I(w) by (1.3); hence
l(wr) < l(w), that is, [(wr) = l(w) — 1. If w- a, € ®T, then (wr) - a, € 7,
and thus

Hw) = 1((wr)r) =l(wr) -1

by the previous case with wr in place of w; whence I(wr) = [(w) + 1.

(1.5) LEMMA  For allw € W and r € R,

(wr) {l(w)+1 ifw-a, € ®T,
wr) =
l(w)—1 ifw-a, € d.

We can now deduce that the standard geometric realization of W on
V' induces a faithful action of W on V. For if w € W such that w-v = v
for all v € V, then in particular, w - o, = o, € ®* for all r € R; that is,
l(wr) > I(w) for all r € R, and thus w = 1.

It is clear that ® is finite if W is finite. Faithfulness of the action of W
on V yields the converse, and so @ is finite if and only if W is finite.
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Next, let w € W and r, s € R with w - a,, = a; then for all v € V,

(wrw™s) v = (wrw™) - (v—2(v, as)ay)

(wr) - (W™ v —2(v, a)w™" - ay)
= (wr) - (w_l cv — 2(v,as>ar)
(wh v = 2w v, o)y + 2(, o@ar)

w (

= w - (w_1 v = 2(v,w - apyay + 2(v, ozS)ozT)
w
v

Since the action of W on V is faithful, this implies wrw~='s = 1; that is,

wrw™ !t = s.

Now let a € ®; by definition of the root system, there exist w € W and
r € R with « = w - «,. If a also equals u - g for some v € W and s € R,
then (u='w) - o, = ay, and hence (v~ !w)r(u='w)~! = s by the above; that
is, wrw™! = usu~!. So without ambiguity we may define the reflection rq

to be wrw~!. Then for v € V,

Observe that this yields for roots o and 3 with r, = rg that a = £4; for
then
—a=ro-a=rg-a=a—2«,0)ps,

and thus a = (o, §)3, which leaves us with o = (3, since (o, o) = (3, 5) = 1.

(1.6) PROPOSITION  (Strong Exzchange Condition)
Let r1, r3,...,7, € R and o € ®* such that (rirg---r,) -« € ®~. Then
there exists an i € {1,...,n} with

(rirg - Tp)ro = riTg -« Ti_1Tiy1 " Tn.
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Proof. Let i € {1,...,n} be maximal such that (r;r;41---r,) - a € ®7; then
(rig1---7rpn) -« must be positive, and thus (r;41---7r,) @ = a,, by (1.4). So
a=(rp-1rig1) o, and ro = (ry - -7i41)73 (741 - - - 7). This implies

(rirg - 1p)ra = 1172 Tp_1Tn(Tnln_1 - Tit17iVit1 ** Tn_1Tn)

=Tir2 - Ti—1Ti41 - " T,
as required. O

Note that (1.6) together with (1.5) imply the Ezchange Condition:
Let r1,...,7n, s € R such that I(riry---r,) =n and I(rirg---rps) <n+ 1.
Then there exists an i € {1,...,n} such that

(rirg- - Tn)s =711 Tio1Tig1 - T

For a set of roots I', we denote the corresponding set of reflections by
Sr, and the subspace of V' spanned by I' by Vr. The subgroup generated by
S = St is denoted by Wg or Wr, and &1 or ®g is defined to be the set of
roots of the form w -+ with w € Wr and v € T'. It is clear that W, C Wrp if
I C ®rp.

Suppose now that I' is a set of positive roots such that for o, 5 € T’
with o # 3, either (o, 5) < —1 or (o, 8) = —cos(m/mq,3) for some integer
Ma,3 > 2. Let S be a set in one-one correspondence with I', and for v € T’
denote the element of S corresponding to v by o,. Further, let W denote

the Coxeter group with distinguished generating set S and defining relations
(0q03)™? =1 for all a, f € I such that («, 5) > —1,

and let V be an R-vector space with basis Il = {7 | y € ' }. If the order of
0,03 equals m, define (a, B) = — cos(m/m), while if 0,04 is of infinite order,
define (a, B) = (o, ) < —1. This determines a bilinear form on V, and we
get a standard geometric realization of W on V with

(@, B) = (o, B) for all a, B €T

We show now that 7: o, +— 7., for v € I" defines a group homomorphism
from W to Wr. Since clearly 2 = 1 for a € T, it suffices to show that
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(rarg)™ equals the identity for o, 8 € I' with o # [ such that o,0p is of
order m. So let a, f € I' with (o, ) = — cos(m/m). Then (1.1)(i) yields that
(rarg)™ acts as the identity on the space spanned by « and . In particular,
(rars)™ - @ = «a, and thus (1475)"ra(rara)™ = ra; that is, (rarg)*™ = 1.
Now let v € V; then there exist A\, p € R such that (r,73)" - v equals
v+ Aa + pf, and

v = (Ta’l“g)zm -V

= (rar3)™ - (v+ Ao+ pf)
=v+ A+ pub+ ANrarg)™ - a+ pu(rarg)™ - B
= v+ 2(Aa+ pp).

So Aa + pf equals the zero vector, and thus (ror3)™ -v = v for all v € V.
It follows by faithfulness of the standard geometric realization that (r,73)™

equals 1, as required. Note that 7 is certainly surjective since m(S) = Sr.

Denote the root system of WinV by ED, and define : 1% — Vr by
linear extension of ¥ (7) = v for v € I'. We show now that ¢ maps ® onto
®r. First, let «, 8 € I'; then

(0w - B) =v(8 - 2(a, B)@)
= (B) — 2(a, B)¢ (@)
= ﬁ - 2<av ﬁ>a

:Ta'ﬁ'

Since II forms a basis for V, this yields 1(3-7) = 7(3) - (?) for all 5 € S and
v € V, and an easy induction on the length of w gives ¥ (w-v) = 7(w) - (V)
for all w € W and v € V. As 7 is surjective and ¢ (II) = I, it follows that

(@) = (W -T) = (W) - () = Wr - T = r.

Denote the set of roots in @ which can be written as positive linear combi-

nations of elements of I by q)li'; since I' consists of positive roots, it follows
casily that @1 is a subset of ®*. Furthermore, Y(d+) C P as Y(I) =T,
and symmetrically 1(®~) C —®/. Since &p = (@) = () Up(P), this
yields that ¥(®T) = ®; therefore @} = &r N ®F, and Pr is the disjoint
union of <I>IJE and —<I>IJE.
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Now let w € W \ {1}. Then there exists an & € &+ such that w-@ is in
®~. Thus ¥(a) € o C &, and m(w) - Y(a) = Y(w-a) € by C ®; hence
m(w) # 1, and this shows that 7 is injective. Since 7 is also surjective, 7
is a group isomorphism, and thus Wr is a Coxeter group with distinguished
generating set St.

We have proved the following theorem, which is due to M.J.Dyer.

(1.7) THEOREM  Let I' C ®* such that for a, 3 € T with a # 3 either
(a, B) < —1 or (a, ) = —cos(w/m) for some integer m. Then Wr is a
Coxeter group with distinguished generating set St.

Note furthermore that 1 induces a bijection between ® and r. For,
as we have already seen, 1) maps ® onto ®r, and it remains to show that
¥ restricted to ® is one-one. Since ¥(®1T)N(®~) = (), and by symmetry
of ®+ and Eij , it suffices to show that ) restricted to 5{}+ is one-one. So
let w,u € W and «, 8 € I' such that w - o and u - 3 are positive and

(w- @) =P(u- f); that is, m(w) - P(a) = m(u) - P(5). Then

= q(u)rgm(u) "t = 7(uogut).

T(woaw™ ) = 7(w)rem(w)
Since 7 is injective, this yields wo,w™! = uogu™!, and thus w- & = +u - 3
by an earlier remark. As w -« and u - 3 are both positive, we deduce that
w-a=u- [, as required.

(1.8) PROPOSITION  Let I' be a set of positive roots as in (1.7), and define
®r to be the set of roots of the form w -~ with w € Wr and v € I'. Further-
more, let CIfo denote the set of roots in ®r which can be written as positive
linear combinations of roots in I'. Then <I>1i' = &r N O, and there exists a

standard geometric realization of Wr with root system ® and bilinear form
(, ), and a bijection 1): ® — ®r such that

(i) ¥(®F) = &,
(ii) (w - &) = w- (&) for all w € W and & € ®, and
(iii) (¥(@),¥(B)) = (@, ) for all &, 3 € @.

Note that I' does not necessarily have to be linearly independent. For
example, suppose that W has the following Coxeter graph:

10
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Then

I'= {aa+aba aa+ab+2ac; Od + Qe, 2ac+ad+ae}
is certainly not linearly independent, but it can be easily checked that for
distinct roots «, § € T, either (o, ) =0 or (o, ) < —

If T is linearly dependent, the bilinear form (, ) on V is not positive
definite. For assume that there exist n > 0, m > 0 and pairwise distinct
roots aq,...,Qpn, B1,...,0m in ' as well as Ay, ..., A\, p1, -, by, > 0 such
that >0 Aoy — Z;“:l i 3; equals the zero vector. Define v = "7 | A\;a;
this is a nonzero vector since aq, ..., a, are linearly independent and n > 1
with Ay > 0. Then ¢(v) = >2i"; Mia; = 7% p;fB;, and thus

(,7) = (¥(©), (@) = Y Nipj{ei, 5;) <0
ij=1
since (o, 3;) <0 for all 4 and j.

The elements of R = {r, | a € I} are called simple reflections. If J
is a set of simple reflections, W is called a parabolic subgroup of W. This is
a Coxeter group with the obvious standard geometric realization on V), the
space spanned by «,. with r € J.

Denote the length function on W; with respect to J by l;; we show
now that {;(w) = l(w) for all w € W;. For w € W define

Nw)={ac®" |w-acd },
and observe that for v and w in W,
N(uw) C N(w)Uw™! - N(u).

For if v € N(uw) \ N(w), thenw vye®t and u- (w-v) = (uw) -y € &~
thusw-y€e N u) that is v € w™! - N(u). Note also that

(
N(w) N N(u) = (w tw) - (N(w) nw™" - N(u))
w ' (w- N(w) N (ww™') - N(u))
w' - (w- N(w) NN (u))
w (@ Net) =0,

N
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whence the above union is disjoint.

If JC R and w € Wy, then Nj(w) C N(w), where N;(w) denotes the
set of all roots o € @}r such that w - o € ®;. The next lemma yields that
lj(w) = |[Nj(w)| < |N(w)| = l(w); since J C R, the reverse inequality is
certainly true, and so [;(w) = l(w).

(1.9) LEMMA [N (w)| = l(w) for all w € W.

Proof. We use induction on [(w). If [(w) = 0, then w = 1 and N(1) = 0.
So suppose that I(w) > 1, and let u € W and r € R such that w = ur and
l(u) = l(w) — 1; then |N(u)| = [(u) by induction. By the above remark,

N(w) = N(ur) CN(r)Ur-N(u) ={a,.} Ur- N(u),

and this union is disjoint. In order to prove that |N(w)| = I(w), it suffices
to show that {«,} and r - N(u) are subsets of N(w). By (1.5) we know that
w- . is negative and u- v, is positive, and thus {a, } C N(w) and «, ¢ N(u).
The latter together with (1.4) yield that r- N (u) contains only positive roots,
and since w- (r-N(u)) = u-N(u) C ®~, we conclude that r- N (u) is a subset
of N(w), as required. O

Now let w € W and o € &1 with w-« € . Then —w - a € & and
wl(—w-a) = —a € ®7; that is, —w-a € N(w™!). So —w-N(w) C N(w™1),
and since [(w) = l[(w™!), we deduce the following:

(1.10) COROLLARY —w - N(w)= N(w™?!) for allw e W.

Suppose now that we have u w € W with [(uw) = I(u) 4+ l(w). Then
N(uw) is a subset of N(w)Uw™! - N(u); since l(uw) = |N (uw)|, and this
equals |N(u)| + |N(w)], it follows that N(uw) = N(w) Uw™" - N(u). In
particular, w™! - N(u) C ®T, and thus necessarily N(u) N N(w™!) = 0.

Conversely, suppose that N(u) N N(w™1) = 0. Then w=! - N(u) C ®T,
and

(ww) - (w - N(u) = u- N(u) C @
whence w1 - N(u) € N(uw). Further, N(w=!) C &+ \ N(u), and so (1.10)
yields that

(ww) - N(w) =u- (-N(w™)) = —u-N(w™"

) €
hence also N(w) C N(uw). Therefore N (uw)
since this union is disjoint, we have [(uw) = I(u

(@ \ N(u)) C

= N(w) Uw~!- N(u), and
) +l(w).

12
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(1.11) LEMMA  Let u, w € W. Then the following are equivalent:

(i) l(vw) = l(u) + l(w)
(ii) N(uw) = N(w)Uw™!- N(u)
(iii) N(u) N N(w™t) = 0.

We conclude this chapter with a proposition whose proof is outlined in
[1], Ch.V, §4.

(1.12) PROPOSITION  Suppose H is a finite subgroup of W. Then there
exist a finite parabolic subgroup W; of W such that H is conjugate to a
subgroup of W.

Proof. Since H is finite, we may assume without loss of generality that R
is finite. If |W| < oo, the assertion is true with J = R. So suppose from
now on that W is infinite; then ® is infinite and |R| > 1, and we proceed by
induction on |R)|.

Let V* denote the dual space of V', and let {J, | @ € II'} be the basis
dual to II; that is, d,(v) equals the coefficient of o in v. For f € V* and
w € W, we define fw € V* by fw:v — f(w - wv); this determines a right
action of W on V*. For f € V* define further S(f) ={~y€ ®" | f(y) <0}.

Let f =) jcnda and F = >, o fh. Then f(a) =1 for all a € II,
and thus
f(y)>0forall y € . (%)

Now let A = ey N(h). Since H is finite and N(h) is finite for all h € H,
A is finite. Furthermore, for all v € ®* \ A,

Fy) =Y (fB)(y)=Y_ f(h-7)>0 ()

heH heH
by (x), since h -y € ®* for all h € H. So S(F)N (®+ \ A) = 0; that is,
S(F) C A, and in particular, S(F') must be finite.

Let z € W such that |S(F'z)| is minimal, and assume for a contradiction
that S(Fz) # 0. Then (Fz)(y) < 0 for some v € ®*, and it follows that
(Fzx)(a,) <0 for some r € R; that is, a,, € S(Fz). Now

(Far)(a,) = (Fz)(r- o) = (Fz)(—oy) = — (Fz)(ay) > 0,

13



and hence . ¢ S(Fxr). So v + r -~ maps S(Fzr) into ®* \ {«,}, and
if v € S(Fzr), then (Fz)(r-v) = (Fzr)(y) < 0; therefore v — r -y maps
S(Fzr) into S(Fz) \ {a,}. Since the above map is clearly one-one, this
yields

IS(Far)| < |S(Fa) \ {n}| < [S(Fa),

contrary to the choice of . Thus S(Fx) = 0.
Since Fh = F for h € H, we deduce that

Fx(z 'hx) = (Fra™')hae = Fha = Fu;
sox 'Hx C{ye W | (Fx)y= Fz}, and we show now that
{yeW| (Fz)y=Fxz} C Wi,
where I = {r € R | (Fz)(oy,) = 0}. Let y € W with (Fz)y = Faz. If
l(y) =0, then y = 1 € W;. Proceeding by induction, suppose [(y) > 1, and

let 2 € W and s € R such that y = zs and I(2) = I(y) — 1. Then z- a5 € ®*
by (1.5), and

(F:z:) (as) = (Fa:y) (as) = (Fa:) (y-as) = —(Fa:)((ys) Cag) = —(Fa:) (z - as);
since S(Fz) = 0, it follows that (Fz)(as) =0, and thus s € I. So
(F:Us) (v) = (F:z:) (v—2(v,as)as) = (Fa:) (v) — 2(v,as>(F9:) (as) = (Fa:) (v)

for all v € V, which yields (F:z:)z = (F:Uy)s = (F:z:)s = F'x; hence z € Wy
by induction, and y = zs € W7, as required.

Since ®* is infinite by construction, and A is finite, it follows that
& \ A is nonempty; so F' # 0 by (**), which yields Fz # 0 and I # R.
By induction there exist J C I and u € Wj such that W is finite and
u(x" Hz)u C Wy, as desired. u

Chapter 2
The Depth of a Root



Chapter 2 The depth of a root

To facilitate inductive proofs of facts about root systems, it is convenient for
us to introduce a concept which, in some sense, measures how far a root is
from being simple. For a positive root a, we define the depth of a to be

dp(a) =min{l € Ny | w-a € &~ for some w € W with I(w) = [}.

Observe that such an integer always exists, since by definition of the root
system every root a has the form u - «,- for some u € W and r € R, and then
(ru=!)-a = —a, € ®~. Suppose now that a € ®T, and let w € W with
l(w) = dp(a) such that w-«a € ®~. Then w # 1, and hence there exists
anr € Rand au € W with w = ru~! and l(w) = [(u™?) + 1 = I(u) + 1.
Minimality of w yields that u~"! - « is positive, and since r- (u™! - a) = w -«
is negative, (1.4) gives u™! - a = a,.; that is, & = u - ;.. Thus every positive
root can be written as u- «, with [(u) equal to the depth of the root minus 1.
Moreover, the depth of o equals the minimal integer [ such that w - o € —II
for some w € W of length [. For a negative root 3, we define the depth of (8
to be

dp(8) = —min{l € Ny | w- 8 € —II for some w € W with I(w) = [}.

Note that for r € R and a € @, clearly dp(a)—1 < dp(r-a) < dp(a)+1.
Furthermore, if « is a positive root, then there exists an » € R such that
dp(r-a) = dp(a)—1. Also, for w € W and r € R clearly dp(w-«,.) < l(w)+1.
Finally, note that dp(a)) < I(w) if w-« is negative for some root o and w € W
for if « is positive, this follows by definition of the depth of «, and if « is
negative, then dp(a) <0 < (w).

Now let « € ®* and w € W, r € R such that a equals w - o, and
(w) = dp(a) — 1. Then —a = —w - a,, and so w~' - (—a) = —a, and
l(w) = l(w™!) > —dp(—a). On the other hand, if u € W and s € R such
that I(u) = —dp(—«a) and u - (—a) = —ag, then (su) - @ = —ay; thus
dp(a) <l(su) <l(u)+1=—dp(—a)+1<Il(w)+1=dp(a),
and we must have equality everywhere. In particular, dp(«a) + dp(—a) = 1.
Since for 8 € &~ clearly o = —3 € ®T, this proves the following result:

(2.13) LEMMA  dp(«) +dp(—a) =1 for all a € D.

(2.14) PROPOSITION  Let r € R and a € ®. Then
dp(a) — 1 if (o, ) > 0,
dp(r - a) = ¢ dp(«a) if {(a, o) = 0,
dp(a) +1 if (o, ) < 0.

15
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Proof. If the assertion is proved for positive roots, (2.13) yields for a € &7,

dp(r-a):—dp(—( ))+1——dp( )~|—1
—(dp(—a) = 1) +1 if (—a, ozr> > 0,
= — dp(—a) +1 if (—a, ) =
[ —(dp +1)4+1 i ( a, ) <
(dp(a ) + 1 if (o, o) <
= ¢ dp(«) if (o, ) =0,

Ldp(a) — 1 if (o, ) > 0.

Hence it suffices to prove the proposition for positive roots. If (a, ) = 0,
then r - a = a — 2(a, av. ), = v, and trivially dp(r - a) = dp(«).

Suppose next that (o, a,.) > 0. It suffices to show that dp(r-a) < dp(«);
to do so, we construct a w € W with w - (r - a) € &~ and I(w) < dp(«).
Choose u € W such that u-a € &~ and [(u) = dp(«). If u - . is negative,
set w = wr; then [(w) = l(u) —1 by (1.5),and w- (r-a) =u-a € &7, as
required. Hence we may assume from now on that u - v, is positive. Clearly
u # 1 (as u - « is negative, while « is positive), and thus there exist s € R
and w € W with u = sw and I(u) = [(w) + 1. Now

u-(r-a)=u-(a—2a,a)a) =u-a— 20 )u- o

is negative, and since u - @ and —2(«, a,)u - . are both negative linear
combinations of simple roots and not scalar multiples of each other (since «
and «,. are linearly independent), u- (r-«) cannot be equal to —a. It follows
by (1.4) that w- (r-a)=s-(u-(r-a)) € .
Finally, suppose that (a, ;) < 0. Then (r-«, o) = —(a, ) > 0, and
the preceding paragraph shows that dp(«a) = dp(r (r - a)) =dp(r-a)—1.
O

(2.15) LEMMA  Let a € &t and w € W, r € R such that « = w - o, and
l(w) = dp(a) — 1. Then w € Wy, and r € I(a), where I(a) denotes the set
of simple reflections in one-one correspondence with the support of .

Proof. If dp(a) = 1, the assertion is trivially true. Suppose next that «
is of depth greater than 1, and let u € W and s € R with w = su and
l(w) =1(u) + 1. Then u- o, = s -, and thus

dp(s-a) =dp(u-a,) <l(u)+1=I(w) =dp(a) —1;

16
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this yields that dp(s - «a) = dp(«) — 1, and therefore («, as) > 0. Since « is
a positive root and (o, ay) < 0 for t € R\ {s}, we deduce that s € I(«).
Further, as s - @ = u - . and [(u) = dp(s - a) — 1, induction yields that
u € Wis.a) and r € I(s- a). By definition of the action of s on V, it follows
that I(s-a) C I(a) U{s} = I(a), and thus w = su is in Wy, and r € I(a).

g

(2.16) COROLLARY Let J C R. Then ®; = ®NV; and dp;(«a) = dp(«)
for all o« € ®;, where dp; denotes the depth function on ®; with respect to
W;andl;.

It is clear that the part of the previous assertion concerning the depth
in parabolic subsystems is not in general true for reflection subgroups Wr;
for if ' = {a}, then « has depth 1 with respect to I', independent of dp(«).
Note furthermore that for I' C ®, we do not have in general & = & N Vr.
For example, suppose that W has the following Coxeter graph

o0 6

r s t u
with (a,, as) = —1. Define a = tust - a5 and I' = {«, o, . }; then

t-aszas+\/§at,
st-as = 20 + \/gozt,
ust - g = 2005 + \/gozt + \/gau,
tust - g = 2005 + 2\/§at + \/gau,

and thus a = 2a; + 2v3a; + V3. Now (o, ) = —2 < —1, {a,a,) = 0
and (a,,a,) = 0. It follows by (1.7) that Wr is a Coxeter group with
distinguished generating set St, and by (1.8) we know further that ®r is the
union of <I>1i' and —<I>1i', where (13;r denotes the set of the roots in & that
can be written as positive linear combinations of elements of I'. Now let
0 =ts- a,; then

B=t-(a,+2as) = a, + 204 + 2v/3a,

and this is equal to o + o, — V3. Hence 3 is an element of Vi; but since
I' is linearly independent, ( is neither in (IJf: nor in @, and thus [ cannot
be an element of or.

17
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Note that the explicit calculation of v above together with the previous
proposition imply that « is of depth 5; for, from each step to the next,
application of a simple reflection increases the corresponding coefficient, and
this indicates that the depth increases by 1. Similarly, v = uts- .. is of depth
4, since

S o = ap + 20,

ts- oy = ap + 205 + 2\/50@,
uts - o = o + 205 + 2\/50@ + 2\/§au.

Observe that although « is of depth greater than dp(vy), all coefficients in «
are less than or equal to the corresponding coefficients in ~.

In general it is a rather tedious task to calculate the depth of a root
using (2.14). In order to find a noninductive formula for the depth of a root,
we define for v € V:

Viw)={v eV ]{wd)>0}, Vo(v)={v eV ]|{vv)<0}
and Vo(v) = {v' € V| (v,0') =0}.

Then V is the disjoint union of V (v), V_(v) and Vj(v), and it is clear that
Vi(—v) = =Vi(v) = V_(v) and Vy(v) = Vp(—v) = =V (v). Furthermore,

<w_1 -U’,v> = <w (wt ), w - v> = <U’,w . U>
for all v’ € V, and thus

Vi(w-v)=w- Vi), Vo(w-v) =w-V_(v) and Vo(w -v) = w - Vy(v).

Next, define for v € V and w € W,
Ny (w,0) = N(w) N Vi (0), N_(w,v) = N(w) \V_(v)
and No(w,v) = N(w) N Vy(v).

By the above, N(w) is the disjoint union of N (w,v), N_(w,v) and No(w,v)
and, furthermore, N, (w,v) = N_(w, —v) and Ny(w,v) = No(w, —v).

Since N (uw) is contained in N(w)Uw~! - N(u), it follows that
N (uw,v) = N(uw) N Vy(v)
C (Nw)Uw™" - N(u)) NVy(v)
(N(w) N Vi(v)) U (w™" - N(u) N Vi(v))
Ni(w,v)Uw™" - (N(u) Nw - Vi(v)).

18
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Now w - Vi (v) = Vi (w - v), and thus
N, (uw,v) € Ny (w,v) Uw™" - (N(u) N Vi(w-v))
= N, (w,v) Uw™ - N, (u,w - v).

Since by (1.11) further N(uw) = N(w)Uw™! - N(u) if l(uw) = l(u) + I(w),
this and similar arguments yield the next lemma, which will enable us to give
a formula for the depth of w - a.

(2.17) LEMMA  Let v € V and u, w € W. Then

Ny (uw,v) € N (w,0) U™ - N (w0 ),

N_(uw,v) € N_(w,v) Uw™ ' - N_(u,w - v),

No(uw,v) € No(w,v) Uw™" - No(u, w - v),
and these unions are disjoint. Moreover, if [(uw) = I(u) + l(w) we have
equality; hence in particular, Ny (w,v) C N (vw,v), N_(w,v) C N_(uw,v)
and Ny(w,v) C No(uw,v), and furthermore, N, (u,w - v) C w - Ny (uw,v),
N_(u,w-v) Cw- N_(uw,v) and No(u,w - v) C w - No(uw,v).
(2.18) PROPOSITION Let a € ® and w € W. Then

dp(w - a) = dp(@) + [N-(w, @)| = [Ny (w, a)].

Proof. The assertion is trivial if [(w) = 0. So suppose [(w) > 1, and let
u € W and r € R with w = ru and I(w) = l(u) + 1. Then by (2.17),

Ni(w, ) = Ny (u,0)Uu™" Ny (r,u-a) = Ny (u,0)Uu™ ' ({a JNVe (u-a));
and

N_(w,a) = N_(u,0)Uu" " N_(r,u-a) = N_(u,0) Uu" " ({a,- }NV_ (u- @),
and these unions are disjoint. So

[0 if(u-a, ) <0,
|N+(UJ,O()|—|N+(U,04)|—{1 if<U'Oé,ar>>07

and f ( )
. 1 1 U- @,y <07
IN_(w, )| = [N_(u, )| = {o if (u-a, o) > 0.

Using (2.14), we deduce that
dp(w-a) = dp(u-a)+ (- (1, )|~ [N_(u, @)[) = (N (w, )| = [N (u, ) ).

and induction finishes the proof. O
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If @ and 8 are roots, and w € W with w - o = 3, Proposition (2.18)
yields that I(w) > dp(5) —dp(«a), with equality if and only if N(w) C V_(«).
In particular, if « is positive and [ equals —a, then

l(ra) > dp(@) — dp(—a) = 2dp(a) — 1.

On the other hand, if w € W and r € R with a = w-a, and I(w) = dp(a) —1,
then r, = wrw™?!, and so I(ry) < l(w) + 1+ l(w) = 2dp(a) — 1.

(2.19) COROLLARY [(ry) = 2dp(a) —1 for all « € ®T.
We can now generalize (2.14).
(2.20) LEMMA  Let o € ® and 3 € ®*. Then

<dp(a) if («
dp(rs - a) { =dp(a) if (o,
> dp(a) if (o

Proof. First, suppose that (o, ) = 0. Then r3-a = a —2(a, 5)5 = «a, and
hence trivially dp(rg - o) = dp(«).

Now let (o, 3) > 0. Corollary (1.10) states that v +— —rg - v defines a
one-one correspondence on N(rg). If vy € N_(rg, a), then

(a,=rg-7) = —({a,7) = 2(v, B){e, B)) = —{a,7) + 2(y, B) (e, B),

and this is greater than 0; for (v,5) > 0 as v € N(rg), (a,3) > 0 by
hypothesis and («, ) < 0 by choice of 7. So v+ —rg -y embeds N_(rg, a)
into N4 (rg, ). But 8 is in Ni(rg,a) by hypothesis, and since § = —rg - 8
clearly 8 ¢ —rg- N_(rg,a). So |[N_(rg,a)| < |Ni(rg,a)|, and hence by
(2.18),

dp(rg - @) = dp(a) +[N_(rg, )| = [Ny (75, @)| < dp(@).

Finally, suppose that (a,3) < 0. Then (rg - «, 5) = — (e, 5) > 0, and
thus by the preceding paragraph, dp(a) = dp (Tg (rg- a)) <dp(rg-a). a
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We conclude this chapter with some first applications of inductive proofs
on the depth. First we give an alternative proof of the next theorem, which
was proved independently by V. V. Deodhar [4] and M. J. Dyer [5]. Our
proof is closely related to Dyer’s proof, translating his ideas into the context
of root systems.

(2.21) THEOREM Let I' C @, and let ¥ be the set of all roots o in N+
such that
N(rq) N @r = {a}.

Then Wp = Wy, and for a, B € ¥ with o # (3, either (o,) < —1 or
(o, B) = —cos(m/m) for some integer m. Thus Wr is a Coxeter group with
distinguished generating set Sy.

The following technical lemma is a vital tool in our proof of (2.21).

(2.22) LEMMA  Suppose « and (3 are two positive roots with o # (3 and
dp(a) < dp(3). Then dp(—rq - B) < dp(a).

Proof. Let w € W and r € R with o« = w -, and [(w) = dp(a) — 1.
Then w=!- 3 € &+, since [(w™!) = [(w) and this is less than the depth of 3.
Furthermore, w™!- 3 # a, since a and §3 are distinct, and thus rw=!-3 € &+
by (1.4). Now

W (- ) = w - (—wrw - ) = —(rw - B) € @,
and so dp(—r, - 3) < l(w™1) < dp(a), as required. O

Proof of (2.9). Clearly ¥ C &p, and thus &y C ®p. Assume now for a
contradiction that ®r # ®g; then (CIDP \ qu,) N®* = (), and thus there exists
a positive root v in ®p \ ®y of minimal depth. In particular, v ¢ ¥, and
hence

(N(ry) N @) \ {7} #0.

Let 3 be an element of the above set of minimal depth; then —r, -3 is also an
element of N(r,) \ {7} by (1.10), and since 3 and  are in ®r by construction,
it follows that —r, - 8 is in (N(ry) N ®r) \ {v}. If dp(5) > dp(7y), then

dp(—r, - 8) < dp(v) < dp(B)

by (2.22), contradicting the minimality of 3. So dp(y) > dp(3), and mini-
mality of + forces 3 € ®y.
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If rg -~y is positive, then dp(y) > dp(rg - v) by (2.20), since 8 € N(ry)
implies that (v,3) > 0; thus rg -y € ®g by minimality of v. If rg- v is
negative, then —rg - 7 is positive, and since dp(—rg - v) < dp(8) < dp(y) by
(2.22), minimality of v forces —rg -y € ®g. So in any case rz -y € ®y. But
since rg € Wy, this yields v € ®y, a contradiction. Hence ®r = Py, and
thus Wp = W\I;

Now let a, f € ¥ with o # (. It remains to show that («,5) < —1 or
(o, B) = —cos(m/m) for some integer m. If (a, ) < —1 or (o, B) = 0 this
is certainly true, so assume without loss of generality that (a,3) > —1 and
(o, B) # 0. Then 1o - 8, 75 - € @7 since «, § € U; furthermore, 75 - (14 - ()
is also positive, since r,, - 3 is an element of ®g N ®* but not equal to 3 (as
(a, B) #0), and N(rg) N @y = {B}. Now 5 =r, -+ 2(a, f)a, and thus

—B=rg-B=rg-(ra-B)+2a,B)rg-a,

which forces (a, 3) to be less than 0; that is, («, 5) € (—1,0).

We show now that if Ao + pf is a root in @, then \ and p are either
both nonnegative or both nonpositive. Assume for a contradiction that there
exist A, p > 0 such that Aa — pf is a root in @, and assume without loss of
generality that this is a positive root. Then

ra - (A —pf) = (A +2(a, B)u)or — 3

isin @7, since A, u > 0 and (o, 3) < 0. Thus Aa — uf8 € N(r,) N Pr, forcing
Aa — puf = a, and contradicting g > 0.

Now let 6 € (0, %) such that (o,3) = —cos(f), and let m € N be
minimal such that (m + 1)6 > ; then sin(#(m + 1)) < 0 and sin(6m) > 0.

If m is even,

m/2 _ 1 . .
(rarg) /2. o= m(sm((m + 1)9)a + sin(m#0)3)
by (1.1)(i), while if m is odd,
(rarg)™t/2. 3 = =~ (sin((m + 1)8)a + sin(md)).

Since sin((m + 1)#) < 0, the previous paragraph forces sin(m#) < 0 in both
cases, and we deduce that sin(m#) = 0; hence m# = =, as required. O
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The following corollary is an easy consequence of the previous theorem
together with (1.8).

(2.23) COROLLARY  Suppose I' C ®. Then there exists a standard geo-
metric realization of Wr with root system ® and bilinear form (, ), and a
bijection 1: ® — ®p with

(i) ¥(2+) = dr N @™,

(i) Y(w- &) =w- (@) forw € Wr and & € ®, and
(iii) (¥(@),¥(B)) = (&, B) for all &, [ € ®.

(2.24) COROLLARY Let o and 3 be roots such that (a, 3) € (—1,1). Then
Wia gy is finite.

Proof. We show first that (, ) restricted to Vi, gy is positive definite. So
suppose that v € Vi, gy with (v,v) <0, and let A, u € R such that v equals
Aa + pfB. Then

(0,0) = X%+ 12+ 2(a, B = (A + (o, B)p)” + (1 = (a, B)2) i,

since 1 — (a, 3)2 > 0, this forces A = u = 0. Thus v equals the zero-vector,
as required.

Now let I' = {«, 8}; as in (2.22), define ¥ to be the set of all v € NPT
with N(r,) N ®r = {v}. Since (, ) restricted to Vi, g} is positive definite,
the remark following (1.8) yields that the elements of ¥ must be linearly
independent. So ¥ = {a/, 3’} for some roots o’ and f', as Vi, g3 = Vi is of
dimension 2. Since (, ) is positive definite on Vi, g, we know further that

0< (' +p3,a+p)=2+2(,0),

and thus (o/,3') > —1. So (a/,') = —cos(w/m) for some integer m by
(2.21), and it follows by (1.1)(i) and the faithfulness of the standard geometric
realization of W that Wr = Wy is finite. O

(2.25) LEMMA  The support of a root is always a connected subgraph of the
Coxeter graph.

Proof. Let « be a root. Since supp(«) = supp(—a), we may assume without
loss of generality that « is positive. If a has depth 1, then |supp(«a)| = 1,
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and a graph with one vertex is connected. So suppose next that « is of depth
greater than 1, and assume that the assertion is true for all positive roots of
depth less than dp(«). Let » € R such that dp(r - o) = dp(«a) — 1; that is,
(a, ) > 0. Since « is a positive root, and (as, ) < 0 for all s € R with
s # r, this yields that . is an element of supp(«). By induction, the support
of r - a is connected, and the definition of the action of W on V yields that

supp(a) = supp(r - ) U {a, }.

If o, is in the support of r- «, then supp(a) = supp(r-«), which is connected.
If a,. & supp(r - ), then o, must be adjoined to an element of supp(r - «),
since (r - o, a,) = — (o, o) # 0; hence supp(«) is again connected, and this
finishes the proof. 0

The next proposition is a generalization of the well known fact that if
the coefficient of a simple root in a root is greater than 0, it must be greater
than or equal to 1.

(2.26) PROPOSITION  Let « be a positive root, and let r € R. Then the
coefficient of «,. in « is either greater than or equal to 2, or equals 0, 1 or
2 cos(m/mg) for some s, t € R with 4 < mg < oo. In particular, since
2 cos(m/m) > /2 for m > 4, this yields that the coefficient of o, in a equals
0, 1 or is greater than or equal to v/2.

Proof. Let a =} _p Asas, and assume without loss of generality that A, is
positive. If |R| = 1, then & = «, and A\, = 1, and there is nothing left to
show; thus we may assume from now on that |R| > 2.

Suppose now that I(a) C {r,s} for some s € R \ {r}; (we call this
the rank 2 case). If (a,,as) is less than or equal to —1 (that is, rs has
infinite order), then the result is an easy consequence of (1.1)(ii). So let
m = my,s < 0o. We deduce from (1.1)(i) that there exists an [ € {0,...,2m}
such that A, equals sin(lmw/m)/sin(7w/m). Since A, > 0, clearly 1 < [ < m,
and by symmetry of sine on the interval [0, 7], we may assume without loss
of generality that 1 <1 < . Now A, = 1if [ =1, and A\, = 2cos(m/m) if
[ = 2; finally, if [ > 3, in particular m > 2] > 6, and thus

sin(lw/m) _ sin(37/m)

Sin(ﬂ/m) = Sin(ﬂ'/m) = 2COS(27T/771) +1> 2(:03(271-/6) +1=2,

as required.
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The general case is shown by induction on the depth of a. If a has
depth 1, then o = «,., and the result follows trivially. So suppose dp(«) > 1,
and let s € R and w € W with @ = w - a, and [(w) = dp(a) — 1. Further,
let t € R such that [(wt) < [(w); then clearly ¢ # s, as w - a; € . Choose
w' € wWi,s of minimal length. Then [(w’) < I(wt) < [(w), and also
l(w's) > l(w') and I(w't) > [(w") by minimality of w’. So the roots w’ -
and w’ - a; are positive by (1.3); moreover, each of these roots is of depth
at most [(w’) 4+ 1, which is less than dp(«). Hence the inductive hypothesis
applies to w’ - ag and w’ - ay.

There exists a u € Wy, ;3 with w = w'u, and we have u- o, = pa, +vay
for some p, v € R. If u-as € @7, then pu, v <0, and so

a=(wu) as=pw - as)+vw - a)

is negative, contrary to our hypothesis. Hence u, v > 0; in fact, u, v > 0,
since otherwise a = w'u- oz would equal either w’-a, or w’ - ay, contradicting
dp(a) > I(w’) + 1. Since the assertion is true for u - ag by the rank 2 case,
this implies that u, v > 1.

Let pu,., v, be the coefficients of ;. in w’ - ag, w' - oy respectively, so
that A\, = pp, + vvy > pp + v If p. > 0, then by inductive hypothesis
i > 1, and the same is true for v,.. So if both u, and v, are nonzero, then
Ar > 141 = 2; since A\, > 0 by assumption, it will suffice to consider the
case v, = 0 and u, > 1, and hence A\, = pp, > 1. If A\, = 1, there is nothing
left to show, so suppose A, > 1. We must have either g > 1 or pu, > 1. If p
and p, are both strictly greater than 1, then pu > v/2 (by the rank 2 case)
and g, > v/2 (by induction), and thus A\, > v/2v/2 = 2, as required. This
leaves us with the case that one of u and p, is 1, and the other one is equal
to Ar. Then by induction or the rank 2 case, A, > 2 or A\, = 2cos(m/my,)
for some z, y € R with 4 < m,, < c0. O

The arguments in the above proof also yield the following scholium.

(2.27)  Suppose {ag,ay) > —1 for all s, t € R, and let o € ®T and r € R.
Then the coefficient of o, in « is a polynomial in C' with coefficients in Ny,
where C' is the set

{ sin(lmw/m)

- ‘4§m:m5t<oof0rs,tERandlENW1'thl§ﬂ}.
sin(7/m) 2
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Chapter 3

Dominance and Elementary Roots

The main result of this chapter is the finiteness of the set of elementary roots
defined below (given that R is finite). It can be shown that this is equivalent
to the Parallel Wall Theorem of the preprint [2], in which the proof given is
incomplete.

For o, 3 € ®*, we say that o dominates 3 (we write o dom (3) if and
only if w - § is negative for all w € W with w - a negative; equivalently, «
dominates 3 if and only if w -« € ®* for all w € W with w -3 € ®T.

Observe that if @ dominates # and w - § is positive, it follows trivially
that (w-«) dom (w- 3). Note also that it is not a priori clear that the notion
of dominance does not depend on W. That is, if I' C &, and « and ( are
roots in ®r such that w - § negative whenever w - a € &~ for w € Wrp, it
is not obvious that this means that o dom 3. We will see shortly that it is
true, however.

Define A to be the set of positive roots a such that o dominates some
B in T \ {a}, and define the set of elementary roots € to be ®1 \ A.

Note that since r - o, € &~ and r - (<I> \ {a,,}) C &t for r € R, every
simple root is elementary. Observe also that if & dominates § and w - « is an
elementary root for some w € W, either a =Forw-g € ®~. If a € A, and
w™!-a and u-« are elementary for some u, w € W, then N(u) NN (w~1t) # (;
for if & dominates 3 € ® \ {a}, then w™! -3 and u - 3 must be negative by

the above. Thus [(uw) # l(u) 4+ I(w) by (1.11).

(3.28) LEMMA  Let a € A and u, w € W with u-«, w™' -« € II. Then

l(uw) # l(u) + l(w).

By using 717y ---rj_17r; in place of w and 741742 - - - 1177 in place of
w (with o = (741 - -r—177) - @s), We obtain

(3.29) COROLLARY  Let ry,...,7 € R such that I(ry---7;) = [, and sup-
pose furthermore that (ry---r;) - as = oy for some s, t € R. Then

(rjrj_i---1ar1) - o = (rjparjpe---r—1r1) - o € € forall j € {1,...,1}.
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(3.30) LEMMA  Let « and (3 be distinct positive roots. Then « dom (3 if
and only if dp(w - a) > dp(w - 3) for all w € W.

Proof. Suppose first that w - « is of depth strictly greater than dp(w - 3) for
all w € W. If u - « is negative for some u € W, then dp(u - #) < dp(u - «),
and this is less than or equal to 0; whence u - 3 is negative, and we conclude
that a dom £.

For the converse suppose that  dom 3, and let w € W. Suppose first
that w - o is positive, and let w € W and r € R such that w-a = u - «, and
l(u) = dp(w-a) —1. Since r- (u"'w)-a = —a,. € @~ and a dom 3, we know
that (ru='w)- 3 is negative. So by (1.4), either (u='w) -3 = a,. or (u=tw)-fB
is negative. But since a and (8 are distinct, the former is impossible, and
thus (u™lw) - B € ®~. Hence dp(w - 8) < l(u) < dp(w - a), as required.

Finally, suppose that w-« is negative, and thus w-G € &~ since o dom J.
Take u € W and r € R with I(u) = —dp(w - ) and u - (w - ) = —ay;
then (ruw) - = a, is positive, and thus (ruw) - @ must also be positive.
Since a # [ further (ruw) - a # a,, so (uw) - « is still positive; that is,
u-(—w-a)=—uw-«a € . Hence

—dp(w-f) =1l(u) > dp(~w-a) =1 —dp(w - o),

and thus dp(w - ) < dp(w - «), as required.

O

Note that if « dom (3, the previous lemma implies that dp(a) > dp(f),
with equality only if &« = (3, and so dom is antisymmetric. It is clear that dom
is also transitive, and so dom is a partial order on ®*. The elementary roots
are the minimal elements in this partial order, and for each o € ®T there
exists a 3 € € such that o dom 3. So if u, w € W, then N(u) N N(w™!) =0
if and only if N(u) NN (w™1)NE = 0; hence (1.11) yields the following result.

(3.31) LEMMA  Let u,w € W. Then l(uw) = l(u) + l[(w) if and only if
Nu)NNw1)n&E=0.

Suppose next that W is finite, and let wgr denote an element of W of
maximal length. Then [(wgr) < [(wg) for all » € R, and thus wg - a, € ™.
Hence N(wg) = ®* (note that this also yields the uniqueness of wg). We
show now that dp(wg - o) = dp(—a) for all @« € ®. By (2.13) it suffices
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to show this for « € ®*. Then (a,8) > 0 for 8 € N(ry); furthermore,
ro permutes @ \ N(r,) with (o, 3) > 0 if and only if (o, r, - 5) < 0 for
B € ®t\ N(r,). Therefore

[T NVi(a)] = 2T NV_(a)] = [N(ra)l;

that is, [N+ (wg, )| — |N—(wg, )| = |N(rs)| = l(ra). Now (2.18) and (2.19)
yield that

dp(wg - @) = dp(a) — I(ra) = dp(@) — (2dp(a) —1) = 1 —dp(a),
as required. So if dp(«) > dp(f3) for some roots « and 3, then

dp(wr - a) =1 —dp(a) <1—dp(3) = dp(wr - B).
This together with (3.30) yield that there is no non-trivial dominance in finite
root systems.
The next proposition provides us with an alternative characterization

of dominance, which shows that dominance is independent of W'.

(3.32) PROPOSITION  Let o and 3 be positive roots. Then o dom (3 if and
only if (a, ) > 1 and dp(a) > dp(5).

Proof. Suppose first that o dom 3. By (3.30) we need only show that (a, 3)
is greater than or equal to 1. Since r - « is negative, r,, - 3 must be negative,
and this forces (a, ) > 0.

Assume for a contradiction that (a, 8) € (0,1); then (2.24) yields that
Wia,gy is a finite Coxeter group, and by (1.12) there exists a finite parabolic
subgroup W; of W and a w € W such that wW{a,ﬁ}w_l C Wy. Then w - «
and w - 3 are in ®;, and by (3.30) and (2.16),

dp;(w-a) =dp(w-a) >dp(w- [) =dp,(w- F).
But now the remark preceding this proposition together with (2.16) imply
dp(wyw-a) =dp;(ws - (w-a)) <dpy(ws - (w-B)) =dp(wyw - ),

where w; denotes the element of W; of maximal length. This contradicts
(3.30) with w w in place of w, and hence (a, 3) > 1 after all.
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For the converse, assume that (o, ) > 1 and dp(«) > dp(f). First
consider the case 8 € 11, say § = «,.. If @ = . there is nothing left to show,
so suppose 7 - a € ®+. Then

2< 1.

(o, 7 a) = (o, 0) — 2o, )2 =1 — 2(av, o)
By (1.1)(ii) there are infinitely many roots of the form Aa + p(r - a) with
A, it > 0. Assume for a contradiction that o does not dominate 3, and choose
w € W such that w-o € &~ and w- a,, € ®T. Then

w-(r-a)=w-a+2(x,a)(—w-a,)

is a positive linear combination of negative roots, and must therefore be
negative. So N(w) contains o and r - o, and hence also contains all roots of
the form Ao+ p(r - «) with A, g > 0. This contradicts the finiteness of N(w)
(see (1.9)).

Proceeding by induction on dp(f), suppose now that dp(3) > 1, and
choose r € R such that dp(r - 8) = dp(5) — 1. Since dp(a) > dp(B) > 1,
clearly r - € ®*. Further (r-a, r-3) > 1, and

dp(r- @) = dp(a) =1 > dp(B) — 1 =dp(r - B).
Now (7 - «) dom (r - 3) by induction, and therefore o dom (. O

Observe that if (a, 3) > 1 for positive roots a and (3, then by (3.32),
a dom (3 or # dom a.

Next, let I' € ® and let o and 3 be positive roots in ®r such that w -
is negative for all w € W with w - @ negative. We show now that this yields
that o dom (. If a = ( this is certainly true, so suppose without loss of
generality that o # 3. By (2.21) we know that Wr is a Coxeter group, and
by (2.23) there exists a standard geometric realization of W with bilinear
form (, ) and root system ®, and a bijection 1: ® — ®r such that

(1) ¥(
(ii) Y(w-a) =w - (&) for all w € W and & € @, and
(i) ((a@),v(3)) = (&, B) for all &, B € ®.

Now 1~ () and 1~1(8) are in & by (i). If w -~ (a) € &~ for some
w € Wr, then ¢(w-¢~!(a)) € & by (i), and thus w - o € &~ by (ii);

d+) = dp NPT,
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hence w - f € ®~ by hypothesis, and (again by (i) and (ii)), we find that
w1 HB) = ¢ Y w-B) € . So () dominates 1»~1(8) with respect
to Wr. Proposition (3.32) now yields that (¢~*(a),%~'(8)) > 1, and thus
(o, B) > 1 by (iii). Hence o dom  or 5 dom «. Since o # (3, and thus
Y1) # ¥~ 1(B), Lemma (3.30) implies that the depth of ¥~!(a) with
respect to the distinguished generating set of Wr is strictly greater than the
depth of ¥~1(B). Let w € Wr such that w -y ~1(8) € &~ with the length
of w (with respect to the distinguished generating set of Wr) equal to the
depth of ¥ =1(8). Then w - p~'(a) € &, since 1p~'(a) is of depth greater
than the length of w. Therefore w -« € &1 and w- 5 € &~ by (i) and (ii),
and thus § cannot dominate «; whence o dom 3.

We now make use of (3.32) to give an alternative derivation of the well
known classification of finite Coxeter groups. Suppose that W is a parabolic
subgroup of W with Coxeter diagram

with m, n > 4. Denote the simple roots corresponding to r, s;, t by x, y;
and z respectively, and define 7 to be ¢(s;---s1) - x. Then

y=x+cm(y1+ -+ y) + emenz,

where ¢,,, = 2cos(m/m) and ¢, = 2cos(m/n), and an easy calculation yields
that(v, z) > 1; since - is certainly of depth greater than 1, we conclude that
v dom z and v € A. So W; must be infinite, and hence W must be infinite.
The root « appearing above can be conveniently described by means of the
following diagram:

m >4 n >4
— o ¢ - - --- ° ° o

Note that the vertex in the above diagram corresponding to z (which is
dominated by ) is denoted by a circuit rather than a dot. Similarly, roots
described by the following diagrams are necessarily in A.
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Cm

m >4
C r Y O = = = - -
20,271—1 2Cm  2Cm 2, 2c¢,

1

2: 2 2 2 2 i
1
2

1 2 4 2 1

m > 6
Em an i
5
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)
205+1305+1205+1C5+1 1

Consequently a finite Coxeter group cannot have a parabolic subgroup
of type corresponding to any of the above diagrams. In (3.12) and (3.14) we
show that A is also non-empty if R contains a circuit or an infinite bond,
and this yields the following well-known theorem:

(3.33) THEOREM  Suppose W is finite. Then the Coxeter graph of W has
finitely many connected components, and each of these is one of the following
shapes:

m
Ir(m) —
A, — o o - ---- -~ o
4
B, o - - --- -~
D, >_‘ ----- -——9
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Hs — o

It is a straightforward matter to show that the form (, ) is positive
definite for each of the diagrams in this list. Consequently there can be no
nontrivial dominance in these root systems, since if & dominates (3,

(a=F,a—=0)=(0,) +(53,0) = 2(a, 8) = 2(1 = (o, ) < 0.

From Theorem (3.17) below it follows that the root systems (and hence the
groups) are finite in these cases.

We now define a second partial order < on ®, which will enable us
to stop our search for elementary roots in an ascending chain with respect
to =<, as soon as we find a non-elementary root (see (3.9)). This fact is an
important tool in the proof of the finiteness of the set of elementary roots.

For roots a and 3 we say that « precedes 3 (and write o < (3) if there
exists aw € W with = w-a and N(w) C V_(«); that is, N(w) = N_(w, a)
and Ny (w, @) = No(w,a) = 0. If « < 3, we also write 3 = « and say that 3
is a successor of a. We write a« < S or § > a if a < 3 and a # .
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Note that if « is a root and r € R, then

<o if (o, o) > 0; that is, dp(r - o) = dp(ar) — 1,
r-ad =a if (a,a,) =0,
= if (o, o) < 0; that is, dp(r - o) = dp(«) + 1.

In particular, if a is a positive root, then there exists an » € R with o > r- av.
Since dp(r-a) = dp(«) — 1 in this case, an iteration yields that each positive
root is preceded by a simple one.

If B =w-« for some w € W, then
dp(3) — dp(a) = dp(w - @) —dp(a) = [N_(w, )| — [Ny (w, @)

by (2.18), and it is clear that o < ( if and only if there exists a w € W
of length equal to dp() — dp(«) such that § = w - a. Therefore < is an-
tisymmetric, and we show now that =< is also transitive, and thus a partial
order. So let a, B and v be roots with a < # and # < . Then there exist
u, w € W such that § = w-«a and v = u - f with N(w) = N_(w,a) and
N(u) = N_(u, ). Thus v = uw - «, and (2.17) gives

Ny (uw, @) € Ny (w,a)Uw ™" Ny (u,w- o) = Ny (w, ) Uw ™" - Ny (u, 8) = 0,

and similarly No(uw,a) = 0; hence N(uw) = N_(uw,a) and a < 7, as
required.

We can now state a slightly weaker criterion for precedence.

(3.34) LEMMA  Let o, B € ® such that = w - « for some w € W with
Ni(w,a) =0. Then a < 3.

Proof. If w = 1, this is certainly true; so suppose [(w) > 0, and proceed by
induction. Let r € R and w € W such that w = ur and [(w) = [(u) + 1.
Then Ny (u,r-a) € r- Ny(w,a) = 0 by (2.17), and as § = u - (r - ), it
follows by induction that 8 = r - a. Lemma (2.17) implies furthermore that
Ni(r,a) C Ny(w,a) = 0, and thus (a, a,) < 0; we deduce that r - a = «,
and hence § = « by transitivity of >, as required. 0
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We show now that if § > «, then there exist roots aq,...,aq_1 with
dp(a;) = dp(a) + i and d = dp(3) — dp(«) such that

a<a; <ag << ag-g < 0.

If « = B this is trivially true; so suppose a < 3, and let w € W with

l(w) = dp(B) — dp(«) such that § = w - a. Then w # 1 as a # 3, and thus
there exist u € W, r € R such that w = ru and l[(w) = [(u) + 1. Now

dp(B) —1 < dp(r-08) =dp(u- )
= dp(a) + [N_(u, )| — [Ny (u, @)
<dp(a)+(u) = dp(a) + l(w) — 1 =dp(B) — 1,

and we must have equality everywhere; in particular, dp(r - 5) = dp(8) — 1
and l(u) = |[N_(u,a)]. So 8> r-f =u-aand N(u) C V_(«), and thus
r- (3 > a. Since dp(r - #) — dp(a) = dp(F) — dp(«) — 1, induction yields that
there exist roots aq, ..., aq_2 with dp(«a;) = dp(«) + ¢ such that

Oé-<0(1-<062-<"'-<Oéd_2-<7"~ﬂ(:ad_146),

as required. In particular, if @ < (3, then there exist r, s € R such that
a=r-f<Fand a<s-a=p0.

(3.35) LEMMA  Let a = ) _pAra, and 3 = ) _pprc, be such that
a =X B. Then \. < u, for allr € R.

Proof. If a = 3, the assertion is trivially true, so suppose dp(3) —dp(«a) > 0,
and let s € R with # »= s-«a > «; then dp(s - «) = dp(a) + 1, and thus
dp(8) — dp(s - @) < dp(B) — dp(«). Further, (o, as) < 0 and

s-a= Z Aray + (A5 — 2(a, a,)) o

so by induction, p, > A, for all € R\ {s} and pus > A\s — 2(a, a5) > A, as
required. 0
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Note that this also yields that if § = w - a and N(w) C V_(«a) for
w € W, then w € Wy, where I consists of all » € R such that the coefficient
of a,- in « is strictly less than the coefficient of . in (.

(3.36) LEMMA  Let o, 8 € @1 such that « < 8 and a € A. Then 3 € A.

Proof. If a = (3, the assertion is again trivially true. Assume next that
dp(B) — dp(a) > 0, and let s € R with 8 > s-a > «. Then s- « is of
depth dp(«) + 1, and thus dp(8) — dp(s - «) < dp(8) — dp(«); furthermore,
(o, ) < 0. Next, let v € @ \ {a} such that a dominates 7; then (a, ) > 1
by (3.32), and thus clearly v # «a5. So s-v € ®* by (1.4), and it follows
easily that (s-a) dom (s-+); since obviously s-a # s- 7, we deduce that s-«
is in A, and thus § € A by induction. |

The next lemma gives an algorithm that has as its input the set of
elementary roots of depth n, and computes the set of elementary roots of
depth n + 1.

(3.37) LEMMA  For alln € N, define &, = {a € £ | dp(a) =n }. Then

Ent1 = {T-Oz’OéEgn and r € R with (o, a,) € (—1,0)}.

Proof. First, let a € &, and r € R with (o, a,) € (—1,0), and suppose that
r - a dominates some 3 € ®*; then (r - «,3) > 1, and thus 3 # «.., since
(r-a,a,) = —(a,a,) € (0,1). Sor-p € & by (1.4), and it follows that
a dom (r - f3). As « is elementary, this implies that r - § equals «; that is,
B = r - «a. Therefore r - « is elementary, and since dp(r - @) = dp(«a) + 1 by
(2.14) we have r -« € Ep41.

For the converse, suppose that « is an elementary root of depth n + 1
(which is greater than 1), and let r € R with r - o« < . Then r - o € &,
since 7 - « is of depth n by (2.14), and elementary by (3.36). Furthermore,
(o, ) > 0 since 7 - a < «; on the other hand, (o, a,) < 1 by (3.32), as « is
of depth greater than 1 and cannot dominate c,.. Thus («, «,) € (0,1), and
hence (r - a, ) € (—1,0), as required. O
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(3.38) LEMMA Let a, 3 € T with 8 < «, and let r € R such that (3, «,)
is less than or equal to —1. Then o € A, or the coefficients of «,. in o and (3
coincide.

Proof. Suppose that the coefficients of a,. in o and 8 do not coincide, and
let v be a root of maximal depth with § < v < « such that the coefficients
of a,. in B and v coincide; then v < r -+ =X a by maximality of v. Now
vy—0= ZSER\{T} Asa for some A > 0, and hence

<r'75 O‘7“>:_<77047“>: ﬁvar - Z )\ O‘s’a’r > 1,
sER\{r}

since (as,a,) < 0 for s # r. Asdp(r-~) > 1 = dp(a,), this implies that
r-v €A, and thus a € A by (3.36). O

(3.39) COROLLARY  Let a € ®* such that supp(«a) contains a circuit. Then
a € A.

Proof. Let B be a positive root of minimal depth preceding « such that
supp(() contains a circuit, and let r € R with r - § < 3. By minimality of (3
we find that supp(r - §) does not contain a circuit. Now let 3 =3"__p Az,
and r- 3 =) _pHep. Since A, = p, for all z # r, and the support of 3
contains a circuit, while the support of r - § does not, it follows that u, = 0,
and that «,. is part of a circuit in supp(3). Hence there exist at least two
elements ag, oy of supp(f) \ {«,} such that «, is adjoined to a, as well as
ay. By definition of (, ), it follows that («.., as) and (., ay) are both at most
—cos(m/3) = —3, while (a,, a;) <0 for all other z € R\ {r}. Furthermore,
Ws, e > 1 by (2.26), and thus

67 ar Z,um amaar ZHm(amaar> S ,Uls<a/35ar> +,ut<a/taar> S —1.
TER THET

Since the coefficient of «, in ( is not equal to the coefficient of a,. in r - 3,
Lemma (3.38) implies that § € A; hence o € A by (3.36), as required. i
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(3.40) COROLLARY Letr, s € R be adjoined. Further, suppose that o and
B are positive roots with « > (3 such that r € I(«) \ I((3), and the coefficient

of a, in (3 is greater than or equal to |(cv, cs)| . Then a € A.

Proof. Let 3 = EteR\{r} Atay. Then

Braw) = > Nlag,ar) = Y Aelaw, an)+HAs{as, o) < Alag, ap) < —1.
teR\{r} t#r,s

Since the coefficient of a,. in « is not equal to the coefficient of «, in £,
Lemma (3.38) implies that o € A. O

(3.41) COROLLARY  Let r, s € R such that r and s are adjoined by an
infinite bond, and suppose that « is a positive root with both «, and oy in
its support. Then o € A.

Proof. Interchanging r and s if necessary, we may choose < « such that
r € I(f) and s ¢ I(F). Since the coefficient of «, in 3 is greater than or
equal to 1 by (2.26), and thus greater than or equal to |(a, cs)| ™", (3.40)
implies that a € A. O

Our proof of the fact that &£ is finite (if R is finite) depends on the
finiteness of the set of real numbers { (o, o) | @« € € and r € R}. The next
definition facilitates the statement of the relevant facts.

Define C(R) to be the set of all real numbers of the form cos(nm/m)
with n € {1,...,m — 1} and m = m,; < oo for some r, s € R. If R is finite,
then |C(R)| is less than or equal to the sum of all m — 1 with m = m,, < o
for some r, s € R.

The next proposition is a slight variation of (1.12). It yields that if
(o, B) € (—1,1) for some roots o and (3, it follows that (a, 3) € C(R). For
(2.24) implies that Wy, gy is finite if (o, 3) € (—=1,1), and by the next asser-
tion there exist 7, s € R and w € W such that w- o, w- 3 € ®y, 4); therefore
we can deduce from (1.1)(i) that

(o, B) = (w - a,w - B) = cos(nm/mys)

for some n € N, as required.
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(3.42) PROPOSITION  Let I' C ® such that Wy is finite. Then there exists
a finite parabolic subgroup Wy of W with |I| < |I'| such that Wy is conjugate
to a subgroup of Wr.

Proof. Since Wr is finite, we know by (1.12) that Wr is conjugate to a sub-
group of a finite parabolic subgroup W, and we may assume without loss of
generality that Wpr C W;. If |J| = |I'| the assertion is true, so suppose now
that |J| > |I'|. We show that there exists an I C J with I # J such that Wp
is conjugate to a subgroup of Wy, and the assertion will follow by induction.

As in the proof of (1.12), let V' denote the dual space of V;, acted upon
from the right by Wy, and for f € V; define S(f) = {v € ®¥ | f() <0}
Since the space spanned by I' is a subspace of V;, and has dimension less
than |J| (the dimension of V), there exists a nonzero vector vy € V; such
that (vo,7y) =0 for all v € I'. Define F' € V; by F:v — (v,vg); then S(F) is
finite, since ®7 is finite. As in the proof of (1.12) there exists an z € W such
that S(Fz) = 0 and 2Wrz~! C Wy, where I = {r € J | (Fx)(a,) = 0}.
Theorem (3.33) states that the Coxeter graph of J consists of finitely many
connected components, each of which is of one of the shapes described in
(3.33), and thus it can be easily verified that (, ) restricted to V is positive
definite; therefore F' # 0, and thus I # J, as required. m|

The following technical lemma, though trivial, provides the key for our
proof of the main theorem.

(3.43) LEMMA  Let a = ¥,.cgrAra, and B = X,.crur«, be positive roots.
Furthermore, suppose that there exist Ry, Ro C R with R = R U Ry such
that (a,a.) = (B, ,) for all r € Ry, and \. = p, for all r € Ry. Then

<(l/,ﬁ> =1

Proof. Since o — 3 =3 cp (Ar — pr)ay, We have

(a,a =) = Z (Ar = o), ) = Z (Ar = 1) (B, o) = (B, = B),

reRy reR;

and as («,a) = (8,3) = 1, this becomes 1 — (o, ) = (o, ) — 1, and the
result follows. a
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(3.44) THEOREM €& is finite, provided that R is finite.

Proof. If R is finite, it is clear that C(R) is finite, and we set ¢ = |C(R)|.
Since every root of depth d can be expressed as (rqrqg—1 - - r2) - a,, with each
r; € R, there are no more than |R|? roots of depth d. If we can show that
no root in € can have depth exceeding c//(|R| 4+ 1) + 1, the proof will be
complete. So let 3 € &£ have depth d, and let 81 < --- < B4 = (8 be a
sequence of positive roots such that dp(8;) = i. Note that ; € £ for each
ie{l,...,d}. Forie {1,...,d}, define J, = {r € R| (Bi,o,) > —1}. If
r ¢ J;, the coeflicient of o, in (; is constant for all j > i by (3.38); since
(ag, ) < 0forall s € R\ {r}, it follows from (3.35) that (3;, a,) < (G:, ay)
for j > 4, and hence r ¢ J; for all j > i. Thus the sets J; form a decreasing
chain.

Suppose J; = -+ = J; = J for some 2 < i < j. If k € {3,...,j}
and r € R, then (B, a,.) < 1 by (3.32); (since [ is of depth greater than
1 and cannot dominate ). Hence (Ok,a,) € (—1,1) for r € J, and thus
(Br, ) € C(R) by the remark preceding (3.42). So if j — i > c/®l then
there exist m, n € {i,i+1,...,j} with n > m and (B,, a,) = (Om, a,) for
all r € J. But if r ¢ J, then «a, has the same coefficient in (3, as in 3,, and
it follows by (3.43) that (6, B») = 1. This contradicts (3.32), since G,, ¢ A.
We conclude that if j — i > ¢l then Jj is strictly smaller than J;. Since
Jo C R, it follows that the chain Jy O J3 D --- D Jy can have length at most
c!BI(|R| 4 1), and this finishes the proof. O

(3.45) LEMMA  Let o € . Then a € & or there exists 3 € ®T such that
adom 8 and rg - € T,

Proof. If dp(a) = 1 then a € £ and there is nothing left to show., So suppose
dp(a) > 1 and o € €. Now let 7y be a positive root different from a which is
dominated by «a. and let r € R such that -« < a. If v = «,. choose § = «a..
Then 75 - @ = r - a has depth greater or equal to 1 and hence is in ®T.

Suppose next v # a;.. Then r-y € ®* by (1.6) and hence r-« dominates
r -7, whence r - o € Ayy. By induction there exists a root 8 € ®* which
is dominated by r - «a such that rg - (r-a) € ®T. Since (r-a,a,) < 0 as
r -« < « while on the other hand (r-«a, 3’) > 1 by (3.32) , we know ' # «,..
Hence r - 3 € ®* by (1.6) and thus a domr -3 as 3 € .

If rp.g - € @1 choose f = r- . Then clearly « dom 8 and rg-a € .
This leaves us with the case r,.3 - @ € ®~. Since r,.30 = rrg7r by (1.9) we
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find
rrg -a=rrgr-a=r-(rg-(r-a)).

As rg - (r-a) € @1 by choice of 3, this forces rg -7 -« to be equal to a.
That is,
rea=rg-a,=a —2a, )5

Now 1 < (r-a, ") by (3.32) and this equals

(o, B') = 2, 8)(B, B) = —(ar, ).

Thus (r-4', a,.) = — (., ') > 1 and clearly dp(r-3’) > 1 = dp(«,); by (3.32)
this yields r - 3’ dom «,., and by transitivity of dominance we find o dom a,..
So if we choose 3 = . then certainly o dom g and rg-a=r-a € ®7. 0

Chapter 4
The Stabilizer of a Root

We now show that the stabilizer of a root is the semidirect product of a
Coxeter group and a free group.

For a root a, we denote the stabilizer of « in W by W(«). Any root
can be written as w - a,. for some w € W and r € R, and an easy calculation
yields that W (w - o) = wW (c,.)w™!; therefore we can restrict our attention
to W(a,.) for r € R.

Let I'(r) be the set of roots v with (a,,v) = 0; that is, I'(r) equals
Vo(ar) N @. The group Wr(,) generated by the reflections corresponding
to the roots in I'(r) is a normal subgroup of W(«,.); moreover, Theorem
(2.21) states that Wr(,) is a Coxeter group. We will show that Wp(,) has
a complement Y, in W(«,.), and that Y, is isomorphic to the fundamental
group of a certain graph. Well known arguments then show that Y. is a free

group.
Next, let X, be a set of coset representatives of Wr,) in W(a,) of

minimal length. For w € X, the minimality of [(w) yields that I(wr,) > l(w)
for all roots v € T'(r), and it follows by the Strong Exchange Condition that
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N(w)NT(r) = 0; that is, No(w, a,,) = 0. So X, is a subset of Y,., the set of
all w € W(a,) with No(w, «,.) = (). We will see shortly that X,. =Y., and
then use the concepts developed in the preceding chapter to prove that Y,
has the properties we have described.

(4. 46) LEMMA Let « € ® and w € W such that No(w,a) = (). Then
N()( , W - a) = Q)

Proof. Since Vp(w - o) = w - Vp(«r), we know that

No(w™Hw-a)=Nw ) nV(w-a)
= Nw™")Nnw-Vy(a)
w- (w - Nw )N Vy(a)).

Further, w=!- N(w™!) = —N(w) by (1.10), while —Vj(a) = Vy(); therefore
No(w ' w-a)=-w- (N(w)N Vy(a)) = —w- No(w, a) = 0.
g

Now let w € Y,.. Then No(w™!, ;) = No(w™ ', w- ;) = () by (4.46),
and thus w=! € Y,.. If u,w € Y,, (2.17) yields that

N—(uwvar) - N()(UJ, a’r’) U w_l ' N()(U,w : a’r’)
= No(w, ) Uw ™t - No(u, )
= (),

and therefore also uw € Y,.. Since clearly 1 € Y,., this proves that Y, is a
group.

We show next that Y, = X,.. Let w € Y., and let u € X, be the
representative of the coset wWr,); then u € Y., and thus wlu € Y, and

N(w™tu) NT(r) = No(w™ tu, a,) = 0.
It is clear that ®p(,y = I'(r), and so the above becomes:

(w U) ((I)F(r) no ) - (I)p(r) Nnet.
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Asw™tu € Wr(r), faithfulness of the standard geometric realization together
with (2.23) now imply that w=lu equals 1; that is, w = u € X,. Whence
X, =Y,, and it remains to show that Y, is a free group.

We obtain the odd Cozxeter graph of W by deleting all edges of even
weight as well as all edges of infinite weight from the Coxeter graph. Let the
set F consist of all (I + 1)-tuples (rg,...,r;) with rq, ..., € R such that
ri—1 and r; are adjoined in the odd Coxeter graph for all i € {1,...,l}. If
s, t € R are adjoined by a bond of weight 2n + 1, we define m(s,t) = (ts)™;
then s7(s,t) is the uniquely determined word in Wy, ;3 of maximal length,
and thus

N (m(s,t)) = (I)?as,at} \ {a}.
Define m: F — W by m(rp) =1 and for [ > 1,

w(roy. .., 1) = m(ro,r1)m(ry, ro)mw(re,r3) - - - w(ri—o, ri—1)w(ri—1, 71).
Now let (rg,...,7) € F, and set w = 7(rg,...,r;). It follows from
(1.1)(i) that 7(ri—1,7:) -, = ap,_, for all 4, and thus m(r;, ..., 1) qp, = u,;

in particular, w - oo, = . An iteration of (2.17) yields that

C -~

No(w,oz”) - 7T(7“z7 e '7“1') : NO(T"(Ti—lvri);ﬂ'(Tia .- ~ﬂ“l) : a’r;)

.
[y

~ |l

U w(ry,---ri) - No (ﬂ(ri_l, i), ari).

&
I
—

Since the order of r;_17; is odd, we deduce from (1.1)(i) that ®y,, | .1 con-
tains no roots perpendicular to .., and thus Ny (7‘(‘(7“1'_1,7“1'),04”> is empty
for all ¢; hence No(w, ;) = (0. In particular, if ro = r; = r then 7 (rg, ..., 7)
is an element of Y.

Next, define L: F — Ny by L(rg,...,r) = Zizll(ﬂ(ri_l,ri)). It is
clear that L(s) > I(n(s)) for all s € F, and we define F C F to be the set
of all s € F with L(s) = I(n(s)). Note that (s,t) € F for all (s,t) € F. If
(ro,...,m) € .7?, it is certainly necessary that r;_; # r; 41 for all 7, since

(s, t,s) =m(s,t)n(t,s) = 1.

We will soon see that this condition is also sufficient.
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(4.47) PROPOSITION  Let w € W and r, s € R. Then w - o, = o with
No(w, ) = 0 if and only if there exists some (rq,...,r) € F withrog = s
and r; = r such that w = 7w(rg,..., 7).

Proof. We have seen above that w - ., = g and that No(w, ) is empty for

w=m(re,...,r) with r, =r, rg = s and (rg,...,r;) € F C F; so it suffices
to show the converse.

Suppose that w - o, = a5 and No(w, a,.) = 0. If w = 1, the assertion
is true with [ = 0. So assume that w # 1, and proceed by induction. Let
t € R with [(wt) < l(w); then t # r by (1.5), as w - o, = g is positive. Set
I = {r,t}, and let uw € W be of maximal length such that w = du for some
d € W with [(w) = l(d) + l(u). Then by (2.17),

No(u, o) =0 and No(d,u - o) = 0. (%)
Now let A\, u € R such that v - a,, = Ao, + pay; then
as=w-a,=d-(u-a,)=Ad- o)+ p(d- o)

and A\, g > 0or A, g < 0. Maximality of u together with (1.5) force d-a,. and
d-ay to be positive, and as a; is positive, we deduce that A, u > 0; moreover,
A =0 or p = 0 since ay is simple. That is, u- o, = a, or u - o, = a3, and we
denote u - ;- by a.

Since u- - is positive, we know by (1.5) that [ (ur) = I;(u)+1, and as u
is an element of W; and u # 1, this forces I;(ut) < l;(u); that is, u-a; € ®~.
Furthermore, u - o, and u - a; are linearly independent since «, and ay; are
linearly independent, and thus in particular v - oy # —u -, = —a,. So
(zu) - oy € @~ by (1.4) and clearly (zu) - o, = —a, € ®~. Now N(zu)
includes all positive roots which are linear combinations of «, and «;, and
thus rt must have finite order, and zu is the uniquely determined word in
W7 of maximal length.

Assume for a contradiction that the order of 7t is even and equals 2m.
Then u = t(rt)™~!, and we can deduce from (1.1)(i) that (157")mT_1 cay 18 in
No(u, o) if m is odd, and ()2 ~! - i, is in No(u, o) if m is even. Both of
these contradict (), so rt must have odd order. Then u = 7 (t,r); moreover,
d-ay =d-(u-a.) =w-a = as with No(d, ;) = No(d,u - o) = 0 by
(%). Since l(u) > I(t) = 1, we know that I(d) < l(w), and by induction there
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exists an (rq,...,r) € F with 79 = s and 7, = ¢ such that d = (1o, ..., 77).
Now (rg,...,7,7) € F, and

w=du=m(rg,...,r)n(r,r)=m(ro,...,r,7);

furthermore, I(w) = I(d) + l(u) = L(ro,...,m) + L(r;,r) = L(ro,...,r,7),

[
and thus (rg,...,r,r) is in F, as required. O

It is clear that the elements of the fundamental group of a connected
graph = can be identified with paths in = which start and end at a fixed
vertex v, and which never back-track upon themselves; that is, at no stage
does the path traverse an edge and then immediately traverse it again in
the opposite direction. It is well known (see, for example, [8], Chapter 6,
Theorem (5.2), p.198) that this fundamental group is free of rank ¢ — v + 1,
where € is the number of edges, and v is the number of vertices of =. (This
follows from the fact that = is homotopy equivalent to a graph on one vertex
with e — v + 1 edges - topologically, a bouquet of circles - as can be seen by
shrinking a spanning tree of I" to a single vertex.)

Specifically, if the graph = is the connected component of the odd Cox-
eter graph containing the vertex r € R, then the elements of the fundamental
group of = can be identified with the set

Fr={(ro,...,m) € F|ro=ry=rand r;_1 #ripq foralli € {1,...,1}},
multiplication being defined by the rule

(o, - s71) % (S0, -y Sm) = (T0y e+ - s TI—i—1,Sis -+, Sm)s

where ¢ is the maximal integer such that s; = r;_; for all j € {0,...,i}. Note
that the identity of this group is (r). At the beginning of this chapter we
have seen that m maps F, into Y,., and since 7 (s,t,s) = 1 for (s,t,s) € F, we
conclude that 7w induces a homomorphism 7, from F,. to Y,.. If (rg,...,r) is
in F with ro = r, = r, clearly (ro,...,r) € Fr, and so (4.47) implies that ,
is surjective. The next proposition yields that F,. C F. So if s € F, is in the
kernel of 7,, then

L(s) = I(m(s)) = I(m(s)) =1(1) =0,

and thus s = (r). Hence 7, is also injective, and therefore a group isomor-
phism.
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(4.48) PROPOSITION  Let (r, ...,r;) € F\ F. Then ri_y = ;41 for some
ie{l,...,l—1}.

Proof. In order to avoid double indices, we denote the simple root corre-
sponding to 7; by «; for all i. Now let m € {0,...,l} be minimal such that
(ro,....rm) ¢ F, and let n € {0,...,m} be maximal such that (rp,...,7n)
is not in F. Since (Fpy ..., m) is also in F \ F, and as it suffices to find one
i such that r;_1 = r;41, we may assume without loss of generality that n =0
and m = [. Then (ro,...,r—-1), (r1,...,7r) € F by minimality of m and
maximality of n respectively. Further [ > 2, since (s, t) € F for all (s,t) € F.
Now define uy = w(rg,71), w = 7(ry,...,r—1) and ug = 7w(r;—1,7). The
above yields that I(ujw) = l(uy) + [(w) as well as [(wusz) = I(w) 4+ I(usz), and
thus by (1.11),

N(uyw) = w™' - N(u1) UN(w) and N(w) N N(uz ') = 0.

On the other hand, (ro,...,r;) ¢ F implies that [(uywus) < l(urw) + 1(us),
and therefore N (uyw)NN (uy ') # 0 by (1.11); hence w™- N (u1)NN (uy ') # 0
by the above. Now

N(un) = ®f 0,y Moot and N(ug ) = @F, oy \owaks
thus there exist A > 0, ¢ > 0 and « > 0,y > 0 such that
w - (Aag + par) = zag_q + yoy.

Since w1ty = ay_1, this yields that A(w™t-ap) = (z—p)ag_1+ya;; asy > 0
and w1 - a is either positive or negative, this forces x > p. Symmetrically,
y(w-ap) = (p—x)og + Aoy and A > 0, and thus g =z and w - oy = ap. If
[ =2,then w=1and ap =1 @y = as, and thus rqg = rs, as required.

Assume for a contradiction that [ > 2; then (rg,r1,72) is in F by
minimality of m = [, and this yields that rqg # 72, and thus ag # as. Let

u=m(ry,...,ri—1); then w = 7(ry, ro)u with
l(w) = l(?T(Tl,Tg)U) = l(?‘(’(?‘l,?‘z)) + (u). (%)
Next, define v to be 7(r1,72) "1 - ag; since u=! -~ 1.y = oq and

= w
7(ri,7m2) - v = ap are both in II, Lemma (3.28) and (x) force v to be an
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elementary root. We show that this cannot be true, and this will be the
desired contradiction.

We show first that ~ is preceded by rirs - ag. By definition of 7,
it is clear that m(ry,72)~ ! equals w'ryry for some w’ € Wir, rpy of length
I(m(ry,7m2)7 L) — 2. Now

No(w',rire - ag) C rire - Ny (7?(7”1,7“2)_1, ao)

by (2.17), and since N (7 (rq,72)"') C CI)?TN?} and (g, aq), (g, az) <0, it

follows that N (7'('(7“1, ro) 7L, ao) is empty. Therefore N, (w’, 1T -ao) must
be empty, and (3.34) yields that v > r179 - ag. Now

r1re - g = g + (4an, a) (a1, o) — 2(an, 1)) on + (—2(a, az)) az,

with (ag, a1), (a1, a2) < 0 (by construction), and (ag, as) < 0 (as rg # r2);
so the coefficient of a; in 717y - g is positive. Lemma (3.35) implies that
there exist a, b € R with a > 0 and b > 0 such that v = «ap + aa; + bas.
Further,

ap=u"! Sy = (u_l -ao) + a(u_l -al) + b(u_1 -ag)

=(u" ag) +aluar) +boy_1,

with =1 - a; € ®T (since I(ryu) > I(u) by (¥)). As a > 0 and b > 0, this
forces u=! - ap to be negative; that is, ag € N(u=1). Now No(u,c;_1) is
empty by (4.47), and thus (4.46) yields that

N HnVy(ae) = No(u™t, o) = No(u™Hu-ap—q) = 0.

So ap ¢ Vp(ag); that is, (ap,as) # 0. Hence ry and ry are adjoined and
(v, aig) < 0. In particular, the coefficient of ay in r175 - vy is positive, and so
the coefficient of s in v must also be positive by (3.35); that is, b > 0. Now
ag, a1, ag € supp(y), and since these form a circuit, (3.39) forces v € A.
This contradicts our earlier conclusion that v is elementary, and thus [ = 2
and rg = ro after all, as required. 0
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(4.49) THEOREM  The stabilizer of «,. in W is the semidirect product of
Wr(y and Y;.. Moreover, Wy, is a Coxeter group, and Y, is a free group of
rank e(r) — n(r) + 1, where e(r) denotes the number of edges and n(r) the
number of vertices of the connected component of the odd Coxeter graph of
W containing r.

Chapter 5

An Automatic Structure

The principal result of this chapter is that Coxeter groups with finite distin-
guished generating sets are automatic. This is proved in [2] under the as-
sumption that the Parallel Wall Theorem is valid. In our proof, the concept
of dominance introduced in Chapter 3 replaces the parallel wall property.

For a finite set A, let A* be the free monoid on A with multiplica-
tion *. Any subset L of A* is a language over the alphabet A, the elements
of A being the letters, and the elements of L the words of the language. A
language is regular if and only if there exists a deterministic finite state au-
tomaton which accepts the words of the language and rejects words which
are not in the language. A deterministic finite state automaton is a quintuple
(6, A, 1,9, Sy), where G is a finite set of states, P C & is the set of accept
states, Sy € & is the starting state and pu: G x A — & is the transition func-
tion. The automaton reads the letters of a word one at a time, starting from
the left and in state Sy, and if it was in state S before reading the letter a,
its state after reading a is p(S,a). The automaton accepts the word if it is
in an accept state after reading the final letter, and rejects it otherwise. We
say that (&, A, u,9), So) recognizes L.

In order to define automaticity for groups, we shall also have to consider
languages over the alphabet A = ((AU{$}) x (AU{$})) \ {($,9)}, where $
denotes a symbol which is not in A. For (a1,b1),. .., (an, b,) in A we identify
(a1,b1) * ... % (an,by) with (a; x...xan,by *...%b,). For (a,b) € A* x A*
we define (a,b)® € A* as follows: if a and b are of the same length, then
(a,b)® equals (a,b), while if @ and b are of unequal length, then as many $’s
are appended to the shorter of a and b as are necessary to make the lengths
equal.
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A group G is said to be automatic if there exists a finite set A of
semigroup generators for G, and a language L over A such that the following
are satisfied:

(i) the natural homomorphism 7: L — G is surjective, and

(ii) Lq = {(z1,20)% € A* | 1, 20 € L and 7(z1) = 7(x2)a} is a regular
language over 2 for all a € AU {15}.

We then say that L yields an automatic structure for G.

Let W be a Coxeter group with finite distinguished generating set R.
We are going to construct a language L over R that yields an automatic
structure for W.

If x and y are in R*, we say that y is a segment of x if there exist
y',y" € R* such that z = ¢/ xy xy”. For r1, ra,...,7 € R we define the
length of r1 % rg %« %1, to be £(ry xrgx---xr;) = 1. Recall that if w € W,
then

l(w) = min{ {(z) |z € 7~ (w) },

where m: R* — W denotes the natural homomorphism. An element x € R*
is called a reduced word if ((z) = (m(x)). Define L’ to be the language of all
reduced words. Note that if z is in L/, then any segment of z must also be
in L'.

Now let < be the lexicographical order on R* for some (arbitrary)
ordering of R. We shall write x < y if x <y and = # y. For r € R we define
R, to be the set of all simple reflections s with s < r, and II,. to be the set
of g with s € R,. It is clear that for each w € W there exists a unique
v(w) € 7~ (w) such that v(w) € L’ and v(w) < x for all z € 7~ H(w) N L.
We define the language L to consist of all these lexicographically minimal
reduced words for the various elements of W:

L={vw)|lweW}={yelL |y=<azforalzel withn(z)=n(y)}.

Observe that L coincides with ShortLex as defined in [6]. As above for L', it
is clear that if x is in L, each segment of x has to be in L.

(5.50) PROPOSITION  Supposew € W andr € R with [(wr) = l(w)+1, and
let ri, ro, ..., 7 € R withv(w) =1y *ro*---xr;. Forj € {1,2,...,1} define
R; =R,,;, and set Rj;1 = {r}. Then v(wr) =ry % - xTi_1 x 8% 1% - %71,
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where i € {1,2,...,0l+ 1} is minimal such that there exists an s € R; with
(riri—1--+1i) - s = .

Proof. Since [(wr) = l(w) 41 we know that v(w)*r is in L', and furthermore
that there exist s1, $2,...,81+1 € R with v(wr) = s1 % s % -+ % s;41. Then

(1) V(Wr) = 81 % Sg k- xSy STy Kk kT KT

by minimality of v(wr) in L' N7~ (wr). Now (s182---841)r = w, and by
the Exchange Condition there exists an i € {1,...,l+ 1} such that w equals
S1°°°8;—1S8i+1 " Si+1- Thus

(2) l/(w):rl*---*rl-_<31*---*si_1*si+1*---*sl+1,

and it is immediate from (1) and (2) that r; = s; for all j € {1,2,...7 —1}.
We deduce that s;41---8;41 = r;-- -1, and since both s;41 *---* 5,41 and
r; %+ -x7r; are in L (as these are segments of elements of L), this yields that

Ti k- kT] = 841 % %8141,

and thus r; = s;41 for all j € {i,...,l}. Now define s = s;; then v(wr)
equals 7y % ---kxr;_qy ks*r;k---xr;. If i =14+ 11t is clear that s = r. If
i <1, equation (1) yields that s < r;, and since s * r; = s; * s;41 is reduced,
it follows that s < r;; that is, s € R;.

Furthermore, (ryro---ri_17)r = wr = rirg---r;_18r;---r;_17, and
thus
(rivigr - r)r(res - rigar) = s.
Therefore (r;r;;1---71) - = *ag, and since ag and (r;r;4q1---77) - @ are
both positive (the latter one because r;*r; 1% - -*r*r is reduced), it follows
that (r;rip1 1) - ap = ag; that is, (rp - 1rip1r;) - s = Q.

Assume for a contradiction that (r;r;_q - - -rj) -y = . for some j < i
and t € R;. Then mw(ry *---%rj_y *t*r;*---*r) =wr, and further

Pk kT R E R T kR < Tk ek Ty R Sk ke k= v(wr),

contradicting the minimality of v(wr). Hence i is minimal with the above
property. O
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We now describe a finite state automaton W which recognizes L. The
accept states of the automaton W will be the subsets E of £ such that
E = PLC(E) N &, where PLC(E) denotes the set of nonnegative linear
combinations of roots in E. We denote the set of accept states by PB(E).
There will be one reject state F, and the starting state is the empty set in
PB(E). The transition function p: & x R — & is given by

F if X = F,

wX,r)y=<¢F if X € B(€) and o € X,
PLC(r-XUr- I, U{a,})NE if X € P(&) and a, ¢ X.

(5.51) PROPOSITION  The automaton W recognizes the language L.

Proof. Let r1 xrg*---xr, € R*, and denote the simple root corresponding
to r; by ;. Set Xog =0, and for i € {1,...,n} define

Xi :PLC(Ti'Xi_lLJTi'H” U{Oéi}) ﬂg.

A straightforward induction yields that W is either in state X; or F after
reading rq * ro % - - - % r;; moreover, if YW is in F after reading rq 7o % - - - % 1y,
then there exists an [ € {1,...,i} such that ; € X;_;. We show now that
r1 k1o -k, € L if and only if oy ¢ X;_1 for all l € {1,...,n}.

Suppose first that «; € X;_; for some [ € {0,...,n — 1}. An easy
induction yields that X; 1 is a subset of

-1

PLC(U(n_y--m)-Hri U{ (riey -+ ris1) -y | i € {1,...,1—1}});

=1

thus there exist nonnegative coefficients A% and p; such that

-1 -1
o = E E Azs(rl—l"'ri)'as‘i‘ E Mi(rl—l"'riﬂ)'ai,
i=1 o €11, i=1

and this yields

-1 -1
Q=T 0 = E g Ag(rirp—y-mi) - as + g pi(riri—1 - Tign) - Q.
i=1

1=1 asel_[ri
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If (ryry—1 -+ - 7ri41) - @ is negative for some i € {1,...,l—1}, it follows by (1.5)
that r;*rj_q *---*%r;1q *7r; is not reduced, and thus rq * r3 * - - - * 1, cannot
be in L, as required. Assume next that rq{ % ro % --- % 1, is reduced. Then
(ryr—1--+7i11) - ; is positive for all 4, and since N, u; > 0, it follows that
(ryri—1 - - 1;) - s must be negative for some i and o € I1,.,. Let j be minimal
such that (r;r;_i---7;) - s is negative; then (r;_;---r;) - o, is positive by
minimality of j, and thus (r;_1---r;) - a5 = o; by (1.4). So

(Tj—l .. .ri)s(ri “ e Tj—l) g ’)”j’
and it follows that
V(Pikmipr ke k) =1 T = 8T -1Tj_1 = V(ST rjpq k- %krj_q).

Since s < r;, we find that r; * --- %, is not in L; hence ry x---xr,, ¢ L, as
required.

Suppose next that ry x r9 % ---*r, is not in L, and let [ be minimal in
{1,...,n} such that 7y xro % ---%r; ¢ L. Assume first that ry xrg*--- %7 is
not reduced. Then [(m(ry*rgs*---xri_1)) = [—1 by minimality of I, and (1.5)
yields that (rirg---7r—1) - oy is negative. Let i € {1,...,l — 1} be maximal
such that (r;r;41---1-1) - o is negative; then (r;y1---7r;_1) - oy = «a; by
(1.4) and maximality of 7. Since r; 41 * ;49 % - -+ * 17— is reduced (as it is a
segment of a reduced word), (3.29) yields that (rjr;—_1 - r;41) - @; must be
in & forall je{i+1,...,l}. As o is in X;, an easy induction now yields
that (rjrj_1---7i41) - o is in X;_; for all j € {¢ +1,...,1}; in particular,
a; € X;_1, as required.

Assume now that 7y xro%- - -xr; is reduced, but ry*ro*---x7r; ¢ L. Then
ri*- - -*1;_1 € L by minimality of [, and since rq*rgx*- - -r;_1%r; is reduced but
not in L, Proposition (5.50) yields that there exists an¢ € {1,2,...,1—1} such
that (rj—1---7;)-as = aq for some s € R,... Asr;x---xr;_q is reduced, (3.29)
implies that (rjr;—1---r;)-as € € forall j € {4,...,l—1}, and since a5 € X,
it follows by a straightforward induction that oy = (rj_1---7;) - as € X, as
required. 0

(5.52) LEMMA  Suppose w € W and r € R with [(wr) = l[(w) — 1, and
let 1, 1o, ..., 1 € R with v(w) =7y *xro*---x1r;. Fori e {1,...,1} define
R; = R,,, and set R;41 = {r}. Then there exists exactly one i € {1,2,...,1}
such that (r;---7i41) - &y, = «,.; moreover, r; € R;11 and

V(?,U’I“):Tl*---*Ti_l*Ti+1*---*T’l.
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Proof. Let si, s2,...,81-1 € R such that v(wr) = s1 % sg % -+ % s_1. It
is clear that v(wr) x r is reduced, and (5.50) yields that there exists some
i€ {1,...,l} such that

V((wr)r)231*---*si_l*s*si*---*sl_l,

with (s;_1--+8;) - as = a,, and s = r if i = [, while s < s; if i <[ — 1. But
u((wr)r) = v(w) also equals 7 * 79 x - -+ x r;, and hence s, = ri for k in
{1,...,i—1},r;,=sand rj11 =s; forall j € {4,...,0l —1}. Thus

V(Wr) =Ty %k ry_ KT ke kT

with r; < r;3q1 if ¢ <, and r; = r if ¢ = [; that is, r; € R;y1.

Assume for a contradiction that there exists a j € {1,...,{} \ {i} with
(ri---7rj41) - ap; = a,, and suppose without loss of generality that i < j.
Then (r; - riy1) - o, = a,; and thus 7711 - - 77400 = rip1 -7y hence

rre-- Ty ="r1r2 i 1Ti41 0 Tj—1T541 0 T,

and thus ryrg - - - r, is of length less than [, contradicting our assumption that
r1 % 7ro * - - -k 1 is reduced. O

Observe that this yields an algorithm which determines v(wr) if v(w)
is given: Suppose that v(w) = ry * 79 *---xr;, and set B, =r; - .. If i > 2
and 3; # «a,, ., define 8,1 = r;_1 - B;; otherwise

V(WT) =71 % o kT KTy ... X Ty

by the previous lemma, and the algorithm can terminate. If 3; # o, , for
all 7 > 2, two cases arise. Firstly, if 3; € 1I,, for some i, let ¢ be minimal
with this property, and let s € R,, with §; = ay; then

V(Wr) =Tk .. ki1 kSKT; %... %7

by (5.50). Secondly, if 8; ¢ II,., for all 4, then v(wr) = v(w) *r by (5.50).

Note that if s € R with (r;---7;) - a,. = as for some 4, then by (3.29),
(rj---m) - a, must be elementary for all j € {i,...,[} since ry *--- %7 is re-
duced. Hence we can stop our search for ¢ according to the above description
as soon as 3; is in A.
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Now let R = ((RU{$}) x (RU{$})) \ {($,$)}, and for each r € RU{1}
define

L, ={ (z1,22)% € M* | 1,25 € L and 7(zq)r = 7(x2) }.

Since the words of the language L correspond bijectively to the elements of W,
we find that Ly = { (v(w),v(w)) | w € W }; therefore a trivial modification
of W will yield a finite state automaton that recognizes L. So we only need
to show that L, is regular for » € R. Then

(v(w y(wr)) |we W}

{
=1

(v(w) * $, v(w )) | w e W with l(wr) = l[(w) + 1}
U{( (wr) *$) | w € W with I(wr) = l(w) — 1}

= {(v(wr) «$, 1/( )) | w e W with l(wr) = l(w) — 1}
U{(v(w),v(wr) «$) | w e W with [(wr) = l(w) — 1}.

In particular, (z1,z2) € L, if and only if (z2,21) € L,; moreover, (5.52)
yields:

(5.53) COROLLARY  Let r € R and (a,b) € " with a = $1 % Sg * - -+ * 5y,
and b =ty xty* - - - xt, for some (s1,t1),...,(Sn,tn) € R. Furthermore, let [
be maximal in {1,...,n+ 1} such that s,y =t;—1 € R. Then (a,b) € L, if
and only if

(i) l=n, {sn,tn} ={r,$} and sy x---*s,_1 %7 € L, or

(ii)) Il <mn, s;,t; € Rand s; < t;, s; =t;_1 € R foralli e {l+1,...,n},
t, =% and a € L with (s, -+ Si41) - a5, = Q, OF

(iii) l < n, s;,t; € R and s; > ¢, si1 =1 € R for alli € {l+1,...,n},
Sn =% and b € L with (t, - t;4+1) - ¢, = Q.

We now describe a finite state automaton W, which recognizes L.
The automaton W, has one accept state A, and there is one failure state, F
(from which there are no transitions to other states). All elements of () are
states, and the remaining states are the elements of the Cartesian products
PB(E) x & x R and P(E) x R x &, where &, denotes the set of elementary
roots that can be written as w - o, for some w € W. Let &, be the set of
all these states, and let () € PB(&) be the starting state. Note that the subset
PB(E)U{F} of &, can be identified with the set of states of W. Next, let p
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Chapter 5 An automatic structure 55

be the transition function, described above, for WW. The transition function
e S, X R — G, for the automaton W, is defined by the rules listed below.
Let X € &, and (s, t) € R, and for brevity let Y = u, (X, (s,t)).

Case 1: X € B(E).
(i) If s=t € R, then Y = p(&X, s).

.. . . _J A if {s,t} = {r,$} and p(X,r) # F,
(ii) If either s or t is §, then Y = {]—" (5,6} # {r, 8} or u(X,r) = F.

_(u(X,8), a6, t) i p(X,s) # F and o, € &,
(iii) Ifs%tER,theny—{}_ (X 5) = F or as ¢ Er.
: _(w(X,t),s,00) if p(X,t) #F and a4 € &,
(iv) Ift-<sER,theny—{}_ (X 1) = F ot ay & &
Case 2: X = (X,B,u) € B(E) x & X R

Let Y = p(X,s) and v = s - .

(i) H Y =F, then Y = F.

(ii) If s # u, then Y = F.
o | (D) ifyed,
(iii) Ifs-uanthRWhlleY%fatheny—{j—“ if v ¢¢&,.

(iv) It (s,4) = (u,$) while Y # F, then Y = {ﬁ gz o
Case 3: X = (X, u, ) € B(€) x R x &,.
Let Y = p(X,t) and v =t - 3.

(i) fY = F, then Y = F.

(ii) If t # u, then Y = F.
. . _ [ Yis7) ifyeé,
(111)Ift-uandsERwhlleY?é}_7theny—{}“ if v ¢ &,

(iv) If (s,t) = ($,u) while Y # F, then Y = {3‘_3 if z ; g:j
Case 4: X = Aor F.
Y = F in all cases.
It can be easily seen that W, accepts (z1, z2) if and only W, accepts (x2, x1).
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(5.54) PROPOSITION  The automaton W, defined above recognizes the lan-
guage L.

Proof. Let (s;,t;) € R and set a = s1 * sg % -+ % 8§, and b = t1 * to * - - - * L.
For i > 0, denote the state of W, after reading (sq * - - % s;, t1 % --- % t;) by
X;,and let [ € {1,...,n+ 1} be maximal such that X;_; = X;_; € B(E). It
is clear that s, =t; € Rforalli € {1,...,1—1}.

We show that X, equals A if and only if (a,b) € L,.

Suppose first that (a,b) € L,. Then an easy induction shows that W
is in state X; after reading sy % ---%s; =ty *---xt; fori € {0,...,1 —1}. If
[ =n, then {s,,t,} = {r,$} by (5.53)(i); moreover, W is in u(X,_1,r) after
reading sy % - -+ % 8,1 *r, and since s1 *---* §,_1 *r is in L by (5.53)(i), we
deduce that (X, _1,7) € P(E). It follows by rule (ii) of Case 1 that AX,, = A.

Next, suppose that [ < n. Since (a,b) is in L,, it follows easily that
si,t; € R, and by symmetry of both W,. and L, we may assume without loss of
generality that s; < ¢;. Then by (5.53)(ii), s; = t;01 € Rforalll <i<n-—1
and (s, -+ 8141) - as, = .. It follows by (3.29) that (s;---s;41) - g, isin &,
for alli € {I,...,n— 1}, and a straightforward induction yields that

Xy = (X;, (si - si41) - sy, Sig1)

fori e {l,...,n—1}, where X; denotes the state of W after reading sy *- - -xs;.
In particular,
Xn—l — (Xn—h (Sn—l Tt Sl—l—l) * Oy, Sn)'

Furthermore, p(X,—_1,s,) € P(E) since s1 * --- * s, is an element of L; as
(Sp - Si+1) - a5, = ay and t,, = $ by (5.53)(ii), rule (iv) of Case 2 yields that
X, = A.

It remains to show that X,, = A implies (a,b) € L,.. So let X,, = A,

then in particular X; # F and &; # A for all ¢ < n, since there are no
transitions from F or A into states other than F. Further, [ — 1 < n since

A ¢ B(E).

If I =n, then W is in X,,_1 after reading sy * so % ---* s,,_1, and since
X, = A, rule (ii) of Case 1 yields {s,,t,} = {r,$} and pu(X,,—1,7) € P(E).
So W accepts s1 % -+ Ssp,_1 xr, and it follows by (5.53)(i) that (a, b) is in L.

Suppose now that [ < n. Then &; # A and X} # F, and thus s;, t; € R
by rule (ii) of Case 1; by symmetry of both W, and L, we may assume
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without loss of generality that s; < ¢;. We show now that r; = s;_1 and
Xy = (X5, (85 s141) - sy, 1)

for i € {I,...,n—1}, where X; € P(€) denotes the state of W after reading
S1 % Sg % - - - % s;. By rule (iii) of Case 1, A} equals (Xl, asl,tl). Suppose next
that i € {{+1,...,n — 1}, and assume furthermore that

Xio1 = (Xio1, (si—1 - 8141) - ey r tic1)-

Since X; # F and &X; # A, rule (iii) of Case 2 yields s; = t;—1, X; € B(E)
and further (s;---s;41) - a5, € &-; hence &; = (Xi, (i S141) - asl,ti), and
this finishes the induction. In particular,

Xn—l — (Xn—la (Sn—l T Sl—l—l) : aslvtn—l)a

with X,,_1 € B(€) and s; = t;—1 for all ¢ € {l,...,n — 1}. Since X,, = A,
rule (iv) of Case 2 implies further that

Sn=tn—1,tn =98, (Sn - S141) - a5, = . and p(Xy,—1, sn) € P(E).
Now a = s1 * sg % --- % s, € L, since pu(X,,—1, sn) € P(E), while
b=81 %Sk k8 _1%8S41% %S, %3

with (s, -+~ Si41) - a5, = o thus (a,b) € L, by (5.53)(ii), as required. O

(5.55) THEOREM W is automatic, provided that R is finite.

Observe that the automaton W, described above is by no means min-
imal. For example, the state (X, [,u) € PB(E) x & X R is inaccessible if
B ¢ X; that is, (X, 8, u) cannot be reached from the starting state. More-
over, (X, B,u) is dead if u- 3 ¢ &; that is, the accept state cannot be reached
from (X, 3,u). Without changing the language recognized by W, we may
delete all inaccessible states and amalgamate all dead states with the fail-
ure state F, and obtain a normalized automaton with fewer states that also
recognizes L.

A group G is said to be biautomatic, if there exists a set A of semigroup
generators of G, and a language L over A which yields an automatic structure
for G such that, additionally,
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(iii) L* = {(z1,22)® € A* | 21, z2 € L and 7(z1) = an(xs)} is a regular
language over 2 for all a € A.

We then say that L yields a biautomatic structure for W.

The above constructed language for finitely generated Coxeter groups
does not in general yield a biautomatic structure for W. For example, sup-
pose that W has the following Coxeter graph

and let R be ordered alphabetically. Assume for a contradiction that W€ is
a finite state automaton recognizing L€, and let n be the number of states of
We. For i € {0,...,n} define

w(i) = ((a*b), (cxd)?).

Since the number of states of W€ is less than n+1, there exist i, j € {0,...,n}
with ¢ < j such that W€ is in the same state after reading w(i) as after reading
w(j). Now W¢ will certainly accept

((axb)" x (cxd)" *$, (cxd)™ *e* (axb)")
= ((a*b)j,(c*d)j) * ((a*b)”_j*(c*d)”*&(c*d)"_j x ek (axb)"),

and thus W€ is forced to accept

((axb)', (cxd)") * ((a*xb)" 7 x(cxd)” x$,(cxd)" 7 xex(axb)")
= ((ax D)k (exd) % $, (cxd)" T s e x (ax b)").
em((axb)" 7t x (cxd)") = e(ab)" 7 (cd)”
and
m((cxd)" 7 xex (axb)") = e(ab)”(cd)" 71,

and these are not equal. Hence ((a*b)" 9t x(cxd)™, (cxd)" I+ xex (axb)™)
is not in L®, and W* does not recognize L¢, contradicting our assumption.
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Chapter 6 The set of elementary roots

The Set of Elementary Roots

We have seen in Chapter 3 that the set of elementary roots is finite, provided
that R is finite. Moreover, the proof of Theorem (3.44) yields that || is
bounded by

B R|+1)+1

d |R| B R|4+1)+1
> IR = g (R ),
d=1

where ¢ equals the cardinality of the set
{ cos(nm/mys) | r, s € R, mys <ocand n € {1,...,mys — 1} }.
This bound, however, is rather large. For example, if
W= {(rs|r*=s=(rs)®=1),
then |€| = 3, but |R| =2 and ¢ = 3, and thus

|R|
Rl -1

(|R|C|Rl(|R|+1)+1 _ 1) _ 2(228 _ 1).

In this chapter we will explicitly determine the set of elementary roots and
thus find |€| precisely.

For I C R, let £ denote the set of all elementary roots a with I(«a) = I
then & is the disjoint union of all £ with () # I C R finite. Connectedness of
the support of a root yields that £; is empty if I is not connected; moreover,
Er is also empty by (3.39), (3.41) if I contains a circuit or an infinite bond.

For J C I, define 8}7 to be the set of roots « in £ such that for r € J
the coefficient of a,. in a equals 1, and for s € I \ J the coefficient of a in «
is greater than 1; then &; is the disjoint union of all £/ with J C I, and thus

e= U Ueg= U Ue&lv U &,

IeZ(R)JCI IeZ(R)JCI I€Z(R)
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where Z(R) consists of the finite non-empty connected subsets of R that do
not contain any circuits or infinite bonds.

Note that ) _; o, is an elementary root if I € Z(R) contains only sim-
ple bonds. For if |I| = 1, this is trivially true, and we proceed by induction.
Suppose that [I| > 1. Since I does not contain any circuits, we can choose an
s € I such that s is adjacent to exactly one element of I \ {s}, say ¢. Then
ZTG N\ {s} O is an elementary root by induction. Since s is only adjoined to

t in I \ {s}, and s and t are adjoined by a simple bond, we find that
1
< Z Qr, as> = <as;at> = _55

reI\{s}

hence ) ., a, =s- ng\{s} o, is an elementary root by (3.37).

On the other hand, the next lemma together with (2.26) yield that if r
and s are adjoined by a non-simple bond, then no root can have coefficient 1
for both . and a;. So if I does contain non-simple bonds, » ; a, cannot
be a root, and thus

gl — { ézre[ oy} if I contains only simple bonds,

otherwise.

Therefore

€=, D I&I+n(R),

I€T(R) JCI

if R is finite, where n(R) denotes the the number of non-empty connected
subsets of R that contain only simple bonds and no circuits.

(6.56) LEMMA Let zq, xo,y € II with ©; # x5 such that (x;,y) equals
—cos(m/m;) for i = 1, 2. Furthermore, let o and [3 be positive roots such
that 3 precedes «, and y is not in the support of (3. Denote the coefficient
of x; in B by \; for i = 1, 2. Then the coefficient of y in « equals 0, or is
greater than or equal to 2 cos(m/my)\1 + 2 cos(m/mz)Aa.

Proof. Let v be of maximal depth with 5 < v < « such that y ¢ supp(y). If
v = «, then y ¢ supp(«), and the assertion is true. So suppose that v < «,
and denote the coefficient of z; in v by p;; then \; < p;. Maximality of v now
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yields that v < ry -y < «, and the coefficient of y in 7, - v equals 0 — 2(v, y).
This is greater than or equal to

—2({z1,y)p1 + (w2, y)p2) = 2cos(m/ma)pn + 2 cos(m/ma) pa,

which in turn is greater than or equal to 2cos(m/m1)A; + 2 cos(m/m2)\s.
Since 1, - v = «, the coefficient of y in « is greater than or equal to the
coefficient of y in 7, -y by (3.35), and this finishes the proof. O

By the above we only need to determine &7 for I € Z(R) and J C I.
We will now further reduce the number of subsets J of I for which we need
to calculate £{ (see Theorem (6.5)). Once this is done, we show that we only
need to consider £/ for I € Z(R) containing at most one non-simple bond
(see Lemma (6.7)). We then continue by determining £7 in case I contains
only simple bonds, and finish this chapter by dealing with the case that [
contains exactly one non-simple bond of finite weight.

(6.57) PrRoOPOSITION Let I C R, r € I and Ky,..., K, C I \ {r} such
that I \ {r} is the disjoint union of Ki,...,K,. Suppose further that no
element of K; is adjoined to any element of K; ifi # j, and set I; = K; U{r}
for all i € {1,...,n}. Then

¢:(615"'7ﬂn)’_>61+"'+ﬁn_(n_1)ar

defines a one-one correspondence between the set of n-tuples in (Iﬁrl XX (IJ};
such that the coefficient of o, in each component equals 1, and the set of
roots in <I>}' with coefficient 1 for c,.. Moreover, this map restricts to a one-
one correspondence between the set of n-tuples in £, x - - - x &y, such that o,
has coefficient 1 in each component, and the set of roots in £; with coefficient
1 for o,

Before we can show (6.57) we need to prove the next two technical
results.

(6.58) LEMMA  Let a and (3 be positive roots with « = [3. Further let
r € R, and define I to be the set of simple reflections s € R which are
adjoined to r. Suppose that the coefficient of «,. in « is strictly greater than
the coefficient of a,. in 3, while for s € I the coefficients of a5 in o and (3
coincide. Then o = r - 3.

Proof. The assertion is trivially true if r - 8 < 3, so suppose that r - 5 = [3;
that is, dp(r - 8) = dp(B) + 1. Let v be of maximal depth with a > v > 3
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such that the coefficients of «,. in v and 3 coincide, and let w € W such that
v =w- [ and [(w) = dp(vy) — dp(). Since the coefficients of as in v and
coincide for all s € I U{r}, it is clear that w € We\ugry): S0 rw = wr and

r-y=rw-g=w-(r-0).

Now « > r -+ > = by maximality of v, and thus dp(r-v) = dp(y) + 1. Hence
l(w) = (r-v)—dp(r- ) and r - v > r - §; transitivity of = yields that « is
preceded by r - (3, as required. 0

(6.59) LEMMA  Let o € ® and r € R such that the coefficient of c,. in
« equals 1. Then o = «,, and thus there exists a w € Wl(a)\{r} such that

a=w-a and l(w) = dp(a) — 1.

Proof. 1If « is simple, the assertion is trivially true. Suppose now that « is of
depth greater than 1, and assume that all positive roots 8 < «a are preceded
by as, whenever o, € II has coefficient 1 in 5. Let t € R such that - a < a.
If t # r, then t - a > «, by induction, and thus a > t - a = «,., as required.
Suppose next that t = r. The coefficient of «, in 7 - « is less than 1, and
thus must be equal to 0 by (2.26). That is, «, ¢ supp(r - «), and by the
connectedness of the support of « there exists an x € supp(r - «) such that
a, and x are adjoined by a bond of weight m > 3. Since a = r - a and the
coefficient of - in « equals 1, Lemma (6.56) yields that m = 3 and that the
coefficient of x in r - o equals 1; moreover, (6.56) also yields that o, cannot
be adjacent to any element of supp(a) \ {z}. Now r -« > z by inductive
hypothesis, and since the coefficients of z in a and = coincide, while the
coefficient of o, in « is greater than the coefficient of «a,. in x, the previous
lemma yields that « is preceded by ri - x1 = 1 4+ «,.. It is clear that x; + «,
is a successor of «,., hence a > «,. by transitivity of >, as required. O

Proof of (6.2). We show first that ¢ is well defined. So let (31, ..., 3,) be an
n-tuple in (ID}L1 XX @}; such that the coefficient of . in §; equals 1 for all .
By the previous lemma there exist w; € Wk, with I(w;) = dp(f;) — 1 such
that 3; equals w; - .. Observe that the groups Wy, centralize each other by
construction. Define w = wy - - -w,, and a = w - a,; then the coefficient of a.
in a equals 1, and a straightforward calculation yields that

azﬂl"""'""ﬁn_(n_l)ar'
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Thus ¢(B1, ..., 3,) is in @7, and since the coefficient of o, in « clearly equals
1, we know that ¢ is well defined.

On the other hand, if o € ®} has coefficient 1 for «,., Lemma (6.59)
yields that there exists a w € Wy, with l(w) = dp(a) — 1 such that
a = w - q,. Since WI\{T} is the direct product of W, ..., Wk, there exist
w; € Wy, for all i € {1,...,n} such that w = wy - - - w,, with length adding.
So if we define 3; = w; - a,., then I((;) C I; and «, has coefficient 1 in ;.
By the above, a = 8y + -+ 6, — (n — D)oy, = ¢(S1, ..., 0n); whence ¢ is
onto. Since I(3;) N I(B;) = {r} for i # j, and the coefficient of «a, in all 3
is 1, it is clear that ¢ is one-one, and thus ¢ is a one-one correspondence.

In order to show that ¢ induces a one-one correspondence between
the set of n-tuples in &7, x --- x &, such that «, has coefficient 1 in each
component, and the set of roots in & with coefficient 1 for «,., it suffices to
show for wy € Wk, ..., w, € Wk, and w = wp - - - w, that w- «a, € £ if and
only if w; - o, € € for alli € {1,...,n}.

Suppose first that w; - a,. € A for some i; by symmetry of the I; we may
assume without loss of generality that ¢ = 1. Then N (ws - - - w,, wi- ;) = ;

for N(wg - -wy,) C @;F\I and wy -, € @Z, and clearly (v, w;-a,.) < 0 for all
1

v E (b;"_\] . Thus w-a;, = wy-a, by (3.34), and (3.36) implies that w-a, € A,

as required.
For the converse, suppose that w-a, dominates some v € &1 \ {w-«, };
then w=! -~ € ®~ since o, ¢ A, and thus v € N(w~?!). Now

N((w1- - wp)™") =N H)U...UN(@w, "),

since the Wi, centralize each other, and this union is disjoint; by symmetry
we may assume without loss of generality that + is in N(w] ") and not in

Nw; ) U...UN(w; ) = N((wg---w,) ™).

n

So (ws - - - wy, ) "t -7y is positive, and hence (wy - ;) dom (ws - - -w,) ™1 ~; since
w -, # v it follows that wy - ;. # (wo - -wy) L -, and thus wy - o, € A,
as required. O
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Now let I € Z(R) and J C I. If r € J, denote the connected compo-
nents of I \ {r} by Ki,..., K,. By (6.57) each element of £/ can be written
as

a1+ Fa, — (n—1)ay,
with o; € Efyuk, with coefficient 1 for a,. for all . Furthermore, if s € K,
the coefficient of ag in «; equals 1 if s € J, and is greater than 1 if s ¢ J;
that is, a; € 83:}}5%“&). It is clear, that
ﬁl"""'""ﬂn_(n_l)ar

isin &7 if §; € Sf:fgé(fjimj) for all 7, and an iteration of this procedure yields
the following theorem.

(6.60) THEOREM  Let I € Z and J C I, and denote the set of connected
components of I \ J by KC(I \ J). Furthermore, for each connected compo-
nent K of I \ J let X(K,J) denote the set of r € J that are adjoined to
some element of K, and define Y(K,J) = K U X(K,J). Finally, for r € J
let n,.(I,J) denote the number of K € K(I \ J) withr € X(K,J). Then £/

is the set of
Z aK_Z(nr(Ia J)_l)ara

KeKk(I\J) reJ
where ay € 5;(((15’(]‘])) for all K € K(I \ J). Hence
X(K,J
=TI 1&&EN
Kek(I\J)

(6.61)  From now on we only need to determine &~ for X, Y C R such
that

(i) Y does not contain any circuits or infinite bonds,
(i) XCVYand X £Y,
(iii) Y \ X is connected,

(iv) every element of X is adjacent to some element of Y \ X.

Note that since Y does not contain any circuits, and Y \ X is connected,
every element of X is adjoined to exactly one element of Y \ X, and no two
elements of X are adjoined.
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The following lemma implies that £ is empty if Y contains more than
one non-simple bond, while X, Y satisfy (6.61); therefore we only need to
determine &Y for X, Y satisfying (6.61) such that Y contains at most one
non-simple bond.

(6.62) LEMMA  Let rg,...,r11 € R such that the subgraph of the Coxeter
graph corresponding to {rg, ..., 11} is of the following shape

ma ma

To T ) r—1 T T1+1

with my, ms > 4. Denote the simple root corresponding to r; by x;, and let
a be a root with xg, x;+1 € supp(a) such that the coefficients of x1, ..., x;
in «a are greater than 1. Then o € A.

Proof. Let 8 < « be a positive root of minimal depth such that xg and z; 44
are in the support of 3, and the coefficients of xq,...,x; in 3 are greater
than 1. By (3.36) it suffices to show that 3 is in A, and since this is certainly
the case if the support of § contains a circuit (by (3.39)), we can assume
without loss of generality that supp(3) does not contain any circuits.

For i € {0,...,l + 1}, let \; denote the coefficient of z; in (; then
A,..., N > V2 by (2.26). Next, let 7 € R such that r - 3 < 3. We show
that (r- 3, a,) < —1, which then implies (3, «,.) > 1; hence 3 € A by (3.32),
since (3 is clearly of depth greater than dp(«,.) = 1.

Minimality of 3 forces r = r; for some ¢ € {0,..., [+ 1}. If i =0 or
[+ 1, we may assume without loss of generality that ¢ = 0. Then minimality
of 3 yields further that z¢ ¢ supp(ro - 3), and thus

(ro - B,20) <04 A (x1,x0);

since A\ > V2 and (21, 29) = cos(m/my) < —cos(m/4) = —%, this is less
than or equal to —1, as required.

Suppose next that i € {1,...,[}. Connectedness of the support of r; -
together with the assumption that supp(/3) does not contain any circuits force
x; € supp(r; - #), and minimality of 3 yields that the coefficient of x; in r; - (3
is less than or equal to 1; therefore the coefficient of x; in r; - 8 equals 1 by
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(2.26). Let K, ..., K, denote the connected components of I(3) \ {r;}, and
for j € {0,...,n} let §; € @;ju{”} with coefficient 1 for x; such that

P B=fit e By — (n— D

according to (6.57). We may assume without loss of generality that r;_, €
K;.

If i = 1, then (1 = z1 by (6.59), and thus \g > 2cos(7/m) by (6.56);
hence

/\i_1<lL‘i_1,xi> = /\0<ZIIO,ZL‘1> S 2COS(7T/7’I’L1)(— COS(?T/ml)) S —1,

as cos(m/mq) > % If ¢ > 1, then r; and r;_; are adjoined by a simple
bond, and since I((3) does not contain any circuits, r; is adjoined only to
ri—1 in I(B1). The coefficient of x; in r; - By equals —1 + X;_1, which is
greater than 0 since A\;_; > 1, and thus must be greater than or equal to 1 by
(2.26). Therefore \;—; > 2, and thus again A\;—1 (z;_1,z;) < —1. Symmetrical

arguments also yield A\;y1(z;+1,2;) < —1 and thus
(ri - Byxs) <1+ XN (wim1, @) + Nip1 (i1, 2) < —1,

as required.

(6.63) PROPOSITION  Suppose X, Y satisfy (6.61), and assume furthermore
that Y contains two or more non-simple bonds. Then £ = ().

t6a Simple bonds only*

For the duration of this section we assume that X, Y C R satisfy (6.61) and,
furthermore, that Y contains only simple bonds.

It is clear that all coefficients of roots in @y are integers, and thus («, 3)
is an integer multiple of % for o, 3 € ®y. Moreover, £ consists of the roots
in & with coefficient 1 for «, with r € X, and coefficient greater than or
equal to 2 for ag with s € Y \ X.

The following is immediate.

* I learned recently that Professor J.-Y. Hée also has a description of the set of
elementary roots for the case that the Coxeter graph contains only simple bonds.
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(6.64) LEMMA  Let o € £ be of depth greater than 1 with I(a) CY and
r € R such that a = r-a. Then (a, a,) = 3, and the coefficient of o, inr- o
equals the coefficient of «, in « minus 1.

The next lemma yields that £F is empty if Y contains more than one
vertex of valency greater than or equal to 3 (if [ > 1, namely r; and r;), or
one or more vertices of valency greater than or equal to 4 (if [ = 1, namely

7‘1).

(6.65) LEMMA  Let rq,...,7 and s1, So, S3, S4 be in'Y such that the sub-
graph of the Coxeter graph corresponding to {ry,...,m} U{s1, S2, S3, S4} Is
of the following shape:

S1 S3

52 S4

Denote the simple roots corresponding to r; and s; by x; and y; respectively,
and let a € @ such that y1, y2, y3, ya € supp(a), and the coefficients of
x1,...,x; In « are greater than or equal to 2. Then a € A.

Proof. Let B be a positive root of minimal depth preceding « such that
Y1, Y2, y3 and y4 are in the support of 3, and the coefficients of z; in (3
are greater than or equal to 2 for all i € {1,...,l}. By (3.36) it suffices to
show that (3 is in A. Denote the coefficients of x; and y; in 3 by A; and p;
respectively, and let r € Y such that -3 < . We show that (r- 3, a,) < —1,
which then implies (3, ,-) > 1, and hence 3 € A by (3.32); (since 3 is clearly
of depth greater than dp(a,.) = 1).

By minimality of 8 we know that r = r; or r = s; for some i, j. If
r = sj, we may assume without loss of generality that r = s;; then y; cannot
be in the support of s; - 8 by minimality of 3, and since A\; > 2, we find that
(s1-B,y1) <0+ (—%))\1 < —1, as required.

Suppose now that r = r; for some i € {1,...,l}; then the coefficient
of x; in r; - & has to be less than or equal to 1 by minimality of 3. Since
)\i—l Z 21if 1 Z 2, and M1, (U2 Z 1ifi = 1, while )‘H—l Z 2if 4 S l—l, and
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W, g > 1 if ¢ = [, this yields that

1+(—l)1+(—§)1+(—%)1+(—%)1 ifi=1=1,
( ) ( D1+ (—3)2 ifi=1<I,
<T2575B2>§ ? 2 . .
( l)2+(——)1+(—§)1 if1<i=1;
so (r; - B,x;) < —1 in all cases, as required. O

An easy calculation yields the following result.

(6.66) LEMMA Suppose that Y equals

U1 U2 Unp—1 Unp

and denote the simple root corresponding to u; by «;. Then
T ={ait - toj[1<i<j<n,
and thus & =0 if X £Y.
(6.67) PROPOSITION Suppose that Y C R contains only simple bonds and

Y| > 1. Further, let X C Y such that X, Y satisfy (6.61). Then &E¥ is
| | s ) Y Y
empty unless Y equals

T
Ti—1
1
1
1
1
1
‘—Irl_‘
—— o - - --- &— ¢ o - --- - -—— o
Sm Sm—1 S1 To t1 th_1 tn

with [,m,n > 1.
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If Y is of the shape described above, and X, Y satisfy (6.61), then X
must be contained in {7, $;,,t,}, since each element of X is adjoined to
exactly one element of Y \ X, and Y \ X is connected. It is convenient for
us to define sg and ty to be equal to rg. In order to avoid double indices, we
denote the simple reflections corresponding to r;, s; and t; by z;,y; and 2
respectively for : =0,...,0,7=0,...,mand k=0,...,n.

Define p; y, » to be the root

(t’l’b—l . 'tl)(sm—l . .81)(7"l_1 . .rl)ro(tn. . .tl)(sm. . .81)(7"l . .rl) - Lo
=T+ Ym + 2n
+2(mr Tt Yo by otz 2.

A straightforward calculation yields that
(ri---r1) @0 =1+ + 21+ T

and ((r;---r1) - @o,z41) = —5 for all i € {1,...,1}. So by (3.37) we can
deduce that (r;11 - -71)-xo is elementary if (r; - - - r1)-xq is elementary. Since
xg € &, induction yields that (r;---71) - z( is elementary. A string of similar

arguments yields that p; ,, » is elementary, and it follows that p; ,, , is an
Smstn}

element of 55{,”’

The next two assertions will enable us to show that each root in & is
preceded by pimn if X, Y are of the shape described in (6.67). Note that
the next lemma also yields that the depth function coincides with the height
function defined by ZTGY Aty ZTGY A on the set of elementary roots
with only simple bonds in their support.

(6.68) LEMMA Suppose Y contains only simple bonds, and let a € &%
such that o = ) _y Ara,. for some (M\)rey. Then dp(a) < 3 oy A, with
equality if and only if « € £.

Proof. If « is of depth 1, then a = «, for some r € Y, and the assertion
is immediate. So suppose now that dp(«) > 1, and assume that for each
positive root § < «, the depth of 3 is less than or equal to the sum of
the coefficients of the simple roots in 3, with equality if and only if 5 € £.
Further, let s € R such that s-a < a.
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If «v is elementary, (6.64) implies that the coefficient of o in s-« equals
As — 1, and since 7 - « € &€ by (3.36), induction yields that

dp(s-a) =) A+ A—1)=> A\ -1
r#s reyY
hence dp(a) =dp(s-a) +1 =" .y Ar.

Suppose next that « € A and s-« € A. Then the coefficient of ay in
s -« is less than or equal to Ay — 1; hence

dp(s-a)<2)\r+()\s—1)22)\r—1

r#s reyY

by induction, and thus dp(a) = dp(s-a) +1< > oy A

Finally, suppose that o € A while s - a is elementary. This is possible
only if a dom ay, and thus (a, ag) > 1 by (3.32). The coefficient of a5 in s- «
equals \; — 2(«, a), and this is less than or equal to Ay — 2. Thus

dp(s-a) <Y A+ (A—2) =) A —2

r#s reyY

by inductive hypothesis, and therefore

dp(a) =dp(s-a)+1< Z)\T—1< ZAT,
reY rey

as required. O

(6.69) PROPOSITION  Suppose Y contains only simple bonds. Let 3 € &7
and o € €& with I(a) C Y. Then o = f if and only if the coefficients of
simple roots in (3 are less than or equal to the corresponding coefficients in
«. (Note that if this is the case, (3.36) yields that € £.)

Proof. If a = 3, Lemma (3.35) yields that the coefficients of simple roots in
[ are less than or equal to the corresponding coefficients in «, and it suffices
to show the converse.

Suppose first that dp(3) = 1, and let v < « be a positive root of minimal
depth such that 8 € supp(y). Assume for a contradiction that v # 3. Then
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dp(y) > 1, since (3 is in the support of v, but v does not equal 3. Minimality
of v yields that 73 -y < v and 3 ¢ supp(rg - 7). Since « is elementary, it
follows that ~ is elementary, and by (6.64), the coefficient of 3 in 7 equals
the coefficient of 3 in rg - v plus 1, that is 1. But then v > 3 by (6.59), and
since v # (8 we find that o = v > (3, contradicting the minimality of 7. So
v = (3, as required.

Suppose next that dp(8) > 1, and let (i, )rey with 8 = >y pircu.
Furthermore, assume that the assertion is true for all positive roots of depth
less than the depth of 3. Let a be an elementary root with (A, )cy such that
a=73 cyArap and A\, > p, for all 7 € Y. Then dp(a) > dp(3) by (6.68).

If dp(a) = dp(f), Lemma (6.68) together with the hypothesis yield that
a = 3. Suppose now that dp(a) > dp(f) and let s € Y such that s- o < o
by (6.64) we know that the coefficient of o in s- a equals Ay — 1 and that
(a,as) = 5. If Ay =1 > p,, induction on dp(a) — dp(3) yields that s - o
is a successor of 3, and thus a > ( by transitivity of ». Assume next that
As —1 < pg; then Ay = pg, since Ay > s and A\g and pg are integers. Further,

Ar >y and (o, ag) < 0 for r # s; therefore

<a7 as> = )\s + Z/\r<05r: as> < fs + Z,U/’r<05r: as> = <ﬁa as>' (*)
r#£s r#s

So (B,as) > 0, and thus s- 3 < . Denote the coefficient of o in s- 3 by
pl; then pf) is less than or equal to pus —1 = Ay — 1, and thus s-a > s- (3 by
induction on dp(f).

Assume for a contradiction that pl, < ps — 1, and thus (s- 3, ag) < —1.
Since s -« is an elementary root preceded by s- 3, Lemma (3.38) implies that
the coefficients of a; in s+« and s - coincide; that is, u, = As — 1, and thus
pl, = ps — 1, contradicting our assumption.

So pl, = ps — 1 and (B, o) = & = (@, o). Now () together with the
hypothesis force A\, = p, for all » € Y such that (o, as) # 0. So for r € R
adjoined to s, the coefficients of a,. in a and s- 3 coincide, while the coefficient
of as in « is greater than the coefficient of as in s- 3; thus a = s+ (s-3) =
by (6.58), as required. O

Note that (6.69) does not hold in general for arbitrary roots in ®y. For
example, if Y equals
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4

/\

r S

then the coefficients in rs-a; = 2a,. + a5 + a; are greater than or equal to the
corresponding coefficients on «,., but clearly «, A rs- a;. Note furthermore
that (6.69) also does not hold in general for elementary roots for arbitrary Y.
For example, suppose that Y = {r, s} with m,s = 4; then the coefficients in
r-as = V2, 4 o are greater than or equal to the corresponding coefficients
in «,., but clearly o, A7 - as.

If Y is of the shape described in (6.67) and X C {r;, s, t,, }, Proposition
(6.69) yields that every root in & is a successor of pj ... It can be easily
seen that rg is the only element of Y such that rg - p; . n > prm.n; that is,
(P1,m.n, To) < 0.

If I, m, n > 2, then

1 1 1

(ro * Prmoms o) = —(PLm,ns To) = —(2+ <—§>2 + <—§>2 + <—§>2) =1

thus 79 - pi,m,n € A, and no elementary root can be a successor of 7 - Py m n-

(6.70) PROPOSITION  Suppose X, Y are of the shape described in (6.67)
with [, m,n > 2. Then

5)‘2-( _ { {pl,m,n} if X = {T[,Sm,tn},
@ if X 75 {Tl, Sm,tn}.

(6.71)  From now on suppose that Y equals

with m, n > 1 and X C {r1, Sm,tn}-
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(6.72) PROPOSITION  Suppose Y is of the shape described in (6.71). Then
5){,7"1’8’”’75"} is the set of

1+ Y+ 2(Ymo1 - Y5) F 3501+ Fyw) +oo
(M =D (gi0r-0-1 + -+ yian) + Myan-1+-+41)
+ Mg+ M(z1+ -+ 2 1) + -+ 22 + o+ 2a1) + 2

with M € {2,...,min(m,n) + 1},

m>j3)>j4)>...>j(M—-1)>jM)>0

and
0<k(M)<k(M—-1)<...<k(4)<k(3)<n.
Whence
|5{r1,sm,tn}|_min(§b)+l m—1 n—1 B m+n—1
i o= \w-2)\mw-2) "\ m-1 )

Before we show (6.72), we prove the next lemma, which yields a more
interesting proof for (6.72).

(6.73) LEMMA  Suppose Y is of the shape described in (6.71), and let o be
in CI);} Denote the coefficients of x;, yj, zi, in a by A, u; and vy, respectively,
and suppose that Ao > 1.

(i) Then A\ < Ao, with equality only if \g = Ay = 1; furthermore,

P < -1 < ... <p1 < Agand \g > v1 > ... > Vp1 > Vp.

(ii) There exists a < « such that the coefficient of x( in (3 equals Ao, while
the coefficient of y, in 3 is less than or equal to Ao — 1.

(iii) If p; > pjy1 + 2 for some j € {0,...,m — 1} (where pg = \o), there
exists a = « such that the coefficient of xq in 3 equals \g, while the
coefficient of y; is less than or equal to Ao — 2.

Proof. The coefficient of x7 in r1 - « equals A\g — A1, and since the coefficient
of 2 in 71 - @ (namely \g) is greater than 0, this has to be nonnegative; that
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is A\g > A1. If \g = Ay, then I(r1 - a) is a subset of

Sm  Sm—1 51 o 131 ln—1 1tn

and (6.66) yields that \y = 1. Now let j € {1,...,m}. An easy induction
yields for i € {j,...,m — 1} that y; has coefficient p;4+1 + pj—1 — p; in
(si---sj) - a, and we deduce that the coefficient of y,,, in § = (s;---5;) - «
equals p;_1 — pj. Since the coefficient of xg in 8 equals Ao, and this is
positive, 3 is a positive root, and thus p;_1 > p;. Symmetrical arguments
yield the inequalities for the vy, and this proves (i).

If Ao =1, then a = xg by (6.69), and (ii) is certainly true. So suppose
that A\g > 2, and let § < «a be of minimal depth such that the coefficient of
xo in B equals A\g. Minimality of 3 implies that rq- (3 < (3, and the coefficient
of xg in rg - 3 is less than or equal to Ao — 1. Now (i) yields that the coefficient
of y1 in rq - 3 is less than or equal to Ay — 1, and so the coefficient of y; in 8
is less than or equal to \g — 1, as required.

It remains to show (iii). So suppose that p; > pj41 + 2 for some
j € 40,...,m — 1}, and let 5 be minimal with this property. If j = 0 we
can choose # = «, so assume next that ;7 > 0, and proceed by induction.
By minimality of j we know that p;—1 < p; + 1; whence pj_1 = p; or
pi—1 = pj+1 by (i). If pj—1 = p;, the coefficient of y; in s; - o equals f1541,
and this is less than or equal to p; —2 = p;—1 — 2; if pj—1 = p; + 1, the
coefficient of y; in s; - o equals p;41 + 1, and this is less than or equal to
pj —2+1 = pj_1 — 2. So in any case, induction yields that there exists
a f =< s;-a(=X «) such that the coefficient of z in 8 equals \g, while the
coefficient of y; is less than or equal to Ay — 2, and this finishes the proof.
d

Proof of (6.17). Suppose first that « is of the form described above; we
show that « is an elementary root, and since the coefficients of a certainly

satisfy the required conditions, it will follow that a € El{fl’s”’t"}. If M =2,
then o = p1,m,pn is elementary. Suppose next that M > 3, and proceed by
induction. If j(M) = k(M) = 1, then (o, o) = % and rg - « is of the form
described above with M — 1 in place of M. Thus ry - o € £ by induction on

M, and since (rq - o, 29) = —3, Lemma (3.37) yields that o is elementary.

Suppose next that j(M) > 1, and proceed by induction on j(M ). Define
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I(i) =j() fori € {3,...,N — 1} and (M) = j(M) — 1; then
m>13)>104)>...>1(M-1)>1(M)>0.

Further, (o, y;a)-1) = % and s;(ar)—1 - is of the form described above with
[(7) in place of j(7) for all 7. By induction, s;(ar)—1 - @ is elementary, and as
(sian)—1 - @, Yjny—1) = —{( Yiomn—1) = —%, it follows by (3.37) that « is
also elementary.

Symmetrical arguments apply if k(M) > 1, and it remains to show

that we have listed all the elements of 55{,”’8’”’%}. This could be done by
an inductive proof similar to the previous one, but for the sake of variety we
choose the following approach.

Let Mm—1, - - .,/Ll,/\o,Vl, NN | Z 2 such that
=11+ Ym + fm—1Ym—-1 + -+ p1y1 + XoTo +v121 + -+ Vp_12n—1 + 2

is an elementary root, and assume for a contradiction that there exists a
j€{0,...,m—1} with p; > pjp1 + 2 (where po = Ao and p,,, = 1). Let
B =< « be according to (6.73)(iii) such that the coefficient of xo in [ equals
Ao, and the coefficient of y; in 3 is less than or equal to Ay — 2. Furthermore,
let v =< (3 be according to (6.73)(ii) such that the coefficient of ¢ in v equals
Ao, while the coefficient of z; in 7 is less than or equal to Ao — 1. Since ~
precedes « and 3, the coefficient of 1 in 7 is less than or equal to 1, and the
coefficient of y; in 7 is less than or equal to Ay — 2. Hence

(v, 20) > Ao + <—%>(/\0 —-2)+ <—%>1 + <—%>(/\0 —1)>1;

since the coefficient of zy in v is greater than 1 we find that v is of depth
strictly greater than 1, and thus (3.32) implies that v dom zy and v € A.
Now (3.36) forces av € A, contrary to our choice of a. So p; < pjpq +1
for all j € {0,...,m — 1}, and thus pu; = pj41 or pjy1 + 1 by (6.73)(i);
symmetrically vy € {vgi1, vikr1 + 1} for all k € {0,...,n — 1}, and « is of
the desired form.

The binomial identity employed in the latter part of the assertion is
known as the Vandermonde-identity. m|
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(6.74) PROPOSITION  Suppose Y is of the shape described in (6.71). Then
EX =0if X = {r}, {r1,sm}, {ri,tn}-

The next two results are part of the proof of (6.74), but are stated
separately since they will be used again later.

(6.75) LEMMA  Suppose X and Y are of the shape described in (6.71) and
X # {r1,8m,tn}. Furthermore, let o be a minimal element of &Y with

respect to <. Then there exists an r € {ry, Sm,t,} \ X withr -« € g})/(U{r}.

Proof. Since X C {71, $m, tn}, we know that « is a successor of py , n, and
since X # {ri, sm,tn} clearly & # p1 m.n. SO & > p1 m.n, and there exists an
r €Y witha > r-a > p1mn Fors € X, the coefficients of a; in o and
p1,m,n coincide, and thus r ¢ X. Denote the coefficient of , in r -« by A. If
A > 2, then r-a is in &, contradicting the minimality of «; therefore A < 1.
The coefficient of . in « equals A + 1 by (6.64), and this has to be greater

than or equal to 2 as r € Y \ X; whence A =1 and r-a € Sf,“{r}. Since

r -« is a successor of pq m, n, the coefficients of y,,—1,...,91,%0, 21, ..., 2n—1
in 7 - « are greater than or equal to 2, and this forces r € {ry, s;,,t,}, as
required. 0

(6.76) COROLLARY  Suppose X and Y are of the shape described in (6.71)

with X # {ry, $m,t,} such that 5§U{T} = () for all v € {r1,sm,tn} \ X.
Then 55)/( = (.

Proof of (6.19). Assume for a contradiction that 53{/“’5"1} # (), and let a be an
element of minimal depth. As t,, is the only element of {r1, sy, tn} \ {71, $Sm},
the previous lemma yields that ¢, -« € 8{{/7“1’8’”’75"}. By (6.72), the coefficient
of z,_1 in t, - a equals 2, while the coefficient of z, in t, - a equals 1, and
thus

1
<OéaZn> = —<tn . a’zn> = —<1 + <_§>2) — 0’
contradicting ¢,,-a < . So S){,rlvsm}

= () and symmetrically also 81{/T1’t"} = 0.
Moreover, 55{,”} = () by (6.76). O
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If m also equals 1, symmetrical arguments yield that Sl{,sl’t"} and 8){,81}
are empty; so 5}{}"} is empty by (6.76), and a repeated application of (6.76)
yields that 5?, is also empty. (Alternatively, it can be easily verified that
p1,1,n is the only element of ®y preceded by pi1,.) This yields the next
result.

(6.77) LEMMA  Suppose Y equals

51 ro tq th—1 1n

with n > 1 and X C {r1,s1,t,}. Then & = 0 if X # {r1,s1,t,} and
g{?"hslﬂfn} _
Y - {pl,l,’l’b}'

(6.78) From now on suppose that Y equals

with m, n > 2 and X C {s;,, tn}-
Define o, ,, to equal
(1170)  P1mn = 221+ Ym +2(Ym—1+- -+ y1) +3x0+2(21 + -+ 2n_1) + 20

Since p1,m,n is elementary and <p1,m7n, a:0> = <r0 “P1moms 3:1> = —%, Lemma
(3.37) yields that oy, is in &, and hence in El{,s’”’t"}.

Now let a € &F. By (6.73)(i), the coefficient of z¢ in « is strictly
greater than the coefficient of x; in «, which in turn is greater than or equal
to 2. So the coefficient of zg in « is greater than or equal to 3, and since
for r € Y \ {sm,tn} the coefficient of a,. in « is greater than or equal to 2,
Proposition (6.69) yields that a > o, .
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(6.79) PROPOSITION  Suppose Y is of the shape described in (6.78) with
m,n > 3. Then the elements of 81{/8’"’t"} are exactly the following:

221 4 Ym + 2(Ym—1 + -+ ;) +3(yj—1 + -+ y1) + 320

1
@ +3(z1 4 A ze1) F2(2e + o+ 1) F 2,

where m > j >0 and 0 < k < n,

221 + Ym + 2(Ym—1 + -+ y1) +4zo +4(21 + - + 2p(2)-1)

2
@) +3(zr2) + -+ 2e)-1) +2(z0) + -+ Zam1) + 2,

where 0 < k(2) < k(1) < n, and

201 + Ym + 2(Ym-1 -+ yi) 3w+ Yie)
+4(yj)—1+ ) HAxo+2(z1 + -+ Znm1) + 20,

where m > j(1) > j(2) > 0.
Whence ‘51{/8’"’75"}‘ =(m-Dn-D+ ")+ ") =(""7?).

Proof. We show first that if « is of type (1), (2) or (3), then « € &; since the

coefficients of « satisfy the required conditions, it follows that a € 5}{,8’”’75"}.

Suppose first that « is of type (1). If j = k = 1, then a = 0,5, is
certainly an elementary root. So suppose now that j + k > 2, and proceed
by induction. By symmetry, we may assume without loss of generality that
j > 1. Tt follows that (o, y;j_1) = 3 and s;_; - a is of type (1) with j — 1 in
place of j; induction yields that s;_1 - € € and so « is elementary by (3.37)
since (s;j_1 - a,yj—1) = —(a,y;j—1) = — 3.

Assume next that « is of type (2). If k£(2) = 1, then r¢ - « is of type
(1) (since k(1) > 1), and thus an elementary root by the previous paragraph.
Now (r¢ -, zp) = —%, so (3.37) yields that « is elementary. Suppose next
that k£(2) > 1, and proceed by induction. Then (a, zy(2)—1) = % and tj(2)—1-Q
is of type (2) with £(2) — 1 in place of k(2). So ty(2)—1 - a is elementary by
induction, and (3.37) implies once again that o € &.

Symmetrical arguments apply if « is of type (3), therefore it remains to

show that all the elements of 81{/8’"’t"} have been accounted for. Again, this
could be done by an inductive proof, but we choose the following one.
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Let o € 81{/8’”’t"}. Then a = oy, , by the above, whence the coefficient
of xg in « is greater than or equal to 3. We show first that « is of type (1),
(2) or (3) if « has coefficient 3 or 4 for xy. Suppose now that

=M1+ Ym + m—1Ym—1 + -+ pay1 +3x0 + 121 + -+ Vp—12n—1 + 2n-

Then A\; < 3 by (6.73)(i), and thus Ay = 2 by hypothesis. If y,,,—1 = 3, then
(6.73)(ii) and (iii) yield that there exists a § < 71 - o with coefficient of z
in 3 equal to 3, and coefficients of x1, y1, 21 less than or equal to 1,1 and 2
respectively; but then

(Boae) 23+ (5 )1+ (—3)1+ (5 )2=1.

forcing € A and thus a € A, a contradiction. Thus p,,—1 = 2, and
symmetrically also v,,_1 = 2, and by (6.73)(i) it is clear that « is of type (1).

Next suppose that zg has coefficient 4 in «, and let § be of maximal
depth with oy, , < 8 = «a such that the coefficient of z¢ in 3 is less than 4.
Then maximality of 3 implies that 3 < ro - f < « and that the coefficient
of g in ro - B equals 4. As a = 7o - 3, it is clear that rg - § is elementary,
and by (6.64) we deduce that (8, z9) = —5 and that the coefficient of z¢ in

B equals 3. As a = 3 = 0, Wwe can further conclude that 3 is in Sl{,s’”’t"}.
The previous paragraph now yields that (3 is of type (1). If j, k > 2, then

1 1 1
= (o (o (=
(B,20) =3+ (=3 )2+ (—5)3+ (-3)3 <
contradicting our conclusion that (8,z¢) = —3. So by symmetry we may

assume without loss of generality that £ = 1, and thus j > 1 (since (3, x¢)
equals —%). Set j(1) = j; then
ro - B =2w1 + Ym + 2(ym_1 + -+ yj(l)) + 3(yj(1)_1 +---+ y1>
+4xo +2(21 + 4 2p—1) + 20
since (ro - 8,2z1) = —1, Lemma (3.38) implies that the coefficient of z; in

a equals 2, and (6.73)(i) forces the coefficient of z; to be equal to 2 for
kEe{l,...,n—1}. Now let j(2) < j(1) be maximal such that « is preceded

by v = (Sj(2)—1 -+-8110) + (3; then

Y =221+ Y + 2(Ym—1 + -+ Y1) + 3(Yi)-1 + -+ Yi2)
+4(yj2)—1 4+ y1) FAzo+2(21 + -+ 2nm1) + 20
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Note that v < 7.+ for r € Y only if r = 51y and j(1) < n, or 7 = 5;(9)
and j(2) < j(1) — 1, or r = t;. But a cannot be preceded by t; - 7 since the
coefficient of z1 in « equals 2, and by maximality of # and j(2), a can also
not be preceded by s;(1) -y (if j(1) < n) or s;(9) -y (if j(2) < j(1) —1); thus
a = 7, as required.

Now assume for a contradiction that there exists an o € Eésm’t”} such

that the coefficient of xg in « is greater than or equal to 5. We may assume
without loss of generality that « is of minimal depth with this property. Then
O > Oy, and thus there exists an r € Y such that o > - o = oy, ,. Since
r - o precedes an elementary root, it must be elementary, and as r - « lies
between « and oy, ,,, both of which are in 5;{,8’”’75"}, further r - o € Eésm’t”}.
Thus r = r¢ by minimality of «, and moreover, the coefficient of x in r - «
is less than 5. Lemma (6.64) yields that the coefficient of xg in 7¢ - & equals
4, and thus ro - « is of type (2) or (3) by our earlier conclusion. But then

e 24 (4o (4o (h-o

contradicting 7 - @ < a. Thus there are no roots in 53{,5”“%}
for =y greater than or equal to 5, and this finishes the proof.

with coefficient

(6.80) LEMMA  Suppose Y is of the shape described in (6.78) with m,n > 3.
Then X =0 if X equals {s,,}, {tn} or 0.

Proof. Assume for a contradiction that 8}{,8’”} # (), and let o be an element
of minimal depth. Then (6.75) yields that there exists an r € {ry,t,} with

rea € 5){,8m’r}. Since 81{/8’"’“} is empty by (6.74), we find that r = ¢,, and

t,-a € Eésm’t"}; but (6.79) now forces the coefficient of z,_1 in ¢, - « to be
equal to 2, and thus

(o 20) = ~{tn - 020 = —(1+ (—3) - 2) =0,

contradicting t,,-a < a. So 53{/8’”} = (), and symmetrical also 8}{}"} = (). Since
8){,“} is also empty by (6.74), Corollary (6.76) implies that £% = §. O
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(6.81) From now on we only need to determine &% for Y of the shape
r1
»——Lo ----- -—— 9
52 S1 To 3] tn1 tp

with n > 2 and X C {sq,t,}.

(6.82) LEMMA  Suppose Y is of the shape described in (6.81), and let o be
a root in ®y. Denote the coefficient of xg,y; and yo in o by A, 1 and ps
respectively, and suppose that A > 3. Then ps < pp < .

Proof. Assume for a contradiction that p1 = e or A = pq. Then the support
of 81 -« or s987 - v is a subset of

and it can be easily checked using (6.77) that the coefficients in roots with
this support are at most 2, contradicting A > 3. 0

(6.83) PROPOSITION  Suppose Y is of the shape described in (6.81). Then
the elements of £} are:

Az1 + Y2 + pyr + Mg
+ M (21 + -+ zprony-1) + (M = 1) (2rr—1) + o+ zir—g)—1) +
430z o 2k o1) F 20k o 1) + 2,
where
(i) M €{5,....n+1} isodd, and A = 2L ) = MHL op
(i) M €{3,...,n+1} isodd and A = p = 2L or
(iii) M € {4,...,n+ 1} iseven and A = p =2, or

(iv) M €{4,...,n+1} iseven and A = & and p= 4 +1,
and
O0<k(M—-1)<k(M-2)<...<k(3)<k(2) <n.
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Whence

{s2,tn} n—1 (an gy | "
&= +2g; A _g) =21

Proof. We show first that « is elementary if « is a vector of the above type,

and it follows trivially that « € 53{,82’75"}. Denote the sum of the coefficients
of a by S; then

S>24142+43+42n—1)+1=2n+7.

If S=2n+7, then a = 03, is elementary. Suppose next that S > 2n 47,
and proceed by induction. If k(M — 1) > 1, then

1 1 1
=3 (e (=1
(a, zg(v—1)-1) +(—g) M+ {5 )=5
and thus ty(as—1)—1 - @ is of the form described above with k(M —1) — 1 in
place of k(M — 1). By induction this is an elementary root and (3.37) yields
that a € €.

Next assume that k(M — 1) = 1. Then M > 4 since S > 2n + 7, and
thus M — 1 € {3,...,n 4+ 1}. The coefficient of z; in a equals M — 1, and
A+ pequals M or M + 1.

If A+ p equals M (that is, in cases (i) and (iii)), we find that

1 1 1
s (prs (-H)or-n-
(o, ) + 5 + 5 ( ) 5
and the coefficient of g in rg - @ equals M — 1. Since (rqg - «, zg) = —%, it
suffices to show that r( - o is of the form described in the assertion; for then
ro - a € € by induction, and (3.37) yields that a € £. If M is odd, M — 1 is
even; furthermore,

M—1 M+1 M-1

A= 5 and p = 5 5

and these satisfies (iv) for M — 1 in place of M, as required. Suppose next
that M is even, and thus M — 1 is odd; then

M M-1)+1
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and these satisfies (ii) for M — 1 in place of M, and r( - « is of the required
form.

Finally, assume that A+ p equals M + 1. If M is even, then p = % +1,
A= % and (o, y1) = % The coefficient of y; in s1 - a equals %, while the
coefficient of x1 in s - a equals A = %; so the coefficients of s - o satisfy
(iii). By induction s; - v is an elementary root, and (3.37) yields that a € £.
If M is odd, then A\ = pu = %, and (o, z1) = % The coefficient of x1 in
r1 - equals %, whence the coefficients of ;1 - « satisfy (i). By induction,
r1-a € &, and since (ry - o, 1) = —%, Lemma (3.37) once again implies that

« is elementary.

It remains to show that all the elements of 5}{,82’%} have been enumer-
ated. To do so, we again take the scenic route. So let

o= Mz +y2+ piyr +Xoxo + v+ -+ VUp_12p—1 + 2

with Ay, g1, Ao, V1, ..., Vn—1 > 2 be an elementary root. Assume for a con-
tradiction that v, > v41 + 2 for some k € {0,...,n—1} (where vy = A\g and
v, = 1). Let 8 =< a be according to (6.73)(iii) such that the coefficient of xg
in 3 equals Ag, and the coefficient of z; in 3 is less than or equal to Ao — 2.
If the coefficient \' of 1 in (3 is greater than %, then

(8, x0) > % n (—%)Ao —0

and thus rg - 3 < (3; moreover, the coefficient of z1 in r1 - 8 equals —\ + g,

and this is clearly less than 22. Thus we may replace 3 by r1 - 3, which

2
also precedes a and has coefficient for x; less than or equal to ’\2—0 If the

coefficient of y; in (3 is greater than ’\2—0 + %, then

Ao 1 1 1
By >+ 5+ (-g)1+ (-5)0 =0
(since the coefficient of y, in 3 is less than or equal to the coefficient of yo in
a, and thus less than or equal to 1). So 3 > s1 - 3, and we may replace 3 by
s1 - 3, which also precedes a and has coefficient for y; less than or equal to
% + % So assume without loss of generality that the sum of the coefficients
of z1 and y; in [ is less than or equal to \g + %, and thus less than or equal
to Ao (as the coefficients of x; and y; in [ are integers). Therefore

(8,70) > dot(—3 ) =2+ (=3 ) O-tm) = dot-(—3 ) o=2)+(—2 ) o,
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which equals 1, forcing 8 € A, and contradicting a € £. So vy equals vy
or vpy1 + 1 for all k£ by (6.73)(i). In particular, \y < n+ 1, and we define M
to be A\g. Since A\; > 2 further M > 3 by (6.73)(i).

It remains to show that \; and u satisfy (i), (ii),(iii) or (iv). First note
that since (a, z1) = A1 + (—3)M and (o, y1) = p1 + (—3)1 4 (—5)M have to
be less than or equal to %,

M+1
2

M
A < and pp < > + 1. ()

Next, let v < a be according to (6.73)(ii) such that the coefficient of xg
in v equals M, while the coefficient of z; in 7 is less than or equal to M — 1,
and denote the coefficients of 1, y; in 7 by X and p’ respectively. By (3.35),
AN <A1 and ¢’ < py, and as y cannot dominate x,

1 1 1 1 1 M
- > > YN )+ (== S S -
this yields that

A1+ p1r > M. (%)

Suppose first that M is even; then \; < % by (%) since \; is an integer,
and thus pp equals % or % + 1 by (x) and (*x). If \; = %, then A1, uq
satisfy (iii) or (iv). Assume for a contradiction that A; < & — 1, and thus

ulz%—}—land)\l:%—lbytheabove. So

1 1 1 1 M 1

w2304 (e (o0 (Dnme -
(v, 20) = M+ 2(+M)+ 2( )_2+ 2(1+M1)+2 5
and since % > (v, o), we must have equality everywhere; hence X' must be
equal to A = % —land /' = p = % -+ 1. Moreover, the coefficient of ys
in 7y is less than or equal to 1. Therefore (v,y1 + xo) = (v,y1) + (7, To) is

greater than or equal to

(go0)+ (e (D
o () )+ (B 1)+ (For,

which equals 1, forcing v € A, a contradiction.
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Finally assume that M is odd; then p; < % by (*), and by (%) and
(+x) we know that A\; equals 21 or 2L Now Ay, yy satisfy (i) or (ii)
M+1

if uy = 5=, and we assume for a contradiction that p; < % Then

A = % and p; = % by the above; hence
1 1 1 1 M 1
a2t ()0 (0> e (ovem e =
(Vs o) = M+ 2(+M)+ 2( )_2+ 2(1+M1)+2 5
and since 3 > (7, zo), we must once again have equality everywhere. Thus
N :)\1 = % —1 and /*Ll = U1 = % + 1. Now <'}/,5131+£130> = <77$1> +<’)/,$'0>
is greater than or equal to

M+1 1 INM -1 INM+1 1
VM + M (--) (--) (--) M- 1),
2 + ( 2) HAMt 2 2 2 2 2 ( )
and this equals 1, again forcing v € A, a contradiction. 0

(6.84) LEMMA  Suppose Y is of the shape described in (6.81). Then 53{,52}
is empty.

Proof. Assume for a contradiction that 55{,52} is not empty, and let o be an
element of minimal depth. By (6.75) there exists an r € {ry,¢,} such that
rea€ 55{,52’7’}, and since 55{,”’52} is empty by (6.74), we are left with r = ¢,,.
The previous proposition now forces the coefficient of z,_1 in ¢, - « to be
equal to 2, and since the coefficient of z, in t,, - « is 1, this yields

(0 20) = — (b - 0t 20) = —(1 4 (—%) L9) =0,

contradicting ¢, - a < a. 0

In particular, if m = n = 2, symmetrical arguments yield that 832}
is also empty; since 55{,”} is empty by (6.74), Corollary (6.76) now implies

that 8?, is empty. Alternatively, it can be easily checked that o3 2 is the only
successor of o3 o if m =n =2, and we get:

(6.85) LEMMA Suppose Y equals

S2 S1 To t1 to

Then £ = {045} and £FX = 0 if X = {so}, {t2} or 0.
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(6.86) This leaves us to determine & for Y of the shape

52 51 To iy ln—1 ty
with n > 3 and X C {t,}.
Define 7,, to be
(sas170t1) - 02, = 221 +2y2 + 3y1 + 40 + 321 + 2(22 + - - + 2p—1) + 2n-

Since o3 ,, is elementary, and

1
<02,n, Z1> = <t1 ©02.n; $0> = <(7“0t1) “02.n, y1> = <(S17“0t1) “ 02 y2> =g
(3.37) yields that 7, is an elementary root, and it follows easily that 7,, is an
element of 53{,75"}.

We show now that each root in & with X C {t,} is a successor of 7,,.
So let
@ = A1 + play2 + pay1 + AoTo + viz1 + o+ U2y

be an element of £&F. Then \; > 2 by hypothesis, and thus in A\g > A; by
(6.73)(i); hence in particular, Ag > 3, and thus ps < @1 < Ag by (6.82).
Since ps > 2 this yields in particular that py > 3 and A\g > 4. Clearly
o > 02 5, and an easy calculation yields that ¢; is the only element of Y with
t1 - 02n > O2.p; therefore a = t1 - 03, and v1 > 3. Hence a = 7, by (6.69),
as desired.

It can be easily verified that the roots listed in the following two lemmas
are the only roots preceded by 7, for n = 3, 4, and that these are elementary.

(6.87) LEMMA  Suppose Y equals

52 S1 To t1 to t3

Then El{,t‘?’} — {3} and £ = 0.
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(6.88) LEMMA  Suppose Y equals

59 51 ro ty 12 t3 2}

Then 8){,t4} consists of the following roots

Ty = 221 + 2y2 4+ 3y1 + 4xg + 321 + 229 + 223 + 24,

to T4 =221 + 2y2 + 3y1 +4x9 + 321 + 329 + 223 + 24,
(t1t) - 74 = 221 + 2y2 + 3y1 + 4o + 421 + 322 + 223 + 24,
(rotita) - 74 = 221 + 2y2 + 3y1 + Hxo + 421 + 322 + 223 + 24,

(rirotitz) - T4 = 3x1 + 2y2 + 3y1 + 5xo + 421 + 322 + 223 + 24,
(s1motita) - Ta = 221 + 2y2 + 4y1 + 570 + 421 + 322 + 223 + 24,
(risirotits) - 74 = 3x1 + 2ys + 4y1 + 5xo + 421 + 322 + 223 + 24,
(rorisirotite) - T4 = 3x1 + 2y2 + 4yy + 629 + 421 + 320 + 223 + 24,
(tirorisirotite) - Ta = 3x1 + 2y2 + 4y1 + 620 + 521 + 322 + 223 + 24,
(tatirorisirotite) - 74 = 3w1 + 2y + 4y1 + 630 + 521 + 42 + 223 + 24,

<t3t2t1T0T181T0t1t2) -1y = 31 + 2y2 + 4y1 + 6x09 + 5z1 + 429 + 323 + 24,
and 83 has exactly one element, namely

(t4t3t2t17‘07“1817“0t1t2) c T4 = 3[171 + 2y2 + 4y1 + 6[170 + 521 + 422 + 323 + 224.

(6.89) It remains to determine &Y for Y equal to
I )
° PS : - - - - - - -——0
82 S1 To ty lh—1 1t

withn > 5, and X C {t,}.

(6.90) PROPOSITION  Suppose Y is of the shape described in (6.89). Then
55{,75"} equals the set of vectors of the following six types:
231 + 2y + 3y1 + 4w +4(z1 + -+ 2g(2)-1)

1
@ +3(zr2) + -+ 2e)-1) T 2(2a) + -+ Znm1) + 20,
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where 0 < k(2) < k(1) < n,

Axy + 2y + py1 + Sxg
(2) +5(z1 4+ Z3)—1) +4(zes) + o+ 2r2)-1)
+3(ze2) + -+ Zo)—1) + 2(2k@) + - Zn-1) + 20,

where 0 < k(3) < k(2) < k(1) <n and X € {2,3}, u € {3,4},

Ary + 2y + py1 + 6xg
+6(21 -+ 2heay-1) 5 (2k) oo 2re)-1)
+4(zre) o+ 2e)-1) 3 () + o+ 2R)-1)
+ 2(2k(1) + e+ Zn—l) + Zn

(3)

where 0 < k(4) < k(3) < k(2) < k(1) < n and (A, pu) = (3,3) or (2,4),

3xy + 2y + 4y + 629 + 4(z1 +- 4+ Zk(2)—1)

4
@) +3(zr2) + -+ 2e)-1) T 2(za) + -+ Znm1) + 20,

where 1 < k(2) < k(1) < n,
(5) 3z1+2y2+4y1 +620+521+3 (224 -+ 2k) 1) +2(2k(1) - F20-1) 20,
where 2 < k(1) < n and

(6) 3x1 + 2ys + 4y1 + 629 + 521 + 420 + 2(z3 44 zn_l) + zp.
Whence ‘8ét”}| = 2(”:1).

Proof. We show first that « is elementary if it is of one of the types (1)-(6);
since the coefficients of « certainly satisfy the required conditions, this yields

that « is in Sl{,t"}

Suppose first that « is of type (1); then k(1)+k(2) > 3. If k(1) = 2 and
k(2) =1, then o = 7, € £. Suppose next that k(1) + k(2) > 3, and proceed
by mductlon. If k(2) > 1 we find that (o, yp2)—1) = 1 , and that t9)_1 - a is
of type (1) with £(2) —1 in place of k(2). By 1nduct10n this is an elementary
root, and (3.37) implies that « is elementary. Now suppose that k(2) = 1,
and thus k(1) > 2. Then (a, yr1)-1) = % and ty(1)—1 - a is of type (1) with
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k(1) — 1 in place of k(1). By induction, this is an elementary root, and since
(th(y—1 - @, 2(1)—1) = —%, Lemma (3.37) yields again that a € £, and this
finishes the induction.

Suppose next that « is of type (2), and denote the sum of the coefficients
of a by S; then

S>2+24+34+5+4+3+2n—-3)+1=2n+14.
If S = 2n + 14, then «a equals
(Totltg)'Tn:2%1—|—2y2+3y1—|—5ZL‘0—|—421—|—322+2(23—|—"'—|—2n_1)+2n,

and since 7, is elementary, it can be easily verified using (3.37) that this
is an elementary root. So suppose next that S > 2n + 15, and proceed by
induction. If k(3) > 1 we find that (o, yg(3)—1) = 5, and tx(3)—1 - « is of type
(2) with k£(3) — 1 in place of k(3). By induction, this is an elementary root,
and it follows by (3.37) that « is elementary. If A = 3, then (o, z1) = %
and r1 - « is of type (2) with 2 in place of A; this is an elementary root by
inductive hypothesis, and (3.37) yields that a € €. If p = 4, then (a,y1) = %
and s; - « is also of type (2); by induction s; - « is in £, and (3.37) implies
again that « is elementary.

Suppose now that A =2, 4 =3 and k(3) = 1. Then

=50 (3o (D)o (44

and thus ro - o is of type (1). So 79 -« € &€ by the above, and since (rg - o, xo)
equals —%, Lemma (3.37) once again yields that « € £, and this finishes the
induction.

Now let a be of type (3) and denote the sum of the coefficients of « by
S; then S is greater than or equal to

(A+p)+24+6+5+44342(n—4)+1 = 6+2+6+5+4+3+2(n—4)+1 = 2n+19.
If S =2n+4 19, then « is equal to one of the following two roots:

(rositirotatits) - Ty
=211 + 2ys + 4y + 620 + 521 +420 + 323+ 2(24 + -+ 2p_1) + 2n,
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(roritirotatits) - T
=321+ 2ys +3y1 + 620+ 521 + 420 + 323+ 2(24 + -+ Zn—1) + 2n.

As 7, is elementary, it can be easily verified using (3.37) that these are
elementary roots. Suppose next that S > 2n 4+ 19. If k(4) > 1, we find that
(a, Yk(ay—1) = & and ty(a)—1 - o is of type (3) with k(4) — 1 in place of k(4).
By induction this is an elementary root, and since (ty)—1 - @, 2(4)—1) = —%,
this implies that « is elementary. Suppose now that k(4) = 1; that is, the
coefficient of z; in a equals 5. Since the sum of the coefficients of x1 and
equals 6, we have

1 1 1

=

aswo) =6+ {=5)6+(3)5 =3

and rg - a is of type (2). This is an elementary root by the above, and since
(ro - a,xg) = —%, this implies that « is elementary.

Next, assume that « is of type (4); then (o, zo) = %, and rg - a is of

type (2) with k£(3) = 1. By the above, this is an element of £, and since
(ro - a,zp) = —5 we can deduce that a € €. Further, if a is of type (5),
(a,z1) = % and t; -« is of type (4) with k(2) = 2; therefore ¢1 - a is in €
by the above. As before, this yields that « is an elementary root. Finally,

assume that a equals
3x1 + 22 +4yr + 620 + 521 + 420+ 2(23 + -+ 2p—1) + 2.

Then (a,z) = 3 and ty - « is of type (5) with k(1) = 3. By the above,

ty - a € &, and we can once more conclude that « is an elementary root.

It remains to show that we have listed all the roots in 53"}. So let

a € 55{,5"““}. Since a = 7, by an earlier remark, we know that the coefficient
of o in « is greater than 4. We first show that « is of one of the types (1)-(6)
if the coefficient of xy in « equals 4, 5 or 6. So let Ay, po, 1,1, ..., Vp1 > 2
such that

o= Mx1 + poy2 + piyr +4xo vz + -+ Up—12p—1 + 2.

Then 2 < A\ < 3, and since (o, x1) < %, we deduce that A\; = 2. Further,

2 < o < pyp <4, and thus ps =2 and p; = 3.

Assume for a contradiction that v, > vg41+2 for some k € {0,...,n—1}
(where vy = 4 and v, = 1), and let § < «a be according to (6.73)(iii) such
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that the coefficient of xy in ( equals 4, and the coefficient of z; in 3 is less
than or equal to 2. Denote the coefficients of z; and y; in # by A and p’
respectively. Then X < A\ and p/ < pg, since § =< «, and thus (3, x) is
greater than or equal to

(D (A0 Bz (e (e (D=

hence rg-3 < (. It is clear that (3 is an elementary root, and (6.64) yields that
(B,x0) = % and that the coefficient of xg in r¢-3 equals 3. But (3, z¢) = % now
forces equality in the above inequality; in particular, y/ = 3, and thus rq - 8
has coefficient 3 for xy and y;, contradicting (6.82). So v € {Vk4+1, Vg1 +1}
for all k € {0,...,n— 1} by (6.73)(i), and it follows that « is of type (1).

Next let A1, po, 1,1, ..., Vn—1 > 2 such that
o= MT1 + pey2 + pyr + 59 +v121 + o+ Une12n—1 + 2n.

Then 2 < A\; < 4, and since (o, 1) < % we know that A; € {2,3}. Further-
more, 2 < ps < py < 5, and thus po = 2 and py € {3,4}, or ps = 3 and
1 = 4. But in the latter case (a,y2) =3 + (—3)4 = 1, contradicting o € &,
and thus pus = 2 and p; € {3,4}.

Assume for a contradiction that vy > vg41+2 for some k, and let < «
be according to (6.73)(iii) such that the coefficient of zy in 3 equals 5, while
the coefficient of z; in 3 is less than or equal to 3. If the coefficient of x; in
0 is 3, « is also preceded by r1 - 3, and so we may assume without loss of
generality that the coefficient of x; in (8 is less than or equal to 2; similarly,
if the coefficient of y; in (3 is 4, « is also preceded by s; - 3, and so we may
further assume without loss of generality that the coefficient of y; in 3 is less
than or equal to 3. Thus

a0z (s (G (4

forcing § € A, and thus o € A, a contradiction. Therefore v equals either
Vgt1 or vty + 1 for all k by (6.73)(i), and « is of type (2).

Suppose now that a € S}g"} has coefficient 6 for xp, and let 3 be of
maximal depth with 7, < § =< a such that the coefficient of zg in 3 is less
than 6. It is clear that ( is elementary, and since 7,, = 3 =< «, it follows that

B € 5){,8"}. By maximality of 3, we deduce that 3 < ro - 3 < « and that the
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coefficient of xg in 1o - § equals 6; now (6.64) implies that (rg - 5, z9) = %

and that the coefficient of g in 8 equals 5. Since (§ € 5){}"}, the above yields
that 3 is of type (2); that is, 8 equals

Az1 4 2y2 + pyr + 520 +5(21 4+ Zezy—1) o+ 2(zR) + 0 Zas1) + 20,

for some 0 < k(3) < k(2) < k(1) < n and X\ € {2,3}, n € {3,4}.
(B,z0) = —3, we are left with (A, p) € {(2,4), (3,3)} and k(3) > 1, or
(A, ) = (3,4) and k(3) =

If (A ) €{(2,4), (3,3)} and k(3) > 1, then ry - 8 equals

Azy+ 2y + py1 + 620 +5(21 + -+ Zry—1) + 4(zRe) T+ Zr2)-1)
+ 3(%(2) + -+ Zk(1)_1) + Q(Zk(l) + -+ Zn—l) + Zp.

Let k(4) < k(3) be the maximal such that « is preceded by (tj(4)—1 - -t1)r0- 3,
and call this root «v. Then

Y = Az1 + 2y2 + py1 + 620
+6(z1 4+ zhy1) +5(zke oo+ 2k -1)
+ 4z T 20@)-1) +3(2k@) T+ 200 -1)
+ 2(Zk(1) +oe Zn—l) + Zn.
Now assume for a contradiction that a does not equal ~, and let r € Y such

that @ = r -~ > ~; then (y,a,) = —% by (6.64). Since A € {2,3} and
p € {3,4} clearly r # rq, s9, s1, and as

(v, 70) > 6 + <—%>6+ <—%)(/\+M) > 6+ <—%)6+ (—%)6 >0,

furthermore r # 79. Now (v, zp)) = 0 if k(4) = k(3) — 1 and 7 # tj)
by maximality of k(4) if k(4) < k(3) — 1; hence we are left with r = 1,3,
and k(3) < k(2) — 1, or 7 = tgoy and k(2) < k(1) — 1, or r = ty(;) and
k(1) < n. But then an easy calculation yields that « is preceded by r- 3 > £,
contradicting the maximality of 3. So a =+, and this is of type (3).

Suppose next that (A, u) = (3,4) and k(3) = 1. Then v = r( - 5 equals

31 + 2y + 4y1 + 6x0 +4(21 + - + Zp2)-1)
+3(z02) T+ 2e)—1) +2(zk) + o+ 20m1) + 2,
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and this is of type (4). If « is not equal to v, let 7 € Y such that a > r-y > ~.
Then (v, a,) = —(r-~,a,) = —3 by (6.64), and since

(v, 1) = (v, 42) = (v, 1) = (7, 20) = 0,

it follows that r € {t1,...,t,}, and thus r € {t1, ty(2), tr)}; maximality of
(3 now only leaves us with r = ;. Since (7, z1) = —%, we find that £(2) = 2;
hence § = t1 - v equals

31+ 2y2 +4y1 + 620 + 521 +3 (22 + - -+ 2p1)—1) +2(261) + - Zn1) + 20,

which is of type (5). If o # 0, let s € Y such that & > r -6 = §. Then

(0, cg) = —%, and since

<57 CIZ1> = <5’ y2> = <5’ y1> = <57 CIZ0> =0

as well as (,y1) > 0, we deduce that s € {t2, (1) }; thus s = ¢ by maximality
of 3. Since (4, z3) = —1, moreover k(1) = 3, and

by -0 =31 4 2y + 4yy + 620 + 521 + 422 + 2(23 + - + Zn—1) + 20

As n > 5, it can be easily verified that there are no ¢t € Y such that (t5 -6, o)
lies in the open interval (—1,0), and we can deduce from (3.38) that o must
be equal to tq - §; that is, « is of type (6).

Now assume for a contradiction that there exists an a € 5){/15”} such
that the coefficient of x¢ in « is greater than or equal to 7. We may assume
without loss of generality that « is of minimal depth with this property.
Then «a > 7,,, and hence there exists an r € Y such that a = r-a > 7,. It is
clear that r - o € 51{;"}, and minimality of « yields that » = rg and that the
coefficient of z( in r - v is less than or equal to 6. By (6.64) the coefficient
of xo in 1o - @ equals 6, and thus r - « is of type (3), (4), (5) or (6) by the
above; but then (rg - a,xg) > 0, contradicting a > rg - o, and this finishes
the proof. 0

(6.91) PROPOSITION  Suppose Y is of the shape described in (6.89). Then
gd =.

Proof. Assume for a contradiction that 53 # (), and let o be an element of
minimal depth. By (6.75), there exists an r € {ry, so, t,,} such that r -« is in
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El{,r}. Since 8){,7"1} = 81{/82} = () by (6.74) and (6.84) respectively, this leaves us

with ¢, -« € 53{}"}. The elements of 5}{}"} are of types (1)-(6) stated in the
previous proposition, and so the coeflicient of z,_1 in t, - a equals 2, while
the coefficient of z,, in t, - @ equals 1; whence

(o, z) = —(tn - @, 2p) = —(1 + (—%)2) =0,

contradicting ¢,, - o < a.

§6b One non-simple bond

Henceforth assume that X, Y C R satisfy (6.61), and that Y contains exactly
one non-simple bond of finite weight m. Let r1, s; € Y be the vertices of
the non-simple bond, and denote the simple roots corresponding to r1, s; by
x1 and y; respectively. Further, let Y7 and Y5 be the connected components
of the graph obtained from Y by deleting the non-simple bond, and assume
that 71 € Y7 and s; € Y5.

We denote 2 cos(m/m) by ¢,; then (2.26) yields that the coefficient of
a simple root in any element of <I>;S equals 0, 1 or ¢,,, or is greater than or
equal to 2.

Each element of &y is preceded by some simple root «a, with r € Y.
Suppose a € &y is preceded by «, for r € Y7, and let 8 be of maximal depth
with a = 3 = a, such that I(3) C Y;. Since I(a) Z Y7, maximality of
yields that o = s; - 8 > [3; then (5,y1) < 0 and thus (8,y1) € (—1,0) by

(3.38). If A denotes the coefficient of x; in 3, we find that (3,y1) = (—%)A,
and hence 0 < A < 2/c,, < v/2; thus A = 1 by (2.26). If s € Y3 \ {51}, the

coefficient of a; in s1 - B equals 0, therefore (6.58) yields that
Q7 811 =T+ Cply1 = T1.

Symmetrical arguments give o = ¢,,x1 +y1 > y1 if a is preceded by a,. with
reYs.
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(6.92) Observe that &Y does not depend on R as long as Y C R, hence
we may assume without loss of generality that there exists at € R\'Y such

that
_ |3 ifr=sy,
Mir = Mrt =19 9 if r # s,

forreY.
(6.93) PROPOSITION  Suppose R satisfies (6.92). Then

¢: B cm(B—ar) + a1

defines a one-one correspondence between the set of roots in <I>Y u{t) with

coefficient 1 for oy, and the set of roots in (I){rl}uyz with coefficient 1 for

x1. Moreover, ¢ restricts to a one-one correspondence between the set of
roots in Egyuy, with coefficient 1 for oy, and the set of roots in &g, yuy, with
coefficient 1 for x.

Proof. Observe that for s € Y5,

(1 — cmar, as) = (21, as) — em oy, as)
0—c¢y, x0 if s €Yy \ {51},
—7— Cm —5) lfS—S]_7

Hence for § € ® and v € ®y,,

(21 + cm(B—ar), ) = cm(B,7); (%)

moreover, for s € Y,

s (x1+em(B—)) =214+ cn(B— o) — 2(x1 + e (B — ), o)
=1+ (B — ar) — 2¢, (0, as)

=1+ cm(f— 2(5, as) — )

(

=21 +cp(s- ay).

()

Now let 5 € CD;;QU () with coefficient 1 for ay; then (6.59) implies that
there exists a w € Wy, with [(w) = dp(8) — 1 and 8 = w- a4. The coefficient



Chapter 6 The set of elementary roots

of 1 in w - z1 equals 1, and since x1 = z1 + ¢ (o — ), a straightforward
induction on [(w) using (xx) yields that w -z = x1 + ¢y (w - @y — ). Hence
¢ is well defined. By (6.59), every element of (P?Tl}UYQ with coefficient 1 for
x1 can be written as w-x; for some w € Wy,, so the above also shows that ¢
is onto. Since ¢ is certainly one-one, ¢ is a one-one correspondence between
the given sets, and by the above construction it remains to show for w € Wy,
that w-x; € A if and only if w-a; € A.

First, suppose that there exists a v € ®* \ {w - x1} such that w - z;
dominates v. Then w=! -~ € ®~, since ; is not in A, and thus v is an
element of N(w™"), which is a subset of ®7, . Now (w - x1,7) > 1 by (3.32),
and thus by (x)

1 1 1

W, y) = —(o,y) = — > .

(- an7) = o) > > 3

Since I(w - ay) U I(7y) contains only simple bonds, (w - ay,7) is an integer

multiple of 1, and thus (w-ay, ) > 1. So w-a; dom 7 or v dom w-ay by (3.32);

but v cannot dominate w - ay, as w~ - is negative, while w1 - (w- ay) = ay
is positive, and thus w - ay € A.

For the converse, suppose that there exists a v € &+ \ {w - oy} such
that (w - ay) dom . Then (w - x1,7) = cp{w - ag,y) > ¢ > 1 by (%) and
(3.32); since w~?! - is negative and w™! - (w- 1) = 1 is not, we deduce that
w-x1 € A.

(6.94) PROPOSITION  Suppose R satisfies (6.92) and Y1 = {r1}. Then

5{“} {z1 + (B — ) | B € Ey,uyuy has coefficient 1 for oy}

I
= {531 +Cm( - | B e U gy?jg}
ICYs

This leaves us to determine &F for X with r1, s1 ¢ X; that is, we only
need to consider the set of elementary roots with coefficients greater than 1
for x1 and y;.
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(6.95) LEMMA  Suppose Y = {r1, s1}. Then

0 _{sin((n + 1)m/m) N sin(nm/m)

Yo sin(mw/m) o sin(w/m) vine {2"”’%_1}}
sin(nm/m) sin((n 4 1)m/m) m
{ () T sn(rmy I EAB 1}

if m is even, and if m is odd,

g0 — {sin((n + 1)mr/m) N sin(nm/m)

sin(mw/m) ! sin(mw/m) yr|n€f2,...,m- 3}}

(6.96) PROPOSITION  Suppose that m > 6, |Ya| > 2 and r; ¢ X. Then X
is empty unless Y1 = {r1} and X = (). Moreover, if m > 7 and Y7 = {r},
then

EY = {(c2, — Va1 +cmB | B € Ey, has coefficient 1 for y; }
={( - Do +enflpe |J &I

JCY2\{s1}

Suppose next that m = 6 and Y; = {r1}. We may assume that there exist
t1,to € R\'Y such that

e o 3 ifr = sy,
Tt rt2 2 ifr # sy,

for all r € Y. Denote the simple roots corresponding to t1 and to by z; and
2o respectively. Then

gl = {221 + V3(B—z1—2) | e E(tr 210y, has coefl. 1 for z; and 2}
= {2 +VBB-n—2) [ 8e | ).

JCYs

Proof. We show first that if « is an elementary root in ®y preceded by
x1 + ¢y with coefficient for x, greater than 1, then « is a successor of
(2, — 1)xy + cpy1 and I(a) C {ri} U Y.
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Let 3 be of maximal depth with a« = (6 > x1 4+ ¢y such that the
coefficient of z1 in 3 equals 1. Then a > r1 - > (8 by maximality of 3; hence
(B,y1) < 0, and thus (8,21) € (—1,0) by (3.38). Since the coefficient of x;
in 3 equals 1, (6.57) together with (6.93) imply that the coefficient of y; in (3
equals kc,, for some k € N. Now suppose that r € Y; is adjoined to r1, and
denote the coefficient of a,. in # by A; then A =0 or A > 1 by (2.26). Further

Cm A A 3k
(o) 1+ (ammd+ (-G Jps 1= 5k <1-5 -5

as ¢, > cg = V/3; since (B, 21) > —1, we deduce that k = 1 and A = 0. So
the coefficient of y; in 71 - # equals ¢,,, and 71 is only adjoined to s in I(53);
therefore 7 - 3 = (c2, — 1)z1 + cuy1 by (6.58), and transitivity of = yields
that

a> (2 =1z + cmyr.

Note that connectedness of the support of  implies that I(3) C {r1} UY53,
and thus I(ry - 8) C {r1} UY5. If r € Y7 is adjoined to r, then

1
(r1- Boag) =0+ (—5)(ch = 1) < -1,
and since a = r1 - § and a € &, Lemma (3.38) yields that «, ¢ supp(«);
by the connectedness of the support of o we deduce that I(«) is a subset of
{7‘1} U YQ.

Now let a € &F. Since I(a) € Y; U {51}, the above yields that «
cannot be preceded by c¢,,x1 + y1. So « is preceded by ¢, 1 + y1, and thus
by (c2, — 1)x1 + ¢y1; moreover, I(a) C {r;} U Ys. Hence & = () unless
Yy = {r1}. By (6.56), the coefficient of o in « is greater than or equal to

cm for s € Y, and thus X = (). This leaves us to determine g?m}uyz‘

Suppose first that m > 7 and Y7 = {r1}. Let a be an element of 8?,;
then o = (c2,— 1)z, +¢,y1 by the above. We now show that the coefficient of
y1 in a equals ¢,,,. Let 7 be of maximal depth with a = v = (c2, —1)x1+ ¢y
such that v has coefficient ¢, for y;; then @« = v or a = s -+ = v by
maximality of .

Assume for a contradiction that I(y) C {ry, s1}. It follows that v equals
(2, — 1)x1 + cuy1, and since Y # {71, 51} clearly o # «; therefore

a= sy =(ch, — Va1 +em(ch, — 2)y1.
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But since ¢, (c2, — 2) > c7(c2 — 1) > 2, we deduce that (s1 - v, as) < —1
for s € Y5 adjacent to s;. So by (3.38), the coefficients of o in s; - v and
a coincide, and by connectedness of the support of a we find that I(«) is
contained in {ry, s1}, contradicting |Y2| > 2. Thus I(v) € {r1, s1}, and by
connectedness of the support of v there exists an s € I(y) \ {r1, s1} adjacent
to s1. Denote the coefficient of ag in v by p. Then p > ¢, by (6.56), and
thus

(vsy1) < em+ (—%”)(cfn —-1)+ (—%)cm = C—m(2—cfn) <

So Lemma (3.38) implies again that the coefficients of y; in v and « coincide;
that is, the coefficient of y; in a equals ¢,,.

Note that since the coefficient of y; in « equals ¢,,, and « is a successor
of (¢, — 1)1 + cmy1, we can deduce that the coefficient of x; in « is ¢, — 1.
Then r1 -« is an element of 8){,“}, and (6.94) yields that ry-a = z14¢,, (' — )
for some 3 € Ey,uqyy with coefficient 1 for oy (where ¢ € R\ Y according to
(6.92)). Since the coefficient of y; in r1 - a equals ¢,,, we also know that the
coefficient of y; in (' has to be equal to 1, and as ¢ is only adjoined to s; in
Y, we deduce that t - 3’ = ' — ay. It is clear that ¢ - 3’ is an element of &y,
with coefficient 1 for y;; moreover, r; - @ = 1 + ¢, (¢ - '), and we conclude
that « equals (c2, — 1)xy + ¢ (t - 3'), as required.

For the converse, let 3 € &y, with coefficient 1 for y;. Since ¢ is only
adjoined to s (and, moreover, s; and t are adjoined by a simple bond), we
find that (8, a4) = —%. Now (3.37) implies that ¢ - 8 = 3 + ay is in Ey,uqey,
and thus

1+ emfB=x1+cn(t-B— o)

is an elementary root by (6.94). Since (z1 + ¢, 21) = 1+ (—%) € (—1,0),
(3.37) yields further that
- (xl + Cmﬁ) = (an - 1)551 +cmf3

is also elementary. The coefficients of this root certainly satisfy the required
conditions, and thus (¢2, — 1)z + ¢, 3 € 5?/; this finishes the proof for the
case m = T7.

Suppose now that m = 6; then ¢ = /3, and an easy induction yields
that for each root in ®y preceded by z1, the coefficient of «,. in this root is
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an integer if € Y7, and an integer multiple of v/3 if r € Y>. Now let o € 8?,;
then a = (c2 — 1)z1 + cey1 = 221 + /3y; by the above.

Assume for a contradiction that the coefficient of x7 in « is greater than
2, and let 8 be of maximal depth with o > 8 > 2z1 + v/3y1 such that the
coefficient of x; in (3 equals 2. Then « = r1 - > [ by maximality, and (3.38)
gives (B, 71) € (—1,0). But the coefficient of y; in 3 equals kv/3 for some
k € N, and 71 is only adjacent to s; in I(5) \ {r1}, and hence

V3 3k (=1 ifk=1
o) =24+ kV3(—) =240 2 ’
0, 21) =%) 2{§—1 if k> 2,

contradicting (5, z1) € (—1,0). Hence the coefficient of 1 in « equals 2.

Now observe that if s € Y5, then

<2x1—\/§(z1+22 = 2(x1, ) — \/_(z1+zQ,as>
2><0—\f><0 if s € Yo\ {s1},
{ (=5 —3) ifs=sy,
=0.

Then for v € ® and § € Dy,
<2$1 + \/5(7 - (21 + ZQ)) 9 6> = \/§<’775>7 (*)
moreover, for s € Y,
S - (2x1+\/§(7 — 21— 22))
:2x1+\/_7—21—z2)—2(2x1+\/5(7—21—@), Q)
=2z +V3(y— 2z — 29) — 2\/§<7, Q) (%)

=271 + V3(y — 2(y, @5) — 21 — 22)
=21 +V3(s v — 21 — 22).

/\/\/\/\

Recall now that a > 221 + v/3y1, and the coefficient of z; in a equals
2 for a € EY. Hence there exists a w € Wy, such that o = w - (221 + v/3y1).
So
a=w- (221 +V3((21 + 22 +y1) — 21 — 22)),
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and an easy induction on [(w) using (*x) yields that a equals

221 + V3(w - (21 + 22 + Y1) — 21 — 22) = 221 + V3((wtita) - y1 — 21 — 22).

Set v = (wtqt2) - y1; then clearly I(y) = {t1,t2} U Ys. Assume for a contra-
diction that + is not an elementary root, and let § € ®* \ {~} be dominated
by «. Then (v,d) > 1 by (3.32). Further, w™! -6 € ®~ since z; + 22 + ¥ is
elementary, and hence § € ®y,. Now (*) yields that

(v, 0) = \/§<755> 2 V3 > 1,
and thus o dom § or o dom « by (3.32). Since w~!-§ is negative, and w=' -«

is not, this forces @ € A, a contradiction.

Next, let 8 € Ey,uft, 1) With coefficient 1 for z; and 22, and define

o =2x1 +V3(8 — 21 — 22);

we show first that « is in fact a root. Since I(3) = Yo U{t1, t2} contains only
simple bonds, Proposition (6.69) yields that [ is a successor of z1 + 22 + y1;
hence f = w - (21 + 22 + y1) with dp(8) — dp(z1 + 22 + y1) = l(w) for some
w € W. The coefficients of z; and 29 in 8 and 21 + z2 + y; coincide, and
since I(8) = Y3 U {t1,t2} we know that w € Wy,. Now a straightforward
induction on [(w) using (*x) yields that

(wris1) -z = w - (221 — V3(z1 + 22) + V3(y1 + 21 + 22))
:2:1:1+\/§(w-(z1+z2+y1)—21—zg)
=2x1 + \/g(ﬁ e Zg);

therefore « is in fact a root.

Assume for a contradiction that o dominates some § € ®* \ {a}. Then
§ € N(w™1), since (r1s1)-21 ¢ A, and thus § € CID;Q. Hence by (%) and (3.32),

1 1
<ﬁa 5> = ﬁ<a,5> > ﬁ

Since I(B) U I(0) = Y3 U {t1,t2} contains only simple bonds, this forces
(8,0) > 1. As w™! .4 is negative while w™! - 3 = v is positive, § cannot
dominate 3, and thus § € A, contrary to our choice of j. 0
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It remains to discuss the cases m = 4, 5; before we do so, consider the
following consequence of the previous result for m = 6: If Y5 equals

then {t1,t2} UYs equals

3]

S1 52 Sn—1 Sn
15

and if we denote the simple root corresponding to s; by y;, we can deduce
from (6.77) that the set of roots in ¢, 4,30y, With coefficient 1 for z; and 2y
is

{21+Z2+2(yl+---+yj—1)+yj+"'+ynUE{L---JL}};

therefore
€V = {201+ VB3R + .. Hyim) Tyt ) [FE{L . 0},

and thus ‘83| = n.

Next, suppose that Y5 contains a vertex of valency greater than 2, and
let n > 1 be maximal such that there exist ss,...,s, € Yy with s; adjacent
only to sj_q and s,;41 in Y for j € {1,...,n—1} (where so = 71). Denote the
simple root corresponding to s; by y;, and let a be an element of £¢, 4,10y,
with coefficient 1 for z; and z5. Since the support of a contains at least two
vertices of valency greater than or equal to 3 (if n > 1, namely s; and s,) or
at least one vertex of valency greater than or equal to 4 (if n = 1, namely s1),
(6.65) implies that there exists a j € {1,...,n} such that the coefficient of y;,
in « is 1. If we choose j minimal with this property, then (6.57) yields that
a equals 8+ —y; for some 3 € Ey, 1,.6,,....s;,3 With coefficient 1 for y; and
coefficient greater than or equal to 2 for yq,...,y;—1,and y € &

YQ\{Sl,...,Sj,]_}
with coefficient 1 for y;. Since the coefficients of z; and z; in « equal 1, this

vields that 8 € 105450 by (6.77),

{tl,tz,sl,...,Sj}’

B=z+2+2y+ - +yi-1)+ Yy
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and thus every element of 5?, can be written as 21 +\/§(2(y1 +- - -—l—yj_l)—}—fy)

for some v € 8Y2\{81 i1} with coefficient 1 for y;.
..... .

Since 21 + 22 +2(y1 + - - -+ y;j—1) + y; is elementary for j € {1,...,n},
it also follows from (6.57) that

2x1 + \/5(2(y1 + ... —l—y]’_1) +7)

is in 88 for all v € EYQ\{sl sy1) with coefficient 1 for y;; therefore 83 is
the set

L_J {2x1 V3R +... 4yj—1)+7) [ € U 513\}{UJ_1}}

Jng\{sl ..... Sj}

Note that by (6.66), &y \r,, . 3 ={% + -+ yn} if [Y2| = n; hence the
above also applies for the case |Ya| = n.

If m = 4, 5 we can use similar arguments to the ones just demonstrated
for the case m = 6. To do so, we need to develop some more tools. We start
with the following variation of (6.57), which is clearly valid for all m.

(6.97) PROPOSITION  Let r € Y and Jy,...,Jr CY such that Y \ {r} is
the disjoint union of Jy, ..., Jp. Suppose that no element of .J; is adjoined to
any element J; for i # j, and set I; = J; U{r} for all j € {0,...,k}. Assume
further that ri, sy € Iy. Then

¢: (Bo,---, k) — Bo +cem(Br+ -+ B — ko)

is a one-one correspondence between the set of (k+1)-tuples in CID}LO X+ X @};
such that the coefficient of o, in the first component equals c,,, while for all
other components the coefficient of «,. equals 1, and the set of roots in @;
with coefficient c¢,, for a,.. Moreover, ¢ restricts to a one-one correspondence
between the set of (k+1)-tuples in 5, X - - - x £y, such that o, has coefficient
¢ In the first component, and 1 in the others, and the set of roots in Ey
with coefficient c,,, for a,.

Proof. We show first that ¢ is well defined. So let (fy, ..., k) be an element
of (IJ}; X oo X @}; such that the coefficient of «, in By equals ¢,,, while the
coefficient of a, in (3; equals 1 for j € {1,...,k}. Lemma (6.59) implies
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that 8; = a, for j € {1,...,k}, and hence there exist w; € W, such that
Bj = w; - o and l(w;) = dp(B;) — 1. Define « to be (wy - --wy) - Bo; then
the coefficient of «, in a equals ¢,,, and it can be easily seen that o equals

#(Bo, - - -, Br)-

As I(B;) N 1(B;) = {r} if i # j, and the coefficient of o, in §; is ¢, if
i=0,and 1ifi € {1,...,k}, it follows that ¢ is one-one, and we show now
that ¢ is onto.

Suppose that o € CP;Z has coefficient ¢,, for a,., and let v < a be of
minimal depth such that the coefficient of - in v equals ¢,,. Then I(y) C Y,
and as Y \ Jy contains only simple bonds, we deduce that I(y) N Jy # 0.
Now r -~ < 7 by minimality of «, and it follows by (2.26) that the coefficient
of a,. in r -~y equals 0 or 1. In the first case, connectedness of the support of
r - yields that I(r-~) C Jy, and thus I(v) C .

Assume now that the coefficient of o, in -y equals 1, and let Ky, ..., K,
be the connected components of I(r-+) \ {r}. Assume for a contradiction
that n > 2. By (6.57), there exist roots v1, ..., v, with I(v;) C K; such that
ry=v++vm—(n—1a. Foriec{l,...,n}, let t; € K; be adjoined to
r, and denote the simple root corresponding to t; by z;, and the coefficient
of z; in ; by v4; then v; > 1 by (2.26), as t; € I(r - ). The coefficient of «,
inr-~vis

1=cm —2(7,00) = —Cpy, — 2(21, ap)v1 — - -+ — 2(2p, Qp )V,

and we find that 1 > —¢,, — (11 + -+ v) = n— ¢y, This forces n < 2, and
thus n = 2 by our assumption. Further, 1 + 15 < 1+ ¢,,, and by symmetry
of K1 and K5 we may assume without loss of generality that 14 < 5. Since
v; equals 1, or is greater than or equal to ¢, by (2.26), we deduce that v, = 1
and vy € {1, ¢, }. Since the coefficients of both z; and «a,. in r -+ equal 1, we
deduce from (6.56) that (., 22) = —3. So the coefficient of a, in 7 equals

1
cm=1-2(1+ (—5)1 + (., 20)19) = —2(avy, 22) V5.

If v, = 1, this forces (a,,z2) = —%*; but then the coefficients of z, and
o, in 7 -y cannot both be 1 by (6.56) together with (2.26), contrary to our
construction. If vy = ¢,,, the above yields that («, z2) = —%; but then the
coefficient of c,. in 7 - 75 equals ¢, — 1 € (0, 1), and this contradicts (2.26).
So I(r-+) has only one connected component, and since I(r-v)NJy # (), we
deduce that I(r-~) C Iy, and hence I(y) C Io.
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Since ~ has coefficient ¢, for «,., there exists a w € WY\ ) such that
a = w -~ and dp(a) — dp(y) = l(w). As Wy gy s the direct product of
Wiy, .., Wy, there exist w; € Wy, for all j € {0,...,k} such that w equals
wy - - - wy, with length adding. Define § = wy - 7y; this is an element of <I>;;
with coefficient ¢, for «,., and clearly

a= (w1 w) B=0B,wrar... W ).

The above proves that ¢ is onto, and it remains to show for § € @;;
and wy € Wy, ...,wy € Wy, that (wy---wyg)- B € A if and only if 5 € A or
w; - o € A for some j € {1,...,k}.

Set w = wy - - - wy, and note that for § € <I>}'1 clearly (0, as) = 0 for all
s € Y \ Iy; therefore (3,9) = ¢;n(ay, d) and (w; - ., §) = (v, 0) for all ¢ in
{2,...,k}. This implies that

k
<UJ ' 57 5> = <67 5> + Cm<w1 : a1’76> +Cm Z<wz ' a1’76> - kcm<ar;5>
=2

k ()
= cm{ay, 8) + e (wy -y, 8) + ¢y Z(ar, 0) — ke, 0)
i=2

= cp(wy -y 0).

Suppose now that w -8 € A, and let 6 € ®* \ {w - 3} such that
w- B3 dom 6. If w=! - § is positive, it follows that 3 dom (w~?! - §), and since
clearly 3 # w=! -6, we find that 3 € A. Assume next that § € N(w™!). An
easy calculation yields that

N(w™') = N((w; ---wg) ") = Nwi)U...UN(wh),
and by symmetry we may assume without loss of generality that 6 € N(w; 1);
then in particular, I(9) C J;. Now (3.32) implies that (w-(3,6) > 1, and thus

1

Cm

(wy - ap, 0) > >

DN | —

by (x); since I(w; - «;.) U I(J) contains only simple bonds, (w; - a.,d) is

an integer multiple of %, and hence (w; - a,.,d) > 1. So wy - o, dom & or
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0 dom wy - - by (3.32). But wl_1 - J is negative, and w; - o is not, and so §
cannot dominate wy - a.; this forces wy - . € A, as required.

For the converse, suppose first that 5 € A. Since N(w) C CD;;\I , while
0

6 e CID}:), it follows easily that N, (w,3) = 0; so o = 3 by (3.34), and thus
a € A by (3.36).

Now assume that wy - . € A, and let § € &+ \ {w; - a;.} such that
wy - o, dom §. Then wl_1 -0 € &~ since o, ¢ A, and thus ¢ € <I>}r1. Further,
(wy - ap,0) > 1 as wy - a, dom 4, and (x) yields that

(- B,0) = cm(wr - ap, 0) > ey > 1.

Since w; '-§ is negative and w™!-(w-B) is not, (3.32) this yields that w-3 € A,
as required. Symmetrical arguments apply if w; - 8 € A for j € {2,...,k},
and this finishes the proof. O

(6.98) LEMMA Suppose Y contains the following subgraph
31

T S1 52 Spn—1  Sn
to

and denote the simple roots corresponding to s;, t; by x, y; and z; respec-
tively. Let o be a root in ®> with coefficient for x1 greater than 1, coefficients
for yi, ...,y greater than or equal to 2 and z1, z5 € supp(«). Then o € A.

Proof. Let B < a be a positive root of minimal depth such that z; and 2z
are in the support of 3, the coefficient of x; in § is greater than 1, and the
coefficients of yi,...,y, in [ are greater than or equal to 2. By (3.36) it
suffices to show that § is in A. Let s € R such that s- 3 < (; we show that
(s B,as) < —1, which then implies (3, as) > 1, and thus 8 € A by (3.32);
(since (3 is clearly of depth greater than dp(as) = 1).

Denote the coefficients of 1, y;, 2z in 8 by A, p; and v, respectively.
By minimality of 3 it follows that s equals r1, s; or t;. If s = r, minimality
of 3 also implies that the coefficient of x1 in r - 3 is less than or equal to 1,
and thus equals 0 or 1 by (2.26). If the coefficient of 21 in r- 3 equals 0, then
(r1-B,21) <0+ (=% )1 < —1since p1 > 2, as required. Suppose next that
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the coefficient of 1 in r; - @ equals 1. Then p; is an integer multiple of ¢,
by (6.57) together with (6.93), and thus p1 > 2¢,,; hence again

(r1 5;$1><1+(—%n),u1<1—c <1—c4—1—\/§2:_1,

Assume now that s = s; for some j € {1,...,n}, and denote the
coefficient of y; in ¢; - a by ,u;. By minimality of 3 clearly ,u; < 2, and by the
connectedness of the support of ¢; - 3 further u’; > 0; thus p; € {1,¢,} by
(2.26). Note that p;—; > 2if j > 1, and A > ¢, if j = 1. Further, pj4q > 2
if j <n,and vy, vg > 1if j =n. Soif u} =1, then

+ (= )em + (—3)1+ (—3)1 ifl=j=n,
(sj-B,y;) < = ?’L)Cm—{—g—%)? ?fl:j:<n’
+(=35)2+(—3)2 if 1 <j<n,
+ (=324 (—51+(—5)1 if1<j=n,

and thus (s;-3,y;) < —1in any case, as required. Assume now that u}; = cp,.
If j < n, then p;y; is an integer multiple of ¢, by (6.97) for r = s;, and since
pi1 > 2 we know that p1j11 > 2¢,; if j = n, then vy, 15 > ¢, by (6.97) for
r = sj. Therefore

cm+ (—2)em + (—3)em + (=2)en if1=j=n,
Cm + (= )em + (—3)20m if 1=j<n,
5B SN (D <Dz it1<j<n,
Cm + (—%)2—{— (—%)cm + (—%)cm ifl1<j=n,

and thus (s; - 3,y;) < —1, as required.
If s = tq, then 2z; ¢ supp(t; - B) by minimality of 3, and

1

(t1-B,21) <0+ (_5)’”" < -1

since p, > 2; symmetrical arguments apply if s equals to, and this finishes
the proof.
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Now let [ > 1 be maximal such that there exist ro,...,7; € Y with r;
adjacent only to r;—1 and r;41 in Y fori € {1,...,1 — 1} (where ro = s1),
and denote {r;,...,r;} by Y{. Then either Y; = Y/, or r; has valency greater
than or equal to 3. Similarly, let n > 1 be maximal such that there exist
52,...,5y € Yo with s; adjacent only tos;_j and s;11inY forj=1,...,n—1
(where sgp = r1), and define Yy = {s1,...,s,} and Y’ = Y/ UY]; then Y’
equals

T ri—1 T2 1 S1 52 Sn—1 Sn

We denote the simple roots corresponding to 7;, s; by x; and y; respectively.

The following result enables us to restrict our main focus to the case
|Y1| =1 and |Ya2| = n.

(6.99) LEMMA  Suppose 1 ¢ X and |Ya| > n (that is, Y, contains a vertex
of valency greater than 2). Then & is empty unless X C Y;. Moreover, if
X CYi, then 8{5 is the set of

a+csB — emy;

with j € {1,...,n}, a € 81)/<1U{81 sja) with coefficient c,, for y; and coeffi-

cient greater than or equal to 2 for yi,...,y;—1, and 3 € & with

YQ\{Sl,...,Sj,]_}
coefficient 1 for y;.

Proof. Let v € & ; then (6.98) yields that the coefficients of y1,...,y, in v
cannot all be greater than or equal to 2, and since X does not contain any
of the s; by (6.61), there must exist a j € {1,...,n} such that the coefficient
of y; in v equals ¢,. If we choose j minimal with this property, (6.97) yields
that

Y=o+ enf = cmy;

for some o € Ey,(s,,...,s,_,} With coefficient ¢, for y; and coefficient greater
than or equal to 2 for y;,...,y;-1, and 8 € ng\{sl,...,sj_l} with coefficient
1 for y;. Since for s € Yo \ {s1,...,s,} the coefficients of o in v are
integer multiples of ¢,,, it follows that X C Y;. Moreover, it is clear that
for r € Y1 U{s1,...,sj_1}, the coefficient of e, in a equals 1 if and only if

r € X; that is, a € Sf,iu{sl sy}
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By (6.97), each root of the form described in the assertion is in £ if
X C Y7, and this finishes the proof. O

If |Y1| > [ and s1 ¢ X, then symmetrically & = () unless X C Y5, and
thus X = 0; if |Y7| =1 and X C Y3, then X C {r;} since each element of X
is adjacent to exactly one element of Y \ X.

(6.100) PROPOSITION  Suppose 11, s1 ¢ X. Then & is empty unless X is
empty, or |Yi| =1 and X = {r}, or |Yo| = n and {s,}.

So from now on we only need to determine £, 81{/”} (for |Y1| =1), and

53{,8"} (for |Ya| = n); by symmetry it suffices to investigate only one of the
latter two.

Suppose now that m = 4. An easy induction shows for a € Cb; that
the coefficient of a,. in « is an integer for all » € Y7, and an integer multiple
of v/2 for all r € Ys, or vice versa. This together with (6.99) imply:

(6.101) PROPOSITION  Suppose that m = 4. Then & is empty, unless
Yi|=1land X C Y, or |Yo| =n and X CY5.

If m = 4, we assume from now on that |Y;| = [ and X C {r;}. We
first determine & for |Ya| = n, and then cope with the case |Y3| > n using
(6.99).

It is clear, that &y is independent of R (as long as Y C R), and so we
may assume without loss of generality that R contains Yo = {31,...,5,} and
Yy ={51,...,5,} such that Y, = Y/ UY, UY, equals
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T
ri—1
1
1
1
1
1
T2
@ = = = = = & . o - = = = = -0
Sn Sn—1 S1 1 51 Sn—1 Sp

Denote the simple roots corresponding to s;, 5; by y; and y; respectively, and
let V3 be the subspace of V spanned by z;,...,21,y1,...,Yn, and V, be the
space spanned by x;, ..., 21, Y1+, ..., Yn+7Y,. Further, define ¢: Vy-» — V,

by

l n l n
O(0 A+ Yo m) = SNt 75w + 7).
1=1 j=1 =1 \/5 7j=1

If o= 22:1 i + 23:1 p;y; for some A;, p; € R, then

(o(v),

1) = ;/\i@i,xﬁ + % ;Mj(@jaxﬁ + <ijx1>>

= Z)\¢<$z’7331> + Ml%(@lvﬂfﬁ + (71, 21))

=1

!
1
= ;/\i@i,xﬁ + p1 (_75)
!
= Z/\Z-@ci,xl} + p1{y1, 1)
i=1

l
= Z/\i@i»l‘ﬁ + > pilysm) = (v, 1),

Jj=1
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while for i > 2 clearly (¢(v), x;) = (v, x;). It follows that ¢(r; - v) = r; - ¢(v)
for all 4 € {1,...,l}. Furthermore,

l n

(G(v), 71) = > Nilwi, 7n) + TZ (@5, 91) + (;,00)
=1 J

:/\1<ZL‘1,§1> TZ <gj7§1>

:/\1<—1) 72_: <ijyl>

—_

1 1
)\ .CL' ) ) = —=\1,
\/5 1(z1, 1) Z {vj,y1)) ﬂ< Y1)

and symmetrically (¢(v),7;) = (v,91)/v?2; also, for j € {2,...,n} clearly

5 7Y = oy,
(0(0), y5) = (¢(v), 7;) = \/5< ' Yj)-

A straightforward calculation now yields that ¢(s; - v) = (§,5;) - ¢(v) for
je{l,...,n}.

(6.102) PROPOSITION  Let m = 4. Then ¢ defines a one-one correspon-
dence between the set of roots in Eyr = Egpy | v 1., Preceded by xq, and
Ey, N'V,, the set of roots in € with coinciding coefficients for y; and

y; for all j € {1,...,n}.

Y1/ U?Q U?Q

Proof. Let @ € ®y/ be an elementary root preceded by z1; then clearly
¢(a) € V,, and we show now that ¢(«) is an elementary root. If a has
depth 1, then o = 7 and ¢(«) = x1 € £. Suppose next that « is of depth
greater than 1, and assume that ¢(() is an elementary root for all 5 with
x1 2 0 < a. Let r € Y such that 1 < r-a < «; then ¢(r-«a) is an elementary
root by induction. Further, (o, a,) > 0, and thus (o, ) € (0,1), since a
cannot dominate a,; that is, (r- o, a,) € (—1,0).

If r = r; for some i, then ¢(a) = r; - ¢(r; - @) by the above, and since
(p(r; - ), ;) = (r; - a,x;) € (—1,0), it follows by (3.37) that ¢(a) is an

elementary root.
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Assume next that » = s; for some j. Then ¢(«) = (5;5;) - ¢(s; - ) by
the above. Since (¢(s;-a),y;) = (s;- o, y;)/V2 € (=1,0), it follows by (3.37)
that 5; - ¢(s; - @) is elementary; furthermore,

L
V2
and, again by (3.37), we deduce that (§;5,) - ¢(s; - @) is elementary; therefore
¢(a) is elementary.

(35 - 9(s5 - ), y;) = (B(s5 - ), yj) = —=(sj - o, y;) € (—1,0)

Note that this yields that if a € £y is preceded by x1, then ¢(a) is an
element of &y, NVj,.

Now let 3 be an elementary root in V, preceded by x1. If §is of depth 1,
then 8 = x1 = ¢(x1). Suppose next that dp(f) > 1, and assume that every
root v in V, with 1 < v < (3 equals ¢(¢) for some elementary root ¢ in Py
with § > z1. Further, let t € Y, =Y/ U 172 UYs with z; < t-3 < 3. Since

I(B) C Y, contains only simple bonds, (6.64) implies that (3, ) = 3.

Suppose first that ¢ = r; for some 7. Then r; - 3 € V,, and induction
yields that r; - 3 equals ¢(«) for some elementary root o € ¢y with « > xy.
Now 8 =r; - ¢(a) = ¢(r; - @); moreover,

1
<a7xi> = (qb(a),x» = <Ti : 57$2> = _<ﬁ7 x’L> = _57
and thus r; - v is elementary by (3.37), and r; - a > « > z1, as required.

Assume next that ¢t = 5; for some j. By symmetry of 3, and since §;
and s; are not adjoined, we know that

(558,950 = (8, 45) = (6,9;);

therefore (§;5;) - B < 8 since (8,7;) = 3. Furthermore, if we denote the
coefficient of y; in 3 by pu, the coefficient of 7, in (3;3;) - 8 equals u—2(3,7;),

while the coefficient of y; in (5;5;) - § equals

and thus (5;5;) - B € V,. By induction, (§,5;) - § equals ¢(a) for some
elementary root o € ®y+ preceded by x1. So 5 = ¢(s; - ), and since

1

(a,y;) = V2(p(a), 7;) = V2(3;5; - B,7;) = —V2(5; - B,7;) = ~7
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sj - a is elementary by (3.37); the above also yields that s; - o = a = w1, as
required. Symmetrical arguments apply if t € Y.

We can now deduce that ¢ maps the set of roots in £y preceded by x
onto the set of roots in &, NV,. For, if §isin Ey, N'V,, then I(5) =Y, and
since I(3) contains only simple bonds, it follows by (6.69) that [ is preceded
by x1. Since ¢ is clearly one-one this finishes the proof.

O
Now let a € &y, with coefficient 1 for x;. An easy modification of

(6.73)(i) yields that the coefficients of z;, ..., z;41 in o must also be equal to
1, and we deduce that

I4+1n+1n+1
SYQ _ U U U 53{/21 ..... ri}U{5;,....,5, JU{Sk,...,5n }
i=1j=1 k=1

Since Ei{,:l""’”}u{gj""’gn}u{g’“"“’g"}ﬂVa is clearly empty if j # k, this becomes

I+1 n+1 i ] B )
Ey, NV, = U U (gl{/:z,...,n}u{sj-,...,sn}u{sj,...,sn} A Va)-
i=1 j=1

If X C Y, we derive from the definition of ¢ that ¢ induces a one-one
correspondence between the set of roots in 53)/( preceded by x1, and

n+1

(6.103) PROPOSITION  Suppose that m =4, |Y1| =l and |Ya| = n. Ifl = 2,
the elements of 8}{,T2} are
o + Mz + \/§<M<yl + o Yj—1)—1)
+ (M = D(yjm—1) + -+ yjm—2)-1) + -+
2y o Y- + W) o+ )
with M € {2,...,n+1}and 0 < j(M —1) <j(M —-2) < ... <j(l) <n+1.

If | > 3, the elements of 53{,”} are

zi4 2T+ ) + V2200 - yi) (Y e+ )
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with j € {1,...,n}. Thus

(27 =1 ifl=2and |Y| = n,
& =
n if 1 > 3 and |Ya| = n.

Proof. By (6.59) we know that each root in 8){,”} is preceded by z;, and it

follows (by a remark at the beginning of this section) that each root in 55{,”}

is preceded by x;. Therefore the previous remark yields that

n+1
g;[/rl} _ ¢_1<U gé:l}u{’s‘j,...,gn}u{gj,...,En} A Va)-

Jj=1

If [ = 2, then Y; U 172 UY, equals

Proposition (6.74) implies that 5}{,:2} is empty, and we deduce from (6.72)

(together with (6.57)) that the elements of Sé:l}u{gj""’gn}u{gj""’5"} NV, for
je{l,...,n} are

Tot(Gn + -+ G5) +2(y—1 + - Fyr)) o
ot (M- 1)(§k(M—1)—1 +oe +37k(M))+M(?7k(M)—1 + e +§1)
+ Moy + M(Gy + -+ Tpan—1)+ o+ T+ + ),

with M € {2,...,j+ 1} and j > k(3) > ... > k(M) > 0. This yields the
assertion, if we set j(1) = j and j(i) = k(i — 1) fori € {3,..., M }.

Suppose next that [ > 3. If n = 1, then Y; U }72 UY, equals
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L/
[ ri—1

and (6.77) yields that

51{/Tl} ={o"N(m+2@1+-+r)+ R +T)}
= {xl + 2(x1_1 + - ‘f’xl) + \/iyl}’

as required. Suppose now that n > 2. Then Y; U }72 UY, equals
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{1,...,n}, namely

2 +2(w—1 4+ 22) + (Um + o+ Y5) +2(Yj-1 + -+ 1)
+ 221 + 2+ Ym) T+ T U),s

and the assertion follws trivially. O

The previous proposition together with (6.99) allow us to conclude the
following;:

(6.104) PROPOSITION  Suppose that m =4, |Y1| =l and |Ya| > n. Ifl = 2,
then 81{/T2} is the set of

zo + May+ V2(M(y1 + - + Yjw—1)-1)
+ (M = 1)(yjr—1) + -+ Yjm—2)—1) + -
3y o Y1) F 2+ F yia)—1) + 5)

with M € {2,...,n+ 1},
0<jiM—-1)<j(M—-2)...<j2)<jl)<n+1

and /8 € 8Y2\{31 ..... Sj(l)—l}

If 1 > 3, then 8){,”} is the set of

with coefficient 1 for y;)-

w4+ 2@+ @) V220 + 4 yi—1) + B)

with j € {1,...,n} and 8 € SYQ\{Sl . with coefficient 1 for y;.

Thus

..,Sj_l}

n j {Sj}UJ . o
212 = 1) 2 v\ (s Sj}‘gYQ\{Sl,---,Sj—l}‘ ifl =2,

.....

e =1 ., e |
2 =1 227C¥a\ {51, sj}‘gyz\{s1 ,,,,, SH}| ifl > 3.

Note that the hypothesis |Yz| > n is not necessary in (6.104); for if
|Y2| = n, then SYQ\{SM“’SJ__I} = {y; +---+yn}, and the assertion reduces to

(6.103).
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(6.105) PROPOSITION  Suppose that m = 4, |Y1| = | and |Y3| = n. Then
5?, is empty unless |l =n =2, orl =2 andn > 3, orn =2 andl > 3. If
[ =2 and n = 2, then

5)@ = {2952 + 321 + 2v2y1 + V2y2, V229 + 2V221 + 3y1 + 292}7
while if | = 2 and n > 3, the elements of 88 are

22 + 321+ V2(3(y1 + -+ yr—1) F 2yp + -+ yio1) + (Y5 oY)

with 1 < k < j <n. Hence

( 0 ifl=1o0rn=1,
2 ifl=n=2,
=] () ift=2n>s
() ifl>3andn=2,
L 0 ifl,n > 3.

Proof. As £y does not depend on R, we may assume without loss of generality

that R contains Y; = {#,...,71} and Y1 = {F;,..., 71} such that YUY ;UY;
equals
Sn
Sn—1
1
1
1
‘_182_‘
— ¢ - - - - - — ¢ & ----- -—— 9o
T Ti—1 T1 S1 71 Ti—1 T

Denote the simple roots corresponding to 7;, 7; by x;, T; respectively, and let
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V4 the space spanned by z; +%;, T1 +T1, y1,--.,Yn. Further, let ¢: V3 — V,
be defined by

l n l n
UJ(Z ATy + ZMﬂh) = % Z)w'(%i +7;) + Z,ijj-
i=1 j=1 i=1 j=1

By a remark at the beginning of this section, each root in £y is is preceded
by x1 or y1 (but certainly not by both), and so the remark following (6.102)

yields that 55{,”} is equal to the following disjoint union:

n+1 I+1

¢—1 ( g{§j7;~a§:}u{gja---agn} m Va) U w—l( g{fiv;wFQU{Fi 77777 Fl} m Vb) .
YiUY>UY o YoUuYUY
7=1 =1
If I =1, then Y7 U }N/Q UY 5 equals
— o - - - - - P P - - - - - - -——o
Sn Sp—1 51 1 51 Sn—1 Sp

{§j ..... §n}U{§j ..... gn} . . . -
and EYLU%U?Q is empty for all j € {1,...,n+1} by (6.66); further

more, Y; UY 1 UY> equals

Sn
Sn—1
52
71 S1 T1
and £2 _ and EU™)  are empty by (6.77). Whence 5?/ =0ifl =1,

Y1UY 1UY> YUY 1UY>
and symmetrically £% = @ if n = 1.
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_ Suppose now that [, n > 2. If both [ and n equal 2, Y1 U Y2 UY5 and
Y1 UY 1 UY5 equal

respectively, and (6.85) yields that 8?, has two elements; namely

¢~ (272 + Y2 + 201 + 31 + 20, + Vo) = 272 + 321 + V2(2u1 + 42)
and

P! (2y2 + T2 + 2Z1 + 3y1 + 2T + T2) = V2(za + 221) + 3y1 + 2y,

as required.

Suppose next that n > 3. Then Yy U }71 UY; equals

Sn
Sn—1
1
1
1
1
1
’—[‘
— - - - - - ———— & - - - - - -———9
T -1 T1 S1 1 Ti—1 Ty

with n > 3 and [ > 2, and thus 536.};/.,3%}%?1 """ i} s empty for all i €
1 2 2

{2,...,14+ 1} by (6.70) (and (6.57)), and furthermore empty by (6.77) for
1=1. So
n+1 _ _ _ _
g;[/m} _ ¢_1< g{sj ..... 5n 3U{s5,..., Sn} N Va> '

Y1U?2U?2
i=1
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If [ is also greater than or equal to 3, symmetrical arguments yield that 5?,
is empty. Assume next that [ = 2; then Y; U Y5 U Y5 equals

with n > 3. Lemma (6.77) yields that E{Sl’y ’j;}u{sl’ b = ), and (6.80)

implies that €2 - _ is also empty. So the above becomes
YiUY>2UY o

n

{’I“l} . —1 {§j ..... §n}U{§j ..... gn}
gt = ¢ ( 25Y1U%U72 nva).
]:

{827 asn}U{SQa

»8n}
Y1UY,UY 5 has one element by (6.85), namely

Now &

201 + (Un + -+ 52) + 201 + 320 + 25, + (T + - + )

If j €4{3,...,n}, (6.79)(1) yields that g8 8 ULE 80 ) i the set of
1UY2UY2

221 + (Yo + -+ 05) +2(Fi—1 + -+ Tk) +3(Th-1 + -+ 1) + 310

_ = _ _ _ _ (*)
+3@+ A Tpr) T 2T+ ) + T+ ),

with k € {1,...,j — 1}. Tt is clear that &1 v for j = 23
1 2 2

also of the form (*), and one can now easily verify that 53 is of the required
shape.

(6.106) PROPOSITION  Suppose that m = 4 and |Y;| = I. Then E? is empty
unless | = 2 and n > 2, or |Ya| = 2 (and thus |Ya2| =n =2) and | > 3. If
Il =2,n>2and |Ys| > 3, the elements ofé’?/ are

2r5 4321+ V2(3(yr + -+ yr—1) + 20k + -+ y5-1) + 6),
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where 1 <k <j<nandf €’

Yo\{s1,..0s, 1} With coefficient 1 for y;.
Hence .
0| __ . {Sj}UJ
|8Y‘ - Z(j B 1) Z |8Y2\{81,...,5j_1}‘.
Jj=2 JCY2\{s1,...,5;}

Proof. 1f |Y1| = n,

{S]}UJ = N DY
U gYQ\{Sl ..... sjfl} - {yj + +yn}a
JCY2\{s1,...,8;}

and the assertion is proved in (6.105). So assume now that |Y2| > n. By
(6.99) we know that every element of £% can be written as

a+\/§ﬁ—\/§yj

with j € {1,...,n}, a € 831U{81 sy} with coefficient /2 for y; and coef-

ficient greater than or equal to 2 for yi,...,y;—1, and 8 € SYQ\{SI sy 1}
with coefficient 1 for y;. But (6.105) yields that 5$1u (5108s} is empty unless
l=2and j>2,0orl>3and j=2;ifl >3 and j = 2, (6.105) yields further

that there are no roots in 5$1u{sl sy} with coefficient /2 for y,, and thus

5?, = () unless I =2 and j > 2 (and thus n > 2).

If | =2 and n > 2, then &7 = ) by (6.105), and thus £Y is the set

Ylu{sl}
of
225 + 371+ V2(3(y1 + -+ yk-1) + 2k + -+ yj-1) + B)

withl1<k<j<nand B €&\, .

assertion follows easily. 0

with coefficient 1 for y;, and the

This leaves us with m = 5. Since

{ sin(km/n)

- |n:mrs<oof0rsomer,s€Yand1§l§g}
sin(7/n)

equals {1, cs}, and ¢2 = c5+1, we know by (2.27) that for 7 € Y the coefficient
of a,. in any root in a € ®y equals a + bes for some a, b € Ny.

We start off by stating two easy results (the former a modification of
(6.73)(i), and the latter a corollary of (3.37)). Trivial though they are, these
will make life a lot easier for us.
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(6.107) LEMMA  Suppose that « is a root in ®, with z; € supp(«). Then

the coefficient of x;y1 in « is less than or equal to the coefficient of x; in «
for all i in {1,...,1 —1}.

(6.108) COROLLARY  Suppose that vi,...,vx € ®T and t1,...,t,_1 € R
with ;41 = t; - v and (v, aq,) € (—1,0) for alli € {1,...,k — 1}. Suppose
furthermore that v; € £. Then ; € € for alli € {1,...,k}.

The next lemma together with (6.99) will enable us to restrict our main
attention to the case |Y1| =1 and |Y3| = n.

(6.109) LEMMA  Suppose there exist t1, to € Y such that {t1,r1,s1,t2}
equals

bt

*r——o—0
tl 1 S1 t2

Denote the simple roots corresponding to t1, to by z1 and z, respectively,
and let a € ®y such that z1, zo € supp(«), and the coefficients of x1 and y;
in « are greater than or equal to 2. Then o € A.

Proof. Let B = « be a positive root of minimal depth such that z; and 2z, are
in the support of 3, and the coefficients of x1 and y; in ( are greater than
or equal to 2. Further, let r € Y such that g > r- 3. It suffices to show that
(r-B,a,) < —1; that is, (8,a,) > 1. For then § € A by (3.32), and thus
a € A by (3.36).

Denote the coefficients of 21, x1, y1, 22 in B by v1, A\, u and v, respec-
tively. By minimality of it follows that r € {t1,7r1,s1,%2}, and by sym-
metry we may assume without loss of generality that r € {t1,71}. Suppose
first that » = t;. Then minimality of 5 also yields that z; ¢ supp(t; - 5);
that is, the coefficient of z; in t; - § equals 0. Since A > 2 we deduce that
(t1-B,21) <0+ (—3)X < —1, as required.

Suppose next that » = r1, and denote the coefficient of x; in r; - § by
A. Then N < 2 by minimality of 8, and X’ > 0 by connectedness of the
support of r1 - 3; hence X equals 1 or ¢5. If N = 1, Propositions (6.57) and
(6.93) together yield that p = kecs for some k € Ny, and since 1 > 2 we know
that k£ > 2; since v; > 1, this implies that

1 1
e <14 (P (-}

2
kcg

1
5 Spmasl
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as required.

Finally, suppose that X' = ¢5. If u = 2, let v < r1 - 8 be of minimal
depth such that the coefficients of 1 and y; in v equal ¢5 and 2 respectively;
then

3

(v,21) <5+ <—%5>2 =0and (y,y1) <2+ (—%5>05 =5 <0,

and therefore neither v > r; - v nor v > s; - 7, contradicting the minimality
of v. So p > 2, and since p equals acs + b for some a, b € Ny this forces
i > cs+ 1. Hence

(rq-B,1) §c5+y1<—%> +,u<——> <es—~—D 1

(since v1 > 1), as required. O

(6.110) LEMMA  Suppose that m =5, |Y1| = 1 and |Ys2| = n, and let a be
in 81{/8"}. Then « is preceded by

csz1+ (s +1)(y1 + -+ Yn-1) + Un,
and this is an elementary root.

Proof. By (6.59) we know that « is preceded by y,, and we let § be of
maximal depth with a = 8 > y, such that I(§) C Y5. Maximality of (3
yields that « > ry - 8 > (3, and thus (3, z1) € (—1,0) by (3.38); if we denote
the coefficient of y; in 3 by u, we find that (3, z1) = —% u, and (2.26) yields
that u = 1. As s1,s, € 1(8), we deduce that I(8) = {s1,...,s,}. Now [
is elementary, and I(3) contains only simple bonds, therefore (6.69) implies
that 71 - 8 > B = y1 + - - + yp; furthermore, the coefficients of y; in r1 - 3
and y1 + - - - + y, coincide, and thus

ricB=ri-(yit ot yn) =csTi YL+t Yn
by (6.58). It follows by transitivity of > that « is preceded by

Y1 =C5T1t Y1t Y
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since y1+- - -+, is clearly elementary, and (y1+- - -+yn, 71) = —F € (-1,0),
(3.37) yields that 7 is elementary. For j € {1,...,n — 1}, let 7,11 be equal
to s; - v;. Then a straightforward calculation yields that

vi=csrit(es+ D)W+ yi1) +y ot un

and (v;,y,) = —% € (—1,0); since 7 is elementary, (6.108) implies that ;
is elementary for all j € {1,...,n}. In particular v, € £, and it remains to
show that « is preceded by 7.

By the above a = 77, and the proof is finished if n = 1; so suppose
that n > 2. The coefficient of y; in v; equals 1, while the coefficient of y; in
« is greater than 1, and we let § be a root with 73 < § < « such that the
coefficient of y; in § equals 1, and § < s1 -6 <X a. As « is elementary, clearly
s1-0 € €, and thus (d,y1) > —1 by (3.38). The coefficient of y» in J equals
1 by (6.107), and we denote the coefficient of y; in 6 by A\. Then

Cs

(G,91) <1+ (—%>1+ (-5)™

and thus A < é < 2; since A > ¢5 as 0 = 71, this yields A = ¢5. Hence the
coefficients of x1 in s7 - 6 and 7 coincide; as |Ya| = n, and the coefficients of
Y2 in s1 -6 and vy both equal 1, (6.58) yields that s; - ¢ is a successor of s1 -1,
which equals v».

If n = 2, this finishes the proof, so suppose n > 2, and assume that
a = y; for some j € {2,...,n—1}. The coefficient of y; in v; equals 1, while
the coeflicient of y; in « is greater than 1, and (again) we let § be a root with
75 = 6 = « such that the coefficient of y; in § equals 1, and 6 < 7; - =< .
As « is elementary, clearly s; -6 € £, and thus (d,y;) > —1 by (3.38). The
coefficient of y;11 in 0 equals 1 by (6.107), and we denote the coefficient of
y;j—1 in ¢ again by A; then

1 1 1
(0,y) <1+ < 2>1+ ( 2))\ = 5(1=),

and we deduce that A < 3. But A > ¢5 +1 as § = +;, and this only leaves
us with A = ¢5 + 1 (since A equals acs + b for some a, b € Ng). Hence the
coefficients of y;_1 in s; - 0 and 7 coincide again. As |Y3| = n, and the
coefficients of y;41 in s; - 6 and v both equal 1, (6.58) yields that s; - § is a
successor of s; - v;, which equals ;1. So by induction o = 7, as required.

d
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(6.111) PrROPOSITION  Suppose m =5, |Y1| =1 and |Y3| = n.
(i) If n = 2, then

5{52} {C5£L‘1 + (65 + 1)y1 + Y2, (05 + 1)%1 + (05 + 1)y1 + yz}
(ii) If n = 3, then

e = {eswr + (es + Vyr + (5 + 1)yz + ys,

(cs +1)z1 + (e5 + Dyr + (5 + 1)y + s,
cs + 1)xy + (2¢5 + V)y1 + (¢5 + 1)y2 + ys,
2¢5 + 1)xy + (2¢5 + Dyp + (¢5 + 1)ya + ys,
2¢5 + Va1 + (2¢5 + 2)y1 + (5 + 1)y2 + s,
2c5 + 1)x1 + (2¢5 + 2)y1 + (5 + 2)y2 + Y3}

(
(
(
(

(iii) If n > 4, the elements of 5}{,8”} are exactly the following:

oY = eszy + (cs + Dy + -+ Y1) + Y,

o) = (es+1)a1+(205 +1)(ya - Fyj-1) (s 1) g5+ +Yn1) ¥,

with j € {1,...,n— 1},

oY) = (2es+ 1)@+ 2054+ 1) (Y14 +y5-1)+(es+1) Wi+ +Yn1) Y,

with j € {2,...,n— 1}, and

a® = (2¢5 + D)y + (2¢5 +2)y1 + (5 + D)(y2 + - + Yn—1) + Yn-

Hence
2 if |[Y1] =1 and n = 2,

ef =<6 if|Yi| =1 and n = 3,
2n—1 if|Yi|=1andn > 4.

Proof. If n = 2, 3 it can be easily verified that we have in fact enumerated
all roots preceded by csz1 4 (¢5 +1)(y1 + -+ - + Yn—1) + yn with coefficient 1
for y,,, and that these are elementary. It remains to show (iii).
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By (6.110) we know that o' is elementary. Since (oM, z;) = ——, it
follows by (3.37) that r, - a(!) is also elementary; that is, 0452) € £ Now
5?1 Sj- §2) for j € {1,...,n— 1} and further (a( ),yj> —% € (~1,0);
hence ag. ) € € for all j € {1,...,n} by (6.108). For j € {2,...,n} clearly

a§3) =7 - a§-2) and <a§2),x1> = —%2, thus it follows by (3.37) that ag_s)
is elementary for all j € {2,...,n}. Finally, (ag ),y1> = —1 and therefore
a® =5 - ag?’) € &€ by (3.37). So the above listed vectors are in £, and thus

certainly in 53{,8”}.

We prove now that all elements of 51{/8"} have been accounted for. So

let B € 55{,5"}, and assume for a contradiction that (3 is not equal to any of
the roots listed above. By (6.110) we know that 3 is preceded by a!). As
B # aM, and the coefficients of y, in o?) and 3 coincide, there exists an
r € {ry,s1,...,50_1} with 8 = r-a); that is, (o), a,) < 0. This forces
r =1y, and thus 8 = r - V) = a§2). Now let j € {1,...,n— 1} be maximal
such that § > a§2); that is, g > a§2) by assumption. Then there exists an
s € {r1,81,...,8,-1} with 8 = s - a(2), and maximality of j forces s = rq
and j > 2. Whence § = rq - a§-2) 53) and hence 3 > ag ) by assumption.
Now let t € {ry,81,...,8,—1} with g = ¢ - ag_s). Then ( (3) ,ap) < 0, and
thus <a§-3),o¢t> € (—1,0), as 3 is elementary. We find that t = s; and j = 2;
so (3 is preceded by sq -aég) = a®. Since (o, z1), (o, y) < —1 and
(W ) >0 for r € Y \ {ry,s1}, we deduce from (3.38) that g = ¥,
contrary to our assumption, and this finishes the proof. 0

(6.112) PROPOSITION  Suppose m =5, |Ya| = n > 2 and |Y1| > 1. Then

55{,5"} equals

{c5a +(es+D)(y1+ -+ Yn-1) + yn | @ € Ey, with coefficient 1 for xl}
={esa+ (s + D)1+ +ym)+yalae | &

JCYi\{r1}

Hence
|gl{/8n}| _ Z |5JU{?"1}
Jng\{Tl}
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In particular, if |Y1| =1,

g}{/sn} — {05(17 4+ ... +ZB1) + (05 + 1)(y1 + - +yn—1) + yn}~

Proof. Since csz1 + (¢5 +1)(y1 + -+ + Yn—1) + Yn is elementary by (6.110),
Proposition (6.97) yields that

csa+ (es+1)(y1+ -+ Yn-1) + Yn

is an elementary root for a € £y, with coefficient 1 for z;, and thus certainly
in 8}{,8”}. It remains to show that all elements of 83{,5"} are of this form.

Let v € 55{,5"}. Since the coefficient of y,, in v equals 1, we deduce from
(6.97) that the coefficients of y1,...,y,—1 in v cannot be equal to c¢5, and
thus must be greater than or equal to 2. In particular, the coefficient of y;
in ~y is greater than or equal to 2; since n > 2 and |Y;| > 2, Lemma (6.109)
now forces the coefficient of x; in v to be less than 2, and thus equal to c5.
So by (6.97),

y=csa+ B —csa

for some o € £y, with coefficient 1 for x1, and 8 € &, vy, With coefficient

{sn}
{’r']_ }UY2 )

coefficient of x; in f equals ¢5, we deduce from (6.111) that

c5 for 1. It is clear that 8 must be an element of £ and since the

B=csz1+ (c5+1)(y1+ 4+ Yn-1) + Yn;

whence v is of the desired shape.

This leaves us with X = (.

(6.113) LEMMA  Suppose that m = 5, |Y1| = | and |Y2| = n, and let
a € EY. Then
a = esrr+es(yr+ o+ yn)

or
a=(2c5+ 1)x1 + (2c5 + 2)y1 + (c5 + 2)y2 + (c5 + 1)ys.

Proof. If n = 1, the assertion is certainly true. Now suppose that n > 2 and
assume that the assertion is true for n — 1. Let 8 be of minimal depth with
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6 =< « such that g € Egﬂ,, and denote the coefficients of x1, y; in 8 by A and
p; respectively. Let r € Y such that r - 3 < 3; then (r- 3, a,) € (—1,0) by
(3.38). Moreover, r- 3 is elementary, and since r - 3 ¢ 8?, by minimality of [,
the coefficient of «,. in r - 8 must be less than or equal to 1, and thus equal
to 0 or 1 by (2.26).

Suppose first that » = ry. If the coefficient of x;1 in ry - 8 equals 0,
we find that (ry - §,21) = —Q 1 < —1; for g1 > 1, and thus p; > V2 by
(2.26). But this contradicts our conclusion that (r - 3, «,.) € (—1,0), and so
the coefficient of 1 in 1 - 8 equals 1. By (6.93) (together with (6.57)), u1
equals kcs for some k € Ny, and

<T1'5,$1>:1+<—%5>k:1— <c5—f—%>k

forces k = 1 and py = ¢5. So by (6.97), 71 - equals x1 + c57y for some v € Ey,
with coefficient 1 for y;. Since I(y) contains only simple bonds, (6.69) yields
that v = y1 + - -+ + yn, and by definition of > there exists a w € Wy, with
vy=w-(y1+---+yn) and N(w) = N_(w,y1 +- - -+yn). Since the coefficients
of y1 in v and y; + - - - + y, coincide, we conclude that w &€ WYz\{sl}’ and

+ .
thus N(w) C (I)Yz\{sﬂ' So if 6 € N(w), then

(csm1+es(yi++uyn), 6) =cs{yr+ -+ yn, ) <0,
as 0 € N_(w,y1 + -+ yn); thus N—(w7059€1 + ¢e5(y1 +"'+yn)) = N(w).

Now
B =csx1 + c57 = 521 +c5(w (y1 ~|—---—|—yn))

=w- (C5$1 +es(yr + - +yn))
and by definition of > this is preceded by ¢sx1 +c¢5(y1+- - - +yn), as required.

Suppose next that r» = s; for some j € {1,...,n}. Since the coefficient
of y; in s; - B equals 0 or 1, while the coefficient of o, in s; - 3 is greater than
1 for s € Y \ {s;}, Lemma (6.107) yields that j = n. Suppose first that the

coefficient of y,, in s,, - B equals 1, and thus s, - 3 € 53{,8”}; then
Sn B = cswr+ (es +1)(yr + -+ Y1) + Yn
by (6.111). If p,—1 = ¢5 + 1, (6.58) implies that
B = sp- (C5$1 + (s +1)(y1+ -+ Yn-1) +yn)
=cse1+ (5 +1)(y1+ -+ Yn-1) + C5Yn
= (Sn—1-++51) - (51 +es(yr + -+ yn)),
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and it can be easily verified that this is preceded by csz1 +c5(y1 + -+ -+ Yn)-
Assume now that p,—1 # ¢5 + 1; then (6.111) gives that n = 3 and

83+ B3 =(2¢5 + )1 + (205 + 2)y1 + (5 + 2)y2 + Y3.
Ifa=p0=2c5+ 1)z 4+ (2¢5 +2)y1 + (¢5 + 2)y2 + (¢5 + 1)ys3 there is nothing
left to show, so suppose that o # 3. Since (3,x1) = 0 and (3, y1) as well as
(B,ys3) are positive, we deduce that « must be a successor of s - 3. Now
sz = (2¢5 + D21 + (2¢5 + 2)y1 + (265 + Dy2 + (c5 + 1)y
= (s1ris2s1r1818283) - (C501 + ¢5(y1 + Y2 + y3)),

and it can be easily verified that this is preceded by c5(x3 + x2 + 1) + ¢5y1.-

Finally, suppose that the coefficient of 3, in s, - 6 equals 0. Then
[y > C5 as B € 53; furthermore 0 = p,, — 2(03, yn), and as  cannot dominate
Yn, this yields that 1 > (8, y,) > &+, and thus u, = ¢5 by (2.26). Since s, -3

. : @
is certainly an element of Sy\ (o)

Spra = csry+es(yr + o+ Yno1),

orn=4and s4-0=(2¢5+1)z1 + (2¢5 + 2)y1 + (¢5 + 2)y2 + (¢5 + 1)y3. The
coefficient of y,_1 in s, - B equals c5, and so the latter is impossible, while
the former case together with (6.58) yield that

B = sy (0596'1 +oes(yr + -+ yn—1)) =csx1+cs(y1 4 4 Yn),
and this finishes the proof. O

induction yields that either

Observe that (6.108) implies that csz1+c5(y1+- - -+yn) is an elementary
root. For §; = csx1 +c1y;1 is clearly elementary, and if we define 6; = s;-0;_1
for j € {2,...,n}, then an easy calculation yields that

0j = sz +es(yn + -+ y;)
and (0;_1,y;) = —% € (—1,0), and thus 6, = csz1 +c5(y1 + -+ yn) € E
by (6.108).

Next let ﬁ%l) = 0p, and for j € {1,...,n — 1} define ﬁg('% = 55" 6](.1).
Then a straightforward calculation yields that

B = csw1 + (es + 1)1+ +yi-1) + s+ + ),
and (84", y;) = —% € (~1,0); whence (6.108) implies that 4} € & for all
je{l,...,n}.

1 1
Note also that ﬁ§ ), ey 7(1) are the only elements of g?”’l}u{sl,~~~,3n}
with coefficient ¢ for x1, and this enables us to prove the next result.
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(6.114) PROPOSITION ~ Suppose that m = 5 and |Y1|, |Ya| > 2. Then E¥ is
the set of
Cs5Q + (05 + 1)(:13‘2'_1 + -+ :L‘l) + 056

withi € {1,...,l}, a € ng\{rl i1} with coefficient 1 for x;, and 3 € Ey,
with coefficient 1 for 1,, and

csat (e + 1)(ya + -+ +yj-1) + 5

with j € {1,...,n}, a € Ey, with coefficient 1 for 1 and (3 € ng\{sl o)
N
with coefficient 1 for y;. Hence

g =( X ) < (X le)

Jng\{Tl} K§Y2\{81}
l

(X X R ) (X )
=2 jcvi\{r1,...,r;} KCY>\{s1}

O L) FYO SIS SR = )

JCY1\{r1} J=2 KCYa\{s1,...,5;}

Proof. First, let a € &y, with coefficient 1 for x1, j € {1,...,n} and 8 in
£ ~, with coefficient 1 for y,. Since
YQ\{S]_ ..... 8371} J

csw1+ (e + 1) (v + - +yj-1) + sy
s;3 by the remark preceding this proposition, (6.97) yields that
csa+ (cs + 1) (g1 + -+ yj-1) + 5y,

is an element of &y, (s,
that

s;}» and a repeated application of (6.97) implies

.....

csa+ (e + 1) (y1 + -+ yj—1) + 50
is an element of £y, and hence clearly in Egﬂ,. Symmetrical arguments apply
fori € {1,...,1}, a € ng\{rl 1) with coefficient 1 for x;, and § € Ey,

with coefficient 1 for y;; hence it remains to show that all elements of 83 can
be obtained in this way.
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Let v € EY. Since Y], |Ya| > 2, Lemma (6.109) gives that the coeffi-
cient of 1 or y; in v equals c5, and by symmetry we may assume without
loss of generality that the coefficient of x1 in v equals ¢5. Then

Y =csa+f—csan

for some a € £y, with coefficient 1 for z1, and 3 € &£, 1uy, With coefficient
cs for x7.
If |Y2| = n, the remark preceding ths proposition yields that 3 equals
ﬂ](.l) for some j € {1,...,n}, and thus
v=csa+(es+1)(yr 4+ +yj—1) Fes(yy+ o+ Yn)s

as y; + - -+ yn is certainly an element of 5Y2\ (51, 3 with coefficient 1

LS
for y;, it follows that ~ is of the required form. ’

Suppose next that |Y7]| > n. Then (6.99) yields that

B =1+ x502 — c5y;

for some 1 € &y ,,....s,) With coefficient ¢5 for y;, and coefficient greater

than or equal to 2 for yq,...,y;_1, and B € £ ~, with coefficient
J YQ\{S]_,...,S‘771}

1 for y;. Since the coefficient of 21 in $; must equal c5, and the coefficients

of y1,...,yj—1 in 8 have to be greater than or equal to 2, we find that

pr=csx1+ (cs + 1) (g1 + - +yj—1) + csy;.

So
Y =csa+ (05 + 1)(?11 + -t yj—1) + ¢532,

as required. O

(6.115) COROLLARY  Suppose that m =5, |Y;| =1 and |Ya| = n. Then E%
is the set of

es(wr+-+a) +(es+D(zici+-+z) +es(yr+- - +yn)
with i € {1,...,l} and

es(m+-+a)+(es+1)(yi+-+yj-1) +oes(y;+ -+ yn)
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with j € {1,...,n}. Hence |EL| =14 n — 1.

(6.116) COROLLARY  Suppose m = 5, |Y1| = I and |Ys| > n. Then &Y is
the set of

es(m+ + )+ (es+1)(wim1 + - +21) +¢50

with i € {1,...,l} and 3 € &y, with coefficient 1 for y,, and
cs(m+-+a)+ (s +1)(y1 + - +yj-1) + 58

with j € {2,...,n} and 8 € EYQ\{sl,...,sj_l} with coefficient 1 for y;. Hence

gl=tx 3 JEUIEY. S e

KCY>\{s1} =2 KCYs\{s1,...,5;}

Assume from now on that |Y7| = 1. It is a tedious but finite task to
verify that the next lemma lists all the roots in ®y preceded by

esx1 +es(yr 4+ yn),

or equal to (2¢5+1)z1 4+ (2¢5 +2)y1 + (¢5 +2)y2 + (¢5 + 1)ys for |Yo| = n < 3,
and that these are elementary roots.

(6.117) LEMMA  Suppose that m =5, |Y1| = 1 and |Ya2| = n.
(i) If n = 1, then £% = {csz1 + c511}-
(ii) If |Ya| =n = 2, then

8?, 2{05901 + c5(y1 + y2), csx1 + (e5 + 1)y1 + c5y2,
(¢s+ 1)x1 + (5 + Dy1 + csya2, (¢5 + 1)@1 4 2¢591 + cs5y2 -

(iii) If |Ya| = n = 3,
(2¢5 + D)x1 + (2¢5 + 2)y1 + (5 + 2)y2 + (c5 + 1)ys

is an element of 83, and we denote this by means of the following dia-
gram:
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5
2c+12¢c+2c+2 c+1

The remaining elements of 83 are represented by the following dia-

grams:
5
* —0——<0r—0
c c c c
5
* 00—
c c+1 ¢ c
5 5
c+1 c+1 ¢ c c c¢+1 ¢c+1 c
5 5
* —0—-0—90 * —0—<—0
c+1 2¢ c c c+1 ¢c+1 ¢+1 ¢
5 5
c+1 2¢ 2c c c+12c+1 ¢c+1 c
5 5
* —0—-0—90 * —0—<—0
c+1l 2¢c+1 2¢ c 2c+1 2¢c+1 ¢c+1 ¢
5 5
2c+1 2¢+1 2¢ c 2c+1 2¢+2 ¢+1 c
5 5
* —0—-—-<=e0—0 * —0—-<———0

2c+1 3c+1 2c c 2c+1 2¢c+2 2¢+1 ¢
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5
2c+2 3c+1 2c ¢ 5

The set of elementary roots

5

2c+12¢c+2 2¢+1 c+1

*-————o0—0

2c+13c+1 2¢c+1 ¢

5

*r——0—0

2c+2 3c+1 2¢+1 ¢

5
2c+2 3¢c+2 2¢c+1 c

5

*r——0—0

3c+1 3¢c+2 2¢+1 ¢

5
3c+1 3¢c+2 2¢+1 c+1

5

5

* 00—
2c+1 3¢c+1 2¢+1 c+1

5
2c+2 3c+1 2¢+1 c+1

5

* —0—<0—0
2c+2 3¢c+2 2¢+1 c+1

5
2c+2 3c+2 2¢+2 c+1

* —e:———=_0—0
3c+13c+2 2¢c+2 c+1

5

*r———o0—0

3c+13c+3 2¢c+2 c+1

5

3c+2 3¢c+3 2¢c+2 c+1

5

* —e:—-0——0
3c+2 4ec+2 2¢+2 ¢c+1

5

3c+2 4c+2 3¢c+1c+1
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5
3c+2 4c+2 3c+1 2¢
Hence
1 ifn=1,
‘5?/’: 4 ifn=2,
32 ifn=3.

(6.118) PROPOSITION  Suppose m = 5, |Y1| = 1 and |Ys| = n > 4. Then
5?, consists of the following roots

5](1)205351+(05+1)(yl+"'+yj—1)+C5(yj+"'+yn)7

with1 < j <n,

(2) _ 1 %5 + 1 .

Bi% = (s + )z + (265 + Y(y1 4+ yr—1)
+(es+ D (yk+ -+ yj-1) +es(yy + - +un),

with1 <k <j <n,

g(gk) = (2c5 + D)z + 25 + 1) (y1 + -+ yr-1)

+(C5+1)<yk+"'+yj—1)+C5(yj+'-'+yn),

with2 <k < j <n,
5](4) = (2c5 + 1)1+ (2c5 +2)y1 + (es + 1) (yo+- - +yj-1) +es(yy + o +un),
with 3 < j <n,

ﬁ](,5k) = (65 + 1)1’1 + (265 + 1)(y1 + .. +yk—1>
+2cs(yk+-..+y]~_1) +C5(yj+"'+yn),
with1 < k < j<mn,

ﬁj(-,Gk) = (2¢5 + D)z1 4+ (2c5 + 1) (y1 + - + Y1)
+265<yk+...—}—yj_1) +C5(yj +...+yn)7
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with 2 < k < j <n,

B = (265 + 1)z1 + (3¢5 + L)yt
+2C5(y2+---+yj—1) +C5(yj +"'+yn)7

with 3 < j < n,

B = (265 + 2)z1 + (3¢5 + L)yt
+2C5(y2+---+yj—1) +C5(yj +"'+yn)7

for 3 < j <n, and
B = a; +es(ya+ -+ yn),

where i € {1,...,5} and
a1 = (2¢5 + 1)z1 + (2¢5 + 2)y1 + (2¢5 + 1)y2 + c5y3,

2¢c5 + 1)x1 + (3¢5 + Y2 + C5Y3,

= ( Dy + ( Dy1 + (2¢5 + 1)

= (2¢5 + 2)x1 + (3cs + Dy1 + (25 + 1)y2 + c5y3,

as = (2¢5 + )y + (3es + 2)y1 + (2¢5 + 1)y2 + c5ys,
Dy +( Jy1 + ( )

as = (3cs + 1)z + (3es + 2)y1 + (265 + 1)y + c5ys.

Hence |EY| = 2n% 4 1.

Proof. We show first that the above listed vectors are elementary roots, and
it follows trivially that they are in 8?,. We saw before that ﬁ](.l) is elementary

for j € {1,...,n}. Since 63(21) =r -ﬂj(-l) and (ﬁj(-l),xﬁ = —% € (—1,0) for
J E {2,...,n}, it follovvs by (3.37) that ﬂj(zl) is elementary. Furthermore,
ﬁ] 1 = Sk 6]( and <ﬁ] oo Uk) = — % for k € {1, ...,Jj—2}, and thus (6.108)
implies that 6( 1. is elementary for k € {1,...,7 — 1}, as required.

If j € {3,...,n} and k € {2,...,j — 1}, then ﬂj(?’k) =r ﬁ]@k) and
(B2, > —% . and it follows by (3.37) that 8°) € €. Next, Y = 51 55)

and (52 Y1) = —% for j € {3,...,n}; therefore ﬂj@) is elementary for all
j€4{3,...,n} by (3.37).
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Clearly ﬁél) = 51 - 6(2) and ( él),yﬁ = =% and (3.37) yields that
ﬂ (%) g elementary. For j € {2,...,n — 1} we find that ﬁ(i)l 1 =5 6551) and
(ﬁ( L, yj) = 155 hence 5(5) is elementary for all j € {2,.. .,n} by (6.108).
Further, ﬂ( Fr1 = Sk ﬁ]( . and (ﬁ] s Uk) = —% for k € {1,...,j—2}, therefore

ﬂj(.’k is elementary for all k € {1,...,j — 1} by (6.108).

If j € {3,...,n} and k € {2,...,7 — 1}, then ﬁ;?,g = ﬂj(k and

(ﬁj(i), 1) = —%, and it follows by (3.37) that 5](',613 is elementary.

Next, ﬁj(-?) = 51 ﬁ( ) and <ﬁj(62), 1) = —% for j € {3,...,n}, and thus
ﬂjm € Eby (3.37). Forj € {3,...,n}also ﬁ;s) = Tl'ﬁ](?), and (ﬂm, Y1) =

and hence ﬁj(-s) is clearly elementary by (3.37).

1
DR

Finally, since y3 + -+ +yy, is in E,, 5.3 With coefficient 1 for y3, and
Qi € Efry s1,50,55} DY (6.117)(iii) with coefficient c5 for y3, Proposition (6.97)

yields furthermore that ﬂi(g) is elementary for i € {1,...,5}.

It remains to show that all elements of 58 have been listed. Suppose
a € 5?,; then o = ﬁ%l) by (6.113) asn > 4. If a = ﬁ%l), there is nothing
left to show. So assume next that o > ﬂ%l), and proceed by induction. Let
reyY witha=r-a*x ﬁ%l); then (r - «,a,) € (—1,0), as « is elementary.
Furthermore, r - « is elementary, and since r - a > ﬁ%l) clearly r-av € Egﬂ,. By
induction this gives rise to the following cases:

Case 1: r-a=csz1+ (5 + (g1 + - +yj-1) +es(y; + -+ yn)
for some j € {1,...,n}; then

(i) r =7y and j > 2, andthusa—ﬂ(l,or

(ii) r=s; and j <n —1, hence a = 55.21.

Case 2: r-a= (CS + 1):{;1 + (2(35 + 1)(y1 + ..+ yk—l)

+(es +D(ye + -+ yi—1) tes(ys + - +yn)
for some 1 < k < 57 < n; then

(i) r =71 and k > 2, andhencea—ﬂ(k,or
ii) r=s1 with j=2and k=1, and a = ®) or
() J 2,19

(iii) r = sp, with k < j — 2, andoa—ﬁ]m,
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(iv) 7 =s; with j <n, and thus o = ﬁﬁ_)lk

Case 3: r-a= (2c5+1)z1+ (2¢5 +1)(y1 + -+ + Yr—1)

+ (s +D)(yk + -+ yj—1) +es(y; + -+ Yn)

for some 2 < k < j < n; then

(i) =51 and k = 2, and thus o = 6](.4), or

(i)) r=sp and k < j—2, and a = 8%, or

(iii) r =s; and j < n, and thus a = ﬁj(-i)l’k.

Case 4: 1 -a = (2¢c5 + 1)z1 + (2¢5 + 2)11

+(es + 1)(y2 + - +yj—1) +es(y; + -+ Yn),
(9)
©),

for some j € {3,...,n}; then r = s5 with j = 3, and a =

Case 5: r-a=(cs+ 1)z + (265 +1)(y1 + -+ + Ye—1)
+2c5(yk + -t yj-1) Fes(y; o+ yn)
for some 1 < k < j < n; then
(i) r=ry and k > 2, and hence a = ﬁg('?k)’ or

(ii) 7 =5 with £ <j—2, and a = ﬁg('?k)ﬂa or

(iii) r =s; and j < n, and thus a = ﬁy(‘i)Lk'

Case 6: r-a= (2c5+1)z1+ (2¢5 +1)(y1 + -+ + yr—1)
+ 2¢s5(ye + -+ yi—1) Fes(yj + -+ yn)
for some 1 < k < j <n,; then

(i) r=s;and k=1, and a = ﬁjm, or

(ii) r =sp with k <j—2, and a = 5](?]3+1, or

(iii) r =s; and j < n, and thus a = ﬁj(-i)l’k.

Case 7: m-oo = (2c5+1)x1+(3es5+1)y1+2¢5(y2+- - -+yj—1)+es(y+- -

for some j € {3,...,n}; then
(i) r=7ry and a = ﬁj(-s), or

(ii) » = s, and j < n, and hence o = 5](‘?1'

'+yn)7
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Case 8: r-a = (2c5+2)w1+ (35 +1)y1+2¢5(y2+- - - +yj—1) tes(yj+- -+ yn)
for some j € {3,...,n}; then r = s5 and j =3, and a = ég).
Case 9: r-a=«a; +c5(yg + -+ -+ yp) for some i € {1,...,5}; then

(9)
2

(i) i=1,r=s; and a = , Or
(i) t=2,r=r1 and a = ég),or
(iii) i=3,r=s; and a = ig),or
(iv) i=4,r=r; and a = ég),
and this completes the proof. a

Lemma (6.99) now yields the following.

(6.119) PROPOSITION  Suppose m =5, |Y1| =1 and |Y3| > n.
(i) If n = 1, the elements of £V are

C5T1 + C5Q¢

with o € £y, with coefficient 1 for y;.
(ii) If n = 2, the elements of 5?, are the roots in (i) plus, additionally,

B — csy2 + csa,

with o € EYQ\{SI} with coefficient 1 for ys, and (8 equal to one of the 3
roots in (6.117)(ii) with coefficient c5 for y, and coefficient greater than
or equal to 2 for y.
(iii) If n = 3, the elements of 88 are the roots named in (ii), plus, addition-
ally, the roots
B+ csa— csys

with o € 5Y2\{51’52} with coefficient 1 for y3, and (3 equal to one of the
15 roots in (6.117)(iii) with coefficient c5 for ys and coefficient greater
than or equal to 2 for y; and ys.
(iv) If n > 4, the elements of EL are the roots named in (iii), plus, addi-
tionally,
B—cs(y;+ - +yn) + 50,
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with j € {4,...,n}, a € SYQ\{sl 5,1y With coefficient 1 for y;, and 3
equal to 85", B\, 87, 8% or B2), B°) with k € {1,...,j — 1}, or
B, BY) with k € {2,...,j — 1} as defined in (6.118).

Hence .
’(910/‘ - ZM(]) Z |g}£j]\}{i;],,sjfl}|7
7=1 JQYQ\{sl,...,sJ-}

with

1 ifj—=1,
3 ifj—2,

M(j) =
=315 =3

45 -2 ifj> 4.
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