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Introduction

The aim of this thesis is to examine root systems associated with Coxeter
groups. We introduce the notions of dominance and elementary roots, and
employ them to show that the stabilizer of a root is the semidirect product of
a Coxeter group and a free group, as well as to obtain an automatic structure
for finitely generated Coxeter groups.

The structure of this thesis is as follows. We begin in Chapter 1 by
reviewing some well known facts about Coxeter groups and root systems. In
Chapter 2 a function from the root system to the integers is defined, which
is an analogue of the length function on the Coxeter group, and enables us
to use inductive proofs on the root system. This is then applied to give an
alternative proof of the Theorem, due to Deodhar [4] and Dyer [5], that each
reflection subgroup of a Coxeter group is itself a Coxeter group; furthermore,
we derive certain properties relating to the coefficients which occur when
roots are expressed as linear combinations of simple roots.

In Chapter 3 the concepts of dominance and elementary roots are in-
troduced, and we prove the principal result of this thesis, namely, that the
set of elementary roots is finite (provided the Coxeter group has finite rank).
We also prove the important technical result that if r1r2 · · · rl is a reduced
expression for an element of the Coxeter group having the property that
(r1r2 · · · rl) · α = β for some simple roots α and β, then (riri+1 · · · rl) · α is
elementary for all i. This is then used in the subsequent chapters to deal with
the stabilizer of a root and the automaticity of Coxeter groups respectively.

Finally, in Chapter 6 we use the properties of elementary roots obtained
in Chapter 3 to give an explicit description of the set of elementary roots in
every case.

In the interest of keeping this thesis as self-contained as possible, proofs
of various well-known properties of Coxeter groups are included in the early
chapters.
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Chapter 1

Preliminaries

In this chapter some well known properties of Coxeter groups are presented
(see [1], [3] or [7]). We begin by introducing some notation. The set of real
numbers will be denoted by R, the set of positive integers by N, and the set
of nonnegative integers by N0. For any set M , we denote the cardinality of
M by |M |; where appropriate, −M denotes the set {−x | x ∈M }. For sets
M and N , the set difference of M and N will be denoted by M \ N .

Throughout this thesis, W is a Coxeter group with distinguished gen-
erating set R; that is, W has a presentation〈

r ∈ R | (rs)mrs = 1 for r, s ∈ R
〉
,

where mrr = 1 for all r ∈ R, and mrs = msr ≥ 2 or mrs = msr = ∞ for
r, s ∈ R with r �= s. (Here (rs)∞ = 1 is regarded as vacuously true).

The Coxeter graph of W has vertex set in one-one correspondence
with R, and two distinct vertices corresponding to r and s are joined by
an edge or bond of weight mrs if mrs �= 2. For convenience of notation we
frequently identify r ∈ R with the vertex corresponding to r. If r and s are
joined by an edge, r and s are said to be adjoined, and the edge is labelled
by mrs; if mrs = 3 this label is suppressed. We say that the bond adjoining
r and s is simple, non-simple, infinite if mrs = 3, mrs �= 3 and mrs = ∞
respectively. By abuse of notation, S ⊆ R will denote both a subset of R,
and the subgraph of the Coxeter graph consisting of the vertices in S and
the bonds adjoining them.

For w ∈W , define the length l(w) of w by

l(w) = min{ l ∈ N0 | w = r1 · · · rl for some r1, . . . , rl ∈ R }.

By definition of W , all elements of R are self inverse, and hence R is closed
under taking inverses. Thus l(w−1) = l(w) and l(w) − 1 ≤ l(wr) ≤ l(w) + 1
for all w ∈ W and r ∈ R; moreover, if w is an element of W with l(w) ≥ 1,
then there exists an r ∈ R with l(wr) < l(w); that is, l(wr) = l(w) − 1.
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Let V be an R-vector space with basis Π in one-one correspondence with
R, and for r ∈ R denote the basis element corresponding to r by αr. The
vertex set of the Coxeter graph is by construction in one-one correspondence
with Π, and as above for r, we will frequently identify αr with the vertex
corresponding to αr; moreover, we use Π′ ⊆ Π both to denote a subset of Π,
and the subgraph of the Coxeter graph consisting of the vertices in Π′ and
the bonds adjoining them.

Next, let 〈 , 〉:V ×V → R be a symmetric bilinear form which satisfies
〈αr, αs〉 = − cos(π/mrs) for all r, s ∈ R with mrs finite, and 〈αr, αs〉 ≤ −1
for r, s ∈ R with mrs infinite; (in particular, 〈αr, αr〉 = 1). Observe that 〈 , 〉
is uniquely determined by the presentation of W if and only if there are no
infinite bonds in the Coxeter graph of W .

For r ∈ R define ρr:V → V by ρr(v) = v − 2〈v, αr〉αr. Then

ρ2
r(v) = ρr

(
v − 2〈v, αr〉αr

)
=

(
v − 2〈v, αr〉αr

) − 2
〈
v − 2〈v, αr〉αr, αr

〉
αr

= v − 2〈v, αr〉αr − 2
(〈v, αr〉 − 2〈v, αr〉〈αr, αr〉

)
αr

= v +
(−2〈v, αr〉 − 2〈v, αr〉 + 4〈v, αr〉

)
αr

= v

for all v ∈ V ; furthermore, for v, v′ ∈ V ,

〈ρr(v), ρr(v′)〉
=

〈
v − 2〈v, αr〉αr , v

′ − 2〈v′, αr〉αr

〉
= 〈v, v′〉 − 2〈v′, αr〉〈v, αr〉 − 2〈v, αr〉〈αr, v

′〉 + 4〈v, αr〉〈v′, αr〉〈αr, αr〉
= 〈v, v′〉 − 4〈v′, αr〉〈v, αr〉 + 4〈v, αr〉〈v′, αr〉
= 〈v, v′〉.

So ρr is self inverse and preserves the bilinear form, and is thus an element
of O(V), the orthogonal group of the bilinear form 〈 , 〉 on V .

If r, s ∈ R are distinct, it can be easily seen that ρr and ρs preserve
the space spanned by αr and αs. Denote 2〈αr, αs〉 by c; then the matrices
of ρr, ρs and ρrρs on this space with respect to the basis αr, αs are(−1 −c

0 1

)
,

(
1 0
−c −1

)
and

(
c2 − 1 c
−c −1

)
respectively.

The proof of the following assertion is a straightforward induction on
n, and will be omitted.
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(1.1) Lemma Let α, β ∈ V be linearly independent, and let A be a linear
map on the span of α and β with matrix(

c2 − 1 c
−c −1

)
with respect to the basis α, β. For n ∈ N, let An(α) = λnα + μnβ with
λn, μn ∈ R. Then An(β) = −μnα− λn−1β and

(i) if c = −2 cos(θ) for some θ ∈ (0, π),

λn =
sin

(
(2n+ 1)θ

)
sin(θ)

and μn =
sin

(
2nθ

)
sin(θ)

;

(ii) if c ≤ −2, then λn ≥ μn + 1 and μn+1 ≥ λn + 1.

Lemma (1.1) enables us to prove the following proposition.

(1.2) Proposition There is a representation ρ of W on V with ρ(r) = ρr

for all r ∈ R.

Note that (1.1) yields for r, s ∈ R that ρrρs has order at least mrs. So
when (1.2) is established, it will follow that rs has order at least mrs. If mrs

is finite, rs has order at most mrs by definition of W , therefore mrs is in fact
the order of rs for all r, s ∈ R.

Proof of (1.2). Let F (R) be the free group on R; the map r �→ ρr from R
to O(V) extends to a homomorphism F (R) → O(V). Further, let N be the
normal closure in F (R) of the set{

(rs)mrs | r, s ∈ R with mrs <∞}
,

so that W is isomorphic to the quotient F (R)/N . It suffices to show that N
is in the kernel of the above homomorphism from F (R) to O(V). This is the
case if (ρrρs)mrs equals the identity for all r, s ∈ R with mrs finite. By an
earlier remark, ρ2

r equals the identity on V for all r ∈ R. It remains to show
that (ρrρs)m is the identity for all r, s ∈ R with r �= s and m = mrs finite.
Since Π is a basis for V , it suffices to show (ρrρs)m(αt) = αt for all αt ∈ Π.
If t ∈ {r, s}, this is true by (1.1)(i) with θ = π/m and n = m. So suppose
that αr, αs, αt are linearly independent. The space spanned by these vectors
is obviously invariant under ρrρs, and if M is the matrix corresponding to
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ρrρs on this space with respect to the basis αr, αs, αt, it suffices to show that
Mm is the 3 × 3 identity matrix. A short calculation yields that

M =
(
A b
0 0 1

)
,

where A is the 2× 2 matrix corresponding to ρrρs on the span of αr and αs

with respect to the basis αr, αs, and b is a 2 × 1 vector. An easy induction
yields that

Mn =
(
An bn
0 0 1

)
for n ∈ N, where bn = (A0 + . . .+An−1)b. As Am is the matrix of (ρrρs)m on
the span of αr and αs with respect to the basis αr, αs, (1.1)(i) for θ = π/m
and n = m gives that Am equals I2, the 2 × 2 identity matrix. Thus

(A− I2)(A0 + . . .+ Am−1) = Am − I2 = 0,

the 2 × 2 zero matrix. The determinant of A− I2 equals 4 sin2(π/m), which
is nonzero, and so A− I2 is invertible. Hence A0 + . . .+Am−1 = 0 and bm is
the 2 × 1 zero vector. This yields that Mm is the 3 × 3 identity matrix, and
we have in fact a homomorphism ρ:W → O(V).

The representation ρ ofW on V defined in (1.2) will be called a standard
geometric realization of W . From now on we consider the action of W on V
induced by a standard geometric realization of W on V . We have seen that
this action preserves 〈 , 〉. For w ∈ W and v ∈ V , we denote the image of v
under ρ(w) by w · v. The set Φ = {w · αr | w ∈W, r ∈ R } is called the root
system of W in V , and the elements of Π are the simple roots. Note that
since 〈αr, αr〉 = 1 for r ∈ R, we have 〈α, α〉 = 1 for all α ∈ Φ.

Every element v of V can be uniquely written as
∑

α∈Π λαα for some
λα ∈ R, and λα is said to be the coefficient of α in v. Define the support of v
to be the set of α ∈ Π such that the coefficient of α in v is nonzero, and denote
this set by supp(v). Furthermore, let I(v) denote the set of r ∈ R in one-one
correspondence with elements of supp(v). The set PLC(Π) of positive linear
combinations of Π is the set of vectors in V with all coefficients greater than
or equal to 0. The sets of positive roots Φ+ and negative roots Φ− are defined
to be Φ+ = Φ ∩ PLC(Π) and Φ− = −Φ+ respectively.
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(1.3) Lemma Suppose w ∈ W and r ∈ R with l(wr) ≥ l(w). Then
w · αr ∈ Φ+.

Proof. If l(w) = 0, then w = 1 and w · αr = αr is in Φ+. Next, suppose
that l(w) ≥ 1, and let s ∈ R with l(ws) = l(w) − 1; then r �= s, since
l(wr) ≥ l(w). Set I = {r, s}, and let WI denote the subgroup of W generated
by I. Furthermore, let lI be the length function on WI with respect to I.
Since I ⊆ R, it is clear that l(z) ≤ lI(z) for all z ∈WI .

Consider the set

A =
{
u ∈W | u−1w ∈WI and l(u) + lI(u−1w) = l(w)

}
.

Then ws ∈ A, since (ws)−1w = s−1 = s ∈ WI and

l(ws) + lI
(
(ws)−1w

)
= l(ws) + 1 = l(w).

So A is non-empty, and if we let x be an element of A of minimal length, then
l(x) ≤ l(ws), and thus l(x) ≤ l(w) − 1 < l(w). Assume for a contradiction
that l(xr) < l(x); that is, l(xr) = l(x)− 1. Then xr /∈ A by minimality of x.
On the other hand, rx−1w ∈WI and

l(w) = l
(
(xr)(rx−1w)

) ≤ l(xr) + l(rx−1w)

≤ l(xr) + lI(rx−1w) ≤ l(x) − 1 + lI(x−1w) + 1

= l(x) + lI(x−1w) = l(w),

and we must have equality everywhere; hence l(w) = l(xr)+lI(rx−1w), which
implies xr ∈ A, a contradiction. So l(xr) ≥ l(x) and similarly l(xs) ≥ l(x),
and by induction x · αr and x · αs are both positive roots.

Let y = x−1w; then

l(x) + lI(y) = l(w) ≤ l(wr) = l(xyr) ≤ l(x) + l(yr) ≤ l(x) + lI(yr),

and hence lI(yr) ≥ lI(y). Therefore y equals (rs)n or s(rs)n for some n ∈ N0.
If rs has infinite order, (rs)n ·αr = λαr +μαs for some λ ≥ μ ≥ 0 by (1.1)(ii),
and hence s(rs)n · αr = λαr + μ′αs for some μ′ ≥ λ ≥ 0. If rs has order m,
then lI(yr) ≥ lI(y) yields that 2n+1 ≤ m if y = (rs)n, and that 2(n+1) ≤ m
if y = s(rs)n, and we deduce from (1.1)(i) that y · αr = λαr + μαs for some
λ, μ ≥ 0. So in any case,

w · αr = (xy) · αr = x · (λαr + μαs) = λ(x · αr) + μ(x · αs)

for some λ, μ ≥ 0. Since x · αr, x · αs ∈ PLC(Π), it follows that w · αr is in
PLC(Π), and thus in Φ+, as required.
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It is clear that Φ+ is a subset of Φ, and since r · αr = −αr for r ∈ R,
also Φ− ⊆ Φ. In fact,

Φ = Φ+ ∪ Φ−.

For if α ∈ Φ, then by definition of Φ there exists a w ∈W and an r ∈ R with
α = w · αr. If l(wr) ≥ l(w), then α = w · αr ∈ Φ+ by the previous lemma,
while if l(wr) < l(w) = l

(
(wr)r

)
, then (wr) · αr ∈ Φ+ by (1.3) with wr in

place of w; hence w · αr = −(wr) · αr ∈ Φ−.

A trivial, but very useful, consequence of this is the following result.

(1.4) Corollary r · (Φ+ \ {αr}
) ⊆ Φ+ for r ∈ R.

Next, let w ∈ W and r ∈ R. By definition of the root system, w · αr

is a root, and since Φ equals the union of Φ+ and Φ−, we find that w · αr is
either positive or negative. If w ·αr ∈ Φ−, then l(wr) �≥ l(w) by (1.3); hence
l(wr) < l(w), that is, l(wr) = l(w) − 1. If w · αr ∈ Φ+, then (wr) · αr ∈ Φ−,
and thus

l(w) = l
(
(wr)r

)
= l(wr) − 1

by the previous case with wr in place of w; whence l(wr) = l(w) + 1.

(1.5) Lemma For all w ∈W and r ∈ R,

l(wr) =
{
l(w) + 1 if w · αr ∈ Φ+,

l(w) − 1 if w · αr ∈ Φ−.

We can now deduce that the standard geometric realization of W on
V induces a faithful action of W on V . For if w ∈ W such that w · v = v
for all v ∈ V , then in particular, w · αr = αr ∈ Φ+ for all r ∈ R; that is,
l(wr) > l(w) for all r ∈ R, and thus w = 1.

It is clear that Φ is finite if W is finite. Faithfulness of the action of W
on V yields the converse, and so Φ is finite if and only if W is finite.
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Next, let w ∈W and r, s ∈ R with w · αr = αs; then for all v ∈ V ,

(wrw−1s) · v =
(
wrw−1) · (v − 2〈v, αs〉αs

)
= (wr) · (w−1 · v − 2〈v, αs〉w−1 · αs

)
= (wr) · (w−1 · v − 2〈v, αs〉αr

)
= w · (w−1 · v − 2〈w−1 · v, αr〉αr + 2〈v, αs〉αr

)
= w · (w−1 · v − 2〈v, w · αr〉αr + 2〈v, αs〉αr

)
= w · (w−1 · v)
= v.

Since the action of W on V is faithful, this implies wrw−1s = 1; that is,
wrw−1 = s.

Now let α ∈ Φ; by definition of the root system, there exist w ∈W and
r ∈ R with α = w · αr. If α also equals u · αs for some u ∈ W and s ∈ R,
then (u−1w) · αr = αs, and hence (u−1w)r(u−1w)−1 = s by the above; that
is, wrw−1 = usu−1. So without ambiguity we may define the reflection rα
to be wrw−1. Then for v ∈ V ,

rα · v = (wrw−1) · v = (wr) · (w−1 · v)
= w · (w−1 · v − 2〈w−1 · v, αr〉αr

)
= v − 2〈w−1 · v, αr〉w · αr

= v − 2〈v, w · αr〉w · αr

= v − 2〈v, α〉α.

Observe that this yields for roots α and β with rα = rβ that α = ±β; for
then

−α = rα · α = rβ · α = α− 2〈α, β〉β,
and thus α = 〈α, β〉β, which leaves us with α = ±β, since 〈α, α〉 = 〈β, β〉 = 1.

(1.6) Proposition (Strong Exchange Condition)
Let r1, r2, . . . , rn ∈ R and α ∈ Φ+ such that (r1r2 · · · rn) · α ∈ Φ−. Then
there exists an i ∈ {1, . . . , n} with

(r1r2 · · · rn)rα = r1r2 · · · ri−1ri+1 · · · rn.
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Proof. Let i ∈ {1, . . . , n} be maximal such that (riri+1 · · · rn) · α ∈ Φ−; then
(ri+1 · · · rn) · α must be positive, and thus (ri+1 · · · rn) · α = αri

by (1.4). So
α = (rn · · · ri+1) · αri

and rα = (rn · · · ri+1)ri(ri+1 · · · rn). This implies

(r1r2 · · · rn)rα = r1r2 · · · rn−1rn(rnrn−1 · · · ri+1riri+1 · · · rn−1rn)
= r1r2 · · · ri−1ri+1 · · · rn,

as required.

Note that (1.6) together with (1.5) imply the Exchange Condition:
Let r1, . . . , rn, s ∈ R such that l(r1r2 · · · rn) = n and l(r1r2 · · · rns) < n+ 1.
Then there exists an i ∈ {1, . . . , n} such that

(r1r2 · · · rn)s = r1 · · · ri−1ri+1 · · · rn.

For a set of roots Γ, we denote the corresponding set of reflections by
SΓ, and the subspace of V spanned by Γ by VΓ. The subgroup generated by
S = SΓ is denoted by WS or WΓ, and ΦΓ or ΦS is defined to be the set of
roots of the form w · γ with w ∈WΓ and γ ∈ Γ. It is clear that WΓ′ ⊆WΓ if
Γ′ ⊆ ΦΓ.

Suppose now that Γ is a set of positive roots such that for α, β ∈ Γ
with α �= β, either 〈α, β〉 ≤ −1 or 〈α, β〉 = − cos(π/mα,β) for some integer
mα,β ≥ 2. Let S̃ be a set in one-one correspondence with Γ, and for γ ∈ Γ
denote the element of S̃ corresponding to γ by σγ . Further, let W̃ denote
the Coxeter group with distinguished generating set S̃ and defining relations

(σασβ)mα,β = 1 for all α, β ∈ Γ such that 〈α, β〉 > −1,

and let Ṽ be an R-vector space with basis Π̃ = { γ̃ | γ ∈ Γ }. If the order of
σασβ equals m, define (α̃, β̃) = − cos(π/m), while if σασβ is of infinite order,
define (α̃, β̃) = 〈α, β〉 ≤ −1. This determines a bilinear form on Ṽ , and we
get a standard geometric realization of W̃ on Ṽ with

(α̃, β̃) = 〈α, β〉 for all α, β ∈ Γ.

We show now that π: σγ �→ rγ for γ ∈ Γ defines a group homomorphism
from W̃ to WΓ. Since clearly r2α = 1 for α ∈ Γ, it suffices to show that
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(rαrβ)m equals the identity for α, β ∈ Γ with α �= β such that σασβ is of
order m. So let α, β ∈ Γ with 〈α, β〉 = − cos(π/m). Then (1.1)(i) yields that
(rαrβ)m acts as the identity on the space spanned by α and β. In particular,
(rαrβ)m · α = α, and thus (rαrβ)mrα(rβrα)m = rα; that is, (rαrβ)2m = 1.
Now let v ∈ V ; then there exist λ, μ ∈ R such that (rαrβ)m · v equals
v + λα+ μβ, and

v = (rαrβ)2m · v
= (rαrβ)m · (v + λα+ μβ)
= v + λα + μβ + λ(rαrβ)m · α+ μ(rαrβ)m · β
= v + 2(λα+ μβ).

So λα + μβ equals the zero vector, and thus (rαrβ)m · v = v for all v ∈ V .
It follows by faithfulness of the standard geometric realization that (rαrβ)m

equals 1, as required. Note that π is certainly surjective since π(S̃) = SΓ.

Denote the root system of W̃ in Ṽ by Φ̃, and define ψ: Ṽ → VΓ by
linear extension of ψ(γ̃) = γ for γ ∈ Γ. We show now that ψ maps Φ̃ onto
ΦΓ. First, let α, β ∈ Γ; then

ψ
(
σα · β̃)

= ψ
(
β̃ − 2(α̃, β̃)α̃

)
= ψ

(
β̃
) − 2(α̃, β̃)ψ

(
α̃
)

= β − 2〈α, β〉α
= rα · β.

Since Π̃ forms a basis for Ṽ , this yields ψ(s̃ · ṽ) = π(s̃) ·ψ(ṽ) for all s̃ ∈ S̃ and
ṽ ∈ Ṽ , and an easy induction on the length of w gives ψ(w · ṽ) = π(w) ·ψ(ṽ)
for all w ∈ W̃ and v ∈ Ṽ . As π is surjective and ψ(Π̃) = Γ, it follows that

ψ
(
Φ̃

)
= ψ

(
W̃ · Π̃)

= π
(
W̃

) · ψ(
Π̃

)
= WΓ · Γ = ΦΓ.

Denote the set of roots in ΦΓ which can be written as positive linear combi-
nations of elements of Γ by Φ+

Γ ; since Γ consists of positive roots, it follows
easily that Φ+

Γ is a subset of Φ+. Furthermore, ψ(Φ̃+) ⊆ Φ+
Γ as ψ(Π̃) = Γ,

and symmetrically ψ(Φ̃−) ⊆ −Φ+
Γ . Since ΦΓ = ψ(Φ̃) = ψ(Φ̃+) ∪ ψ(Φ̃−), this

yields that ψ(Φ̃+) = Φ+
Γ ; therefore Φ+

Γ = ΦΓ ∩ Φ+, and ΦΓ is the disjoint
union of Φ+

Γ and −Φ+
Γ .
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Now let w ∈ W̃ \ {1}. Then there exists an α̃ ∈ Φ̃+ such that w · α̃ is in
Φ̃−. Thus ψ(α̃) ∈ Φ+

Γ ⊆ Φ+, and π(w) · ψ(α̃) = ψ(w · α̃) ∈ Φ−
Γ ⊆ Φ−; hence

π(w) �= 1, and this shows that π is injective. Since π is also surjective, π
is a group isomorphism, and thus WΓ is a Coxeter group with distinguished
generating set SΓ.

We have proved the following theorem, which is due to M.J.Dyer.

(1.7) Theorem Let Γ ⊆ Φ+ such that for α, β ∈ Γ with α �= β either
〈α, β〉 ≤ −1 or 〈α, β〉 = − cos(π/m) for some integer m. Then WΓ is a
Coxeter group with distinguished generating set SΓ.

Note furthermore that ψ induces a bijection between Φ̃ and ΦΓ. For,
as we have already seen, ψ maps Φ̃ onto ΦΓ, and it remains to show that
ψ restricted to Φ̃ is one-one. Since Ψ(Φ̃+) ∩ ψ(Φ̃−) = ∅, and by symmetry
of Φ̃+ and Φ̃−, it suffices to show that ψ restricted to Φ̃+ is one-one. So
let w, u ∈ W̃ and α, β ∈ Γ such that w · α̃ and u · β̃ are positive and
ψ(w · α̃) = ψ(u · β̃); that is, π(w) · ψ(α̃) = π(u) · ψ(β̃). Then

π(wσαw
−1) = π(w)rαπ(w)−1 = π(u)rβπ(u)−1 = π(uσβu

−1).

Since π is injective, this yields wσαw
−1 = uσβu

−1, and thus w · α̃ = ±u · β̃
by an earlier remark. As w · α̃ and u · β̃ are both positive, we deduce that
w · α̃ = u · β̃, as required.

(1.8) Proposition Let Γ be a set of positive roots as in (1.7), and define
ΦΓ to be the set of roots of the form w · γ with w ∈WΓ and γ ∈ Γ. Further-
more, let Φ+

Γ denote the set of roots in ΦΓ which can be written as positive
linear combinations of roots in Γ. Then Φ+

Γ = ΦΓ ∩ Φ+, and there exists a

standard geometric realization of WΓ with root system Φ̃ and bilinear form
( , ), and a bijection ψ: Φ̃ → ΦΓ such that

(i) ψ(Φ̃+) = Φ+
Γ ,

(ii) ψ(w · α̃) = w · ψ(α̃) for all w ∈WΓ and α̃ ∈ Φ̃, and

(iii) 〈ψ(α̃), ψ(β̃)〉 = (α̃, β̃) for all α̃, β̃ ∈ Φ̃.

Note that Γ does not necessarily have to be linearly independent. For
example, suppose that W has the following Coxeter graph:
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•

•
•

•

•

a

b

c
d

e..........................................................................................................................................................................................
..................................

..................................
..................................

................

Then
Γ = {αa + αb, αa + αb + 2αc, αd + αe, 2αc + αd + αe }

is certainly not linearly independent, but it can be easily checked that for
distinct roots α, β ∈ Γ, either 〈α, β〉 = 0 or 〈α, β〉 ≤ −1.

If Γ is linearly dependent, the bilinear form ( , ) on Ṽ is not positive
definite. For assume that there exist n > 0, m ≥ 0 and pairwise distinct
roots α1, . . . , αn, β1, . . . , βm in Γ as well as λ1, . . . , λn, μ1, . . . , μm > 0 such
that

∑n
i=1 λiαi −

∑m
j=1 μjβj equals the zero vector. Define ṽ =

∑n
i=1 λiα̃i;

this is a nonzero vector since α1, . . . , αn are linearly independent and n ≥ 1
with λ1 > 0. Then ψ(ṽ) =

∑n
i=1 λiαi =

∑m
j=1 μjβj , and thus

(ṽ, ṽ) = 〈ψ(ṽ), ψ(ṽ)〉 =
n,m∑
i,j=1

λiμj〈αi, βj〉 ≤ 0,

since 〈αi, βj〉 ≤ 0 for all i and j.

The elements of R = { rα | α ∈ Π } are called simple reflections. If J
is a set of simple reflections, WJ is called a parabolic subgroup of W . This is
a Coxeter group with the obvious standard geometric realization on VJ , the
space spanned by αr with r ∈ J .

Denote the length function on WJ with respect to J by lJ ; we show
now that lJ(w) = l(w) for all w ∈WJ . For w ∈W define

N(w) = {α ∈ Φ+ | w · α ∈ Φ− },
and observe that for u and w in W ,

N(uw) ⊆ N(w) ∪ w−1 ·N(u).

For if γ ∈ N(uw) \ N(w), then w · γ ∈ Φ+ and u · (w · γ) = (uw) · γ ∈ Φ−;
thus w · γ ∈ N(u), that is γ ∈ w−1 ·N(u). Note also that

N(w) ∩ w−1 ·N(u) = (w−1w) · (N(w) ∩ w−1 ·N(u)
)

= w−1 · (w ·N(w) ∩ (ww−1) ·N(u)
)

= w−1 · (w ·N(w) ∩N(u)
)

⊆ w−1
(
Φ− ∩ Φ+

)
= ∅,
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whence the above union is disjoint.

If J ⊆ R and w ∈ WJ , then NJ(w) ⊆ N(w), where NJ (w) denotes the
set of all roots α ∈ Φ+

J such that w · α ∈ Φ−
J . The next lemma yields that

lJ (w) = |NJ(w)| ≤ |N(w)| = l(w); since J ⊆ R, the reverse inequality is
certainly true, and so lJ (w) = l(w).

(1.9) Lemma |N(w)| = l(w) for all w ∈W .

Proof. We use induction on l(w). If l(w) = 0, then w = 1 and N(1) = ∅.
So suppose that l(w) ≥ 1, and let u ∈ W and r ∈ R such that w = ur and
l(u) = l(w) − 1; then |N(u)| = l(u) by induction. By the above remark,

N(w) = N(ur) ⊆ N(r) ∪ r ·N(u) = {αr} ∪ r ·N(u),

and this union is disjoint. In order to prove that |N(w)| = l(w), it suffices
to show that {αr} and r ·N(u) are subsets of N(w). By (1.5) we know that
w ·αr is negative and u·αr is positive, and thus {αr} ⊆ N(w) and αr /∈ N(u).
The latter together with (1.4) yield that r ·N(u) contains only positive roots,
and since w ·(r ·N(u)

)
= u ·N(u) ⊆ Φ−, we conclude that r ·N(u) is a subset

of N(w), as required.

Now let w ∈ W and α ∈ Φ+ with w · α ∈ Φ−. Then −w · α ∈ Φ+ and
w−1 ·(−w·α) = −α ∈ Φ−; that is, −w·α ∈ N(w−1). So −w·N(w) ⊆ N(w−1),
and since l(w) = l(w−1), we deduce the following:

(1.10) Corollary −w ·N(w) = N(w−1) for all w ∈W .

Suppose now that we have u, w ∈ W with l(uw) = l(u) + l(w). Then
N(uw) is a subset of N(w) ∪ w−1 · N(u); since l(uw) = |N(uw)|, and this
equals |N(u)| + |N(w)|, it follows that N(uw) = N(w) ∪ w−1 · N(u). In
particular, w−1 ·N(u) ⊆ Φ+, and thus necessarily N(u) ∩N(w−1) = ∅.

Conversely, suppose that N(u)∩N(w−1) = ∅. Then w−1 ·N(u) ⊆ Φ+,
and

(uw) · (w−1 ·N(u)
)

= u ·N(u) ⊆ Φ−;

whence w−1 ·N(u) ⊆ N(uw). Further, N(w−1) ⊆ Φ+ \ N(u), and so (1.10)
yields that

(uw) ·N(w) = u · (−N(w−1)
)

= −u ·N(w−1) ⊆ −u · (Φ+ \ N(u)
) ⊆ Φ−;

hence also N(w) ⊆ N(uw). Therefore N(uw) = N(w) ∪ w−1 · N(u), and
since this union is disjoint, we have l(uw) = l(u) + l(w).
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(1.11) Lemma Let u, w ∈W . Then the following are equivalent:

(i) l(uw) = l(u) + l(w)
(ii) N(uw) = N(w) ∪ w−1 ·N(u)
(iii) N(u) ∩N(w−1) = ∅.

We conclude this chapter with a proposition whose proof is outlined in
[1], Ch.V, §4.

(1.12) Proposition Suppose H is a finite subgroup of W . Then there
exist a finite parabolic subgroup WJ of W such that H is conjugate to a
subgroup of WJ .

Proof. Since H is finite, we may assume without loss of generality that R
is finite. If |W | < ∞, the assertion is true with J = R. So suppose from
now on that W is infinite; then Φ is infinite and |R| > 1, and we proceed by
induction on |R|.

Let V ∗ denote the dual space of V , and let { δα | α ∈ Π } be the basis
dual to Π; that is, δα(v) equals the coefficient of α in v. For f ∈ V ∗ and
w ∈ W , we define fw ∈ V ∗ by fw: v �→ f(w · v); this determines a right
action of W on V ∗. For f ∈ V ∗ define further S(f) = { γ ∈ Φ+ | f(γ) < 0 }.

Let f =
∑

α∈Π δα and F =
∑

h∈H fh. Then f(α) = 1 for all α ∈ Π,
and thus

f(γ) > 0 for all γ ∈ Φ+. (∗)
Now let A =

⋃
h∈H N(h). Since H is finite and N(h) is finite for all h ∈ H,

A is finite. Furthermore, for all γ ∈ Φ+ \ A,

F (γ) =
∑
h∈H

(fh)(γ) =
∑
h∈H

f(h · γ) > 0 (∗∗)

by (∗), since h · γ ∈ Φ+ for all h ∈ H. So S(F ) ∩ (
Φ+ \ A

)
= ∅; that is,

S(F ) ⊆ A, and in particular, S(F ) must be finite.

Let x ∈W such that |S(Fx)| is minimal, and assume for a contradiction
that S(Fx) �= ∅. Then

(
Fx

)
(γ) < 0 for some γ ∈ Φ+, and it follows that

(Fx)(αr) < 0 for some r ∈ R; that is, αr ∈ S(Fx). Now(
Fxr

)
(αr) =

(
Fx

)
(r · αr) =

(
Fx

)
(−αr) = −(

Fx
)
(αr) > 0,



and hence αr /∈ S(Fxr). So γ �→ r · γ maps S(Fxr) into Φ+ \ {αr}, and
if γ ∈ S(Fxr), then

(
Fx

)
(r · γ) =

(
Fxr

)
(γ) < 0; therefore γ �→ r · γ maps

S(Fxr) into S(Fx) \ {αr}. Since the above map is clearly one-one, this
yields

|S(Fxr)| ≤ |S(Fx) \ {αr}| < |S(Fx)|,
contrary to the choice of x. Thus S(Fx) = ∅.

Since Fh = F for h ∈ H, we deduce that

Fx(x−1hx) = (Fxx−1)hx = Fhx = Fx;

so x−1Hx ⊆ { y ∈W | (Fx)y = Fx }, and we show now that{
y ∈W | (

Fx
)
y = Fx

} ⊆WI ,

where I = { r ∈ R | (
Fx

)
(αr) = 0 }. Let y ∈ W with

(
Fx

)
y = Fx. If

l(y) = 0, then y = 1 ∈ WI . Proceeding by induction, suppose l(y) ≥ 1, and
let z ∈W and s ∈ R such that y = zs and l(z) = l(y)− 1. Then z · αs ∈ Φ+

by (1.5), and(
Fx

)
(αs) =

(
Fxy

)
(αs) =

(
Fx

)
(y · αs) = −(

Fx
)
((ys) · αs) = −(

Fx
)
(z · αs);

since S(Fx) = ∅, it follows that
(
Fx

)
(αs) = 0, and thus s ∈ I. So(

Fxs
)
(v) =

(
Fx

)
(v − 2〈v, αs〉αs) =

(
Fx

)
(v) − 2〈v, αs〉

(
Fx

)
(αs) =

(
Fx

)
(v)

for all v ∈ V , which yields
(
Fx

)
z =

(
Fxy

)
s =

(
Fx

)
s = Fx; hence z ∈ WI

by induction, and y = zs ∈WI , as required.

Since Φ+ is infinite by construction, and A is finite, it follows that
Φ+ \ A is nonempty; so F �= 0 by (∗∗), which yields Fx �= 0 and I �= R.
By induction there exist J ⊆ I and u ∈ WI such that WJ is finite and
u−1(x−1Hx)u ⊆WJ , as desired.

Chapter 2

The Depth of a Root
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To facilitate inductive proofs of facts about root systems, it is convenient for
us to introduce a concept which, in some sense, measures how far a root is
from being simple. For a positive root α, we define the depth of α to be

dp(α) = min{ l ∈ N0 | w · α ∈ Φ− for some w ∈W with l(w) = l}.
Observe that such an integer always exists, since by definition of the root
system every root α has the form u ·αr for some u ∈W and r ∈ R, and then
(ru−1) · α = −αr ∈ Φ−. Suppose now that α ∈ Φ+, and let w ∈ W with
l(w) = dp(α) such that w · α ∈ Φ−. Then w �= 1, and hence there exists
an r ∈ R and a u ∈ W with w = ru−1 and l(w) = l(u−1) + 1 = l(u) + 1.
Minimality of w yields that u−1 · α is positive, and since r · (u−1 · α) = w · α
is negative, (1.4) gives u−1 · α = αr; that is, α = u · αr. Thus every positive
root can be written as u ·αr with l(u) equal to the depth of the root minus 1.
Moreover, the depth of α equals the minimal integer l such that w · α ∈ −Π
for some w ∈W of length l. For a negative root β, we define the depth of β
to be

dp(β) = −min{ l ∈ N0 | w · β ∈ −Π for some w ∈W with l(w) = l}.
Note that for r ∈ R and α ∈ Φ, clearly dp(α)−1 ≤ dp(r·α) ≤ dp(α)+1.

Furthermore, if α is a positive root, then there exists an r ∈ R such that
dp(r ·α) = dp(α)−1. Also, for w ∈W and r ∈ R clearly dp(w ·αr) ≤ l(w)+1.
Finally, note that dp(α) ≤ l(w) if w·α is negative for some root α and w ∈W ;
for if α is positive, this follows by definition of the depth of α, and if α is
negative, then dp(α) ≤ 0 ≤ l(w).

Now let α ∈ Φ+ and w ∈ W , r ∈ R such that α equals w · αr and
l(w) = dp(α) − 1. Then −α = −w · αr, and so w−1 · (−α) = −αr and
l(w) = l(w−1) ≥ −dp(−α). On the other hand, if u ∈ W and s ∈ R such
that l(u) = −dp(−α) and u · (−α) = −αs, then (su) · α = −αs; thus

dp(α) ≤ l(su) ≤ l(u) + 1 = −dp(−α) + 1 ≤ l(w) + 1 = dp(α),

and we must have equality everywhere. In particular, dp(α) + dp(−α) = 1.
Since for β ∈ Φ− clearly α = −β ∈ Φ+, this proves the following result:

(2.13) Lemma dp(α) + dp(−α) = 1 for all α ∈ Φ.

(2.14) Proposition Let r ∈ R and α ∈ Φ. Then

dp(r · α) =

⎧⎪⎨⎪⎩
dp(α) − 1 if 〈α, αr〉 > 0,

dp(α) if 〈α, αr〉 = 0,

dp(α) + 1 if 〈α, αr〉 < 0.
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Proof. If the assertion is proved for positive roots, (2.13) yields for α ∈ Φ−,

dp(r · α) = −dp
(−(r · α)

)
+ 1 = −dp

(
r · (−α)

)
+ 1

=

⎧⎪⎪⎨⎪⎪⎩
−(

dp(−α) − 1
)

+ 1 if 〈−α, αr〉 > 0,

−dp(−α) + 1 if 〈−α, αr〉 = 0,

−(
dp(−α) + 1

)
+ 1 if 〈−α, αr〉 < 0,

=

⎧⎪⎨⎪⎩
dp(α) + 1 if 〈α, αr〉 < 0,

dp(α) if 〈α, αr〉 = 0,

dp(α) − 1 if 〈α, αr〉 > 0.

Hence it suffices to prove the proposition for positive roots. If 〈α, αr〉 = 0,
then r · α = α− 2〈α, αr〉αr = α, and trivially dp(r · α) = dp(α).

Suppose next that 〈α, αr〉 > 0. It suffices to show that dp(r·α) < dp(α);
to do so, we construct a w ∈ W with w · (r · α) ∈ Φ− and l(w) < dp(α).
Choose u ∈ W such that u · α ∈ Φ− and l(u) = dp(α). If u · αr is negative,
set w = ur; then l(w) = l(u) − 1 by (1.5), and w · (r · α) = u · α ∈ Φ−, as
required. Hence we may assume from now on that u · αr is positive. Clearly
u �= 1 (as u · α is negative, while α is positive), and thus there exist s ∈ R
and w ∈W with u = sw and l(u) = l(w) + 1. Now

u · (r · α) = u · (α− 2〈α, αr〉αr

)
= u · α− 2〈α, αr〉u · αr

is negative, and since u · α and −2〈α, αr〉u · αr are both negative linear
combinations of simple roots and not scalar multiples of each other (since α
and αr are linearly independent), u ·(r ·α) cannot be equal to −αs. It follows
by (1.4) that w · (r · α) = s · (u · (r · α)

) ∈ Φ−.

Finally, suppose that 〈α, αr〉 < 0. Then 〈r ·α, αr〉 = −〈α, αr〉 > 0, and
the preceding paragraph shows that dp(α) = dp

(
r · (r · α)

)
= dp(r · α) − 1.

(2.15) Lemma Let α ∈ Φ+ and w ∈ W , r ∈ R such that α = w · αr and
l(w) = dp(α)− 1. Then w ∈WI(α) and r ∈ I(α), where I(α) denotes the set
of simple reflections in one-one correspondence with the support of α.

Proof. If dp(α) = 1, the assertion is trivially true. Suppose next that α
is of depth greater than 1, and let u ∈ W and s ∈ R with w = su and
l(w) = l(u) + 1. Then u · αr = s · α, and thus

dp(s · α) = dp(u · αr) ≤ l(u) + 1 = l(w) = dp(α) − 1;
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this yields that dp(s · α) = dp(α) − 1, and therefore 〈α, αs〉 > 0. Since α is
a positive root and 〈αs, αt〉 ≤ 0 for t ∈ R \ {s}, we deduce that s ∈ I(α).
Further, as s · α = u · αr and l(u) = dp(s · α) − 1, induction yields that
u ∈WI(s·α) and r ∈ I(s · α). By definition of the action of s on V , it follows
that I(s ·α) ⊆ I(α)∪ {s} = I(α), and thus w = su is in WI(α) and r ∈ I(α).

(2.16) Corollary Let J ⊆ R. Then ΦJ = Φ ∩ VJ and dpJ (α) = dp(α)
for all α ∈ ΦJ , where dpJ denotes the depth function on ΦJ with respect to
WJ and lJ .

It is clear that the part of the previous assertion concerning the depth
in parabolic subsystems is not in general true for reflection subgroups WΓ;
for if Γ = {α}, then α has depth 1 with respect to Γ, independent of dp(α).
Note furthermore that for Γ ⊆ Φ, we do not have in general ΦΓ = Φ ∩ VΓ.
For example, suppose that W has the following Coxeter graph

• • • •
r s t u

∞ 6

with 〈αr, αs〉 = −1. Define α = tust · αs and Γ = {α, αr, αu}; then

t · αs = αs +
√

3αt,

st · αs = 2αs +
√

3αt,

ust · αs = 2αs +
√

3αt +
√

3αu,

tust · αs = 2αs + 2
√

3αt +
√

3αu,

and thus α = 2αs + 2
√

3αt +
√

3αu. Now 〈α, αr〉 = −2 ≤ −1, 〈α, αu〉 = 0
and 〈αr, αu〉 = 0. It follows by (1.7) that WΓ is a Coxeter group with
distinguished generating set SΓ, and by (1.8) we know further that ΦΓ is the
union of Φ+

Γ and −Φ+
Γ , where Φ+

Γ denotes the set of the roots in ΦΓ that
can be written as positive linear combinations of elements of Γ. Now let
β = ts · αr; then

β = t · (αr + 2αs) = αr + 2αs + 2
√

3αt,

and this is equal to α+ αr −
√

3αu. Hence β is an element of VΓ; but since
Γ is linearly independent, β is neither in Φ+

Γ nor in Φ−
Γ , and thus β cannot

be an element of ΦΓ.



Chapter 2 The depth of a root 18

Note that the explicit calculation of α above together with the previous
proposition imply that α is of depth 5; for, from each step to the next,
application of a simple reflection increases the corresponding coefficient, and
this indicates that the depth increases by 1. Similarly, γ = uts ·αr is of depth
4, since

s · αr = αr + 2αs,

ts · αr = αr + 2αs + 2
√

3αt,

uts · αr = αr + 2αs + 2
√

3αt + 2
√

3αu.

Observe that although α is of depth greater than dp(γ), all coefficients in α
are less than or equal to the corresponding coefficients in γ.

In general it is a rather tedious task to calculate the depth of a root
using (2.14). In order to find a noninductive formula for the depth of a root,
we define for v ∈ V :

V+(v) =
{
v′ ∈ V | 〈v, v′〉 > 0

}
, V−(v) =

{
v′ ∈ V | 〈v, v′〉 < 0

}
and V0(v) =

{
v′ ∈ V | 〈v, v′〉 = 0

}
.

Then V is the disjoint union of V+(v), V−(v) and V0(v), and it is clear that
V+(−v) = −V+(v) = V−(v) and V0(v) = V0(−v) = −V0(v). Furthermore,〈

w−1 · v′, v〉 =
〈
w · (w−1 · v′), w · v〉 =

〈
v′, w · v〉

for all v′ ∈ V , and thus

V+(w · v) = w · V+(v), V−(w · v) = w · V−(v) and V0(w · v) = w · V0(v).

Next, define for v ∈ V and w ∈ W ,

N+(w, v) = N(w) ∩ V+(v), N−(w, v) = N(w) ∩ V−(v)

and N0(w, v) = N(w) ∩ V0(v).

By the above, N(w) is the disjoint union of N+(w, v), N−(w, v) and N0(w, v)
and, furthermore, N+(w, v) = N−(w,−v) and N0(w, v) = N0(w,−v).
Since N(uw) is contained in N(w) ∪ w−1 ·N(u), it follows that

N+(uw, v) = N(uw) ∩ V+(v)

⊆ (
N(w) ∪ w−1 ·N(u)

) ∩ V+(v)

=
(
N(w) ∩ V+(v)

) ∪ (
w−1 ·N(u) ∩ V+(v)

)
= N+(w, v) ∪ w−1 · (N(u) ∩ w · V+(v)

)
.
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Now w · V+(v) = V+(w · v), and thus

N+(uw, v) ⊆ N+(w, v) ∪ w−1 · (N(u) ∩ V+(w · v))
= N+(w, v) ∪ w−1 ·N+(u, w · v).

Since by (1.11) further N(uw) = N(w) ∪ w−1 ·N(u) if l(uw) = l(u) + l(w),
this and similar arguments yield the next lemma, which will enable us to give
a formula for the depth of w · α.

(2.17) Lemma Let v ∈ V and u, w ∈W . Then

N+(uw, v) ⊆ N+(w, v) ∪ w−1 ·N+(u, w · v),
N−(uw, v) ⊆ N−(w, v) ∪ w−1 ·N−(u, w · v),
N0(uw, v) ⊆ N0(w, v) ∪ w−1 ·N0(u, w · v),

and these unions are disjoint. Moreover, if l(uw) = l(u) + l(w) we have
equality; hence in particular, N+(w, v) ⊆ N+(uw, v), N−(w, v) ⊆ N−(uw, v)
and N0(w, v) ⊆ N0(uw, v), and furthermore, N+(u, w · v) ⊆ w · N+(uw, v),
N−(u, w · v) ⊆ w ·N−(uw, v) and N0(u, w · v) ⊆ w ·N0(uw, v).

(2.18) Proposition Let α ∈ Φ and w ∈W . Then

dp(w · α) = dp(α) + |N−(w, α)| − |N+(w, α)|.

Proof. The assertion is trivial if l(w) = 0. So suppose l(w) ≥ 1, and let
u ∈W and r ∈ R with w = ru and l(w) = l(u) + 1. Then by (2.17),

N+(w, α) = N+(u, α)∪u−1 ·N+(r, u ·α) = N+(u, α)∪u−1 ·({αr}∩V+(u ·α)
)
;

and

N−(w, α) = N−(u, α)∪u−1 ·N−(r, u ·α) = N−(u, α)∪u−1 ·({αr}∩V−(u ·α)
)
,

and these unions are disjoint. So

|N+(w, α)| − |N+(u, α)| =
{

0 if 〈u · α, αr〉 ≤ 0,
1 if 〈u · α, αr〉 > 0,

and

|N−(w, α)| − |N−(u, α)| =
{

1 if 〈u · α, αr〉 < 0,
0 if 〈u · α, αr〉 ≥ 0.

Using (2.14), we deduce that

dp(w ·α) = dp(u ·α)+
(|N−(w, α)|− |N−(u, α)|)−(|N+(w, α)|− |N+(u, α)|),

and induction finishes the proof.
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If α and β are roots, and w ∈ W with w · α = β, Proposition (2.18)
yields that l(w) ≥ dp(β)−dp(α), with equality if and only if N(w) ⊆ V−(α).
In particular, if α is positive and β equals −α, then

l(rα) ≥ dp(α) − dp(−α) = 2 dp(α) − 1.

On the other hand, if w ∈W and r ∈ R with α = w ·αr and l(w) = dp(α)−1,
then rα = wrw−1, and so l(rα) ≤ l(w) + 1 + l(w) = 2 dp(α) − 1.

(2.19) Corollary l(rα) = 2 dp(α) − 1 for all α ∈ Φ+.

We can now generalize (2.14).

(2.20) Lemma Let α ∈ Φ and β ∈ Φ+. Then

dp(rβ · α)

⎧⎪⎨⎪⎩
< dp(α) if 〈α, β〉 > 0,

= dp(α) if 〈α, β〉 = 0,

> dp(α) if 〈α, β〉 < 0.

Proof. First, suppose that 〈α, β〉 = 0. Then rβ · α = α − 2〈α, β〉β = α, and
hence trivially dp(rβ · α) = dp(α).

Now let 〈α, β〉 > 0. Corollary (1.10) states that γ �→ −rβ · γ defines a
one-one correspondence on N(rβ). If γ ∈ N−(rβ, α), then

〈α,−rβ · γ〉 = −(〈α, γ〉 − 2〈γ, β〉〈α, β〉) = −〈α, γ〉+ 2〈γ, β〉〈α, β〉,

and this is greater than 0; for 〈γ, β〉 > 0 as γ ∈ N(rβ), 〈α, β〉 > 0 by
hypothesis and 〈α, γ〉 < 0 by choice of γ. So γ �→ −rβ · γ embeds N−(rβ, α)
into N+(rβ, α). But β is in N+(rβ , α) by hypothesis, and since β = −rβ · β
clearly β /∈ −rβ · N−(rβ , α). So |N−(rβ, α)| < |N+(rβ , α)|, and hence by
(2.18),

dp(rβ · α) = dp(α) + |N−(rβ , α)| − |N+(rβ , α)| < dp(α).

Finally, suppose that 〈α, β〉 < 0. Then 〈rβ · α, β〉 = −〈α, β〉 > 0, and
thus by the preceding paragraph, dp(α) = dp

(
rβ · (rβ ·α)

)
< dp(rβ ·α).
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We conclude this chapter with some first applications of inductive proofs
on the depth. First we give an alternative proof of the next theorem, which
was proved independently by V. V. Deodhar [4] and M. J. Dyer [5]. Our
proof is closely related to Dyer’s proof, translating his ideas into the context
of root systems.

(2.21) Theorem Let Γ ⊆ Φ, and let Ψ be the set of all roots α in ΦΓ∩Φ+

such that
N(rα) ∩ ΦΓ = {α}.

Then WΓ = WΨ, and for α, β ∈ Ψ with α �= β, either 〈α, β〉 ≤ −1 or
〈α, β〉 = − cos(π/m) for some integer m. Thus WΓ is a Coxeter group with
distinguished generating set SΨ.

The following technical lemma is a vital tool in our proof of (2.21).

(2.22) Lemma Suppose α and β are two positive roots with α �= β and
dp(α) ≤ dp(β). Then dp(−rα · β) < dp(α).

Proof. Let w ∈ W and r ∈ R with α = w · αr and l(w) = dp(α) − 1.
Then w−1 · β ∈ Φ+, since l(w−1) = l(w) and this is less than the depth of β.
Furthermore, w−1 ·β �= αr since α and β are distinct, and thus rw−1 ·β ∈ Φ+

by (1.4). Now

w−1 · (−rα · β) = w−1 · (−wrw−1 · β) = −(rw−1 · β) ∈ Φ−,

and so dp(−rα · β) ≤ l(w−1) < dp(α), as required.

Proof of (2.9). Clearly Ψ ⊆ ΦΓ, and thus ΦΨ ⊆ ΦΓ. Assume now for a
contradiction that ΦΓ �= ΦΨ; then

(
ΦΓ \ ΦΨ

)∩Φ+ �= ∅, and thus there exists
a positive root γ in ΦΓ \ ΦΨ of minimal depth. In particular, γ /∈ Ψ, and
hence (

N(rγ) ∩ ΦΓ

)
\ {γ} �= ∅.

Let β be an element of the above set of minimal depth; then −rγ ·β is also an
element ofN(rγ) \ {γ} by (1.10), and since β and γ are in ΦΓ by construction,
it follows that −rγ · β is in (N(rγ) ∩ ΦΓ) \ {γ}. If dp(β) ≥ dp(γ), then

dp(−rγ · β) < dp(γ) ≤ dp(β)

by (2.22), contradicting the minimality of β. So dp(γ) > dp(β), and mini-
mality of γ forces β ∈ ΦΨ.
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If rβ · γ is positive, then dp(γ) > dp(rβ · γ) by (2.20), since β ∈ N(rγ)
implies that 〈γ, β〉 > 0; thus rβ · γ ∈ ΦΨ by minimality of γ. If rβ · γ is
negative, then −rβ · γ is positive, and since dp(−rβ · γ) < dp(β) < dp(γ) by
(2.22), minimality of γ forces −rβ · γ ∈ ΦΨ. So in any case rβ · γ ∈ ΦΨ. But
since rβ ∈ WΨ, this yields γ ∈ ΦΨ, a contradiction. Hence ΦΓ = ΦΨ, and
thus WΓ = WΨ.

Now let α, β ∈ Ψ with α �= β. It remains to show that 〈α, β〉 ≤ −1 or
〈α, β〉 = − cos(π/m) for some integer m. If 〈α, β〉 ≤ −1 or 〈α, β〉 = 0 this
is certainly true, so assume without loss of generality that 〈α, β〉 > −1 and
〈α, β〉 �= 0. Then rα · β, rβ · α ∈ Φ+ since α, β ∈ Ψ; furthermore, rβ · (rα · β)
is also positive, since rα · β is an element of ΦΨ ∩ Φ+ but not equal to β (as
〈α, β〉 �= 0), and N(rβ) ∩ ΦΨ = {β}. Now β = rα · β + 2〈α, β〉α, and thus

−β = rβ · β = rβ · (rα · β) + 2〈α, β〉rβ · α,

which forces 〈α, β〉 to be less than 0; that is, 〈α, β〉 ∈ (−1, 0).

We show now that if λα + μβ is a root in ΦΓ, then λ and μ are either
both nonnegative or both nonpositive. Assume for a contradiction that there
exist λ, μ > 0 such that λα−μβ is a root in ΦΓ, and assume without loss of
generality that this is a positive root. Then

rα · (λα − μβ) =
(−λ+ 2〈α, β〉μ)

α− μβ

is in Φ−, since λ, μ > 0 and 〈α, β〉 < 0. Thus λα−μβ ∈ N(rα)∩ΦΓ, forcing
λα − μβ = α, and contradicting μ > 0.

Now let θ ∈ (0, π
2 ) such that 〈α, β〉 = − cos(θ), and let m ∈ N be

minimal such that (m + 1)θ > π; then sin
(
θ(m + 1)

)
< 0 and sin(θm) ≥ 0.

If m is even,

(rαrβ)m/2 · α =
1

sin(θ)
(sin

(
(m+ 1)θ

)
α+ sin(mθ)β)

by (1.1)(i), while if m is odd,

(rαrβ)(m+1)/2 · β = − 1
sin(θ)

(sin
(
(m+ 1)θ

)
α+ sin(mθ)β).

Since sin
(
(m+ 1)θ

)
< 0, the previous paragraph forces sin(mθ) ≤ 0 in both

cases, and we deduce that sin(mθ) = 0; hence mθ = π, as required.
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The following corollary is an easy consequence of the previous theorem
together with (1.8).

(2.23) Corollary Suppose Γ ⊆ Φ. Then there exists a standard geo-

metric realization of WΓ with root system Φ̃ and bilinear form ( , ), and a

bijection ψ: Φ̃ → ΦΓ with

(i) ψ
(
Φ̃+

)
= ΦΓ ∩ Φ+,

(ii) ψ(w · α̃) = w · ψ(α̃) for w ∈WΓ and α̃ ∈ Φ̃, and

(iii)
〈
ψ(α̃), ψ(β̃)

〉
=

(
α̃, β̃

)
for all α̃, β̃ ∈ Φ̃.

(2.24) Corollary Let α and β be roots such that 〈α, β〉 ∈ (−1, 1). Then
W{α,β} is finite.

Proof. We show first that 〈 , 〉 restricted to V{α,β} is positive definite. So
suppose that v ∈ V{α,β} with 〈v, v〉 ≤ 0, and let λ, μ ∈ R such that v equals
λα + μβ. Then

〈v, v〉 = λ2 + μ2 + 2〈α, β〉λμ =
(
λ+ 〈α, β〉μ)2 +

(
1 − 〈α, β〉2)μ2;

since 1 − 〈α, β〉2 > 0, this forces λ = μ = 0. Thus v equals the zero-vector,
as required.

Now let Γ = {α, β}; as in (2.22), define Ψ to be the set of all γ ∈ ΦΓ∩Φ+

with N(rγ) ∩ ΦΓ = {γ}. Since 〈 , 〉 restricted to V{α,β} is positive definite,
the remark following (1.8) yields that the elements of Ψ must be linearly
independent. So Ψ = {α′, β′} for some roots α′ and β′, as V{α,β} = VΨ is of
dimension 2. Since 〈 , 〉 is positive definite on V{α′,β′}, we know further that

0 < 〈α′ + β′, α′ + β′〉 = 2 + 2〈α′, β′〉,

and thus 〈α′, β′〉 > −1. So 〈α′, β′〉 = − cos(π/m) for some integer m by
(2.21), and it follows by (1.1)(i) and the faithfulness of the standard geometric
realization of W that WΓ = WΨ is finite.

(2.25) Lemma The support of a root is always a connected subgraph of the
Coxeter graph.

Proof. Let α be a root. Since supp(α) = supp(−α), we may assume without
loss of generality that α is positive. If α has depth 1, then | supp(α)| = 1,
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and a graph with one vertex is connected. So suppose next that α is of depth
greater than 1, and assume that the assertion is true for all positive roots of
depth less than dp(α). Let r ∈ R such that dp(r · α) = dp(α) − 1; that is,
〈α, αr〉 > 0. Since α is a positive root, and 〈αs, αr〉 ≤ 0 for all s ∈ R with
s �= r, this yields that αr is an element of supp(α). By induction, the support
of r · α is connected, and the definition of the action of W on V yields that

supp(α) = supp(r · α) ∪ {αr}.
If αr is in the support of r ·α, then supp(α) = supp(r ·α), which is connected.
If αr �∈ supp(r · α), then αr must be adjoined to an element of supp(r · α),
since 〈r · α, αr〉 = −〈α, αr〉 �= 0; hence supp(α) is again connected, and this
finishes the proof.

The next proposition is a generalization of the well known fact that if
the coefficient of a simple root in a root is greater than 0, it must be greater
than or equal to 1.

(2.26) Proposition Let α be a positive root, and let r ∈ R. Then the
coefficient of αr in α is either greater than or equal to 2, or equals 0, 1 or
2 cos(π/mst) for some s, t ∈ R with 4 ≤ mst < ∞. In particular, since
2 cos(π/m) ≥ √

2 for m ≥ 4, this yields that the coefficient of αr in α equals
0, 1 or is greater than or equal to

√
2.

Proof. Let α =
∑

s∈R λsαs, and assume without loss of generality that λr is
positive. If |R| = 1, then α = αr and λr = 1, and there is nothing left to
show; thus we may assume from now on that |R| ≥ 2.

Suppose now that I(α) ⊆ {r, s} for some s ∈ R \ {r}; (we call this
the rank 2 case). If 〈αr, αs〉 is less than or equal to −1 (that is, rs has
infinite order), then the result is an easy consequence of (1.1)(ii). So let
m = mrs <∞. We deduce from (1.1)(i) that there exists an l ∈ {0, . . . , 2m}
such that λr equals sin(lπ/m)/ sin(π/m). Since λr > 0, clearly 1 ≤ l ≤ m,
and by symmetry of sine on the interval [0, π], we may assume without loss
of generality that 1 ≤ l ≤ m

2 . Now λr = 1 if l = 1, and λr = 2 cos(π/m) if
l = 2; finally, if l ≥ 3, in particular m ≥ 2l ≥ 6, and thus

sin(lπ/m)
sin(π/m)

≥ sin(3π/m)
sin(π/m)

= 2 cos(2π/m) + 1 ≥ 2 cos(2π/6) + 1 = 2,

as required.
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The general case is shown by induction on the depth of α. If α has
depth 1, then α = αr, and the result follows trivially. So suppose dp(α) > 1,
and let s ∈ R and w ∈ W with α = w · αs and l(w) = dp(α) − 1. Further,
let t ∈ R such that l(wt) < l(w); then clearly t �= s, as w · αs ∈ Φ+. Choose
w′ ∈ wW{s,t} of minimal length. Then l(w′) ≤ l(wt) < l(w), and also
l(w′s) ≥ l(w′) and l(w′t) ≥ l(w′) by minimality of w′. So the roots w′ · αs

and w′ · αt are positive by (1.3); moreover, each of these roots is of depth
at most l(w′) + 1, which is less than dp(α). Hence the inductive hypothesis
applies to w′ · αs and w′ · αt.

There exists a u ∈W{s,t} with w = w′u, and we have u ·αs = μαs +ναt

for some μ, ν ∈ R. If u · αs ∈ Φ−, then μ, ν ≤ 0, and so

α = (w′u) · αs = μ(w′ · αs) + ν(w′ · αt)

is negative, contrary to our hypothesis. Hence μ, ν ≥ 0; in fact, μ, ν > 0,
since otherwise α = w′u ·αs would equal either w′ ·αs or w′ ·αt, contradicting
dp(α) > l(w′) + 1. Since the assertion is true for u · αs by the rank 2 case,
this implies that μ, ν ≥ 1.

Let μr, νr be the coefficients of αr in w′ · αs, w
′ · αt respectively, so

that λr = μμr + ννr ≥ μr + νr. If μr > 0, then by inductive hypothesis
μr ≥ 1, and the same is true for νr. So if both μr and νr are nonzero, then
λr ≥ 1 + 1 = 2; since λr > 0 by assumption, it will suffice to consider the
case νr = 0 and μr ≥ 1, and hence λr = μμr ≥ 1. If λr = 1, there is nothing
left to show, so suppose λr > 1. We must have either μ > 1 or μr > 1. If μ
and μr are both strictly greater than 1, then μ ≥ √

2 (by the rank 2 case)
and μr ≥ √

2 (by induction), and thus λr ≥ √
2
√

2 = 2, as required. This
leaves us with the case that one of μ and μr is 1, and the other one is equal
to λr. Then by induction or the rank 2 case, λr ≥ 2 or λr = 2 cos(π/mxy)
for some x, y ∈ R with 4 ≤ mxy <∞.

The arguments in the above proof also yield the following scholium.

(2.27) Suppose 〈αs, αt〉 ≥ −1 for all s, t ∈ R, and let α ∈ Φ+ and r ∈ R.
Then the coefficient of αr in α is a polynomial in C with coefficients in N0,
where C is the set{ sin(lπ/m)

sin(π/m)

∣∣ 4 ≤ m = mst <∞ for s, t ∈ R and l ∈ N with l ≤ m

2

}
.
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Dominance and Elementary Roots

The main result of this chapter is the finiteness of the set of elementary roots
defined below (given that R is finite). It can be shown that this is equivalent
to the Parallel Wall Theorem of the preprint [2], in which the proof given is
incomplete.

For α, β ∈ Φ+, we say that α dominates β (we write α dom β) if and
only if w · β is negative for all w ∈ W with w · α negative; equivalently, α
dominates β if and only if w · α ∈ Φ+ for all w ∈W with w · β ∈ Φ+.

Observe that if α dominates β and w · β is positive, it follows trivially
that (w ·α) dom (w ·β). Note also that it is not a priori clear that the notion
of dominance does not depend on W . That is, if Γ ⊆ Φ, and α and β are
roots in ΦΓ such that w · β negative whenever w · α ∈ Φ− for w ∈ WΓ, it
is not obvious that this means that α dom β. We will see shortly that it is
true, however.

Define Δ to be the set of positive roots α such that α dominates some
β in Φ+ \ {α}, and define the set of elementary roots E to be Φ+ \ Δ.

Note that since r · αr ∈ Φ− and r · (Φ \ {αr}
) ⊆ Φ+ for r ∈ R, every

simple root is elementary. Observe also that if α dominates β and w ·α is an
elementary root for some w ∈W , either α = β or w · β ∈ Φ−. If α ∈ Δ, and
w−1 ·α and u ·α are elementary for some u, w ∈W , then N(u)∩N(w−1) �= ∅;
for if α dominates β ∈ Φ+ \ {α}, then w−1 · β and u · β must be negative by
the above. Thus l(uw) �= l(u) + l(w) by (1.11).

(3.28) Lemma Let α ∈ Δ and u, w ∈ W with u · α, w−1 · α ∈ Π. Then
l(uw) �= l(u) + l(w).

By using r1r2 · · · rj−1rj in place of u and rj+1rj+2 · · · rl−1rl in place of
w (with α = (rj+1 · · · rl−1rl) · αs), we obtain

(3.29) Corollary Let r1, . . . , rl ∈ R such that l(r1 · · · rl) = l, and sup-
pose furthermore that (r1 · · · rl) · αs = αt for some s, t ∈ R. Then

(rjrj−1 · · · r2r1) · αt = (rj+1rj+2 · · · rl−1rl) · αs ∈ E for all j ∈ {1, . . . , l}.
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(3.30) Lemma Let α and β be distinct positive roots. Then α dom β if
and only if dp(w · α) > dp(w · β) for all w ∈W .

Proof. Suppose first that w · α is of depth strictly greater than dp(w · β) for
all w ∈ W . If u · α is negative for some u ∈ W , then dp(u · β) < dp(u · α),
and this is less than or equal to 0; whence u · β is negative, and we conclude
that α dom β.

For the converse suppose that α dom β, and let w ∈ W . Suppose first
that w · α is positive, and let u ∈ W and r ∈ R such that w · α = u · αr and
l(u) = dp(w ·α)− 1. Since r · (u−1w) ·α = −αr ∈ Φ− and α dom β, we know
that (ru−1w) ·β is negative. So by (1.4), either (u−1w) ·β = αr or (u−1w) ·β
is negative. But since α and β are distinct, the former is impossible, and
thus (u−1w) · β ∈ Φ−. Hence dp(w · β) ≤ l(u) < dp(w · α), as required.

Finally, suppose that w·α is negative, and thus w·β ∈ Φ− since α dom β.
Take u ∈ W and r ∈ R with l(u) = −dp(w · β) and u · (w · β) = −αr;
then (ruw) · β = αr is positive, and thus (ruw) · α must also be positive.
Since α �= β further (ruw) · α �= αr, so (uw) · α is still positive; that is,
u · (−w · α) = −uw · α ∈ Φ−. Hence

−dp(w · β) = l(u) ≥ dp(−w · α) = 1 − dp(w · α),

and thus dp(w · β) < dp(w · α), as required.

Note that if α dom β, the previous lemma implies that dp(α) ≥ dp(β),
with equality only if α = β, and so dom is antisymmetric. It is clear that dom
is also transitive, and so dom is a partial order on Φ+. The elementary roots
are the minimal elements in this partial order, and for each α ∈ Φ+ there
exists a β ∈ E such that α dom β. So if u, w ∈W , then N(u) ∩N(w−1) = ∅
if and only if N(u)∩N(w−1)∩E = ∅; hence (1.11) yields the following result.

(3.31) Lemma Let u, w ∈ W . Then l(uw) = l(u) + l(w) if and only if
N(u) ∩N(w−1) ∩ E = ∅.

Suppose next that W is finite, and let wR denote an element of W of
maximal length. Then l(wRr) ≤ l(wR) for all r ∈ R, and thus wR · αr ∈ Φ−.
Hence N(wR) = Φ+ (note that this also yields the uniqueness of wR). We
show now that dp(wR · α) = dp(−α) for all α ∈ Φ. By (2.13) it suffices
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to show this for α ∈ Φ+. Then 〈α, β〉 > 0 for β ∈ N(rα); furthermore,
rα permutes Φ+ \ N(rα) with 〈α, β〉 > 0 if and only if 〈α, rα · β〉 < 0 for
β ∈ Φ+ \ N(rα). Therefore

|Φ+ ∩ V+(α)| − |Φ+ ∩ V−(α)| = |N(rα)|;

that is, |N+(wR, α)|− |N−(wR, α)| = |N(rα)| = l(rα). Now (2.18) and (2.19)
yield that

dp(wR · α) = dp(α) − l(rα) = dp(α) − (
2 dp(α) − 1

)
= 1 − dp(α),

as required. So if dp(α) > dp(β) for some roots α and β, then

dp(wR · α) = 1 − dp(α) < 1 − dp(β) = dp(wR · β).

This together with (3.30) yield that there is no non-trivial dominance in finite
root systems.

The next proposition provides us with an alternative characterization
of dominance, which shows that dominance is independent of W .

(3.32) Proposition Let α and β be positive roots. Then α dom β if and
only if 〈α, β〉 ≥ 1 and dp(α) ≥ dp(β).

Proof. Suppose first that α dom β. By (3.30) we need only show that 〈α, β〉
is greater than or equal to 1. Since rα ·α is negative, rα ·β must be negative,
and this forces 〈α, β〉 > 0.

Assume for a contradiction that 〈α, β〉 ∈ (0, 1); then (2.24) yields that
W{α,β} is a finite Coxeter group, and by (1.12) there exists a finite parabolic
subgroup WJ of W and a w ∈W such that wW{α,β}w−1 ⊆ WJ . Then w · α
and w · β are in ΦJ , and by (3.30) and (2.16),

dpJ (w · α) = dp(w · α) > dp(w · β) = dpJ(w · β).

But now the remark preceding this proposition together with (2.16) imply

dp(wJw · α) = dpJ

(
wJ · (w · α)

)
< dpJ

(
wJ · (w · β)

)
= dp(wJw · β),

where wJ denotes the element of WJ of maximal length. This contradicts
(3.30) with wJw in place of w, and hence 〈α, β〉 ≥ 1 after all.
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For the converse, assume that 〈α, β〉 ≥ 1 and dp(α) ≥ dp(β). First
consider the case β ∈ Π, say β = αr. If α = αr there is nothing left to show,
so suppose r · α ∈ Φ+. Then

〈α, r · α〉 = 〈α, α〉 − 2〈α, αr〉2 = 1 − 2〈α, αr〉2 ≤ −1.

By (1.1)(ii) there are infinitely many roots of the form λα + μ(r · α) with
λ, μ > 0. Assume for a contradiction that α does not dominate β, and choose
w ∈W such that w · α ∈ Φ− and w · αr ∈ Φ+. Then

w · (r · α) = w · α+ 2〈α, αr〉(−w · αr)

is a positive linear combination of negative roots, and must therefore be
negative. So N(w) contains α and r · α, and hence also contains all roots of
the form λα+μ(r ·α) with λ, μ > 0. This contradicts the finiteness of N(w)
(see (1.9)).

Proceeding by induction on dp(β), suppose now that dp(β) > 1, and
choose r ∈ R such that dp(r · β) = dp(β) − 1. Since dp(α) ≥ dp(β) > 1,
clearly r · α ∈ Φ+. Further 〈r · α, r · β〉 ≥ 1, and

dp(r · α) ≥ dp(α) − 1 ≥ dp(β) − 1 = dp(r · β).

Now (r · α) dom (r · β) by induction, and therefore α dom β.

Observe that if 〈α, β〉 ≥ 1 for positive roots α and β, then by (3.32),
α dom β or β dom α.

Next, let Γ ⊆ Φ and let α and β be positive roots in ΦΓ such that w · β
is negative for all w ∈WΓ with w ·α negative. We show now that this yields
that α dom β. If α = β this is certainly true, so suppose without loss of
generality that α �= β. By (2.21) we know that WΓ is a Coxeter group, and
by (2.23) there exists a standard geometric realization of WΓ with bilinear
form ( , ) and root system Φ̃, and a bijection ψ: Φ̃ → ΦΓ such that

(i) ψ(Φ̃+) = ΦΓ ∩ Φ+,

(ii) ψ(w · α̃) = w · ψ(α̃) for all w ∈W and α̃ ∈ Φ̃, and

(iii) 〈ψ(α̃), ψ(β̃)〉 = (α̃, β̃) for all α̃, β̃ ∈ Φ̃.

Now ψ−1(α) and ψ−1(β) are in Φ̃+ by (i). If w · ψ−1(α) ∈ Φ̃− for some
w ∈ WΓ, then ψ

(
w · ψ−1(α)

) ∈ Φ− by (i), and thus w · α ∈ Φ− by (ii);
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hence w · β ∈ Φ− by hypothesis, and (again by (i) and (ii)), we find that
w · ψ−1(β) = ψ−1(w · β) ∈ Φ̃−. So ψ−1(α) dominates ψ−1(β) with respect
to WΓ. Proposition (3.32) now yields that

(
ψ−1(α), ψ−1(β)

) ≥ 1, and thus
〈α, β〉 ≥ 1 by (iii). Hence α dom β or β dom α. Since α �= β, and thus
ψ−1(α) �= ψ−1(β), Lemma (3.30) implies that the depth of ψ−1(α) with
respect to the distinguished generating set of WΓ is strictly greater than the
depth of ψ−1(β). Let w ∈ WΓ such that w · ψ−1(β) ∈ Φ̃− with the length
of w (with respect to the distinguished generating set of WΓ) equal to the
depth of ψ−1(β). Then w · ψ−1(α) ∈ Φ̃+, since ψ−1(α) is of depth greater
than the length of w. Therefore w · α ∈ Φ+ and w · β ∈ Φ− by (i) and (ii),
and thus β cannot dominate α; whence α dom β.

We now make use of (3.32) to give an alternative derivation of the well
known classification of finite Coxeter groups. Suppose that WJ is a parabolic
subgroup of W with Coxeter diagram

• • • •• •
r s1 s2 sl−1 sl t

m n

with m, n ≥ 4. Denote the simple roots corresponding to r, sj, t by x, yj

and z respectively, and define γ to be t(sl · · · s1) · x. Then

γ = x+ cm(y1 + · · ·+ yl) + cmcnz,

where cm = 2 cos(π/m) and cn = 2 cos(π/n), and an easy calculation yields
that〈γ, z〉 ≥ 1; since γ is certainly of depth greater than 1, we conclude that
γ dom z and γ ∈ Δ. So WJ must be infinite, and hence W must be infinite.
The root γ appearing above can be conveniently described by means of the
following diagram:

• • • •• ◦
1 cm cm cm cm cmcn

m ≥ 4 n ≥ 4

Note that the vertex in the above diagram corresponding to z (which is
dominated by γ) is denoted by a circuit rather than a dot. Similarly, roots
described by the following diagrams are necessarily in Δ.
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• • • •
•

•
◦

2c2m − 1 2cm 2cm 2cm 2cm

cm

cm

m ≥ 4
........................................................................
................................

.................................
........

• • • •
•

••

◦ 2 2 2 2

1

1

1

2

........................................................................

.................................
.................................

.......

...................................
...................................

.
.........................................................................

• • • •◦

•

•

1 2 4 2 1

2

1

• • • • • •◦

•

1 2 3 5 3 2 1

2

• • • • • • •

•

◦
2 4 7 5 4 3 2 1

3

• ◦ •
cm c2m 1

m ≥ 6

• • ◦ •
1 c5 + 1 2c5 + 1 c5

5
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• ◦ • • •
2c5 + 1 3c5 + 1 2c5 + 1 c5 + 1 1

5

• • • •◦√
2 2

√
2 4 2 1

4

Consequently a finite Coxeter group cannot have a parabolic subgroup
of type corresponding to any of the above diagrams. In (3.12) and (3.14) we
show that Δ is also non-empty if R contains a circuit or an infinite bond,
and this yields the following well-known theorem:

(3.33) Theorem Suppose W is finite. Then the Coxeter graph of W has
finitely many connected components, and each of these is one of the following
shapes:

I2(m) • •m

An • • • • •

Bn • • • • •4

Dn • •
•

•
• •

................................................................................

..................................
..................................

............

F4 • • • •4
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• • • • •E6

•

• • • • • •

•

E7

• • • • • • •

•

E8

• • •H3

5

• • • •H4

5

It is a straightforward matter to show that the form 〈 , 〉 is positive
definite for each of the diagrams in this list. Consequently there can be no
nontrivial dominance in these root systems, since if α dominates β,

〈α− β, α− β〉 = 〈α, α〉 + 〈β, β〉 − 2〈α, β〉 = 2(1 − 〈α, β〉) ≤ 0.

From Theorem (3.17) below it follows that the root systems (and hence the
groups) are finite in these cases.

We now define a second partial order � on Φ, which will enable us
to stop our search for elementary roots in an ascending chain with respect
to �, as soon as we find a non-elementary root (see (3.9)). This fact is an
important tool in the proof of the finiteness of the set of elementary roots.

For roots α and β we say that α precedes β (and write α � β) if there
exists a w ∈W with β = w ·α and N(w) ⊆ V−(α); that is, N(w) = N−(w, α)
and N+(w, α) = N0(w, α) = ∅. If α � β, we also write β � α and say that β
is a successor of α. We write α ≺ β or β � α if α � β and α �= β.
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Note that if α is a root and r ∈ R, then

r · α

⎧⎪⎨⎪⎩
≺ α if 〈α, αr〉 > 0; that is, dp(r · α) = dp(α) − 1,
= α if 〈α, αr〉 = 0,
� α if 〈α, αr〉 < 0; that is, dp(r · α) = dp(α) + 1.

In particular, if α is a positive root, then there exists an r ∈ R with α � r ·α.
Since dp(r ·α) = dp(α)− 1 in this case, an iteration yields that each positive
root is preceded by a simple one.

If β = w · α for some w ∈W , then

dp(β) − dp(α) = dp(w · α) − dp(α) = |N−(w, α)| − |N+(w, α)|

by (2.18), and it is clear that α � β if and only if there exists a w ∈ W
of length equal to dp(β) − dp(α) such that β = w · α. Therefore � is an-
tisymmetric, and we show now that � is also transitive, and thus a partial
order. So let α, β and γ be roots with α � β and β � γ. Then there exist
u, w ∈ W such that β = w · α and γ = u · β with N(w) = N−(w, α) and
N(u) = N−(u, β). Thus γ = uw · α, and (2.17) gives

N+(uw, α) ⊆ N+(w, α)∪w−1 ·N+(u, w ·α) = N+(w, α)∪w−1 ·N+(u, β) = ∅,

and similarly N0(uw, α) = ∅; hence N(uw) = N−(uw, α) and α � γ, as
required.

We can now state a slightly weaker criterion for precedence.

(3.34) Lemma Let α, β ∈ Φ such that β = w · α for some w ∈ W with
N+(w, α) = ∅. Then α � β.

Proof. If w = 1, this is certainly true; so suppose l(w) > 0, and proceed by
induction. Let r ∈ R and u ∈ W such that w = ur and l(w) = l(u) + 1.
Then N+(u, r · α) ⊆ r · N+(w, α) = ∅ by (2.17), and as β = u · (r · α), it
follows by induction that β � r · α. Lemma (2.17) implies furthermore that
N+(r, α) ⊆ N+(w, α) = ∅, and thus 〈α, αr〉 ≤ 0; we deduce that r · α � α,
and hence β � α by transitivity of �, as required.
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We show now that if β � α, then there exist roots α1, . . . , αd−1 with
dp(αi) = dp(α) + i and d = dp(β) − dp(α) such that

α ≺ α1 ≺ α2 ≺ · · · ≺ αd−1 ≺ β.

If α = β this is trivially true; so suppose α ≺ β, and let w ∈ W with
l(w) = dp(β) − dp(α) such that β = w · α. Then w �= 1 as α �= β, and thus
there exist u ∈W , r ∈ R such that w = ru and l(w) = l(u) + 1. Now

dp(β) − 1 ≤ dp(r · β) = dp(u · α)
= dp(α) + |N−(u, α)| − |N+(u, α)|
≤ dp(α) + l(u) = dp(α) + l(w) − 1 = dp(β) − 1,

and we must have equality everywhere; in particular, dp(r · β) = dp(β) − 1
and l(u) = |N−(u, α)|. So β � r · β = u · α and N(u) ⊆ V−(α), and thus
r · β � α. Since dp(r · β)− dp(α) = dp(β)− dp(α)− 1, induction yields that
there exist roots α1, . . . , αd−2 with dp(αi) = dp(α) + i such that

α ≺ α1 ≺ α2 ≺ · · · ≺ αd−2 ≺ r · β (= αd−1 ≺ β),

as required. In particular, if α ≺ β, then there exist r, s ∈ R such that
α � r · β ≺ β and α ≺ s · α � β.

(3.35) Lemma Let α =
∑

r∈R λrαr and β =
∑

r∈R μrαr be such that
α � β. Then λr ≤ μr for all r ∈ R.

Proof. If α = β, the assertion is trivially true, so suppose dp(β)−dp(α) > 0,
and let s ∈ R with β � s · α � α; then dp(s · α) = dp(α) + 1, and thus
dp(β) − dp(s · α) < dp(β) − dp(α). Further, 〈α, αs〉 < 0 and

s · α =
∑

r∈R\{s}
λrαr +

(
λs − 2〈α, αs〉

)
αs;

so by induction, μr ≥ λr for all r ∈ R \ {s} and μs ≥ λs − 2〈α, αs〉 > λs, as
required.
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Note that this also yields that if β = w · α and N(w) ⊆ V−(α) for
w ∈W , then w ∈WI , where I consists of all r ∈ R such that the coefficient
of αr in α is strictly less than the coefficient of αr in β.

(3.36) Lemma Let α, β ∈ Φ+ such that α � β and α ∈ Δ. Then β ∈ Δ.

Proof. If α = β, the assertion is again trivially true. Assume next that
dp(β) − dp(α) > 0, and let s ∈ R with β � s · α � α. Then s · α is of
depth dp(α) + 1, and thus dp(β) − dp(s · α) < dp(β) − dp(α); furthermore,
〈α, αs〉 < 0. Next, let γ ∈ Φ+ \ {α} such that α dominates γ; then 〈α, γ〉 ≥ 1
by (3.32), and thus clearly γ �= αs. So s · γ ∈ Φ+ by (1.4), and it follows
easily that (s ·α) dom (s ·γ); since obviously s ·α �= s ·γ, we deduce that s ·α
is in Δ, and thus β ∈ Δ by induction.

The next lemma gives an algorithm that has as its input the set of
elementary roots of depth n, and computes the set of elementary roots of
depth n+ 1.

(3.37) Lemma For all n ∈ N, define En = {α ∈ E | dp(α) = n }. Then

En+1 =
{
r · α | α ∈ En and r ∈ R with 〈α, αr〉 ∈ (−1, 0)

}
.

Proof. First, let α ∈ En and r ∈ R with 〈α, αr〉 ∈ (−1, 0), and suppose that
r · α dominates some β ∈ Φ+; then 〈r · α, β〉 ≥ 1, and thus β �= αr, since
〈r · α, αr〉 = −〈α, αr〉 ∈ (0, 1). So r · β ∈ Φ+ by (1.4), and it follows that
α dom (r · β). As α is elementary, this implies that r · β equals α; that is,
β = r · α. Therefore r · α is elementary, and since dp(r · α) = dp(α) + 1 by
(2.14) we have r · α ∈ En+1.

For the converse, suppose that α is an elementary root of depth n+ 1
(which is greater than 1), and let r ∈ R with r · α ≺ α. Then r · α ∈ En,
since r · α is of depth n by (2.14), and elementary by (3.36). Furthermore,
〈α, αr〉 > 0 since r · α ≺ α; on the other hand, 〈α, αr〉 < 1 by (3.32), as α is
of depth greater than 1 and cannot dominate αr. Thus 〈α, αr〉 ∈ (0, 1), and
hence 〈r · α, αr〉 ∈ (−1, 0), as required.
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(3.38) Lemma Let α, β ∈ Φ+ with β � α, and let r ∈ R such that 〈β, αr〉
is less than or equal to −1. Then α ∈ Δ, or the coefficients of αr in α and β
coincide.

Proof. Suppose that the coefficients of αr in α and β do not coincide, and
let γ be a root of maximal depth with β � γ � α such that the coefficients
of αr in β and γ coincide; then γ ≺ r · γ � α by maximality of γ. Now
γ − β =

∑
s∈R\{r} λsαs for some λs ≥ 0, and hence

〈r · γ, αr〉 = −〈γ, αr〉 = −〈β, αr〉 −
∑

s∈R\{r}
λs〈αs, αr〉 ≥ 1,

since 〈αs, αr〉 ≤ 0 for s �= r. As dp(r · γ) > 1 = dp(αr), this implies that
r · γ ∈ Δ, and thus α ∈ Δ by (3.36).

(3.39) Corollary Let α ∈ Φ+ such that supp(α) contains a circuit. Then
α ∈ Δ.

Proof. Let β be a positive root of minimal depth preceding α such that
supp(β) contains a circuit, and let r ∈ R with r · β ≺ β. By minimality of β
we find that supp(r · β) does not contain a circuit. Now let β =

∑
x∈R λxαx

and r · β =
∑

x∈R μxαx. Since λx = μx for all x �= r, and the support of β
contains a circuit, while the support of r · β does not, it follows that μr = 0,
and that αr is part of a circuit in supp(β). Hence there exist at least two
elements αs, αt of supp(β) \ {αr} such that αr is adjoined to αs as well as
αt. By definition of 〈 , 〉, it follows that 〈αr, αs〉 and 〈αr, αt〉 are both at most
− cos(π/3) = −1

2 , while 〈αr, αx〉 ≤ 0 for all other x ∈ R \ {r}. Furthermore,
μs, μt ≥ 1 by (2.26), and thus

〈r · β, αr〉 =
∑
x∈R

μx〈αx, αr〉 =
∑
x�=r

μx〈αx, αr〉 ≤ μs〈αs, αr〉+ μt〈αt, αr〉 ≤ −1.

Since the coefficient of αr in β is not equal to the coefficient of αr in r · β,
Lemma (3.38) implies that β ∈ Δ; hence α ∈ Δ by (3.36), as required.
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(3.40) Corollary Let r, s ∈ R be adjoined. Further, suppose that α and
β are positive roots with α � β such that r ∈ I(α) \ I(β), and the coefficient

of αs in β is greater than or equal to |〈αr, αs〉|−1
. Then α ∈ Δ.

Proof. Let β =
∑

t∈R\{r} λtαt. Then

〈β, αr〉 =
∑

t∈R\{r}
λt〈αt, αr〉 =

∑
t�=r,s

λt〈αt, αr〉+λs〈αs, αr〉 ≤ λs〈αs, αr〉 ≤ −1.

Since the coefficient of αr in α is not equal to the coefficient of αr in β,
Lemma (3.38) implies that α ∈ Δ.

(3.41) Corollary Let r, s ∈ R such that r and s are adjoined by an
infinite bond, and suppose that α is a positive root with both αr and αs in
its support. Then α ∈ Δ.

Proof. Interchanging r and s if necessary, we may choose β � α such that
r ∈ I(β) and s /∈ I(β). Since the coefficient of αr in β is greater than or
equal to 1 by (2.26), and thus greater than or equal to |〈αr, αs〉|−1, (3.40)
implies that α ∈ Δ.

Our proof of the fact that E is finite (if R is finite) depends on the
finiteness of the set of real numbers { 〈α, αr〉 | α ∈ E and r ∈ R }. The next
definition facilitates the statement of the relevant facts.

Define C(R) to be the set of all real numbers of the form cos(nπ/m)
with n ∈ {1, . . . , m− 1} and m = mrs <∞ for some r, s ∈ R. If R is finite,
then |C(R)| is less than or equal to the sum of all m− 1 with m = mrs <∞
for some r, s ∈ R.

The next proposition is a slight variation of (1.12). It yields that if
〈α, β〉 ∈ (−1, 1) for some roots α and β, it follows that 〈α, β〉 ∈ C(R). For
(2.24) implies that W{α,β} is finite if 〈α, β〉 ∈ (−1, 1), and by the next asser-
tion there exist r, s ∈ R and w ∈W such that w ·α, w · β ∈ Φ{r,s}; therefore
we can deduce from (1.1)(i) that

〈α, β〉 = 〈w · α,w · β〉 = cos(nπ/mrs)

for some n ∈ N, as required.
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(3.42) Proposition Let Γ ⊆ Φ such that WΓ is finite. Then there exists
a finite parabolic subgroup WI of W with |I| ≤ |Γ| such that WΓ is conjugate
to a subgroup of WI .

Proof. Since WΓ is finite, we know by (1.12) that WΓ is conjugate to a sub-
group of a finite parabolic subgroup WJ , and we may assume without loss of
generality that WΓ ⊆ WJ . If |J | = |Γ| the assertion is true, so suppose now
that |J | > |Γ|. We show that there exists an I ⊆ J with I �= J such that WΓ

is conjugate to a subgroup of WI , and the assertion will follow by induction.

As in the proof of (1.12), let V ∗
J denote the dual space of VJ , acted upon

from the right by WJ , and for f ∈ V ∗
J define S(f) = { γ ∈ Φ+

J | f(γ) < 0 }.
Since the space spanned by Γ is a subspace of VJ , and has dimension less
than |J | (the dimension of VJ ), there exists a nonzero vector v0 ∈ VJ such
that 〈v0, γ〉 = 0 for all γ ∈ Γ. Define F ∈ V ∗

J by F : v �→ 〈v, v0〉; then S(F ) is
finite, since Φ+

J is finite. As in the proof of (1.12) there exists an x ∈W such
that S(Fx) = ∅ and xWΓx

−1 ⊆ WI , where I = { r ∈ J | (Fx)(αr) = 0 }.
Theorem (3.33) states that the Coxeter graph of J consists of finitely many
connected components, each of which is of one of the shapes described in
(3.33), and thus it can be easily verified that 〈 , 〉 restricted to VJ is positive
definite; therefore F �= 0, and thus I �= J , as required.

The following technical lemma, though trivial, provides the key for our
proof of the main theorem.

(3.43) Lemma Let α = Σr∈Rλrαr and β = Σr∈Rμrαr be positive roots.
Furthermore, suppose that there exist R1, R2 ⊆ R with R = R1 ∪ R2 such
that 〈α, αr〉 = 〈β, αr〉 for all r ∈ R1, and λr = μr for all r ∈ R2. Then
〈α, β〉 = 1.

Proof. Since α− β =
∑

r∈R1
(λr − μr)αr, we have

〈α, α− β〉 =
∑
r∈R1

(λr − μr)〈α, αr〉 =
∑

r∈R1

(λr − μr)〈β, αr〉 = 〈β, α− β〉,

and as 〈α, α〉 = 〈β, β〉 = 1, this becomes 1 − 〈α, β〉 = 〈α, β〉 − 1, and the
result follows.
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(3.44) Theorem E is finite, provided that R is finite.

Proof. If R is finite, it is clear that C(R) is finite, and we set c = |C(R)|.
Since every root of depth d can be expressed as (rdrd−1 · · · r2) ·αr1 with each
ri ∈ R, there are no more than |R|d roots of depth d. If we can show that
no root in E can have depth exceeding c|R|(|R| + 1) + 1, the proof will be
complete. So let β ∈ E have depth d, and let β1 ≺ · · · ≺ βd = β be a
sequence of positive roots such that dp(βi) = i. Note that βi ∈ E for each
i ∈ {1, . . . , d}. For i ∈ {1, . . . , d}, define Ji = { r ∈ R | 〈βi, αr〉 > −1 }. If
r /∈ Ji, the coefficient of αr in βj is constant for all j ≥ i by (3.38); since
〈αs, αr〉 ≤ 0 for all s ∈ R \ {r}, it follows from (3.35) that 〈βj , αr〉 ≤ 〈βi, αr〉
for j ≥ i, and hence r /∈ Jj for all j ≥ i. Thus the sets Ji form a decreasing
chain.

Suppose Ji = · · · = Jj = J for some 2 ≤ i ≤ j. If k ∈ {i, . . . , j}
and r ∈ R, then 〈βk, αr〉 < 1 by (3.32); (since βk is of depth greater than
1 and cannot dominate αr). Hence 〈βk, αr〉 ∈ (−1, 1) for r ∈ J , and thus
〈βk, αr〉 ∈ C(R) by the remark preceding (3.42). So if j − i ≥ c|R|, then
there exist m, n ∈ {i, i + 1, . . . , j} with n > m and 〈βn, αr〉 = 〈βm, αr〉 for
all r ∈ J . But if r /∈ J , then αr has the same coefficient in βm as in βn, and
it follows by (3.43) that 〈βn, βm〉 = 1. This contradicts (3.32), since βn /∈ Δ.
We conclude that if j − i ≥ c|R|, then Jj is strictly smaller than Ji. Since
J2 ⊆ R, it follows that the chain J2 ⊇ J3 ⊇ · · · ⊇ Jd can have length at most
c|R|(|R| + 1), and this finishes the proof.

(3.45) Lemma Let α ∈ Φ+. Then α ∈ E or there exists β ∈ Φ+ such that
α dom β and rβ · α ∈ Φ+.

Proof. If dp(α) = 1 then α ∈ E and there is nothing left to show., So suppose
dp(α) > 1 and α �∈ E . Now let γ be a positive root different from α which is
dominated by α. and let r ∈ R such that r ·α ≺ α. If γ = αr choose β = αr.
Then rβ · α = r · α has depth greater or equal to 1 and hence is in Φ+.

Suppose next γ �= αr. Then r·γ ∈ Φ+ by (1.6) and hence r·α dominates
r · γ, whence r · α ∈ ΔW . By induction there exists a root β′ ∈ Φ+ which
is dominated by r · α such that rβ′ · (r · α) ∈ Φ+. Since 〈r · α, αr〉 < 0 as
r · α ≺ α while on the other hand 〈r · α, β′〉 ≥ 1 by (3.32) , we know β′ �= αr.
Hence r · β′ ∈ Φ+ by (1.6) and thus α dom r · β′ as β′ ∈ Φ+.

If rr·β′ ·α ∈ Φ+ choose β = r ·β′. Then clearly α dom β and rβ ·α ∈ Φ+.
This leaves us with the case rr·β′ · α ∈ Φ−. Since rr·β′ = rrβ′r by (1.9) we



find
rr·β′ · α = rrβ′r · α = r · (rβ′ · (r · α)).

As rβ′ · (r · α) ∈ Φ+ by choice of β′, this forces rβ′ · r · α to be equal to αr.
That is,

r · α = rβ′ · αr = αr − 2〈αr, β
′〉β′.

Now 1 ≤ 〈r · α, β′〉 by (3.32) and this equals

〈αr, β
′〉 − 2〈αr, β

′〉〈β′, β′〉 = −〈αr, β
′〉.

Thus 〈r·β′, αr〉 = −〈αr, β
′〉 ≥ 1 and clearly dp(r·β′) ≥ 1 = dp(αr); by (3.32)

this yields r · β′ dom αr, and by transitivity of dominance we find α dom αr.
So if we choose β = αr then certainly α dom β and rβ · α = r ·α ∈ Φ+.

Chapter 4

The Stabilizer of a Root

We now show that the stabilizer of a root is the semidirect product of a
Coxeter group and a free group.

For a root α, we denote the stabilizer of α in W by W (α). Any root
can be written as w · αr for some w ∈W and r ∈ R, and an easy calculation
yields that W (w ·αr) = wW (αr)w−1; therefore we can restrict our attention
to W (αr) for r ∈ R.

Let Γ(r) be the set of roots γ with 〈αr, γ〉 = 0; that is, Γ(r) equals
V0(αr) ∩ Φ. The group WΓ(r) generated by the reflections corresponding
to the roots in Γ(r) is a normal subgroup of W (αr); moreover, Theorem
(2.21) states that WΓ(r) is a Coxeter group. We will show that WΓ(r) has
a complement Yr in W (αr), and that Yr is isomorphic to the fundamental
group of a certain graph. Well known arguments then show that Yr is a free
group.

Next, let Xr be a set of coset representatives of WΓ(r) in W (αr) of
minimal length. For w ∈ Xr, the minimality of l(w) yields that l(wrγ) ≥ l(w)
for all roots γ ∈ Γ(r), and it follows by the Strong Exchange Condition that
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N(w) ∩ Γ(r) = ∅; that is, N0(w, αr) = ∅. So Xr is a subset of Yr, the set of
all w ∈ W (αr) with N0(w, αr) = ∅. We will see shortly that Xr = Yr, and
then use the concepts developed in the preceding chapter to prove that Yr

has the properties we have described.

(4.46) Lemma Let α ∈ Φ and w ∈ W such that N0(w, α) = ∅. Then
N0(w−1, w · α) = ∅.

Proof. Since V0(w · α) = w · V0(α), we know that

N0(w−1, w · α) = N(w−1) ∩ V0(w · α)

= N(w−1) ∩ w · V0(α)

= w · (w−1 ·N(w−1) ∩ V0(α)
)
.

Further, w−1 ·N(w−1) = −N(w) by (1.10), while −V0(α) = V0(α); therefore

N0(w−1, w · α) = −w · (N(w) ∩ V0(α)
)

= −w ·N0(w, α) = ∅.

Now let w ∈ Yr. Then N0(w−1, αr) = N0(w−1, w · αr) = ∅ by (4.46),
and thus w−1 ∈ Yr. If u, w ∈ Yr, (2.17) yields that

N−(uw, αr) ⊆ N0(w, αr) ∪ w−1 ·N0(u, w · αr)

= N0(w, αr) ∪ w−1 ·N0(u, αr)
= ∅,

and therefore also uw ∈ Yr. Since clearly 1 ∈ Yr, this proves that Yr is a
group.

We show next that Yr = Xr. Let w ∈ Yr, and let u ∈ Xr be the
representative of the coset wWΓ(r); then u ∈ Yr, and thus w−1u ∈ Yr and

N(w−1u) ∩ Γ(r) = N0(w−1u, αr) = ∅.

It is clear that ΦΓ(r) = Γ(r), and so the above becomes:

(w−1u) · (ΦΓ(r) ∩ Φ+
) ⊆ ΦΓ(r) ∩ Φ+.
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As w−1u ∈WΓ(r), faithfulness of the standard geometric realization together
with (2.23) now imply that w−1u equals 1; that is, w = u ∈ Xr. Whence
Xr = Yr, and it remains to show that Yr is a free group.

We obtain the odd Coxeter graph of W by deleting all edges of even
weight as well as all edges of infinite weight from the Coxeter graph. Let the
set F consist of all (l + 1)-tuples (r0, . . . , rl) with r0, . . . , rl ∈ R such that
ri−1 and ri are adjoined in the odd Coxeter graph for all i ∈ {1, . . . , l}. If
s, t ∈ R are adjoined by a bond of weight 2n + 1, we define π(s, t) = (ts)n;
then sπ(s, t) is the uniquely determined word in W{s,t} of maximal length,
and thus

N
(
π(s, t)

)
= Φ+

{αs,αt} \ {αt}.
Define π:F →W by π(r0) = 1 and for l ≥ 1,

π(r0, . . . , rl) = π(r0, r1)π(r1, r2)π(r2, r3) · · ·π(rl−2, rl−1)π(rl−1, rl).

Now let (r0, . . . , rl) ∈ F , and set w = π(r0, . . . , rl). It follows from
(1.1)(i) that π(ri−1, ri) ·αri

= αri−1 for all i, and thus π(ri, . . . , rl) ·αrl
= αri

;
in particular, w · αrl

= αr0 . An iteration of (2.17) yields that

N0(w, αrl
) ⊆

l⋃
i=1

π(rl, · · · ri) ·N0

(
π(ri−1, ri), π(ri, . . . , rl) · αrl

)
=

l⋃
i=1

π(rl, · · · ri) ·N0

(
π(ri−1, ri), αri

)
.

Since the order of ri−1ri is odd, we deduce from (1.1)(i) that Φ{ri−1,ri} con-
tains no roots perpendicular to αri

, and thus N0

(
π(ri−1, ri), αri

)
is empty

for all i; hence N0(w, αrl
) = ∅. In particular, if r0 = rl = r then π(r0, . . . , rl)

is an element of Yr.

Next, define L:F → N0 by L(r0, . . . , rl) =
∑l

i=1 l
(
π(ri−1, ri)

)
. It is

clear that L(s) ≥ l
(
π(s)

)
for all s ∈ F , and we define F̃ ⊆ F to be the set

of all s ∈ F with L(s) = l
(
π(s)

)
. Note that (s, t) ∈ F̃ for all (s, t) ∈ F . If

(r0, . . . , rl) ∈ F̃ , it is certainly necessary that ri−1 �= ri+1 for all i, since

π(s, t, s) = π(s, t)π(t, s) = 1.

We will soon see that this condition is also sufficient.
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(4.47) Proposition Let w ∈ W and r, s ∈ R. Then w · αr = αs with

N0(w, αr) = ∅ if and only if there exists some (r0, . . . , rl) ∈ F̃ with r0 = s
and rl = r such that w = π(r0, . . . , rl).

Proof. We have seen above that w ·αr = αs and that N0(w, αr) is empty for
w = π(r0, . . . , rl) with rl = r, r0 = s and (r0, . . . , rl) ∈ F̃ ⊆ F ; so it suffices
to show the converse.

Suppose that w · αr = αs and N0(w, αr) = ∅. If w = 1, the assertion
is true with l = 0. So assume that w �= 1, and proceed by induction. Let
t ∈ R with l(wt) < l(w); then t �= r by (1.5), as w · αr = αs is positive. Set
I = {r, t}, and let u ∈ WI be of maximal length such that w = du for some
d ∈W with l(w) = l(d) + l(u). Then by (2.17),

N0(u, αr) = ∅ and N0(d, u · αr) = ∅. (∗)

Now let λ, μ ∈ R such that u · αr = λαr + μαt; then

αs = w · αr = d · (u · αr) = λ(d · αr) + μ(d · αt)

and λ, μ ≥ 0 or λ, μ ≤ 0. Maximality of u together with (1.5) force d ·αr and
d ·αt to be positive, and as αt is positive, we deduce that λ, μ ≥ 0; moreover,
λ = 0 or μ = 0 since αs is simple. That is, u ·αr = αr or u ·αr = αt, and we
denote u · αr by αz.

Since u·αr is positive, we know by (1.5) that lI(ur) = lI(u)+1, and as u
is an element of WI and u �= 1, this forces lI(ut) < lI(u); that is, u ·αt ∈ Φ−.
Furthermore, u · αr and u · αt are linearly independent since αr and αt are
linearly independent, and thus in particular u · αt �= −u · αr = −αz. So
(zu) · αt ∈ Φ− by (1.4) and clearly (zu) · αr = −αz ∈ Φ−. Now N(zu)
includes all positive roots which are linear combinations of αr and αt, and
thus rt must have finite order, and zu is the uniquely determined word in
WI of maximal length.

Assume for a contradiction that the order of rt is even and equals 2m.
Then u = t(rt)m−1, and we can deduce from (1.1)(i) that (tr)

m−1
2 · αt is in

N0(u, αr) if m is odd, and t(rt)
m
2 −1 ·αr is in N0(u, αr) if m is even. Both of

these contradict (∗), so rt must have odd order. Then u = π(t, r); moreover,
d · αt = d · (u · αr) = w · αr = αs with N0(d, αt) = N0(d, u · αr) = ∅ by
(∗). Since l(u) ≥ l(t) = 1, we know that l(d) < l(w), and by induction there
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exists an (r0, . . . , rl) ∈ F̃ with r0 = s and rl = t such that d = π(r0, . . . , rl).
Now (r0, . . . , rl, r) ∈ F , and

w = du = π(r0, . . . , rl)π(rl, r) = π(r0, . . . , rl, r);

furthermore, l(w) = l(d) + l(u) = L(r0, . . . , rl) + L(rl, r) = L(r0, . . . , rl, r),
and thus (r0, . . . , rl, r) is in F̃ , as required.

It is clear that the elements of the fundamental group of a connected
graph Ξ can be identified with paths in Ξ which start and end at a fixed
vertex v, and which never back-track upon themselves; that is, at no stage
does the path traverse an edge and then immediately traverse it again in
the opposite direction. It is well known (see, for example, [8], Chapter 6,
Theorem (5.2), p.198) that this fundamental group is free of rank ε− ν + 1,
where ε is the number of edges, and ν is the number of vertices of Ξ. (This
follows from the fact that Ξ is homotopy equivalent to a graph on one vertex
with ε− ν + 1 edges - topologically, a bouquet of circles - as can be seen by
shrinking a spanning tree of Γ to a single vertex.)

Specifically, if the graph Ξ is the connected component of the odd Cox-
eter graph containing the vertex r ∈ R, then the elements of the fundamental
group of Ξ can be identified with the set

Fr =
{
(r0, . . . , rl) ∈ F | r0 = rl = r and ri−1 �= ri+1 for all i ∈ {1, . . . , l}},

multiplication being defined by the rule

(r0, . . . , rl) ∗ (s0, . . . , sm) = (r0, . . . , rl−i−1, si, . . . , sm),

where i is the maximal integer such that sj = rl−j for all j ∈ {0, . . . , i}. Note
that the identity of this group is (r). At the beginning of this chapter we
have seen that π maps Fr into Yr, and since π(s, t, s) = 1 for (s, t, s) ∈ F , we
conclude that π induces a homomorphism πr from Fr to Yr. If (r0, . . . , rl) is
in F̃ with r0 = rl = r, clearly (r0, . . . , rl) ∈ Fr, and so (4.47) implies that πr

is surjective. The next proposition yields that Fr ⊆ F̃ . So if s ∈ Fr is in the
kernel of πr, then

L(s) = l
(
π(s)

)
= l

(
πr(s)

)
= l(1) = 0,

and thus s = (r). Hence πr is also injective, and therefore a group isomor-
phism.
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(4.48) Proposition Let (r0, . . . , rl) ∈ F \ F̃ . Then ri−1 = ri+1 for some
i ∈ {1, . . . , l− 1}.

Proof. In order to avoid double indices, we denote the simple root corre-
sponding to ri by αi for all i. Now let m ∈ {0, . . . , l} be minimal such that
(r0, . . . , rm) /∈ F̃ , and let n ∈ {0, . . . , m} be maximal such that (rn, . . . , rm)
is not in F̃ . Since (rn, . . . , rm) is also in F \ F̃ , and as it suffices to find one
i such that ri−1 = ri+1, we may assume without loss of generality that n = 0
and m = l. Then (r0, . . . , rl−1), (r1, . . . , rl) ∈ F̃ by minimality of m and
maximality of n respectively. Further l ≥ 2, since (s, t) ∈ F̃ for all (s, t) ∈ F .
Now define u1 = π(r0, r1), w = π(r1, . . . , rl−1) and u2 = π(rl−1, rl). The
above yields that l(u1w) = l(u1) + l(w) as well as l(wu2) = l(w) + l(u2), and
thus by (1.11),

N(u1w) = w−1 ·N(u1) ∪N(w) and N(w) ∩N(u−1
2 ) = ∅.

On the other hand, (r0, . . . , rl) /∈ F̃ implies that l(u1wu2) < l(u1w) + l(u2),
and thereforeN(u1w)∩N(u−1

2 ) �= ∅ by (1.11); hence w−1·N(u1)∩N(u−1
2 ) �= ∅

by the above. Now

N(u1) = Φ+
{α0,α1} \ {α1} and N(u−1

2 ) = Φ+
{αl−1,αl} \ {αl−1};

thus there exist λ > 0, μ ≥ 0 and x ≥ 0, y > 0 such that

w−1 · (λα0 + μα1) = xαl−1 + yαl.

Since w−1·α1 = αl−1, this yields that λ(w−1 ·α0) = (x−μ)αl−1+yαl; as y > 0
and w−1 · α is either positive or negative, this forces x ≥ μ. Symmetrically,
y(w · αl) = (μ− x)α1 + λα0 and λ > 0, and thus μ = x and w · αl = α0. If
l = 2, then w = 1 and α0 = 1 · α2 = α2, and thus r0 = r2, as required.

Assume for a contradiction that l > 2; then (r0, r1, r2) is in F̃ by
minimality of m = l, and this yields that r0 �= r2, and thus α0 �= α2. Let
u = π(r2, . . . , rl−1); then w = π(r1, r2)u with

l(w) = l
(
π(r1, r2)u

)
= l

(
π(r1, r2)

)
+ l(u). (∗)

Next, define γ to be π(r1, r2)−1 · α0; since u−1 · γ = w−1 · α0 = αl and
π(r1, r2) · γ = α0 are both in Π, Lemma (3.28) and (∗) force γ to be an
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elementary root. We show that this cannot be true, and this will be the
desired contradiction.

We show first that γ is preceded by r1r2 · α0. By definition of π,
it is clear that π(r1, r2)−1 equals w′r1r2 for some w′ ∈ W{r1,r2} of length
l(π(r1, r2)−1) − 2. Now

N+(w′, r1r2 · α0) ⊆ r1r2 ·N+

(
π(r1, r2)−1, α0

)
by (2.17), and since N

(
π(r1, r2)−1

) ⊆ Φ+
{r1,r2} and 〈α0, α1〉, 〈α0, α2〉 ≤ 0, it

follows that N+

(
π(r1, r2)−1, α0

)
is empty. Therefore N+

(
w′, r1r2 · α0

)
must

be empty, and (3.34) yields that γ � r1r2 · α0. Now

r1r2 · α0 = α0 +
(
4〈α0, α2〉〈α1, α2〉 − 2〈α0, α1〉

)
α1 +

(−2〈α0, α2〉
)
α2,

with 〈α0, α1〉, 〈α1, α2〉 < 0 (by construction), and 〈α0, α2〉 ≤ 0 (as r0 �= r2);
so the coefficient of α1 in r1r2 · α0 is positive. Lemma (3.35) implies that
there exist a, b ∈ R with a > 0 and b ≥ 0 such that γ = α0 + aα1 + bα2.
Further,

αl = u−1 · γ =
(
u−1 · α0

)
+ a

(
u−1 · α1

)
+ b

(
u−1 · α2

)
=

(
u−1 · α0

)
+ a

(
u−1 · α1

)
+ bαl−1,

with u−1 · α1 ∈ Φ+ (since l(r1u) > l(u) by (∗)). As a > 0 and b ≥ 0, this
forces u−1 · α0 to be negative; that is, α0 ∈ N(u−1). Now N0(u, αl−1) is
empty by (4.47), and thus (4.46) yields that

N(u−1) ∩ V0(α2) = N0(u−1, α2) = N0(u−1, u · αl−1) = ∅.

So α0 /∈ V0(α2); that is, 〈α0, α2〉 �= 0. Hence r0 and r2 are adjoined and
〈α0, α2〉 < 0. In particular, the coefficient of α2 in r1r2 ·α0 is positive, and so
the coefficient of α2 in γ must also be positive by (3.35); that is, b > 0. Now
α0, α1, α2 ∈ supp(γ), and since these form a circuit, (3.39) forces γ ∈ Δ.
This contradicts our earlier conclusion that γ is elementary, and thus l = 2
and r0 = r2 after all, as required.



(4.49) Theorem The stabilizer of αr in W is the semidirect product of
WΓ(r) and Yr. Moreover, WΓ(r) is a Coxeter group, and Yr is a free group of
rank e(r) − n(r) + 1, where e(r) denotes the number of edges and n(r) the
number of vertices of the connected component of the odd Coxeter graph of
W containing r.

Chapter 5

An Automatic Structure

The principal result of this chapter is that Coxeter groups with finite distin-
guished generating sets are automatic. This is proved in [2] under the as-
sumption that the Parallel Wall Theorem is valid. In our proof, the concept
of dominance introduced in Chapter 3 replaces the parallel wall property.

For a finite set A, let A∗ be the free monoid on A with multiplica-
tion ∗. Any subset L of A∗ is a language over the alphabet A, the elements
of A being the letters, and the elements of L the words of the language. A
language is regular if and only if there exists a deterministic finite state au-
tomaton which accepts the words of the language and rejects words which
are not in the language. A deterministic finite state automaton is a quintuple
(S, A, μ,Y, S0), where S is a finite set of states, Y ⊆ S is the set of accept
states, S0 ∈ S is the starting state and μ: S×A→ S is the transition func-
tion. The automaton reads the letters of a word one at a time, starting from
the left and in state S0, and if it was in state S before reading the letter a,
its state after reading a is μ(S, a). The automaton accepts the word if it is
in an accept state after reading the final letter, and rejects it otherwise. We
say that (S, A, μ,Y, S0) recognizes L.

In order to define automaticity for groups, we shall also have to consider
languages over the alphabet A =

(
(A ∪ {$})× (A ∪ {$})) \ {($, $)}, where $

denotes a symbol which is not in A. For (a1, b1), . . . , (an, bn) in A we identify
(a1, b1) ∗ . . . ∗ (an, bn) with (a1 ∗ . . . ∗ an, b1 ∗ . . . ∗ bn). For (a, b) ∈ A∗ × A∗

we define (a, b)$ ∈ A∗ as follows: if a and b are of the same length, then
(a, b)$ equals (a, b), while if a and b are of unequal length, then as many $’s
are appended to the shorter of a and b as are necessary to make the lengths
equal.
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A group G is said to be automatic if there exists a finite set A of
semigroup generators for G, and a language L over A such that the following
are satisfied:

(i) the natural homomorphism π:L→ G is surjective, and

(ii) La = {(x1, x2)$ ∈ A∗ | x1, x2 ∈ L and π(x1) = π(x2)a} is a regular
language over A for all a ∈ A ∪ {1G}.

We then say that L yields an automatic structure for G.

Let W be a Coxeter group with finite distinguished generating set R.
We are going to construct a language L over R that yields an automatic
structure for W .

If x and y are in R∗, we say that y is a segment of x if there exist
y′, y′′ ∈ R∗ such that x = y′ ∗ y ∗ y′′. For r1, r2, . . . , rl ∈ R we define the
length of r1 ∗ r2 ∗ · · · ∗ rl to be �(r1 ∗ r2 ∗ · · · ∗ rl) = l. Recall that if w ∈ W ,
then

l(w) = min
{
�(x) | x ∈ π−1(w)

}
,

where π:R∗ → W denotes the natural homomorphism. An element x ∈ R∗

is called a reduced word if �(x) = l
(
π(x)

)
. Define L′ to be the language of all

reduced words. Note that if x is in L′, then any segment of x must also be
in L′.

Now let � be the lexicographical order on R∗ for some (arbitrary)
ordering of R. We shall write x ≺ y if x � y and x �= y. For r ∈ R we define
Rr to be the set of all simple reflections s with s ≺ r, and Πr to be the set
of αs with s ∈ Rr. It is clear that for each w ∈ W there exists a unique
ν(w) ∈ π−1(w) such that ν(w) ∈ L′ and ν(w) � x for all x ∈ π−1(w) ∩ L′.
We define the language L to consist of all these lexicographically minimal
reduced words for the various elements of W :

L =
{
ν(w) | w ∈W

}
=

{
y ∈ L′ | y � x for all x ∈ L′ with π(x) = π(y)

}
.

Observe that L coincides with ShortLex as defined in [6]. As above for L′, it
is clear that if x is in L, each segment of x has to be in L.

(5.50) Proposition Suppose w ∈W and r ∈ R with l(wr) = l(w)+1, and
let r1, r2, . . . , rl ∈ R with ν(w) = r1 ∗ r2 ∗ · · · ∗ rl. For j ∈ {1, 2, . . . , l} define
Rj = Rrj

, and set Rl+1 = {r}. Then ν(wr) = r1 ∗ · · · ∗ ri−1 ∗ s ∗ ri ∗ · · · ∗ rl,
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where i ∈ {1, 2, . . . , l + 1} is minimal such that there exists an s ∈ Ri with
(rlrl−1 · · · ri) · αs = αr.

Proof. Since l(wr) = l(w)+1 we know that ν(w)∗r is in L′, and furthermore
that there exist s1, s2, . . . , sl+1 ∈ R with ν(wr) = s1 ∗ s2 ∗ · · · ∗ sl+1. Then

(1) ν(wr) = s1 ∗ s2 ∗ · · · ∗ sl+1 � r1 ∗ · · · ∗ rl ∗ r

by minimality of ν(wr) in L′ ∩ π−1(wr). Now (s1s2 · · · sl+1)r = w, and by
the Exchange Condition there exists an i ∈ {1, . . . , l+ 1} such that w equals
s1 · · · si−1si+1 · · · sl+1. Thus

(2) ν(w) = r1 ∗ · · · ∗ rl � s1 ∗ · · · ∗ si−1 ∗ si+1 ∗ · · · ∗ sl+1,

and it is immediate from (1) and (2) that rj = sj for all j ∈ {1, 2, . . . i− 1}.
We deduce that si+1 · · · sl+1 = ri · · · rl, and since both si+1 ∗ · · · ∗ sl+1 and
ri ∗ · · · ∗ rl are in L (as these are segments of elements of L), this yields that

ri ∗ · · · ∗ rl = si+1 ∗ · · · ∗ sl+1,

and thus rj = sj+1 for all j ∈ {i, . . . , l}. Now define s = si; then ν(wr)
equals r1 ∗ · · · ∗ ri−1 ∗ s ∗ ri ∗ · · · ∗ rl. If i = l + 1 it is clear that s = r. If
i ≤ l, equation (1) yields that s � ri, and since s ∗ ri = si ∗ si+1 is reduced,
it follows that s ≺ ri; that is, s ∈ Ri.

Furthermore, (r1r2 · · · rl−1rl)r = wr = r1r2 · · · ri−1sri · · · rl−1rl, and
thus

(riri+1 · · · rl)r(rl · · · ri+1ri) = s.

Therefore (riri+1 · · · rl) · αr = ±αs, and since αs and (riri+1 · · · rl) · αr are
both positive (the latter one because ri∗ri+1∗· · ·∗rl∗r is reduced), it follows
that (riri+1 · · · rl) · αr = αs; that is, (rl · · · ri+1ri) · αs = αr.

Assume for a contradiction that (rlrl−1 · · · rj) · αt = αr for some j < i
and t ∈ Rj. Then π(r1 ∗ · · · ∗ rj−1 ∗ t ∗ rj ∗ · · · ∗ rl) = wr, and further

r1 ∗ · · · ∗ rj−1 ∗ t ∗ rj ∗ · · · ∗ rl ≺ r1 ∗ · · · ∗ ri−1 ∗ s ∗ ri ∗ · · · ∗ rl = ν(wr),

contradicting the minimality of ν(wr). Hence i is minimal with the above
property.
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We now describe a finite state automaton W which recognizes L. The
accept states of the automaton W will be the subsets E of E such that
E = PLC(E) ∩ E , where PLC(E) denotes the set of nonnegative linear
combinations of roots in E. We denote the set of accept states by P(E).
There will be one reject state F , and the starting state is the empty set in
P(E). The transition function μ: S ×R→ S is given by

μ(X, r) =

⎧⎪⎨⎪⎩
F if X = F ,
F if X ∈ P(E) and αr ∈ X ,
PLC

(
r ·X ∪ r · Πr ∪ {αr}

) ∩ E if X ∈ P(E) and αr /∈ X .

(5.51) Proposition The automaton W recognizes the language L.

Proof. Let r1 ∗ r2 ∗ · · · ∗ rn ∈ R∗, and denote the simple root corresponding
to ri by αi. Set X0 = ∅, and for i ∈ {1, . . . , n} define

Xi = PLC
(
ri ·Xi−1 ∪ ri · Πri

∪ {αi}
) ∩ E .

A straightforward induction yields that W is either in state Xi or F after
reading r1 ∗ r2 ∗ · · · ∗ ri; moreover, if W is in F after reading r1 ∗ r2 ∗ · · · ∗ ri,
then there exists an l ∈ {1, . . . , i} such that αl ∈ Xl−1. We show now that
r1 ∗ r2 ∗ · · · ∗ rn ∈ L if and only if αl /∈ Xl−1 for all l ∈ {1, . . . , n}.

Suppose first that αl ∈ Xl−1 for some l ∈ {0, . . . , n − 1}. An easy
induction yields that Xl−1 is a subset of

PLC
(l−1⋃

i=1

(rl−1 · · · ri) · Πri
∪ {

(rl−1 · · · ri+1) · αi | i ∈ {1, . . . , l− 1}})
;

thus there exist nonnegative coefficients λi
s and μi such that

αl =
l−1∑
i=1

∑
αs∈Πri

λi
s(rl−1 · · · ri) · αs +

l−1∑
i=1

μi(rl−1 · · · ri+1) · αi,

and this yields

−αl = rl · αl =
l−1∑
i=1

∑
αs∈Πri

λi
s(rlrl−1 · · · ri) · αs +

l−1∑
i=1

μi(rlrl−1 · · · ri+1) · αi.
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If (rlrl−1 · · · ri+1) ·αi is negative for some i ∈ {1, . . . , l−1}, it follows by (1.5)
that rl ∗ rl−1 ∗ · · · ∗ ri+1 ∗ ri is not reduced, and thus r1 ∗ r2 ∗ · · · ∗ rn cannot
be in L, as required. Assume next that r1 ∗ r2 ∗ · · · ∗ rn is reduced. Then
(rlrl−1 · · · ri+1) · αi is positive for all i, and since λi

s, μi ≥ 0, it follows that
(rlrl−1 · · · ri) ·αs must be negative for some i and αs ∈ Πri

. Let j be minimal
such that (rjrj−1 · · · ri) · αs is negative; then (rj−1 · · · ri) · αs is positive by
minimality of j, and thus (rj−1 · · · ri) · αs = αj by (1.4). So

(rj−1 · · · ri)s(ri · · · rj−1) = rj ,

and it follows that

ν(ri ∗ ri+1 ∗ · · · ∗ rj) = ri · · · rj−1rj = sri · · · rj−1 = ν(s ∗ ri ∗ ri+1 ∗ · · · ∗ rj−1).

Since s ≺ ri, we find that ri ∗ · · · ∗ rj is not in L; hence r1 ∗ · · · ∗ rn /∈ L, as
required.

Suppose next that r1 ∗ r2 ∗ · · · ∗ rn is not in L, and let l be minimal in
{1, . . . , n} such that r1 ∗ r2 ∗ · · · ∗ rl /∈ L. Assume first that r1 ∗ r2 ∗ · · · ∗ rl is
not reduced. Then l

(
π(r1∗r2∗· · ·∗rl−1)

)
= l−1 by minimality of l, and (1.5)

yields that (r1r2 · · · rl−1) · αl is negative. Let i ∈ {1, . . . , l − 1} be maximal
such that (riri+1 · · · rl−1) · αl is negative; then (ri+1 · · · rl−1) · αl = αi by
(1.4) and maximality of i. Since ri+1 ∗ ri+2 ∗ · · · ∗ rl−1 is reduced (as it is a
segment of a reduced word), (3.29) yields that (rjrj−1 · · · ri+1) · αi must be
in E for all j ∈ {i + 1, . . . , l}. As αi is in Xi, an easy induction now yields
that (rjrj−1 · · · ri+1) · αi is in Xj−1 for all j ∈ {i + 1, . . . , l}; in particular,
αl ∈ Xl−1, as required.

Assume now that r1∗r2∗· · ·∗rl is reduced, but r1∗r2∗· · ·∗rl /∈ L. Then
r1∗· · ·∗rl−1 ∈ L by minimality of l, and since r1∗r2∗· · ·∗rl−1∗rl is reduced but
not in L, Proposition (5.50) yields that there exists an i ∈ {1, 2, . . . , l−1} such
that (rl−1 · · · ri) ·αs = αl for some s ∈ Rri

. As ri ∗· · ·∗rl−1 is reduced, (3.29)
implies that (rjrj−1 · · · ri) ·αs ∈ E for all j ∈ {i, . . . , l−1}, and since αs ∈ Xi,
it follows by a straightforward induction that αl = (rl−1 · · · ri) · αs ∈ Xl, as
required.

(5.52) Lemma Suppose w ∈ W and r ∈ R with l(wr) = l(w) − 1, and
let r1, r2, . . . , rl ∈ R with ν(w) = r1 ∗ r2 ∗ · · · ∗ rl. For i ∈ {1, . . . , l} define
Ri = Rri

, and set Rl+1 = {r}. Then there exists exactly one i ∈ {1, 2, . . . , l}
such that (rl · · · ri+1) · αri

= αr; moreover, ri ∈ Ri+1 and

ν(wr) = r1 ∗ · · · ∗ ri−1 ∗ ri+1 ∗ · · · ∗ rl.
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Proof. Let s1, s2, . . . , sl−1 ∈ R such that ν(wr) = s1 ∗ s2 ∗ · · · ∗ sl−1. It
is clear that ν(wr) ∗ r is reduced, and (5.50) yields that there exists some
i ∈ {1, . . . , l} such that

ν
(
(wr)r

)
= s1 ∗ · · · ∗ si−1 ∗ s ∗ si ∗ · · · ∗ sl−1,

with (sl−1 · · · si) · αs = αr, and s = r if i = l, while s ≺ si if i ≤ l − 1. But
ν
(
(wr)r

)
= ν(w) also equals r1 ∗ r2 ∗ · · · ∗ rl, and hence sk = rk for k in

{1, . . . , i− 1}, ri = s and rj+1 = sj for all j ∈ {i, . . . , l− 1}. Thus

ν(wr) = r1 ∗ · · · ∗ ri−1 ∗ ri+1 ∗ · · · ∗ rl

with ri ≺ ri+1 if i < l, and ri = r if i = l; that is, ri ∈ Ri+1.

Assume for a contradiction that there exists a j ∈ {1, . . . , l} \ {i} with
(rl · · · rj+1) · αrj

= αr, and suppose without loss of generality that i < j.
Then (rj · · · ri+1) · αri

= αrj
and thus riri+1 · · · rjrj+1 = ri+1 · · · rj ; hence

r1r2 · · · rl = r1r2 · · · ri−1ri+1 · · · rj−1rj+1 · · · rl,

and thus r1r2 · · · rn is of length less than l, contradicting our assumption that
r1 ∗ r2 ∗ · · · ∗ rl is reduced.

Observe that this yields an algorithm which determines ν(wr) if ν(w)
is given: Suppose that ν(w) = r1 ∗ r2 ∗ · · · ∗ rl, and set βl = rl · αr. If i ≥ 2
and βi �= αri−1 , define βi−1 = ri−1 · βi; otherwise

ν(wr) = r1 ∗ . . . ∗ ri−1 ∗ ri+1 . . . ∗ rl

by the previous lemma, and the algorithm can terminate. If βi �= αri−1 for
all i ≥ 2, two cases arise. Firstly, if βi ∈ Πri

for some i, let i be minimal
with this property, and let s ∈ Rri

with βi = αs; then

ν(wr) = r1 ∗ . . . ∗ ri−1 ∗ s ∗ ri ∗ . . . ∗ rl
by (5.50). Secondly, if βi /∈ Πri

for all i, then ν(wr) = ν(w) ∗ r by (5.50).

Note that if s ∈ R with (ri · · · rl) · αr = αs for some i, then by (3.29),
(rj · · · rl) · αr must be elementary for all j ∈ {i, . . . , l} since r1 ∗ · · · ∗ rl is re-
duced. Hence we can stop our search for i according to the above description
as soon as βj is in Δ.
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Now let R =
(
(R∪{$})×(R∪{$})) \ {($, $)}, and for each r ∈ R∪{1}

define

Lr =
{

(x1, x2)$ ∈ R∗ | x1, x2 ∈ L and π(x1)r = π(x2)
}
.

Since the words of the language L correspond bijectively to the elements ofW ,
we find that L1 = { (

ν(w), ν(w)
) | w ∈ W }; therefore a trivial modification

of W will yield a finite state automaton that recognizes L1. So we only need
to show that Lr is regular for r ∈ R. Then

Lr =
{(
ν(w), ν(wr)

)$ | w ∈W
}

=
{(
ν(w) ∗ $, ν(wr)

) | w ∈W with l(wr) = l(w) + 1
}

∪ {(
ν(w), ν(wr) ∗ $

) | w ∈W with l(wr) = l(w) − 1
}

=
{(
ν(wr) ∗ $, ν(w)

) | w ∈W with l(wr) = l(w) − 1
}

∪ {(
ν(w), ν(wr) ∗ $

) | w ∈W with l(wr) = l(w) − 1
}
.

In particular, (x1, x2) ∈ Lr if and only if (x2, x1) ∈ Lr; moreover, (5.52)
yields:

(5.53) Corollary Let r ∈ R and (a, b) ∈ R∗ with a = s1 ∗ s2 ∗ · · · ∗ sn

and b = t1 ∗ t2 ∗ · · · ∗ tn for some (s1, t1), . . . , (sn, tn) ∈ R. Furthermore, let l
be maximal in {1, . . . , n+ 1} such that sl−1 = tl−1 ∈ R. Then (a, b) ∈ Lr if
and only if

(i) l = n, {sn, tn} = {r, $} and s1 ∗ · · · ∗ sn−1 ∗ r ∈ L, or

(ii) l < n, sl, tl ∈ R and sl ≺ tl, si = ti−1 ∈ R for all i ∈ {l + 1, . . . , n},
tn = $ and a ∈ L with (sn · · · sl+1) · αsl

= αr, or

(iii) l < n, sl, tl ∈ R and sl � tl, si−1 = ri ∈ R for all i ∈ {l + 1, . . . , n},
sn = $ and b ∈ L with (tn · · · tl+1) · αtl

= αr.

We now describe a finite state automaton Wr which recognizes Lr.
The automaton Wr has one accept state A, and there is one failure state, F
(from which there are no transitions to other states). All elements of P(E) are
states, and the remaining states are the elements of the Cartesian products
P(E) × Er × R and P(E) × R × Er, where Er denotes the set of elementary
roots that can be written as w · αr for some w ∈ W . Let Sr be the set of
all these states, and let ∅ ∈ P(E) be the starting state. Note that the subset
P(E) ∪ {F} of Sr can be identified with the set of states of W. Next, let μ
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be the transition function, described above, for W. The transition function
μr: Sr ×R → Sr for the automaton Wr is defined by the rules listed below.
Let X ∈ Sr and (s, t) ∈ R, and for brevity let Y = μr(X , (s, t)).
Case 1: X ∈ P(E).

(i) If s = t ∈ R, then Y = μ(X , s).

(ii) If either s or t is $, then Y =
{A if {s, t} = {r, $} and μ(X , r) �= F ,
F {s, t} �= {r, $} or μ(X , r) = F .

(iii) If s ≺ t ∈ R, then Y =
{(

μ(X , s), αs, t
)

if μ(X, s) �= F and αs ∈ Er,
F if μ(X, s) = F or αs /∈ Er.

(iv) If t ≺ s ∈ R, then Y =
{(

μ(X , t), s, αt

)
if μ(X, t) �= F and αt ∈ Er,

F if μ(X, t) = F or αt /∈ Er.

Case 2: X = (X, β, u) ∈ P(E) × Er ×R.

Let Y = μ(X, s) and γ = s · β.

(i) If Y = F , then Y = F .

(ii) If s �= u, then Y = F .

(iii) If s = u and t ∈ R while Y �= F , then Y =
{

(Y, γ, t) if γ ∈ Er,
F if γ /∈ Er.

(iv) If (s, t) = (u, $) while Y �= F , then Y =
{A if γ = αr,
F if γ �= αr.

Case 3: X = (X, u, β) ∈ P(E) ×R × Er.

Let Y = μ(X, t) and γ = t · β.

(i) If Y = F , then Y = F .

(ii) If t �= u, then Y = F .

(iii) If t = u and s ∈ R while Y �= F , then Y =
{

(Y, s, γ) if γ ∈ Er,
F if γ /∈ Er.

(iv) If (s, t) = ($, u) while Y �= F , then Y =
{A if γ = αr,
F if γ �= αr.

Case 4: X = A or F .

Y = F in all cases.

It can be easily seen that Wr accepts (x1, x2) if and only Wr accepts (x2, x1).
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(5.54) Proposition The automaton Wr defined above recognizes the lan-
guage Lr.

Proof. Let (si, ti) ∈ R and set a = s1 ∗ s2 ∗ · · · ∗ sn and b = t1 ∗ t2 ∗ · · · ∗ tn.
For i ≥ 0, denote the state of Wr after reading (s1 ∗ · · · ∗ si, t1 ∗ · · · ∗ ti) by
Xi, and let l ∈ {1, . . . , n+ 1} be maximal such that Xl−1 = Xl−1 ∈ P(E). It
is clear that si = ti ∈ R for all i ∈ {1, . . . , l− 1}.

We show that Xn equals A if and only if (a, b) ∈ Lr.

Suppose first that (a, b) ∈ Lr. Then an easy induction shows that W
is in state Xi after reading s1 ∗ · · · ∗ si = t1 ∗ · · · ∗ ti for i ∈ {0, . . . , l− 1}. If
l = n, then {sn, tn} = {r, $} by (5.53)(i); moreover, W is in μ(Xn−1, r) after
reading s1 ∗ · · · ∗ sn−1 ∗ r, and since s1 ∗ · · · ∗ sn−1 ∗ r is in L by (5.53)(i), we
deduce that μ(Xn−1, r) ∈ P(E). It follows by rule (ii) of Case 1 that Xn = A.

Next, suppose that l < n. Since (a, b) is in Lr, it follows easily that
sl, tl ∈ R, and by symmetry of both Wr and Lr we may assume without loss of
generality that sl ≺ tl. Then by (5.53)(ii), si = ti+1 ∈ R for all l ≤ i ≤ n− 1
and (sn · · · sl+1) · αsl

= αr. It follows by (3.29) that (si · · · sl+1) · αsl
is in Er

for all i ∈ {l, . . . , n− 1}, and a straightforward induction yields that

Xi =
(
Xi, (si · · · sl+1) · αsl

, si+1

)
for i ∈ {l, . . . , n−1}, where Xi denotes the state of W after reading s1∗· · ·∗si.
In particular,

Xn−1 =
(
Xn−1, (sn−1 · · · sl+1) · αr, sn

)
.

Furthermore, μ(Xn−1, sn) ∈ P(E) since s1 ∗ · · · ∗ sn is an element of L; as
(sn · · · sl+1) ·αsl

= αr and tn = $ by (5.53)(ii), rule (iv) of Case 2 yields that
Xn = A.

It remains to show that Xn = A implies (a, b) ∈ Lr. So let Xn = A;
then in particular Xi �= F and Xi �= A for all i < n, since there are no
transitions from F or A into states other than F . Further, l − 1 < n since
A /∈ P(E).

If l = n, then W is in Xn−1 after reading s1 ∗ s2 ∗ · · · ∗ sn−1, and since
Xn = A, rule (ii) of Case 1 yields {sn, tn} = {r, $} and μ(Xn−1, r) ∈ P(E).
So W accepts s1 ∗ · · · ∗ sn−1 ∗ r, and it follows by (5.53)(i) that (a, b) is in Lr.

Suppose now that l < n. Then Xl �= A and Xl �= F , and thus sl, tl ∈ R
by rule (ii) of Case 1; by symmetry of both Wr and Lr we may assume



Chapter 5 An automatic structure 57

without loss of generality that sl ≺ tl. We show now that ri = si−1 and

Xi =
(
Xi, (si · · · sl+1) · αsl

, ti
)

for i ∈ {l, . . . , n− 1}, where Xi ∈ P(E) denotes the state of W after reading
s1 ∗ s2 ∗ · · · ∗ si. By rule (iii) of Case 1, Xl equals

(
Xl, αsl

, tl
)
. Suppose next

that i ∈ {l + 1, . . . , n− 1}, and assume furthermore that

Xi−1 =
(
Xi−1, (si−1 · · · sl+1) · αsl

, ti−1

)
.

Since Xi �= F and Xi �= A, rule (iii) of Case 2 yields si = ti−1, Xi ∈ P(E)
and further (si · · · sl+1) · αsl

∈ Er; hence Xi =
(
Xi, (si · · · sl+1) · αsl

, ti
)
, and

this finishes the induction. In particular,

Xn−1 =
(
Xn−1, (sn−1 · · · sl+1) · αsl

, tn−1

)
,

with Xn−1 ∈ P(E) and si = ti−1 for all i ∈ {l, . . . , n − 1}. Since Xn = A,
rule (iv) of Case 2 implies further that

sn = tn−1, tn = $, (sn · · · sl+1) · αsl
= αr and μ(Xn−1, sn) ∈ P(E).

Now a = s1 ∗ s2 ∗ · · · ∗ sn ∈ L, since μ(Xn−1, sn) ∈ P(E), while

b = s1 ∗ s2 ∗ · · · ∗ sl−1 ∗ sl+1 ∗ · · · ∗ sn ∗ $

with (sn · · · sl+1) · αsl
= αr; thus (a, b) ∈ Lr by (5.53)(ii), as required.

(5.55) Theorem W is automatic, provided that R is finite.

Observe that the automaton Wr described above is by no means min-
imal. For example, the state (X, β, u) ∈ P(E) × Er × R is inaccessible if
β /∈ X ; that is, (X, β, u) cannot be reached from the starting state. More-
over, (X, β, u) is dead if u · β /∈ E ; that is, the accept state cannot be reached
from (X, β, u). Without changing the language recognized by Wr we may
delete all inaccessible states and amalgamate all dead states with the fail-
ure state F , and obtain a normalized automaton with fewer states that also
recognizes Lr.

A group G is said to be biautomatic, if there exists a set A of semigroup
generators of G, and a language L over A which yields an automatic structure
for G such that, additionally,



(iii) La = {(x1, x2)$ ∈ A∗ | x1, x2 ∈ L and π(x1) = aπ(x2)} is a regular
language over A for all a ∈ A.

We then say that L yields a biautomatic structure for W .

The above constructed language for finitely generated Coxeter groups
does not in general yield a biautomatic structure for W . For example, sup-
pose that W has the following Coxeter graph

• • • • •
e a b c d

∞ ∞

and let R be ordered alphabetically. Assume for a contradiction that We is
a finite state automaton recognizing Le, and let n be the number of states of
We. For i ∈ {0, . . . , n} define

w(i) =
(
(a ∗ b)i, (c ∗ d)i

)
.

Since the number of states of We is less than n+1, there exist i, j ∈ {0, . . . , n}
with i < j such that We is in the same state after reading w(i) as after reading
w(j). Now We will certainly accept(

(a ∗ b)n ∗ (c ∗ d)n ∗ $, (c ∗ d)n ∗ e ∗ (a ∗ b)n
)

=
(
(a ∗ b)j, (c ∗ d)j

) ∗ (
(a ∗ b)n−j ∗ (c ∗ d)n ∗ $, (c ∗ d)n−j ∗ e ∗ (a ∗ b)n

)
,

and thus We is forced to accept(
(a ∗ b)i, (c ∗ d)i

) ∗ (
(a ∗ b)n−j ∗ (c ∗ d)n ∗ $, (c ∗ d)n−j ∗ e ∗ (a ∗ b)n

)
=

(
(a ∗ b)n−j+i ∗ (c ∗ d)n ∗ $, (c ∗ d)n−j+i ∗ e ∗ (a ∗ b)n

)
.

But
eπ

(
(a ∗ b)n−j+i ∗ (c ∗ d)n

)
= e(ab)n−j+i(cd)n

and
π
(
(c ∗ d)n−j ∗ e ∗ (a ∗ b)n

)
= e(ab)n(cd)n−j+i,

and these are not equal. Hence
(
(a∗b)n−j+i∗(c∗d)n, (c∗d)n−j+i∗e∗(a∗b)n

)
is not in Le, and We does not recognize Le, contradicting our assumption.
Chapter 6
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The Set of Elementary Roots

We have seen in Chapter 3 that the set of elementary roots is finite, provided
that R is finite. Moreover, the proof of Theorem (3.44) yields that |E| is
bounded by

c|R|(|R|+1)+1∑
d=1

|R|d =
|R|

|R| − 1
(|R|c|R|(|R|+1)+1 − 1

)
,

where c equals the cardinality of the set{
cos(nπ/mrs) | r, s ∈ R, mrs <∞ and n ∈ {1, . . . , mrs − 1}}

.

This bound, however, is rather large. For example, if

W = 〈 r, s | r2 = s2 = (rs)3 = 1 〉,

then |E| = 3, but |R| = 2 and c = 3, and thus

|R|
|R| − 1

(|R|c|R|(|R|+1)+1 − 1
)

= 2
(
228 − 1

)
.

In this chapter we will explicitly determine the set of elementary roots and
thus find |E| precisely.

For I ⊆ R, let EI denote the set of all elementary roots α with I(α) = I;
then E is the disjoint union of all EI with ∅ �= I ⊆ R finite. Connectedness of
the support of a root yields that EI is empty if I is not connected; moreover,
EI is also empty by (3.39), (3.41) if I contains a circuit or an infinite bond.

For J ⊆ I, define EJ
I to be the set of roots α in EI such that for r ∈ J

the coefficient of αr in α equals 1, and for s ∈ I \ J the coefficient of αs in α
is greater than 1; then EI is the disjoint union of all EJ

I with J ⊆ I, and thus

E =
⋃

I∈I(R)

⋃
J⊆I

EJ
I =

⋃
I∈I(R)

⋃
J⊂I

EJ
I ∪

⋃
I∈I(R)

EI
I ,
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where I(R) consists of the finite non-empty connected subsets of R that do
not contain any circuits or infinite bonds.

Note that
∑

r∈I αr is an elementary root if I ∈ I(R) contains only sim-
ple bonds. For if |I| = 1, this is trivially true, and we proceed by induction.
Suppose that |I| > 1. Since I does not contain any circuits, we can choose an
s ∈ I such that s is adjacent to exactly one element of I \ {s}, say t. Then∑

r∈I\{s} αr is an elementary root by induction. Since s is only adjoined to
t in I \ {s}, and s and t are adjoined by a simple bond, we find that

〈 ∑
r∈I\{s}

αr, αs

〉
= 〈αs, αt〉 = −1

2
;

hence
∑

r∈I αr = s · ∑
r∈I\{s} αr is an elementary root by (3.37).

On the other hand, the next lemma together with (2.26) yield that if r
and s are adjoined by a non-simple bond, then no root can have coefficient 1
for both αr and αs. So if I does contain non-simple bonds,

∑
r∈I αr cannot

be a root, and thus

EI
I =

{{∑
r∈I αr

}
if I contains only simple bonds,

∅ otherwise.

Therefore
|E| =

∑
I∈I(R)

∑
J⊂I

|EJ
I | + n(R),

if R is finite, where n(R) denotes the the number of non-empty connected
subsets of R that contain only simple bonds and no circuits.

(6.56) Lemma Let x1, x2, y ∈ Π with x1 �= x2 such that 〈xi, y〉 equals
− cos(π/mi) for i = 1, 2. Furthermore, let α and β be positive roots such
that β precedes α, and y is not in the support of β. Denote the coefficient
of xi in β by λi for i = 1, 2. Then the coefficient of y in α equals 0, or is
greater than or equal to 2 cos(π/m1)λ1 + 2 cos(π/m2)λ2.

Proof. Let γ be of maximal depth with β � γ � α such that y /∈ supp(γ). If
γ = α, then y /∈ supp(α), and the assertion is true. So suppose that γ ≺ α,
and denote the coefficient of xi in γ by μi; then λi ≤ μi. Maximality of γ now
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yields that γ ≺ ry · γ � α, and the coefficient of y in ry · γ equals 0− 2〈γ, y〉.
This is greater than or equal to

−2
(〈x1, y〉μ1 + 〈x2, y〉μ2

)
= 2 cos(π/m1)μ1 + 2 cos(π/m2)μ2,

which in turn is greater than or equal to 2 cos(π/m1)λ1 + 2 cos(π/m2)λ2.
Since ry · γ � α, the coefficient of y in α is greater than or equal to the
coefficient of y in ry · γ by (3.35), and this finishes the proof.

By the above we only need to determine EJ
I for I ∈ I(R) and J ⊂ I.

We will now further reduce the number of subsets J of I for which we need
to calculate EJ

I (see Theorem (6.5)). Once this is done, we show that we only
need to consider EJ

I for I ∈ I(R) containing at most one non-simple bond
(see Lemma (6.7)). We then continue by determining EJ

I in case I contains
only simple bonds, and finish this chapter by dealing with the case that I
contains exactly one non-simple bond of finite weight.

(6.57) Proposition Let I ⊆ R, r ∈ I and K1, . . . , Kn ⊆ I \ {r} such
that I \ {r} is the disjoint union of K1, . . . , Kn. Suppose further that no
element of Ki is adjoined to any element of Kj if i �= j, and set Ii = Ki ∪{r}
for all i ∈ {1, . . . , n}. Then

φ: (β1, . . . , βn) �→ β1 + · · ·+ βn − (n− 1)αr

defines a one-one correspondence between the set of n-tuples in Φ+
I1
×· · ·×Φ+

In

such that the coefficient of αr in each component equals 1, and the set of
roots in Φ+

I with coefficient 1 for αr. Moreover, this map restricts to a one-
one correspondence between the set of n-tuples in EI1 ×· · ·×EIn

such that αr

has coefficient 1 in each component, and the set of roots in EI with coefficient
1 for αr.

Before we can show (6.57) we need to prove the next two technical
results.

(6.58) Lemma Let α and β be positive roots with α � β. Further let
r ∈ R, and define I to be the set of simple reflections s ∈ R which are
adjoined to r. Suppose that the coefficient of αr in α is strictly greater than
the coefficient of αr in β, while for s ∈ I the coefficients of αs in α and β
coincide. Then α � r · β.

Proof. The assertion is trivially true if r · β � β, so suppose that r · β � β;
that is, dp(r · β) = dp(β) + 1. Let γ be of maximal depth with α � γ � β



Chapter 6 The set of elementary roots 62

such that the coefficients of αr in γ and β coincide, and let w ∈W such that
γ = w · β and l(w) = dp(γ) − dp(β). Since the coefficients of αs in γ and β
coincide for all s ∈ I ∪ {r}, it is clear that w ∈W

R\(I∪{r}). So rw = wr and

r · γ = rw · β = w · (r · β).

Now α � r ·γ � γ by maximality of γ, and thus dp(r ·γ) = dp(γ)+1. Hence
l(w) = (r · γ) − dp(r · β) and r · γ � r · β; transitivity of � yields that α is
preceded by r · β, as required.

(6.59) Lemma Let α ∈ Φ+ and r ∈ R such that the coefficient of αr in
α equals 1. Then α � αr, and thus there exists a w ∈ W

I(α)\{r} such that

α = w · αr and l(w) = dp(α) − 1.

Proof. If α is simple, the assertion is trivially true. Suppose now that α is of
depth greater than 1, and assume that all positive roots β ≺ α are preceded
by αs, whenever αs ∈ Π has coefficient 1 in β. Let t ∈ R such that t · α ≺ α.
If t �= r, then t · α � αr by induction, and thus α � t · α � αr, as required.
Suppose next that t = r. The coefficient of αr in r · α is less than 1, and
thus must be equal to 0 by (2.26). That is, αr /∈ supp(r · α), and by the
connectedness of the support of α there exists an x ∈ supp(r · α) such that
αr and x are adjoined by a bond of weight m ≥ 3. Since α � r · α and the
coefficient of αr in α equals 1, Lemma (6.56) yields that m = 3 and that the
coefficient of x in r · α equals 1; moreover, (6.56) also yields that αr cannot
be adjacent to any element of supp(α) \ {x}. Now r · α � x by inductive
hypothesis, and since the coefficients of x in α and x coincide, while the
coefficient of αr in α is greater than the coefficient of αr in x, the previous
lemma yields that α is preceded by r1 · x1 = x1 +αr. It is clear that x1 +αr

is a successor of αr, hence α � αr by transitivity of �, as required.

Proof of (6.2). We show first that φ is well defined. So let (β1, . . . , βn) be an
n-tuple in Φ+

I1
×· · ·×Φ+

In
such that the coefficient of αr in βi equals 1 for all i.

By the previous lemma there exist wi ∈ WKi
with l(wi) = dp(βi) − 1 such

that βi equals wi ·αr. Observe that the groups WKi
centralize each other by

construction. Define w = w1 · · ·wn and α = w ·αr; then the coefficient of αr

in α equals 1, and a straightforward calculation yields that

α = β1 + · · ·+ βn − (n− 1)αr.
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Thus φ(β1, . . . , βn) is in Φ+
I , and since the coefficient of αr in α clearly equals

1, we know that φ is well defined.

On the other hand, if α ∈ Φ+
I has coefficient 1 for αr, Lemma (6.59)

yields that there exists a w ∈ W
I\{r} with l(w) = dp(α) − 1 such that

α = w · αr. Since W
I\{r} is the direct product of WK1 , . . . ,WKn

, there exist
wi ∈ WKi

for all i ∈ {1, . . . , n} such that w = w1 · · ·wn with length adding.
So if we define βi = wi · αr, then I(βi) ⊆ Ii and αr has coefficient 1 in βi.
By the above, α = β1 + · · · + βn − (n − 1)αr = φ(β1, . . . , βn); whence φ is
onto. Since I(βi) ∩ I(βj) = {r} for i �= j, and the coefficient of αr in all βi

is 1, it is clear that φ is one-one, and thus φ is a one-one correspondence.

In order to show that φ induces a one-one correspondence between
the set of n-tuples in EI1 × · · · × EIn

such that αr has coefficient 1 in each
component, and the set of roots in EI with coefficient 1 for αr, it suffices to
show for w1 ∈WK1 , . . . , wn ∈WKn

and w = w0 · · ·wn that w · αr ∈ E if and
only if wi · αr ∈ E for all i ∈ {1, . . . , n}.

Suppose first that wi ·αr ∈ Δ for some i; by symmetry of the Ii we may
assume without loss of generality that i = 1. Then N+(w2 · · ·wn, w1 ·αr) = ∅;
for N(w2 · · ·wn) ⊆ Φ+

I\I1
and w1 ·αr ∈ Φ+

I1
, and clearly 〈γ, w1 ·αr〉 ≤ 0 for all

γ ∈ Φ+

I\I1
. Thus w ·αr � w1 ·αr by (3.34), and (3.36) implies that w ·αr ∈ Δ,

as required.

For the converse, suppose that w ·αr dominates some γ ∈ Φ+ \ {w ·αr};
then w−1 · γ ∈ Φ− since αr �∈ Δ, and thus γ ∈ N(w−1). Now

N
(
(w1 · · ·wn)−1

)
= N(w−1

1 ) ∪ . . . ∪N(w−1
n ),

since the WKi
centralize each other, and this union is disjoint; by symmetry

we may assume without loss of generality that γ is in N(w−1
1 ) and not in

N(w−1
2 ) ∪ . . . ∪N(w−1

n ) = N((w2 · · ·wn)−1).

So (w2 · · ·wn)−1 ·γ is positive, and hence (w1 ·αr) dom (w2 · · ·wn)−1 ·γ; since
w · αr �= γ it follows that w1 · αr �= (w2 · · ·wn)−1 · γ, and thus w1 · αr ∈ Δ,
as required.
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Now let I ∈ I(R) and J ⊂ I. If r ∈ J , denote the connected compo-
nents of I \ {r} by K1, . . . , Kn. By (6.57) each element of EJ

I can be written
as

α1 + · · · + αn − (n− 1)αr,

with αi ∈ E{r}∪Ki
with coefficient 1 for αr for all i. Furthermore, if s ∈ Ki,

the coefficient of αs in αi equals 1 if s ∈ J , and is greater than 1 if s /∈ J ;
that is, αi ∈ E{r}∪(J∩Ki)

{r}∪Ki
. It is clear, that

β1 + · · · + βn − (n− 1)αr

is in EJ
I if βi ∈ E{r}∪(Ki∩J)

{r}∪Ki
for all i, and an iteration of this procedure yields

the following theorem.

(6.60) Theorem Let I ∈ I and J ⊂ I, and denote the set of connected
components of I \ J by K(I \ J). Furthermore, for each connected compo-
nent K of I \ J let X(K, J) denote the set of r ∈ J that are adjoined to
some element of K, and define Y (K, J) = K ∪ X(K, J). Finally, for r ∈ J
let nr(I, J) denote the number of K ∈ K(I \ J) with r ∈ X(K, J). Then EJ

I

is the set of ∑
K∈K(I\J)

αK −
∑
r∈J

(nr(I, J) − 1)αr,

where αK ∈ EX(K,J)
Y (K,J) for all K ∈ K(I \ J). Hence

|EJ
I | =

∏
K∈K(I\J)

|EX(K,J)
Y (K,J) |.

(6.61) From now on we only need to determine EX
Y for X, Y ⊆ R such

that

(i) Y does not contain any circuits or infinite bonds,

(ii) X ⊆ Y and X �= Y ,

(iii) Y \ X is connected,

(iv) every element of X is adjacent to some element of Y \ X .

Note that since Y does not contain any circuits, and Y \ X is connected,
every element of X is adjoined to exactly one element of Y \ X , and no two
elements of X are adjoined.
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The following lemma implies that EX
Y is empty if Y contains more than

one non-simple bond, while X, Y satisfy (6.61); therefore we only need to
determine EX

Y for X, Y satisfying (6.61) such that Y contains at most one
non-simple bond.

(6.62) Lemma Let r0, . . . , rl+1 ∈ R such that the subgraph of the Coxeter
graph corresponding to {r0, . . . , rl+1} is of the following shape

• • • • • •
r0 r1 r2 rl−1 rl rl+1

m1 m2

with m1, m2 ≥ 4. Denote the simple root corresponding to ri by xi, and let
α be a root with x0, xl+1 ∈ supp(α) such that the coefficients of x1, . . . , xl

in α are greater than 1. Then α ∈ Δ.

Proof. Let β � α be a positive root of minimal depth such that x0 and xl+1

are in the support of β, and the coefficients of x1, . . . , xl in β are greater
than 1. By (3.36) it suffices to show that β is in Δ, and since this is certainly
the case if the support of β contains a circuit (by (3.39)), we can assume
without loss of generality that supp(β) does not contain any circuits.

For i ∈ {0, . . . , l + 1}, let λi denote the coefficient of xi in β; then
λ1, . . . , λl ≥ √

2 by (2.26). Next, let r ∈ R such that r · β ≺ β. We show
that 〈r · β, αr〉 ≤ −1, which then implies 〈β, αr〉 ≥ 1; hence β ∈ Δ by (3.32),
since β is clearly of depth greater than dp(αr) = 1.

Minimality of β forces r = ri for some i ∈ {0, . . . , l + 1}. If i = 0 or
l+ 1, we may assume without loss of generality that i = 0. Then minimality
of β yields further that x0 /∈ supp(r0 · β), and thus

〈r0 · β, x0〉 ≤ 0 + λ1〈x1, x0〉;

since λ1 ≥ √
2 and 〈x1, x0〉 = cos(π/m1) ≤ − cos(π/4) = − 1√

2
, this is less

than or equal to −1, as required.

Suppose next that i ∈ {1, . . . , l}. Connectedness of the support of ri ·β
together with the assumption that supp(β) does not contain any circuits force
xi ∈ supp(ri ·β), and minimality of β yields that the coefficient of xi in ri ·β
is less than or equal to 1; therefore the coefficient of xi in ri · β equals 1 by
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(2.26). Let K1, . . . , Kn denote the connected components of I(β) \ {ri}, and
for j ∈ {0, . . . , n} let βj ∈ Φ+

Kj∪{ri} with coefficient 1 for xi such that

ri · β = β1 + · · · + βn − (n− 1)xi

according to (6.57). We may assume without loss of generality that ri−1 ∈
K1.

If i = 1, then β1 � x1 by (6.59), and thus λ0 ≥ 2 cos(π/m) by (6.56);
hence

λi−1〈xi−1, xi〉 = λ0〈x0, x1〉 ≤ 2 cos(π/m1)(− cos(π/m1)) ≤ −1,

as cos(π/m1) ≥ 1√
2
. If i > 1, then ri and ri−1 are adjoined by a simple

bond, and since I(β) does not contain any circuits, ri is adjoined only to
ri−1 in I(β1). The coefficient of xi in ri · β0 equals −1 + λi−1, which is
greater than 0 since λi−1 > 1, and thus must be greater than or equal to 1 by
(2.26). Therefore λi−1 ≥ 2, and thus again λi−1〈xi−1, xi〉 ≤ −1. Symmetrical
arguments also yield λi+1〈xi+1, xi〉 ≤ −1 and thus

〈ri · β, xi〉 ≤ 1 + λi−1〈xi−1, xi〉 + λi+1〈xi+1, xi〉 ≤ −1,

as required.

(6.63) Proposition SupposeX, Y satisfy (6.61), and assume furthermore
that Y contains two or more non-simple bonds. Then EX

Y = ∅.

§6a Simple bonds only*

For the duration of this section we assume that X, Y ⊆ R satisfy (6.61) and,
furthermore, that Y contains only simple bonds.

It is clear that all coefficients of roots in ΦY are integers, and thus 〈α, β〉
is an integer multiple of 1

2 for α, β ∈ ΦY . Moreover, EX
Y consists of the roots

in EY with coefficient 1 for αr with r ∈ X , and coefficient greater than or
equal to 2 for αs with s ∈ Y \ X .

The following is immediate.

* I learned recently that Professor J.-Y. Hée also has a description of the set of

elementary roots for the case that the Coxeter graph contains only simple bonds.
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(6.64) Lemma Let α ∈ E be of depth greater than 1 with I(α) ⊆ Y and
r ∈ R such that α � r ·α. Then 〈α, αr〉 = 1

2 , and the coefficient of αr in r ·α
equals the coefficient of αr in α minus 1.

The next lemma yields that EX
Y is empty if Y contains more than one

vertex of valency greater than or equal to 3 (if l > 1, namely r1 and rl), or
one or more vertices of valency greater than or equal to 4 (if l = 1, namely
r1).

(6.65) Lemma Let r1, . . . , rl and s1, s2, s3, s4 be in Y such that the sub-
graph of the Coxeter graph corresponding to {r1, . . . , rl} ∪ {s1, s2, s3, s4} is
of the following shape:

• • • •
•

•

•

•

r1 r2 rl−1 rl

s3

s4

s1

s2

........................................................................

.................................
.................................

.......

..................................
.................................

.....
.........................................................................

Denote the simple roots corresponding to ri and sj by xi and yj respectively,
and let α ∈ Φ+

Y such that y1, y2, y3, y4 ∈ supp(α), and the coefficients of
x1, . . . , xl in α are greater than or equal to 2. Then α ∈ Δ.

Proof. Let β be a positive root of minimal depth preceding α such that
y1, y2, y3 and y4 are in the support of β, and the coefficients of xi in β
are greater than or equal to 2 for all i ∈ {1, . . . , l}. By (3.36) it suffices to
show that β is in Δ. Denote the coefficients of xi and yj in β by λi and μj

respectively, and let r ∈ Y such that r ·β ≺ β. We show that 〈r ·β, αr〉 ≤ −1,
which then implies 〈β, αr〉 ≥ 1, and hence β ∈ Δ by (3.32); (since β is clearly
of depth greater than dp(αr) = 1).

By minimality of β we know that r = ri or r = sj for some i, j. If
r = sj , we may assume without loss of generality that r = s1; then y1 cannot
be in the support of s1 · β by minimality of β, and since λ1 ≥ 2, we find that
〈s1 · β, y1〉 ≤ 0 + (−1

2
)λ1 ≤ −1, as required.

Suppose now that r = ri for some i ∈ {1, . . . , l}; then the coefficient
of xi in ri · α has to be less than or equal to 1 by minimality of β. Since
λi−1 ≥ 2 if i ≥ 2, and μ1, μ2 ≥ 1 if i = 1, while λi+1 ≥ 2 if i ≤ l − 1, and
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μ3, μ4 ≥ 1 if i = l, this yields that

〈ri · β, xi〉 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + (−1

2
)1 + (−1

2
)1 + (−1

2
)1 + (−1

2
)1 if i = 1 = l,

1 + (−1
2)1 + (−1

2)1 + (−1
2 )2 if i = 1 < l,

1 + (−1
2
)2 + (−1

2
)2 if 1 < i < l,

1 + (−1
2)2 + (−1

2)1 + (−1
2 )1 if 1 < i = l;

so 〈ri · β, xi〉 ≤ −1 in all cases, as required.

An easy calculation yields the following result.

(6.66) Lemma Suppose that Y equals

• • • •
u1 u2 un−1 un

and denote the simple root corresponding to ui by αi. Then

Φ+ = {αi + · · · + αj | 1 ≤ i ≤ j ≤ n},
and thus EX

Y = ∅ if X �= Y .

(6.67) Proposition Suppose that Y ⊆ R contains only simple bonds and
|Y | > 1. Further, let X ⊆ Y such that X, Y satisfy (6.61). Then EX

Y is
empty unless Y equals

• • • • • • •

•

•

•

sm sm−1 s1 r0 t1 tn−1 tn

r1

rl−1

rl

with l,m, n ≥ 1.
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If Y is of the shape described above, and X, Y satisfy (6.61), then X
must be contained in {rl, sm, tn}, since each element of X is adjoined to
exactly one element of Y \ X , and Y \ X is connected. It is convenient for
us to define s0 and t0 to be equal to r0. In order to avoid double indices, we
denote the simple reflections corresponding to ri, sj and tk by xi, yj and zk

respectively for i = 0, . . . , l, j = 0, . . . , m and k = 0, . . . , n.

Define ρl,m,n to be the root

(tn−1 · · · t1)(sm−1 · · · s1)(rl−1 · · · r1)r0(tn · · · t1)(sm · · · s1)(rl · · · r1) · x0

= xl + ym + zn

+ 2
(
xl−1 + · · · + x1 + ym−1 + · · ·+ y1 + x0 + z1 + · · · + zn−1

)
.

A straightforward calculation yields that

(ri · · · r1) · x0 = xi + · · · + x1 + x0

and 〈(ri · · · r1) · x0, xi+1〉 = −1
2 for all i ∈ {1, . . . , l}. So by (3.37) we can

deduce that (ri+1 · · · r1) ·x0 is elementary if (ri · · · r1) ·x0 is elementary. Since
x0 ∈ E , induction yields that (rl · · · r1) · x0 is elementary. A string of similar
arguments yields that ρl,m,n is elementary, and it follows that ρl,m,n is an
element of E{rl,sm,tn}

Y .

The next two assertions will enable us to show that each root in EX
Y is

preceded by ρl,m,n if X, Y are of the shape described in (6.67). Note that
the next lemma also yields that the depth function coincides with the height
function defined by

∑
r∈Y λrαr �→ ∑

r∈Y λr on the set of elementary roots
with only simple bonds in their support.

(6.68) Lemma Suppose Y contains only simple bonds, and let α ∈ Φ+

such that α =
∑

r∈Y λrαr for some (λr)r∈Y . Then dp(α) ≤ ∑
r∈Y λr, with

equality if and only if α ∈ E .

Proof. If α is of depth 1, then α = αr for some r ∈ Y , and the assertion
is immediate. So suppose now that dp(α) > 1, and assume that for each
positive root β ≺ α, the depth of β is less than or equal to the sum of
the coefficients of the simple roots in β, with equality if and only if β ∈ E .
Further, let s ∈ R such that s · α ≺ α.
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If α is elementary, (6.64) implies that the coefficient of αs in s ·α equals
λs − 1, and since r · α ∈ E by (3.36), induction yields that

dp(s · α) =
∑
r �=s

λr + (λs − 1) =
∑
r∈Y

λr − 1;

hence dp(α) = dp(s · α) + 1 =
∑

r∈Y λr.

Suppose next that α ∈ Δ and s · α ∈ Δ. Then the coefficient of αs in
s · α is less than or equal to λs − 1; hence

dp(s · α) <
∑
r �=s

λr + (λs − 1) =
∑
r∈Y

λr − 1

by induction, and thus dp(α) = dp(s · α) + 1 <
∑

r∈Y λr.

Finally, suppose that α ∈ Δ while s · α is elementary. This is possible
only if α dom αs, and thus 〈α, αs〉 ≥ 1 by (3.32). The coefficient of αs in s ·α
equals λs − 2〈α, αs〉, and this is less than or equal to λs − 2. Thus

dp(s · α) ≤
∑
r �=s

λr + (λs − 2) =
∑
r∈Y

λr − 2

by inductive hypothesis, and therefore

dp(α) = dp(s · α) + 1 ≤
∑
r∈Y

λr − 1 <
∑
r∈Y

λr,

as required.

(6.69) Proposition Suppose Y contains only simple bonds. Let β ∈ Φ+

and α ∈ E with I(α) ⊆ Y . Then α � β if and only if the coefficients of
simple roots in β are less than or equal to the corresponding coefficients in
α. (Note that if this is the case, (3.36) yields that β ∈ E .)

Proof. If α � β, Lemma (3.35) yields that the coefficients of simple roots in
β are less than or equal to the corresponding coefficients in α, and it suffices
to show the converse.

Suppose first that dp(β) = 1, and let γ � α be a positive root of minimal
depth such that β ∈ supp(γ). Assume for a contradiction that γ �= β. Then
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dp(γ) > 1, since β is in the support of γ, but γ does not equal β. Minimality
of γ yields that rβ · γ ≺ γ and β /∈ supp(rβ · γ). Since α is elementary, it
follows that γ is elementary, and by (6.64), the coefficient of β in γ equals
the coefficient of β in rβ · γ plus 1, that is 1. But then γ � β by (6.59), and
since γ �= β we find that α � γ � β, contradicting the minimality of γ. So
γ = β, as required.

Suppose next that dp(β) > 1, and let (μr)r∈Y with β =
∑

r∈Y μrαr.
Furthermore, assume that the assertion is true for all positive roots of depth
less than the depth of β. Let α be an elementary root with (λr)r∈Y such that
α =

∑
r∈Y λrαr and λr ≥ μr for all r ∈ Y . Then dp(α) ≥ dp(β) by (6.68).

If dp(α) = dp(β), Lemma (6.68) together with the hypothesis yield that
α = β. Suppose now that dp(α) > dp(β) and let s ∈ Y such that s · α ≺ α;
by (6.64) we know that the coefficient of αs in s · α equals λs − 1 and that
〈α, αs〉 = 1

2 . If λs − 1 ≥ μs, induction on dp(α) − dp(β) yields that s · α
is a successor of β, and thus α � β by transitivity of �. Assume next that
λs−1 < μs; then λs = μs, since λs ≥ μs and λs and μs are integers. Further,
λr ≥ μr and 〈αr, αs〉 ≤ 0 for r �= s; therefore

〈α, αs〉 = λs +
∑
r �=s

λr〈αr, αs〉 ≤ μs +
∑
r �=s

μr〈αr, αs〉 = 〈β, αs〉. (∗)

So 〈β, αs〉 > 0, and thus s · β ≺ β. Denote the coefficient of αs in s · β by
μ′

s; then μ′
s is less than or equal to μs − 1 = λs − 1, and thus s · α � s · β by

induction on dp(β).

Assume for a contradiction that μ′
s < μs − 1, and thus 〈s · β, αs〉 ≤ −1.

Since s ·α is an elementary root preceded by s ·β, Lemma (3.38) implies that
the coefficients of αs in s ·α and s · β coincide; that is, μ′

s = λs − 1, and thus
μ′

s = μs − 1, contradicting our assumption.

So μ′
s = μs − 1 and 〈β, αs〉 = 1

2 = 〈α, αs〉. Now (∗) together with the
hypothesis force λr = μr for all r ∈ Y such that 〈αr, αs〉 �= 0. So for r ∈ R
adjoined to s, the coefficients of αr in α and s·β coincide, while the coefficient
of αs in α is greater than the coefficient of αs in s · β; thus α � s · (s · β) = β
by (6.58), as required.

Note that (6.69) does not hold in general for arbitrary roots in ΦY . For
example, if Y equals
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• •

•

r s

t..........................................................................................................
...................
...................
...................
...........

then the coefficients in rs ·αt = 2αr +αs +αt are greater than or equal to the
corresponding coefficients on αr, but clearly αr �� rs · αt. Note furthermore
that (6.69) also does not hold in general for elementary roots for arbitrary Y .
For example, suppose that Y = {r, s} with mrs = 4; then the coefficients in
r ·αs =

√
2αr +αs are greater than or equal to the corresponding coefficients

in αr, but clearly αr �� r · αs.

If Y is of the shape described in (6.67) andX ⊆ {rl, sm, tn}, Proposition
(6.69) yields that every root in EX

Y is a successor of ρl,m,n. It can be easily
seen that r0 is the only element of Y such that r0 · ρl,m,n � ρl,m,n; that is,
〈ρl,m,n, x0〉 < 0.

If l, m, n ≥ 2, then

〈r0 · ρl,m,n, x0〉 = −〈ρl,m,n, x0〉 = −(
2 +

(
−1

2

)
2 +

(
−1

2

)
2 +

(
−1

2

)
2
)

= 1;

thus r0 · ρl,m,n ∈ Δ, and no elementary root can be a successor of r0 · ρl,m,n.

(6.70) Proposition Suppose X, Y are of the shape described in (6.67)
with l,m, n ≥ 2. Then

EX
Y =

{ {ρl,m,n} if X = {rl, sm, tn},
∅ if X �= {rl, sm, tn}.

(6.71) From now on suppose that Y equals

• • • • • • •

•

sm sm−1 s1 r0 t1 tn−1 tn

r1

with m, n ≥ 1 and X ⊆ {r1, sm, tn}.
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(6.72) Proposition Suppose Y is of the shape described in (6.71). Then

E{r1,sm,tn}
Y is the set of

x1 + ym + 2
(
ym−1 + · · ·+ yj(3)

)
+ 3

(
yj(3)−1 + · · ·+ yj(4)

)
+ · · ·

· · ·+ (M − 1)
(
yj(M−1)−1 + · · · + yj(M)

)
+M

(
yj(M)−1 + · · ·+ y1

)
+Mx0 +M

(
z1 + · · ·+ zk(M)−1

)
+ · · · + 2

(
zk(3) + · · ·+ zn−1

)
+ zn

with M ∈ {2, . . . ,min(m,n) + 1},

m > j(3) > j(4) > . . . > j(M − 1) > j(M) > 0

and
0 < k(M) < k(M − 1) < . . . < k(4) < k(3) < n.

Whence

∣∣E{r1,sm,tn}
Y

∣∣ =
min(m,n)+1∑

M=2

(
m− 1
M − 2

)(
n− 1
M − 2

)
=

(
m+ n− 1
m− 1

)
.

Before we show (6.72), we prove the next lemma, which yields a more
interesting proof for (6.72).

(6.73) Lemma Suppose Y is of the shape described in (6.71), and let α be
in Φ+

Y . Denote the coefficients of xi, yj , zk in α by λi, μj and νk respectively,
and suppose that λ0 ≥ 1.

(i) Then λ1 ≤ λ0, with equality only if λ0 = λ1 = 1; furthermore,

μm ≤ μm−1 ≤ . . . ≤ μ1 ≤ λ0 and λ0 ≥ ν1 ≥ . . . ≥ νn−1 ≥ νn.

(ii) There exists a β � α such that the coefficient of x0 in β equals λ0, while
the coefficient of y1 in β is less than or equal to λ0 − 1.

(iii) If μj ≥ μj+1 + 2 for some j ∈ {0, . . . , m − 1} (where μ0 = λ0), there
exists a β � α such that the coefficient of x0 in β equals λ0, while the
coefficient of y1 is less than or equal to λ0 − 2.

Proof. The coefficient of x1 in r1 · α equals λ0 − λ1, and since the coefficient
of x0 in r1 ·α (namely λ0) is greater than 0, this has to be nonnegative; that
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is λ0 ≥ λ1. If λ0 = λ1, then I(r1 · α) is a subset of

• • • • • • •
sm sm−1 s1 r0 t1 tn−1 tn

and (6.66) yields that λ0 = 1. Now let j ∈ {1, . . . , m}. An easy induction
yields for i ∈ {j, . . . ,m − 1} that yi has coefficient μi+1 + μj−1 − μj in
(si · · · sj) · α, and we deduce that the coefficient of ym in β = (sl · · · sj) · α
equals μj−1 − μj . Since the coefficient of x0 in β equals λ0, and this is
positive, β is a positive root, and thus μj−1 ≥ μj . Symmetrical arguments
yield the inequalities for the νk, and this proves (i).

If λ0 = 1, then α � x0 by (6.69), and (ii) is certainly true. So suppose
that λ0 ≥ 2, and let β � α be of minimal depth such that the coefficient of
x0 in β equals λ0. Minimality of β implies that r0 ·β ≺ β, and the coefficient
of x0 in r0 ·β is less than or equal to λ0−1. Now (i) yields that the coefficient
of y1 in r0 · β is less than or equal to λ0 − 1, and so the coefficient of y1 in β
is less than or equal to λ0 − 1, as required.

It remains to show (iii). So suppose that μj ≥ μj+1 + 2 for some
j ∈ {0, . . . , m − 1}, and let j be minimal with this property. If j = 0 we
can choose β = α, so assume next that j > 0, and proceed by induction.
By minimality of j we know that μj−1 ≤ μj + 1; whence μj−1 = μj or
μj−1 = μj + 1 by (i). If μj−1 = μj , the coefficient of yj in sj · α equals μj+1,
and this is less than or equal to μj − 2 = μj−1 − 2; if μj−1 = μj + 1, the
coefficient of yj in sj · α equals μj+1 + 1, and this is less than or equal to
μj − 2 + 1 = μj−1 − 2. So in any case, induction yields that there exists
a β � sj · α (� α) such that the coefficient of x0 in β equals λ0, while the
coefficient of y1 is less than or equal to λ0 − 2, and this finishes the proof.

Proof of (6.17). Suppose first that α is of the form described above; we
show that α is an elementary root, and since the coefficients of α certainly
satisfy the required conditions, it will follow that α ∈ E{r1,sm,tn}

Y . If M = 2,
then α = ρ1,m,n is elementary. Suppose next that M ≥ 3, and proceed by
induction. If j(M) = k(M) = 1, then 〈α, x0〉 = 1

2
and r0 · α is of the form

described above with M − 1 in place of M . Thus r0 · α ∈ E by induction on
M , and since 〈r0 · α, x0〉 = −1

2
, Lemma (3.37) yields that α is elementary.

Suppose next that j(M) > 1, and proceed by induction on j(M). Define
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l(i) = j(i) for i ∈ {3, . . . , N − 1} and l(M) = j(M) − 1; then

m > l(3) > l(4) > . . . > l(M − 1) > l(M) > 0.

Further, 〈α, yj(M)−1〉 = 1
2 and sj(M)−1 ·α is of the form described above with

l(i) in place of j(i) for all i. By induction, sj(M)−1 · α is elementary, and as
〈sj(M)−1 · α, yj(M)−1〉 = −〈α, yj(M)−1〉 = −1

2 , it follows by (3.37) that α is
also elementary.

Symmetrical arguments apply if k(M) > 1, and it remains to show
that we have listed all the elements of E{r1,sm,tn}

Y . This could be done by
an inductive proof similar to the previous one, but for the sake of variety we
choose the following approach.

Let μm−1, . . . , μ1, λ0, ν1, . . . , νn−1 ≥ 2 such that

α = x1 + ym + μm−1ym−1 + · · ·+ μ1y1 + λ0x0 + ν1z1 + · · ·+ νn−1zn−1 + zn

is an elementary root, and assume for a contradiction that there exists a
j ∈ {0, . . . , m − 1} with μj ≥ μj+1 + 2 (where μ0 = λ0 and μm = 1). Let
β � α be according to (6.73)(iii) such that the coefficient of x0 in β equals
λ0, and the coefficient of y1 in β is less than or equal to λ0−2. Furthermore,
let γ � β be according to (6.73)(ii) such that the coefficient of x0 in γ equals
λ0, while the coefficient of z1 in γ is less than or equal to λ0 − 1. Since γ
precedes α and β, the coefficient of x1 in γ is less than or equal to 1, and the
coefficient of y1 in γ is less than or equal to λ0 − 2. Hence

〈γ, x0〉 ≥ λ0 +
(
−1

2

)
(λ0 − 2) +

(
−1

2

)
1 +

(
−1

2

)
(λ0 − 1) ≥ 1;

since the coefficient of x0 in γ is greater than 1 we find that γ is of depth
strictly greater than 1, and thus (3.32) implies that γ dom x0 and γ ∈ Δ.
Now (3.36) forces α ∈ Δ, contrary to our choice of α. So μj ≤ μj+1 + 1
for all j ∈ {0, . . . , m − 1}, and thus μj = μj+1 or μj+1 + 1 by (6.73)(i);
symmetrically νk ∈ {νk+1, νk+1 + 1} for all k ∈ {0, . . . , n − 1}, and α is of
the desired form.

The binomial identity employed in the latter part of the assertion is
known as the Vandermonde-identity.
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(6.74) Proposition Suppose Y is of the shape described in (6.71). Then
EX

Y = ∅ if X = {r1}, {r1, sm}, {r1, tn}.

The next two results are part of the proof of (6.74), but are stated
separately since they will be used again later.

(6.75) Lemma Suppose X and Y are of the shape described in (6.71) and
X �= {r1, sm, tn}. Furthermore, let α be a minimal element of EX

Y with

respect to �. Then there exists an r ∈ {r1, sm, tn} \ X with r · α ∈ EX∪{r}
Y .

Proof. Since X ⊆ {r1, sm, tn}, we know that α is a successor of ρ1,m,n, and
since X �= {r1, sm, tn} clearly α �= ρ1,m,n. So α � ρ1,m,n, and there exists an
r ∈ Y with α � r · α � ρ1,m,n. For s ∈ X, the coefficients of αs in α and
ρ1,m,n coincide, and thus r /∈ X . Denote the coefficient of αr in r ·α by λ. If
λ ≥ 2, then r ·α is in EX

Y , contradicting the minimality of α; therefore λ ≤ 1.
The coefficient of αr in α equals λ+ 1 by (6.64), and this has to be greater
than or equal to 2 as r ∈ Y \ X ; whence λ = 1 and r · α ∈ EX∪{r}

Y . Since
r · α is a successor of ρ1,m,n, the coefficients of ym−1, . . . , y1, x0, z1, . . . , zn−1

in r · α are greater than or equal to 2, and this forces r ∈ {r1, sm, tn}, as
required.

(6.76) Corollary Suppose X and Y are of the shape described in (6.71)

with X �= {r1, sm, tn} such that EX∪{r}
Y = ∅ for all r ∈ {r1, sm, tn} \ X .

Then EX
Y = ∅.

Proof of (6.19). Assume for a contradiction that E{r1,sm}
Y �= ∅, and let α be an

element of minimal depth. As tn is the only element of {r1, sm, tn} \ {r1, sm},
the previous lemma yields that tn ·α ∈ E{r1,sm,tn}

Y . By (6.72), the coefficient
of zn−1 in tn · α equals 2, while the coefficient of zn in tn · α equals 1, and
thus

〈α, zn〉 = −〈tn · α, zn〉 = −(1 +
(
−1

2

)
2) = 0,

contradicting tn ·α ≺ α. So E{r1,sm}
Y = ∅ and symmetrically also E{r1,tn}

Y = ∅.
Moreover, E{r1}

Y = ∅ by (6.76).
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If m also equals 1, symmetrical arguments yield that E{s1,tn}
Y and E{s1}

Y

are empty; so E{tn}
Y is empty by (6.76), and a repeated application of (6.76)

yields that E∅
Y is also empty. (Alternatively, it can be easily verified that

ρ1,1,n is the only element of ΦY preceded by ρ1,1,n.) This yields the next
result.

(6.77) Lemma Suppose Y equals

• • • • •

•

s1 r0 t1 tn−1 tn

r1

with n ≥ 1 and X ⊆ {r1, s1, tn}. Then EX
Y = ∅ if X �= {r1, s1, tn} and

E{r1,s1,tn}
Y = {ρ1,1,n}.

(6.78) From now on suppose that Y equals

• • • • • • •

•

sm sm−1 s1 r0 t1 tn−1 tn

r1

with m, n ≥ 2 and X ⊆ {sm, tn}.

Define σm,n to equal

(r1r0) ·ρ1,m,n = 2x1 +ym +2(ym−1 + · · ·+y1)+3x0 +2(z1 + · · ·+zn−1)+zn.

Since ρ1,m,n is elementary and
〈
ρ1,m,n, x0

〉
=

〈
r0 · ρ1,m,n, x1

〉
= −1

2
, Lemma

(3.37) yields that σm,n is in E , and hence in E{sm,tn}
Y .

Now let α ∈ EX
Y . By (6.73)(i), the coefficient of x0 in α is strictly

greater than the coefficient of x1 in α, which in turn is greater than or equal
to 2. So the coefficient of x0 in α is greater than or equal to 3, and since
for r ∈ Y \ {sm, tn} the coefficient of αr in α is greater than or equal to 2,
Proposition (6.69) yields that α � σm,n.
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(6.79) Proposition Suppose Y is of the shape described in (6.78) with

m,n ≥ 3. Then the elements of E{sm,tn}
Y are exactly the following:

(1)
2x1 + ym + 2

(
ym−1 + · · ·+ yj

)
+ 3

(
yj−1 + · · ·+ y1

)
+ 3x0

+ 3
(
z1 + · · ·+ zk−1

)
+ 2

(
zk + · · · + zn−1

)
+ zn,

where m > j > 0 and 0 < k < n,

(2)
2x1 + ym + 2

(
ym−1 + · · · + y1

)
+ 4x0 + 4

(
z1 + · · ·+ zk(2)−1

)
+ 3

(
zk(2) + · · ·+ zk(1)−1

)
+ 2

(
zk(1) + · · ·+ zn−1

)
+ zn,

where 0 < k(2) < k(1) < n, and

(3)
2x1 + ym + 2

(
ym−1 + · · ·+ yj(1)

)
+ 3

(
yj(1)−1 + · · ·+ yj(2)

)
+ 4

(
yj(2)−1 + · · ·+ y1

)
+ 4x0 + 2

(
z1 + · · ·+ zn−1

)
+ zn,

where m > j(1) > j(2) > 0.

Whence
∣∣E{sm,tn}

Y

∣∣ = (m− 1)(n− 1) +
(
m−1

2

)
+

(
n−1

2

)
=

(
m+n−2

2

)
.

Proof. We show first that if α is of type (1), (2) or (3), then α ∈ E ; since the
coefficients of α satisfy the required conditions, it follows that α ∈ E{sm,tn}

Y .

Suppose first that α is of type (1). If j = k = 1, then α = σm,n is
certainly an elementary root. So suppose now that j + k > 2, and proceed
by induction. By symmetry, we may assume without loss of generality that
j > 1. It follows that 〈α, yj−1〉 = 1

2
and sj−1 · α is of type (1) with j − 1 in

place of j; induction yields that sj−1 ·α ∈ E and so α is elementary by (3.37)
since 〈sj−1 · α, yj−1〉 = −〈α, yj−1〉 = −1

2
.

Assume next that α is of type (2). If k(2) = 1, then r0 · α is of type
(1) (since k(1) > 1), and thus an elementary root by the previous paragraph.
Now 〈r0 · α, x0〉 = −1

2
, so (3.37) yields that α is elementary. Suppose next

that k(2) > 1, and proceed by induction. Then 〈α, zk(2)−1〉 = 1
2 and tk(2)−1 ·α

is of type (2) with k(2) − 1 in place of k(2). So tk(2)−1 · α is elementary by
induction, and (3.37) implies once again that α ∈ E .

Symmetrical arguments apply if α is of type (3), therefore it remains to
show that all the elements of E{sm,tn}

Y have been accounted for. Again, this
could be done by an inductive proof, but we choose the following one.
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Let α ∈ E{sm,tn}
Y . Then α � σm,n by the above, whence the coefficient

of x0 in α is greater than or equal to 3. We show first that α is of type (1),
(2) or (3) if α has coefficient 3 or 4 for x0. Suppose now that

α = λ1x1 + ym + μm−1ym−1 + · · ·+μ1y1 + 3x0 + ν1z1 + · · ·+ νn−1zn−1 + zn.

Then λ1 < 3 by (6.73)(i), and thus λ1 = 2 by hypothesis. If μm−1 = 3, then
(6.73)(ii) and (iii) yield that there exists a β � r1 · α with coefficient of x0

in β equal to 3, and coefficients of x1, y1, z1 less than or equal to 1,1 and 2
respectively; but then

〈β, x0〉 ≥ 3 +
(
−1

2

)
1 +

(
−1

2

)
1 +

(
−1

2

)
2 = 1,

forcing β ∈ Δ and thus α ∈ Δ, a contradiction. Thus μm−1 = 2, and
symmetrically also νn−1 = 2, and by (6.73)(i) it is clear that α is of type (1).

Next suppose that x0 has coefficient 4 in α, and let β be of maximal
depth with σm,n � β � α such that the coefficient of x0 in β is less than 4.
Then maximality of β implies that β ≺ r0 · β � α and that the coefficient
of x0 in r0 · β equals 4. As α � r0 · β, it is clear that r0 · β is elementary,
and by (6.64) we deduce that 〈β, x0〉 = −1

2 and that the coefficient of x0 in
β equals 3. As α � β � σm,n we can further conclude that β is in E{sm,tn}

Y .
The previous paragraph now yields that β is of type (1). If j, k ≥ 2, then

〈β, x0〉 = 3 +
(
−1

2

)
2 +

(
−1

2

)
3 +

(
−1

2

)
3 ≤ −1,

contradicting our conclusion that 〈β, x0〉 = −1
2
. So by symmetry we may

assume without loss of generality that k = 1, and thus j > 1 (since 〈β, x0〉
equals −1

2
). Set j(1) = j; then

r0 · β = 2x1 + ym + 2
(
ym−1 + · · · + yj(1)

)
+ 3

(
yj(1)−1 + · · · + y1

)
+ 4x0 + 2

(
z1 + · · ·+ zn−1

)
+ zn;

since 〈r0 · β, z1〉 = −1, Lemma (3.38) implies that the coefficient of z1 in
α equals 2, and (6.73)(i) forces the coefficient of zk to be equal to 2 for
k ∈ {1, . . . , n− 1}. Now let j(2) < j(1) be maximal such that α is preceded
by γ = (sj(2)−1 · · · s1r0) · β; then

γ = 2x1 + ym + 2
(
ym−1 + · · ·+ yj(1)

)
+ 3

(
yj(1)−1 + · · ·+ yj(2)

)
+ 4

(
yj(2)−1 + · · ·+ y1

)
+ 4x0 + 2

(
z1 + · · ·+ zn−1

)
+ zn.
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Note that γ ≺ r · γ for r ∈ Y only if r = sj(1) and j(1) < n, or r = sj(2)

and j(2) < j(1) − 1, or r = t1. But α cannot be preceded by t1 · γ since the
coefficient of z1 in α equals 2, and by maximality of β and j(2), α can also
not be preceded by sj(1) · γ (if j(1) < n) or sj(2) · γ (if j(2) < j(1)− 1); thus
α = γ, as required.

Now assume for a contradiction that there exists an α ∈ E{sm,tn}
Y such

that the coefficient of x0 in α is greater than or equal to 5. We may assume
without loss of generality that α is of minimal depth with this property. Then
α � σm,n, and thus there exists an r ∈ Y such that α � r · α � σm,n. Since
r · α precedes an elementary root, it must be elementary, and as r · α lies
between α and σm,n, both of which are in E{sm,tn}

Y , further r · α ∈ E{sm,tn}
Y .

Thus r = r0 by minimality of α, and moreover, the coefficient of x0 in r · α
is less than 5. Lemma (6.64) yields that the coefficient of x0 in r0 · α equals
4, and thus r0 · α is of type (2) or (3) by our earlier conclusion. But then

〈r0 · α, x0〉 ≥ 4 +
(
−1

2

)
2 +

(
−1

2

)
2 +

(
−1

2

)
4 = 0,

contradicting r0 · α ≺ α. Thus there are no roots in E{sm,tn}
Y with coefficient

for x0 greater than or equal to 5, and this finishes the proof.

(6.80) Lemma Suppose Y is of the shape described in (6.78) withm,n ≥ 3.
Then EX

Y = ∅ if X equals {sm}, {tn} or ∅.

Proof. Assume for a contradiction that E{sm}
Y �= ∅, and let α be an element

of minimal depth. Then (6.75) yields that there exists an r ∈ {r1, tn} with
r · α ∈ E{sm,r}

Y . Since E{sm,r1}
Y is empty by (6.74), we find that r = tn and

tn · α ∈ E{sm,tn}
Y ; but (6.79) now forces the coefficient of zn−1 in tn · α to be

equal to 2, and thus

〈α, zn〉 = −〈tn · α, zn〉 = −(1 + (−1
2
) · 2) = 0,

contradicting tn ·α ≺ α. So E{sm}
Y = ∅, and symmetrical also E{tn}

Y = ∅. Since
E{r1}

Y is also empty by (6.74), Corollary (6.76) implies that E∅
Y = ∅.
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(6.81) From now on we only need to determine EX
Y for Y of the shape

• • • •

•

• •
s2 s1 r0 t1 tn−1 tn

r1

with n ≥ 2 and X ⊆ {s2, tn}.

(6.82) Lemma Suppose Y is of the shape described in (6.81), and let α be
a root in ΦY . Denote the coefficient of x0, y1 and y2 in α by λ, μ1 and μ2

respectively, and suppose that λ ≥ 3. Then μ2 < μ1 < λ.

Proof. Assume for a contradiction that μ1 = μ2 or λ = μ1. Then the support
of s1 · α or s2s1 · α is a subset of

• • • • •

•

y1 x0 z1 zn−1 zn

x1

and it can be easily checked using (6.77) that the coefficients in roots with
this support are at most 2, contradicting λ ≥ 3.

(6.83) Proposition Suppose Y is of the shape described in (6.81). Then

the elements of E{s2,tn}
Y are:

λx1 + y2 + μy1 +Mx0

+M
(
z1 + · · · + zk(M−1)−1

)
+ (M − 1)

(
zk(M−1) + · · ·+ zk(M−2)−1

)
+ · · ·

· · ·+ 3
(
zk(3) + · · · + zk(2)−1

)
+ 2

(
zk(2) + · · ·+ zn−1

)
+ zn,

where

(i) M ∈ {5, . . . , n+ 1} is odd, and λ = M−1
2 , μ = M+1

2 , or

(ii) M ∈ {3, . . . , n+ 1} is odd and λ = μ = M+1
2 , or

(iii) M ∈ {4, . . . , n+ 1} is even and λ = μ = M
2 , or

(iv) M ∈ {4, . . . , n+ 1} is even and λ = M
2

and μ = M
2

+ 1,
and

0 < k(M − 1) < k(M − 2) < . . . < k(3) < k(2) < n.
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Whence

∣∣E{s2,tn}
Y

∣∣ =
(
n− 1

1

)
+ 2

n+1∑
M=4

(
n− 1
M − 2

)
= 2n − n− 1.

Proof. We show first that α is elementary if α is a vector of the above type,
and it follows trivially that α ∈ E{s2,tn}

Y . Denote the sum of the coefficients
of α by S; then

S ≥ 2 + 1 + 2 + 3 + 2(n− 1) + 1 = 2n+ 7.

If S = 2n + 7, then α = σ2,n is elementary. Suppose next that S > 2n + 7,
and proceed by induction. If k(M − 1) > 1, then

〈α, zk(M−1)−1〉 = M +
(
−1

2

)
M +

(
−1

2

)
(M − 1) =

1
2
,

and thus tk(M−1)−1 · α is of the form described above with k(M − 1) − 1 in
place of k(M − 1). By induction this is an elementary root and (3.37) yields
that α ∈ E .

Next assume that k(M − 1) = 1. Then M ≥ 4 since S > 2n + 7, and
thus M − 1 ∈ {3, . . . , n + 1}. The coefficient of z1 in α equals M − 1, and
λ+ μ equals M or M + 1.

If λ+ μ equals M (that is, in cases (i) and (iii)), we find that

〈α, x0〉 = M +
(
−1

2

)
M +

(
−1

2

)
(M − 1) =

1
2
,

and the coefficient of x0 in r0 · α equals M − 1. Since 〈r0 · α, x0〉 = −1
2 , it

suffices to show that r0 · α is of the form described in the assertion; for then
r0 · α ∈ E by induction, and (3.37) yields that α ∈ E . If M is odd, M − 1 is
even; furthermore,

λ =
M − 1

2
and μ =

M + 1
2

=
M − 1

2
+ 1,

and these satisfies (iv) for M − 1 in place of M , as required. Suppose next
that M is even, and thus M − 1 is odd; then

λ = μ =
M

2
=

(M − 1) + 1
2

,
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and these satisfies (ii) for M − 1 in place of M , and r0 · α is of the required
form.

Finally, assume that λ+μ equals M +1. If M is even, then μ = M
2 +1,

λ = M
2 and 〈α, y1〉 = 1

2 . The coefficient of y1 in s1 · α equals M
2 , while the

coefficient of x1 in s1 · α equals λ = M
2

; so the coefficients of s1 · α satisfy
(iii). By induction s1 · α is an elementary root, and (3.37) yields that α ∈ E .
If M is odd, then λ = μ = M+1

2
, and 〈α, x1〉 = 1

2
. The coefficient of x1 in

r1 · α equals M−1
2 , whence the coefficients of r1 · α satisfy (i). By induction,

r1 ·α ∈ E , and since 〈r1 ·α, x1〉 = −1
2
, Lemma (3.37) once again implies that

α is elementary.

It remains to show that all the elements of E{s2,tn}
Y have been enumer-

ated. To do so, we again take the scenic route. So let

α = λ1x1 + y2 + μ1y1 + λ0x0 + ν1 + · · · + νn−1zn−1 + zn

with λ1, μ1, λ0, ν1, . . . , νn−1 ≥ 2 be an elementary root. Assume for a con-
tradiction that νk ≥ νk+1 +2 for some k ∈ {0, . . . , n−1} (where ν0 = λ0 and
νn = 1). Let β � α be according to (6.73)(iii) such that the coefficient of x0

in β equals λ0, and the coefficient of z1 in β is less than or equal to λ0 − 2.
If the coefficient λ′ of x1 in β is greater than λ0

2 , then

〈β, x0〉 > λ0

2
+

(
−1

2

)
λ0 = 0

and thus r0 · β ≺ β; moreover, the coefficient of x1 in r1 · β equals −λ′ + λ0,
and this is clearly less than λ0

2 . Thus we may replace β by r1 · β, which
also precedes α and has coefficient for x1 less than or equal to λ0

2
. If the

coefficient of y1 in β is greater than λ0
2 + 1

2 , then

〈β, y1〉 > λ0

2
+

1
2

+
(
−1

2

)
1 +

(
−1

2

)
λ0 = 0

(since the coefficient of y2 in β is less than or equal to the coefficient of y2 in
α, and thus less than or equal to 1). So β � s1 · β, and we may replace β by
s1 · β, which also precedes α and has coefficient for y1 less than or equal to
λ0
2 + 1

2 . So assume without loss of generality that the sum of the coefficients
of x1 and y1 in β is less than or equal to λ0 + 1

2
, and thus less than or equal

to λ0 (as the coefficients of x1 and y1 in β are integers). Therefore

〈β, x0〉 ≥ λ0+
(
−1

2

)
(λ0−2)+

(
−1

2

)
(λ1+μ1) ≥ λ0+

(
−1

2

)
(λ0−2)+

(
−1

2

)
λ0,



Chapter 6 The set of elementary roots 84

which equals 1, forcing β ∈ Δ, and contradicting α ∈ E . So νk equals νk+1

or νk+1 + 1 for all k by (6.73)(i). In particular, λ0 ≤ n+ 1, and we define M
to be λ0. Since λ1 ≥ 2 further M ≥ 3 by (6.73)(i).

It remains to show that λ1 and μ1 satisfy (i), (ii),(iii) or (iv). First note
that since 〈α, x1〉 = λ1 +(−1

2 )M and 〈α, y1〉 = μ1 +(−1
2 )1+ (−1

2)M have to
be less than or equal to 1

2 ,

λ1 ≤ M + 1
2

and μ1 ≤ M

2
+ 1. (∗)

Next, let γ � α be according to (6.73)(ii) such that the coefficient of x0

in γ equals M , while the coefficient of z1 in γ is less than or equal to M − 1,
and denote the coefficients of x1, y1 in γ by λ′ and μ′ respectively. By (3.35),
λ′ ≤ λ1 and μ′ ≤ μ1, and as γ cannot dominate x0,

1
2
≥ 〈γ, x0〉 ≥M+

(
−1

2

)
(λ′+μ′)+

(
−1

2

)
(M−1) ≥ 1

2
+

(
−1

2

)
(λ1+μ1)+

M

2
;

this yields that
λ1 + μ1 ≥M. (∗∗)

Suppose first that M is even; then λ1 ≤ M
2

by (∗) since λ1 is an integer,
and thus μ1 equals M

2 or M
2 + 1 by (∗) and (∗∗). If λ1 = M

2 , then λ1, μ1

satisfy (iii) or (iv). Assume for a contradiction that λ1 ≤ M
2 − 1, and thus

μ1 = M
2 + 1 and λ1 = M

2 − 1 by the above. So

〈γ, x0〉 ≥M+
(
−1

2

)
(λ′+μ′)+

(
−1

2

)
(M−1) ≥ 1

2
+

(
−1

2

)
(λ1+μ1)+

M

2
=

1
2
,

and since 1
2
≥ 〈γ, x0〉, we must have equality everywhere; hence λ′ must be

equal to λ = M
2
− 1 and μ′ = μ1 = M

2
+ 1. Moreover, the coefficient of y2

in γ is less than or equal to 1. Therefore 〈γ, y1 + x0〉 = 〈γ, y1〉 + 〈γ, x0〉 is
greater than or equal to(M

2
+ 1

)
+

(
−1

2

)
1 +

(
−1

2

)
M

+M +
(
−1

2

)(M
2

+ 1
)

+
(
−1

2

)(M
2

− 1
)

+
(
−1

2

)
(M − 1),

which equals 1, forcing γ ∈ Δ, a contradiction.
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Finally assume that M is odd; then μ1 ≤ M+1
2

by (∗), and by (∗) and
(∗∗) we know that λ1 equals M−1

2
or M+1

2
. Now λ1, μ1 satisfy (i) or (ii)

if μ1 = M+1
2 , and we assume for a contradiction that μ1 ≤ M−1

2 . Then
λ1 = M+1

2 and μ1 = M−1
2 by the above; hence

〈γ, x0〉 ≥M+
(
−1

2

)
(λ′+μ′)+

(
−1

2

)
(M−1) ≥ 1

2
+

(
−1

2

)
(λ1+μ1)+

M

2
=

1
2
,

and since 1
2 ≥ 〈γ, x0〉, we must once again have equality everywhere. Thus

λ′ = λ1 = M
2 − 1 and μ′ = μ1 = M

2 + 1. Now 〈γ, x1 + x0〉 = 〈γ, x1〉 + 〈γ, x0〉
is greater than or equal to
M + 1

2
+

(
−1

2

)
M +M +

(
−1

2

)M − 1
2

+
(
−1

2

)M + 1
2

+
(
−1

2

)
(M − 1),

and this equals 1, again forcing γ ∈ Δ, a contradiction.

(6.84) Lemma Suppose Y is of the shape described in (6.81). Then E{s2}
Y

is empty.

Proof. Assume for a contradiction that E{s2}
Y is not empty, and let α be an

element of minimal depth. By (6.75) there exists an r ∈ {r1, tn} such that
r · α ∈ E{s2,r}

Y , and since E{r1,s2}
Y is empty by (6.74), we are left with r = tn.

The previous proposition now forces the coefficient of zn−1 in tn · α to be
equal to 2, and since the coefficient of zn in tn · α is 1, this yields

〈α, zn〉 = −〈tn · α, zn〉 = −(1 +
(
−1

2

)
· 2) = 0,

contradicting tn · α ≺ α.

In particular, if m = n = 2, symmetrical arguments yield that E{t2}
Y

is also empty; since E{r1}
Y is empty by (6.74), Corollary (6.76) now implies

that E∅
Y is empty. Alternatively, it can be easily checked that σ2,2 is the only

successor of σ2,2 if m = n = 2, and we get:

(6.85) Lemma Suppose Y equals

• • • • •

•

s2 s1 r0 t1 t2

r1

Then E{s2,t2}
Y = {σ2,2} and EX

Y = ∅ if X = {s2}, {t2} or ∅.
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(6.86) This leaves us to determine EX
Y for Y of the shape

• • • •

•

• •
s2 s1 r0 t1 tn−1 tn

r1

with n ≥ 3 and X ⊆ {tn}.

Define τn to be

(s2s1r0t1) · σ2,n = 2x1 + 2y2 + 3y1 + 4x0 + 3z1 + 2(z2 + · · ·+ zn−1) + zn.

Since σ2,n is elementary, and〈
σ2,n, z1

〉
=

〈
t1 · σ2,n, x0

〉
=

〈
(r0t1) · σ2,n, y1

〉
=

〈
(s1r0t1) · σ2,n, y2

〉
= −1

2
,

(3.37) yields that τn is an elementary root, and it follows easily that τn is an
element of E{tn}

Y .

We show now that each root in EX
Y with X ⊆ {tn} is a successor of τn.

So let
α = λ1x1 + μ2y2 + μ1y1 + λ0x0 + ν1z1 + · · · + νnzn

be an element of EX
Y . Then λ1 ≥ 2 by hypothesis, and thus in λ0 > λ1 by

(6.73)(i); hence in particular, λ0 ≥ 3, and thus μ2 < μ1 < λ0 by (6.82).
Since μ2 ≥ 2 this yields in particular that μ1 ≥ 3 and λ0 ≥ 4. Clearly
α � σ2,n, and an easy calculation yields that t1 is the only element of Y with
t1 · σ2,n � σ2,n; therefore α � t1 · σ2,n and ν1 ≥ 3. Hence α � τn by (6.69),
as desired.

It can be easily verified that the roots listed in the following two lemmas
are the only roots preceded by τn for n = 3, 4, and that these are elementary.

(6.87) Lemma Suppose Y equals

• • • • • •

•

s2 s1 r0 t1 t2 t3

r1

Then E{t3}
Y = {τ3} and E∅

Y = ∅.
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(6.88) Lemma Suppose Y equals

• • • • • •

•

•
s2 s1 r0 t1 t2 t3 t4

r1

Then E{t4}
Y consists of the following roots

τ4 = 2x1 + 2y2 + 3y1 + 4x0 + 3z1 + 2z2 + 2z3 + z4,

t2 · τ4 = 2x1 + 2y2 + 3y1 + 4x0 + 3z1 + 3z2 + 2z3 + z4,

(t1t2) · τ4 = 2x1 + 2y2 + 3y1 + 4x0 + 4z1 + 3z2 + 2z3 + z4,

(r0t1t2) · τ4 = 2x1 + 2y2 + 3y1 + 5x0 + 4z1 + 3z2 + 2z3 + z4,

(r1r0t1t2) · τ4 = 3x1 + 2y2 + 3y1 + 5x0 + 4z1 + 3z2 + 2z3 + z4,

(s1r0t1t2) · τ4 = 2x1 + 2y2 + 4y1 + 5x0 + 4z1 + 3z2 + 2z3 + z4,

(r1s1r0t1t2) · τ4 = 3x1 + 2y2 + 4y1 + 5x0 + 4z1 + 3z2 + 2z3 + z4,

(r0r1s1r0t1t2) · τ4 = 3x1 + 2y2 + 4y1 + 6x0 + 4z1 + 3z2 + 2z3 + z4,

(t1r0r1s1r0t1t2) · τ4 = 3x1 + 2y2 + 4y1 + 6x0 + 5z1 + 3z2 + 2z3 + z4,

(t2t1r0r1s1r0t1t2) · τ4 = 3x1 + 2y2 + 4y1 + 6x0 + 5z1 + 4z2 + 2z3 + z4,

(t3t2t1r0r1s1r0t1t2) · τ4 = 3x1 + 2y2 + 4y1 + 6x0 + 5z1 + 4z2 + 3z3 + z4,

and E∅
Y has exactly one element, namely

(t4t3t2t1r0r1s1r0t1t2) · τ4 = 3x1 + 2y2 + 4y1 + 6x0 + 5z1 + 4z2 + 3z3 + 2z4.

(6.89) It remains to determine EX
Y for Y equal to

• • • •

•

• •
s2 s1 r0 t1 tn−1 tn

r1

with n ≥ 5, and X ⊆ {tn}.
(6.90) Proposition Suppose Y is of the shape described in (6.89). Then

E{tn}
Y equals the set of vectors of the following six types:

(1)
2x1 + 2y2 + 3y1 + 4x0 + 4

(
z1 + · · ·+ zk(2)−1

)
+ 3

(
zk(2) + · · · + zk(1)−1

)
+ 2

(
zk(1) + · · ·+ zn−1

)
+ zn,
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where 0 < k(2) < k(1) < n,

(2)

λx1 + 2y2 + μy1 + 5x0

+ 5
(
z1 + · · ·+ zk(3)−1

)
+ 4

(
zk(3) + · · · + zk(2)−1

)
+ 3

(
zk(2) + · · · + zk(1)−1

)
+ 2

(
zk(1) + · · · zn−1

)
+ zn,

where 0 < k(3) < k(2) < k(1) < n and λ ∈ {2, 3}, μ ∈ {3, 4},

(3)

λx1 + 2y2 + μy1 + 6x0

+ 6
(
z1 + · · ·+ zk(4)−1

)
+ 5

(
zk(4) + · · · + zk(3)−1

)
+ 4

(
zk(3) + · · · + zk(2)−1

)
+ 3

(
zk(2) + · · ·+ zk(1)−1

)
+ 2

(
zk(1) + · · · + zn−1

)
+ zn,

where 0 < k(4) < k(3) < k(2) < k(1) < n and (λ, μ) = (3, 3) or (2, 4),

(4)
3x1 + 2y2 + 4y1 + 6x0 + 4

(
z1 + · · ·+ zk(2)−1

)
+ 3

(
zk(2) + · · · + zk(1)−1

)
+ 2

(
zk(1) + · · ·+ zn−1

)
+ zn,

where 1 < k(2) < k(1) < n,

(5) 3x1+2y2+4y1+6x0+5z1+3
(
z2+· · ·+zk(1)−1

)
+2

(
zk(1)+· · ·+zn−1

)
+zn,

where 2 < k(1) < n and

(6) 3x1 + 2y2 + 4y1 + 6x0 + 5z1 + 4z2 + 2
(
z3 + · · · + zn−1

)
+ zn.

Whence
∣∣E{tn}

Y

∣∣ = 2
(
n+1

4

)
.

Proof. We show first that α is elementary if it is of one of the types (1)-(6);
since the coefficients of α certainly satisfy the required conditions, this yields
that α is in E{tn}

Y .

Suppose first that α is of type (1); then k(1)+k(2) ≥ 3. If k(1) = 2 and
k(2) = 1, then α = τn ∈ E . Suppose next that k(1) + k(2) > 3, and proceed
by induction. If k(2) > 1 we find that 〈α, yk(2)−1〉 = 1

2 , and that tk(2)−1 ·α is
of type (1) with k(2)−1 in place of k(2). By induction, this is an elementary
root, and (3.37) implies that α is elementary. Now suppose that k(2) = 1,
and thus k(1) > 2. Then 〈α, yk(1)−1〉 = 1

2 and tk(1)−1 · α is of type (1) with
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k(1)− 1 in place of k(1). By induction, this is an elementary root, and since
〈tk(1)−1 · α, z(1)−1〉 = −1

2 , Lemma (3.37) yields again that α ∈ E , and this
finishes the induction.

Suppose next that α is of type (2), and denote the sum of the coefficients
of α by S; then

S ≥ 2 + 2 + 3 + 5 + 4 + 3 + 2(n− 3) + 1 = 2n+ 14.

If S = 2n+ 14, then α equals

(r0t1t2) · τn = 2x1 + 2y2 + 3y1 + 5x0 + 4z1 + 3z2 + 2(z3 + · · ·+ zn−1) + zn,

and since τn is elementary, it can be easily verified using (3.37) that this
is an elementary root. So suppose next that S > 2n + 15, and proceed by
induction. If k(3) > 1 we find that 〈α, yk(3)−1〉 = 1

2 , and tk(3)−1 ·α is of type
(2) with k(3) − 1 in place of k(3). By induction, this is an elementary root,
and it follows by (3.37) that α is elementary. If λ = 3, then 〈α, x1〉 = 1

2
and r1 · α is of type (2) with 2 in place of λ; this is an elementary root by
inductive hypothesis, and (3.37) yields that α ∈ E . If μ = 4, then 〈α, y1〉 = 1

2
and s1 · α is also of type (2); by induction s1 · α is in E , and (3.37) implies
again that α is elementary.

Suppose now that λ = 2, μ = 3 and k(3) = 1. Then

〈α, x0〉 = 5 +
(
−1

2

)
3 +

(
−1

2

)
2 +

(
−1

2

)
4 =

1
2
,

and thus r0 ·α is of type (1). So r0 ·α ∈ E by the above, and since 〈r0 ·α, x0〉
equals −1

2 , Lemma (3.37) once again yields that α ∈ E , and this finishes the
induction.

Now let α be of type (3) and denote the sum of the coefficients of α by
S; then S is greater than or equal to

(λ+μ)+2+6+5+4+3+2(n−4)+1 = 6+2+6+5+4+3+2(n−4)+1 = 2n+19.

If S = 2n+ 19, then α is equal to one of the following two roots:

(r0s1t1r0t2t1t2) · τn
= 2x1 + 2y2 + 4y1 + 6x0 + 5z1 + 4z2 + 3z3 + 2(z4 + · · ·+ zn−1) + zn,
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(r0r1t1r0t2t1t2) · τn
= 3x1 + 2y2 + 3y1 + 6x0 + 5z1 + 4z2 + 3z3 + 2(z4 + · · ·+ zn−1) + zn.

As τn is elementary, it can be easily verified using (3.37) that these are
elementary roots. Suppose next that S > 2n+ 19. If k(4) > 1, we find that
〈α, yk(4)−1〉 = 1

2
and tk(4)−1 · α is of type (3) with k(4) − 1 in place of k(4).

By induction this is an elementary root, and since 〈tk(4)−1 · α, z(4)−1〉 = −1
2 ,

this implies that α is elementary. Suppose now that k(4) = 1; that is, the
coefficient of z1 in α equals 5. Since the sum of the coefficients of x1 and y1
equals 6, we have

〈α, x0〉 = 6 +
(
−1

2

)
6 +

(
−1

2

)
5 =

1
2
,

and r0 · α is of type (2). This is an elementary root by the above, and since
〈r0 · α, x0〉 = −1

2 , this implies that α is elementary.

Next, assume that α is of type (4); then 〈α, x0〉 = 1
2 , and r0 · α is of

type (2) with k(3) = 1. By the above, this is an element of E , and since
〈r0 · α, x0〉 = −1

2 we can deduce that α ∈ E . Further, if α is of type (5),
〈α, z1〉 = 1

2 and t1 · α is of type (4) with k(2) = 2; therefore t1 · α is in E
by the above. As before, this yields that α is an elementary root. Finally,
assume that α equals

3x1 + 2y2 + 4y1 + 6x0 + 5z1 + 4z2 + 2(z3 + · · · + zn−1) + zn.

Then 〈α, z2〉 = 1
2 and t2 · α is of type (5) with k(1) = 3. By the above,

t2 · α ∈ E , and we can once more conclude that α is an elementary root.

It remains to show that we have listed all the roots in E{tn}
Y . So let

α ∈ E{sm,tn}
Y . Since α � τn by an earlier remark, we know that the coefficient

of x0 in α is greater than 4. We first show that α is of one of the types (1)-(6)
if the coefficient of x0 in α equals 4, 5 or 6. So let λ1, μ2, μ1, ν1, . . . , νn−1 ≥ 2
such that

α = λ1x1 + μ2y2 + μ1y1 + 4x0 + ν1z1 + · · ·+ νn−1zn−1 + zn.

Then 2 ≤ λ1 ≤ 3, and since 〈α, x1〉 ≤ 1
2 , we deduce that λ1 = 2. Further,

2 ≤ μ2 < μ1 < 4, and thus μ2 = 2 and μ1 = 3.

Assume for a contradiction that νk ≥ νk+1+2 for some k ∈ {0, . . . , n−1}
(where ν0 = 4 and νn = 1), and let β � α be according to (6.73)(iii) such
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that the coefficient of x0 in β equals 4, and the coefficient of z1 in β is less
than or equal to 2. Denote the coefficients of x1 and y1 in β by λ′ and μ′

respectively. Then λ′ ≤ λ1 and μ′ ≤ μ1, since β � α, and thus 〈β, x0〉 is
greater than or equal to

4 +
(
−1

2

)
μ′ +

(
−1

2

)
λ′ +

(
−1

2

)
2 ≥ 4 +

(
−1

2

)
3 +

(
−1

2

)
2 +

(
−1

2

)
2 =

1
2
;

hence r0 ·β ≺ β. It is clear that β is an elementary root, and (6.64) yields that
〈β, x0〉 = 1

2
and that the coefficient of x0 in r0·β equals 3. But 〈β, x0〉 = 1

2
now

forces equality in the above inequality; in particular, μ′ = 3, and thus r0 · β
has coefficient 3 for x0 and y1, contradicting (6.82). So νk ∈ {νk+1, νk+1 +1}
for all k ∈ {0, . . . , n− 1} by (6.73)(i), and it follows that α is of type (1).

Next let λ1, μ2, μ1, ν1, . . . , νn−1 ≥ 2 such that

α = λ1x1 + μ2y2 + μ1y1 + 5x0 + ν1z1 + · · ·+ νn−1zn−1 + zn.

Then 2 ≤ λ1 ≤ 4, and since 〈α, x1〉 ≤ 1
2 we know that λ1 ∈ {2, 3}. Further-

more, 2 ≤ μ2 < μ1 < 5, and thus μ2 = 2 and μ1 ∈ {3, 4}, or μ2 = 3 and
μ1 = 4. But in the latter case 〈α, y2〉 = 3 + (−1

2)4 = 1, contradicting α ∈ E ,
and thus μ2 = 2 and μ1 ∈ {3, 4}.

Assume for a contradiction that νk ≥ νk+1+2 for some k, and let β � α
be according to (6.73)(iii) such that the coefficient of x0 in β equals 5, while
the coefficient of z1 in β is less than or equal to 3. If the coefficient of x1 in
β is 3, α is also preceded by r1 · β, and so we may assume without loss of
generality that the coefficient of x1 in β is less than or equal to 2; similarly,
if the coefficient of y1 in β is 4, α is also preceded by s1 · β, and so we may
further assume without loss of generality that the coefficient of y1 in β is less
than or equal to 3. Thus

〈β, x0〉 ≥ 5 +
(
−1

2

)
3 +

(
−1

2

)
2 +

(
−1

2

)
3 = 1,

forcing β ∈ Δ, and thus α ∈ Δ, a contradiction. Therefore νk equals either
νk+1 or νk+1 + 1 for all k by (6.73)(i), and α is of type (2).

Suppose now that α ∈ E{tn}
Y has coefficient 6 for x0, and let β be of

maximal depth with τn � β � α such that the coefficient of x0 in β is less
than 6. It is clear that β is elementary, and since τn � β � α, it follows that
β ∈ E{sn}

Y . By maximality of β, we deduce that β ≺ r0 · β � α and that the
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coefficient of x0 in r0 · β equals 6; now (6.64) implies that 〈r0 · β, x0〉 = 1
2

and that the coefficient of x0 in β equals 5. Since β ∈ E{tn}
Y , the above yields

that β is of type (2); that is, β equals

λx1 + 2y2 + μy1 + 5x0 + 5
(
z1 + · · ·+ zk(3)−1

)
+ · · ·+ 2

(
zk(1) + · · · zn−1

)
+ zn,

for some 0 < k(3) < k(2) < k(1) < n and λ ∈ {2, 3}, μ ∈ {3, 4}. As
〈β, x0〉 = −1

2
, we are left with (λ, μ) ∈ {(2, 4), (3, 3)} and k(3) > 1, or

(λ, μ) = (3, 4) and k(3) = 1.

If (λ, μ) ∈ {(2, 4), (3, 3)} and k(3) > 1, then r0 · β equals

λx1 + 2y2 + μy1 + 6x0 + 5
(
z1 + · · ·+ zk(3)−1

)
+ 4

(
zk(3) + · · · + zk(2)−1

)
+ 3

(
zk(2) + · · ·+ zk(1)−1

)
+ 2

(
zk(1) + · · ·+ zn−1

)
+ zn.

Let k(4) < k(3) be the maximal such that α is preceded by (tk(4)−1 · · · t1)r0·β,
and call this root γ. Then

γ = λx1 + 2y2 + μy1 + 6x0

+ 6
(
z1 + · · ·+ zk(4)−1

)
+ 5

(
zk(4) + · · · + zk(3)−1

)
+ 4

(
zk(3) + · · · + zk(2)−1

)
+ 3

(
zk(2) + · · ·+ zk(1)−1

)
+ 2

(
zk(1) + · · · + zn−1

)
+ zn.

Now assume for a contradiction that α does not equal γ, and let r ∈ Y such
that α � r · γ � γ; then 〈γ, αr〉 = −1

2 by (6.64). Since λ ∈ {2, 3} and
μ ∈ {3, 4} clearly r �= r1, s2, s1, and as

〈γ, x0〉 ≥ 6 +
(
−1

2

)
6 +

(
−1

2

)
(λ+ μ) ≥ 6 +

(
−1

2

)
6 +

(
−1

2

)
6 ≥ 0,

furthermore r �= r0. Now 〈γ, zk(4)〉 = 0 if k(4) = k(3) − 1 and r �= tk(4)

by maximality of k(4) if k(4) < k(3) − 1; hence we are left with r = tk(3)

and k(3) < k(2) − 1, or r = tk(2) and k(2) < k(1) − 1, or r = tk(1) and
k(1) < n. But then an easy calculation yields that α is preceded by r ·β � β,
contradicting the maximality of β. So α = γ, and this is of type (3).

Suppose next that (λ, μ) = (3, 4) and k(3) = 1. Then γ = r0 · β equals

3x1 + 2y2 + 4y1 + 6x0 + 4
(
z1 + · · ·+ zk(2)−1

)
+ 3

(
zk(2) + · · · + zk(1)−1

)
+ 2

(
zk(1) + · · ·+ zn−1

)
+ zn,
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and this is of type (4). If α is not equal to γ, let r ∈ Y such that α � r ·γ � γ.
Then 〈γ, αr〉 = −〈r · γ, αr〉 = −1

2 by (6.64), and since

〈γ, x1〉 = 〈γ, y2〉 = 〈γ, y1〉 = 〈γ, x0〉 = 0,

it follows that r ∈ {t1, . . . , tn}, and thus r ∈ {t1, tk(2), tk(1)}; maximality of
β now only leaves us with r = t1. Since 〈γ, z1〉 = −1

2
, we find that k(2) = 2;

hence δ = t1 · γ equals

3x1 +2y2 +4y1 +6x0 +5z1 +3
(
z2 + · · ·+zk(1)−1)+2(zk(1) + · · ·+zn−1

)
+zn,

which is of type (5). If α �= δ, let s ∈ Y such that α � r · δ � δ. Then
〈δ, αs〉 = −1

2
, and since

〈δ, x1〉 = 〈δ, y2〉 = 〈δ, y1〉 = 〈δ, x0〉 = 0

as well as 〈δ, y1〉 > 0, we deduce that s ∈ {t2, tk(1)}; thus s = t2 by maximality
of β. Since 〈δ, z2〉 = −1

2 , moreover k(1) = 3, and

t2 · δ = 3x1 + 2y2 + 4y1 + 6x0 + 5z1 + 4z2 + 2
(
z3 + · · ·+ zn−1

)
+ zn.

As n ≥ 5, it can be easily verified that there are no t ∈ Y such that 〈t2 · δ, αt〉
lies in the open interval (−1, 0), and we can deduce from (3.38) that α must
be equal to t2 · δ; that is, α is of type (6).

Now assume for a contradiction that there exists an α ∈ E{tn}
Y such

that the coefficient of x0 in α is greater than or equal to 7. We may assume
without loss of generality that α is of minimal depth with this property.
Then α � τn, and hence there exists an r ∈ Y such that α � r · α � τn. It is
clear that r · α ∈ E{tn}

Y , and minimality of α yields that r = r0 and that the
coefficient of x0 in r · α is less than or equal to 6. By (6.64) the coefficient
of x0 in r0 · α equals 6, and thus r · α is of type (3), (4), (5) or (6) by the
above; but then 〈r0 · α, x0〉 ≥ 0, contradicting α � r0 · α, and this finishes
the proof.

(6.91) Proposition Suppose Y is of the shape described in (6.89). Then
E∅

Y = ∅.

Proof. Assume for a contradiction that E∅
Y �= ∅, and let α be an element of

minimal depth. By (6.75), there exists an r ∈ {r1, s2, tn} such that r ·α is in
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E{r}
Y . Since E{r1}

Y = E{s2}
Y = ∅ by (6.74) and (6.84) respectively, this leaves us

with tn · α ∈ E{tn}
Y . The elements of E{tn}

Y are of types (1)-(6) stated in the
previous proposition, and so the coefficient of zn−1 in tn · α equals 2, while
the coefficient of zn in tn · α equals 1; whence

〈α, zn〉 = −〈tn · α, zn〉 = −(
1 +

(
−1

2

)
2
)

= 0,

contradicting tn · α ≺ α.

§6b One non-simple bond

Henceforth assume that X, Y ⊆ R satisfy (6.61), and that Y contains exactly
one non-simple bond of finite weight m. Let r1, s1 ∈ Y be the vertices of
the non-simple bond, and denote the simple roots corresponding to r1, s1 by
x1 and y1 respectively. Further, let Y1 and Y2 be the connected components
of the graph obtained from Y by deleting the non-simple bond, and assume
that r1 ∈ Y1 and s1 ∈ Y2.

We denote 2 cos(π/m) by cm; then (2.26) yields that the coefficient of
a simple root in any element of Φ+

Y equals 0, 1 or cm, or is greater than or
equal to 2.

Each element of EY is preceded by some simple root αr with r ∈ Y .
Suppose α ∈ EY is preceded by αr for r ∈ Y1, and let β be of maximal depth
with α � β � αr such that I(β) ⊆ Y1. Since I(α) �⊆ Y1, maximality of β
yields that α � s1 · β � β; then 〈β, y1〉 < 0 and thus 〈β, y1〉 ∈ (−1, 0) by
(3.38). If λ denotes the coefficient of x1 in β, we find that 〈β, y1〉 = (− cm

2
)λ,

and hence 0 < λ < 2/cm ≤ √
2; thus λ = 1 by (2.26). If s ∈ Y2 \ {s1}, the

coefficient of αs in s1 · β equals 0, therefore (6.58) yields that

α � s1 · x1 = x1 + cmy1 � x1.

Symmetrical arguments give α � cmx1 + y1 � y1 if α is preceded by αr with
r ∈ Y2.
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(6.92) Observe that EX
Y does not depend on R as long as Y ⊆ R, hence

we may assume without loss of generality that there exists a t ∈ R \ Y such
that

mtr = mrt =
{

3 if r = s1,
2 if r �= s1,

for r ∈ Y .

(6.93) Proposition Suppose R satisfies (6.92). Then

φ: β �→ cm(β − αt) + x1

defines a one-one correspondence between the set of roots in Φ+
Y2∪{t} with

coefficient 1 for αt, and the set of roots in Φ+
{r1}∪Y2

with coefficient 1 for

x1. Moreover, φ restricts to a one-one correspondence between the set of
roots in E{t}∪Y2 with coefficient 1 for αt, and the set of roots in E{r1}∪Y2 with
coefficient 1 for x1.

Proof. Observe that for s ∈ Y2,

〈x1 − cmαt, αs〉 = 〈x1, αs〉 − cm〈αt, αs〉

=

{
0 − cm × 0 if s ∈ Y2 \ {s1},
− cm

2 − cm(−1
2 ) if s = s1,

= 0.

Hence for β ∈ Φ and γ ∈ ΦY2 ,〈
x1 + cm(β − αt), γ

〉
= cm〈β, γ〉; (∗)

moreover, for s ∈ Y2,

s · (x1 + cm(β − αt)
)

= x1 + cm(β − αt) − 2
〈
x1 + cm(β − αt) , αs

〉
= x1 + cm(β − αt) − 2cm〈β, αs〉
= x1 + cm(β − 2〈β, αs〉 − αt)
= x1 + cm(s · β − αt).

(∗∗)

Now let β ∈ Φ+
Y2∪{t} with coefficient 1 for αt; then (6.59) implies that

there exists a w ∈WY2 with l(w) = dp(β)− 1 and β = w ·αt. The coefficient
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of x1 in w · x1 equals 1, and since x1 = x1 + cm(αt − αt), a straightforward
induction on l(w) using (∗∗) yields that w · x1 = x1 + cm(w ·αt −αt). Hence
φ is well defined. By (6.59), every element of Φ+

{r1}∪Y2
with coefficient 1 for

x1 can be written as w ·x1 for some w ∈WY2 , so the above also shows that φ
is onto. Since φ is certainly one-one, φ is a one-one correspondence between
the given sets, and by the above construction it remains to show for w ∈ WY2

that w · x1 ∈ Δ if and only if w · αt ∈ Δ.

First, suppose that there exists a γ ∈ Φ+ \ {w · x1} such that w · x1

dominates γ. Then w−1 · γ ∈ Φ−, since x1 is not in Δ, and thus γ is an
element of N(w−1), which is a subset of Φ+

Y2
. Now 〈w · x1, γ〉 ≥ 1 by (3.32),

and thus by (∗)
〈w · αt, γ〉 =

1
cm

〈α, γ〉 ≥ 1
cm

>
1
2
.

Since I(w · αt) ∪ I(γ) contains only simple bonds, 〈w · αt, γ〉 is an integer
multiple of 1

2
, and thus 〈w·αt, γ〉 ≥ 1. So w·αt dom γ or γ dom w·αt by (3.32);

but γ cannot dominate w ·αt, as w−1 · γ is negative, while w−1 · (w ·αt) = αt

is positive, and thus w · αt ∈ Δ.

For the converse, suppose that there exists a γ ∈ Φ+ \ {w · αt} such
that (w · αt) dom γ. Then 〈w · x1, γ〉 = cm〈w · αt, γ〉 ≥ cm ≥ 1 by (∗) and
(3.32); since w−1 ·γ is negative and w−1 · (w ·x1) = x1 is not, we deduce that
w · x1 ∈ Δ.

(6.94) Proposition Suppose R satisfies (6.92) and Y1 = {r1}. Then

E{r1}
Y =

{
x1 + cm(β − αt) | β ∈ EY2∪{t} has coefficient 1 for αt

}
=

{
x1 + cm(β − αt) | β ∈

⋃
I⊆Y2

EI∪{t}
Y2∪{t}

}
.

This leaves us to determine EX
Y for X with r1, s1 /∈ X ; that is, we only

need to consider the set of elementary roots with coefficients greater than 1
for x1 and y1.
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(6.95) Lemma Suppose Y = {r1, s1}. Then

E∅
Y =

{sin
(
(n+ 1)π/m

)
sin(π/m)

x1 +
sin

(
nπ/m

)
sin(π/m)

y1 | n ∈ {2, . . . , m
2

− 1}
}

∪
{ sin

(
nπ/m

)
sin(π/m)

x1 +
sin

(
(n+ 1)π/m

)
sin(π/m)

y1 | n ∈ {2, . . . , m
2

− 1}
}

if m is even, and if m is odd,

E∅
Y =

{sin
(
(n+ 1)π/m

)
sin(π/m)

x1 +
sin

(
nπ/m

)
sin(π/m)

y1 | n ∈ {2, . . . , m− 3}
}
.

(6.96) Proposition Suppose that m ≥ 6, |Y2| ≥ 2 and r1 /∈ X . Then EX
Y

is empty unless Y1 = {r1} and X = ∅. Moreover, if m ≥ 7 and Y1 = {r1},
then

E∅
Y =

{
(c2m − 1)x1 + cmβ | β ∈ EY2 has coefficient 1 for y1

}
=

{
(c2m − 1)x1 + cmβ | β ∈

⋃
J⊆Y2\{s1}

EJ∪{s1}
Y2

}
.

Suppose next that m = 6 and Y1 = {r1}. We may assume that there exist
t1, t2 ∈ R \ Y such that

mrt1 = mrt2 =
{

3 if r = s1,
2 if r �= s1,

for all r ∈ Y . Denote the simple roots corresponding to t1 and t2 by z1 and
z2 respectively. Then

E∅
Y =

{
2x1 +

√
3(β − z1 − z2) | β ∈ E{t1,t2}∪Y2 has coeff. 1 for z1 and z2

}
=

{
2x1 +

√
3(β − z1 − z2) | β ∈

⋃
J⊆Y2

E{t1,t2}∪J
{t1,t2}∪Y2

}
.

Proof. We show first that if α is an elementary root in ΦY preceded by
x1 + cmy1 with coefficient for x1 greater than 1, then α is a successor of
(c2m − 1)x1 + cmy1 and I(α) ⊆ {r1} ∪ Y2.
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Let β be of maximal depth with α � β � x1 + cmy1 such that the
coefficient of x1 in β equals 1. Then α � r1 ·β � β by maximality of β; hence
〈β, y1〉 < 0, and thus 〈β, x1〉 ∈ (−1, 0) by (3.38). Since the coefficient of x1

in β equals 1, (6.57) together with (6.93) imply that the coefficient of y1 in β
equals kcm for some k ∈ N. Now suppose that r ∈ Y1 is adjoined to r1, and
denote the coefficient of αr in β by λ; then λ = 0 or λ ≥ 1 by (2.26). Further

〈β, x1〉 ≤ 1 + 〈αr, x1〉λ+
(
−cm

2

)
μ ≤ 1 − λ

2
− k

c2m
2

≤ 1 − λ

2
− 3k

2

as cm ≥ c6 =
√

3; since 〈β, x1〉 > −1, we deduce that k = 1 and λ = 0. So
the coefficient of y1 in r1 · β equals cm, and r1 is only adjoined to s1 in I(β);
therefore r1 · β � (c2m − 1)x1 + cmy1 by (6.58), and transitivity of � yields
that

α � (c2m − 1)x1 + cmy1.

Note that connectedness of the support of β implies that I(β) ⊆ {r1} ∪ Y2,
and thus I(r1 · β) ⊆ {r1} ∪ Y2. If r ∈ Y1 is adjoined to r, then

〈r1 · β, αr〉 = 0 +
(
−1

2

)
(c2m − 1) ≤ −1,

and since α � r1 · β and α ∈ E , Lemma (3.38) yields that αr /∈ supp(α);
by the connectedness of the support of α we deduce that I(α) is a subset of
{r1} ∪ Y2.

Now let α ∈ EX
Y . Since I(α) �⊆ Y1 ∪ {s1}, the above yields that α

cannot be preceded by cmx1 + y1. So α is preceded by cmx1 + y1, and thus
by (c2m − 1)x1 + cmy1; moreover, I(α) ⊆ {r1} ∪ Y2. Hence EX

Y = ∅ unless
Y1 = {r1}. By (6.56), the coefficient of αs in α is greater than or equal to
cm for s ∈ Y2, and thus X = ∅. This leaves us to determine E∅

{r1}∪Y2
.

Suppose first that m ≥ 7 and Y1 = {r1}. Let α be an element of E∅
Y ;

then α � (c2m−1)x1+cmy1 by the above. We now show that the coefficient of
y1 in α equals cm. Let γ be of maximal depth with α � γ � (c2m−1)x1+cmy1
such that γ has coefficient cm for y1; then α = γ or α � s1 · γ � γ by
maximality of γ.

Assume for a contradiction that I(γ) ⊆ {r1, s1}. It follows that γ equals
(c2m − 1)x1 + cmy1, and since Y �= {r1, s1} clearly α �= γ; therefore

α � s1 · γ = (c2m − 1)x1 + cm(c2m − 2)y1.
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But since cm(c2m − 2) ≥ c7(c27 − 1) ≥ 2, we deduce that 〈s1 · γ, αs〉 ≤ −1
for s ∈ Y2 adjacent to s1. So by (3.38), the coefficients of αs in s1 · γ and
α coincide, and by connectedness of the support of α we find that I(α) is
contained in {r1, s1}, contradicting |Y2| ≥ 2. Thus I(γ) �⊆ {r1, s1}, and by
connectedness of the support of γ there exists an s ∈ I(γ) \ {r1, s1} adjacent
to s1. Denote the coefficient of αs in γ by μ. Then μ ≥ cm by (6.56), and
thus

〈γ, y1〉 ≤ cm +
(
−cm

2

)
(c2m − 1)+

(
−1

2

)
cm =

cm
2

(2− c2m) ≤ c7
2

(2− c27) ≤ −1.

So Lemma (3.38) implies again that the coefficients of y1 in γ and α coincide;
that is, the coefficient of y1 in α equals cm.

Note that since the coefficient of y1 in α equals cm, and α is a successor
of (c2m − 1)x1 + cmy1, we can deduce that the coefficient of x1 in α is c2m − 1.
Then r1·α is an element of E{r1}

Y , and (6.94) yields that r1·α = x1+cm(β′−αt)
for some β′ ∈ EY2∪{t} with coefficient 1 for αt (where t ∈ R \ Y according to
(6.92)). Since the coefficient of y1 in r1 · α equals cm, we also know that the
coefficient of y1 in β′ has to be equal to 1, and as t is only adjoined to s1 in
Y , we deduce that t · β′ = β′ − αt. It is clear that t · β′ is an element of EY2

with coefficient 1 for y1; moreover, r1 · α = x1 + cm(t · β′), and we conclude
that α equals (c2m − 1)x1 + cm(t · β′), as required.

For the converse, let β ∈ EY2 with coefficient 1 for y1. Since t is only
adjoined to s1 (and, moreover, s1 and t are adjoined by a simple bond), we
find that 〈β, αt〉 = −1

2
. Now (3.37) implies that t · β = β + αt is in EY2∪{t},

and thus
x1 + cmβ = x1 + cm(t · β − αt)

is an elementary root by (6.94). Since 〈x1 + cmβ, x1〉 = 1 + (− cm

2 ) ∈ (−1, 0),
(3.37) yields further that

r1 · (x1 + cmβ) = (c2m − 1)x1 + cmβ

is also elementary. The coefficients of this root certainly satisfy the required
conditions, and thus (c2m − 1)x1 + cmβ ∈ E∅

Y ; this finishes the proof for the
case m = 7.

Suppose now that m = 6; then c6 =
√

3, and an easy induction yields
that for each root in ΦY preceded by x1, the coefficient of αr in this root is
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an integer if r ∈ Y1, and an integer multiple of
√

3 if r ∈ Y2. Now let α ∈ E∅
Y ;

then α � (c26 − 1)x1 + c6y1 = 2x1 +
√

3y1 by the above.

Assume for a contradiction that the coefficient of x1 in α is greater than
2, and let β be of maximal depth with α � β � 2x1 +

√
3y1 such that the

coefficient of x1 in β equals 2. Then α � r1 ·β � β by maximality, and (3.38)
gives 〈β, x1〉 ∈ (−1, 0). But the coefficient of y1 in β equals k

√
3 for some

k ∈ N, and r1 is only adjacent to s1 in I(β) \ {r1}, and hence

〈β, x1〉 = 2 + k
√

3
(−√

3
2

)
= 2 − 3k

2

{
= 1

2
if k = 1,

≤ −1 if k ≥ 2,

contradicting 〈β, x1〉 ∈ (−1, 0). Hence the coefficient of x1 in α equals 2.

Now observe that if s ∈ Y2, then

〈2x1 −
√

3(z1 + z2), αs〉 = 2〈x1, αs〉 −
√

3〈z1 + z2, αs〉

=

{
2 × 0 −√

3 × 0 if s ∈ Y2 \ {s1},
−√

3 −√
3(−1

2 − 1
2) if s = s1,

= 0.

Then for γ ∈ Φ and δ ∈ ΦY2 ,

〈2x1 +
√

3
(
γ − (z1 + z2)

)
, δ〉 =

√
3〈γ, δ〉; (∗)

moreover, for s ∈ Y2,

s · (2x1+
√

3(γ − z1 − z2)
)

= 2x1 +
√

3(γ − z1 − z2) − 2〈2x1 +
√

3(γ − z1 − z2) , αs〉
= 2x1 +

√
3(γ − z1 − z2) − 2

√
3〈γ, αs〉

= 2x1 +
√

3(γ − 2〈γ, αs〉 − z1 − z2)

= 2x1 +
√

3(s · γ − z1 − z2).

(∗∗)

Recall now that α � 2x1 +
√

3y1, and the coefficient of x1 in α equals
2 for α ∈ E∅

Y . Hence there exists a w ∈WY2 such that α = w · (2x1 +
√

3y1).
So

α = w · (2x1 +
√

3((z1 + z2 + y1) − z1 − z2)
)
,
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and an easy induction on l(w) using (∗∗) yields that α equals

2x1 +
√

3
(
w · (z1 + z2 + y1) − z1 − z2

)
= 2x1 +

√
3
(
(wt1t2) · y1 − z1 − z2

)
.

Set γ = (wt1t2) · y1; then clearly I(γ) = {t1, t2} ∪ Y2. Assume for a contra-
diction that γ is not an elementary root, and let δ ∈ Φ+ \ {γ} be dominated
by γ. Then 〈γ, δ〉 ≥ 1 by (3.32). Further, w−1 · δ ∈ Φ− since z1 + z2 + y1 is
elementary, and hence δ ∈ ΦY2 . Now (∗) yields that

〈α, δ〉 =
√

3〈γ, δ〉 ≥
√

3 ≥ 1,

and thus α dom δ or α dom α by (3.32). Since w−1 · δ is negative, and w−1 ·α
is not, this forces α ∈ Δ, a contradiction.

Next, let β ∈ EY2∪{t1,t2} with coefficient 1 for z1 and z2, and define

α = 2x1 +
√

3(β − z1 − z2);

we show first that α is in fact a root. Since I(β) = Y2∪{t1, t2} contains only
simple bonds, Proposition (6.69) yields that β is a successor of z1 + z2 + y1;
hence β = w · (z1 + z2 + y1) with dp(β) − dp(z1 + z2 + y1) = l(w) for some
w ∈ W . The coefficients of z1 and z2 in β and z1 + z2 + y1 coincide, and
since I(β) = Y2 ∪ {t1, t2} we know that w ∈ WY2 . Now a straightforward
induction on l(w) using (∗∗) yields that

(wr1s1) · x1 = w · (2x1 −
√

3(z1 + z2) +
√

3(y1 + z1 + z2)
)

= 2x1 +
√

3
(
w · (z1 + z2 + y1) − z1 − z2

)
= 2x1 +

√
3(β − z1 − z2);

therefore α is in fact a root.

Assume for a contradiction that α dominates some δ ∈ Φ+ \ {α}. Then
δ ∈ N(w−1), since (r1s1)·x1 /∈ Δ, and thus δ ∈ Φ+

Y2
. Hence by (∗) and (3.32),

〈β, δ〉 =
1√
3
〈α, δ〉 ≥ 1√

3
.

Since I(β) ∪ I(δ) = Y2 ∪ {t1, t2} contains only simple bonds, this forces
〈β, δ〉 ≥ 1. As w−1 · δ is negative while w−1 · β = γ is positive, δ cannot
dominate β, and thus β ∈ Δ, contrary to our choice of β.
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It remains to discuss the cases m = 4, 5; before we do so, consider the
following consequence of the previous result for m = 6: If Y2 equals

• • • •
s1 s2 sn−1 sn

then {t1, t2} ∪ Y2 equals

•

•
• • • •

t1

t2
s1 s2 sn−1 sn...................................

...................................
.........

................................................................................

and if we denote the simple root corresponding to sj by yj , we can deduce
from (6.77) that the set of roots in E{t1,t2}∪Y2 with coefficient 1 for z1 and z2
is {

z1 + z2 + 2(y1 + . . .+ yj−1) + yj + · · ·+ yn | j ∈ {1, . . . , n}};

therefore

E∅
Y =

{
2x1 +

√
3
(
2(y1 + . . .+ yj−1) + yj + · · ·+ yn

) | j ∈ {1, . . . , n}},
and thus

∣∣E∅
Y

∣∣ = n.

Next, suppose that Y2 contains a vertex of valency greater than 2, and
let n ≥ 1 be maximal such that there exist s2, . . . , sn ∈ Y2 with sj adjacent
only to sj−1 and sj+1 in Y for j ∈ {1, . . . , n−1} (where s0 = r1). Denote the
simple root corresponding to sj by yj , and let α be an element of E{t1,t2}∪Y2

with coefficient 1 for z1 and z2. Since the support of α contains at least two
vertices of valency greater than or equal to 3 (if n > 1, namely s1 and sn) or
at least one vertex of valency greater than or equal to 4 (if n = 1, namely s1),
(6.65) implies that there exists a j ∈ {1, . . . , n} such that the coefficient of yj

in α is 1. If we choose j minimal with this property, then (6.57) yields that
α equals β + γ − yj for some β ∈ E{t1,t2,s1,...,sj} with coefficient 1 for yj and
coefficient greater than or equal to 2 for y1, . . . , yj−1, and γ ∈ E

Y2\{s1,...,sj−1}
with coefficient 1 for yj . Since the coefficients of z1 and z2 in α equal 1, this
yields that β ∈ E{t1,t2,sj}

{t1,t2,s1,...,sj}; so by (6.77),

β = z1 + z2 + 2(y1 + · · · + yj−1) + yj ,
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and thus every element of E∅
Y can be written as 2x1+

√
3
(
2(y1+· · ·+yj−1)+γ

)
for some γ ∈ E

Y2\{s1,...,sj−1} with coefficient 1 for yj.

Since z1 + z2 + 2(y1 + · · ·+ yj−1) + yj is elementary for j ∈ {1, . . . , n},
it also follows from (6.57) that

2x1 +
√

3
(
2(y1 + . . .+ yj−1) + γ

)
is in E∅

Y for all γ ∈ EY2\{s1,...,sj−1} with coefficient 1 for yj ; therefore E∅
Y is

the set

n⋃
j=1

{
2x1 +

√
3
(
2(y1 + . . .+ yj−1) + γ

) | γ ∈
⋃

J⊆Y2\{s1,...,sj}
E{sj}∪J

Y2\{s1,...,sj−1}

}
.

Note that by (6.66), E
Y2\{s1,...,sj−1} = {yj + · · · + yn} if |Y2| = n; hence the

above also applies for the case |Y2| = n.

If m = 4, 5 we can use similar arguments to the ones just demonstrated
for the case m = 6. To do so, we need to develop some more tools. We start
with the following variation of (6.57), which is clearly valid for all m.

(6.97) Proposition Let r ∈ Y and J0, . . . , Jk ⊆ Y such that Y \ {r} is
the disjoint union of J0, . . . , Jk. Suppose that no element of Ji is adjoined to
any element Jj for i �= j, and set Ij = Jj ∪{r} for all j ∈ {0, . . . , k}. Assume
further that r1, s1 ∈ I0. Then

φ: (β0, . . . , βk) �→ β0 + cm(β1 + · · ·+ βk − kαr)

is a one-one correspondence between the set of (k+1)-tuples in Φ+
I0
×· · ·×Φ+

Ik

such that the coefficient of αr in the first component equals cm, while for all
other components the coefficient of αr equals 1, and the set of roots in Φ+

Y

with coefficient cm for αr. Moreover, φ restricts to a one-one correspondence
between the set of (k+1)-tuples in EI0 ×· · ·×EIk

such that αr has coefficient
cm in the first component, and 1 in the others, and the set of roots in EY

with coefficient cm for αr.

Proof. We show first that φ is well defined. So let (β0, . . . , βk) be an element
of Φ+

I0
× · · · × Φ+

Ik
such that the coefficient of αr in β0 equals cm, while the

coefficient of αr in βj equals 1 for j ∈ {1, . . . , k}. Lemma (6.59) implies
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that βj � αr for j ∈ {1, . . . , k}, and hence there exist wj ∈ WJj
such that

βj = wj · αr and l(wj) = dp(βj) − 1. Define α to be (w1 · · ·wk) · β0; then
the coefficient of αr in α equals cm, and it can be easily seen that α equals
φ(β0, . . . , βk).

As I(βi) ∩ I(βj) = {r} if i �= j, and the coefficient of αr in βi is cm if
i = 0, and 1 if i ∈ {1, . . . , k}, it follows that φ is one-one, and we show now
that φ is onto.

Suppose that α ∈ Φ+
Y has coefficient cm for αr, and let γ � α be of

minimal depth such that the coefficient of αr in α equals cm. Then I(γ) ⊆ Y ,
and as Y \ J0 contains only simple bonds, we deduce that I(γ) ∩ J0 �= ∅.
Now r · γ ≺ γ by minimality of γ, and it follows by (2.26) that the coefficient
of αr in r · γ equals 0 or 1. In the first case, connectedness of the support of
r · γ yields that I(r · γ) ⊆ J0, and thus I(γ) ⊆ I0.

Assume now that the coefficient of αr in r·γ equals 1, and letK1, . . . , Kn

be the connected components of I(r · γ) \ {r}. Assume for a contradiction
that n ≥ 2. By (6.57), there exist roots γ1, . . . , γn with I(γi) ⊆ Ki such that
r ·γ = γ0 + · · ·+γn − (n−1)αr. For i ∈ {1, . . . , n}, let ti ∈ Ki be adjoined to
r, and denote the simple root corresponding to ti by zi, and the coefficient
of zi in γi by νi; then νi ≥ 1 by (2.26), as ti ∈ I(r · γ). The coefficient of αr

in r · γ is

1 = cm − 2〈γ, αr〉 = −cm − 2〈z1, αr〉ν1 − · · · − 2〈zk, αr〉νk,

and we find that 1 ≥ −cm − (ν1 + · · ·+ νn) = n− cm. This forces n ≤ 2, and
thus n = 2 by our assumption. Further, ν1 + ν2 ≤ 1 + cm, and by symmetry
of K1 and K2 we may assume without loss of generality that ν1 ≤ ν2. Since
νi equals 1, or is greater than or equal to cm by (2.26), we deduce that ν1 = 1
and ν2 ∈ {1, cm}. Since the coefficients of both z1 and αr in r · γ equal 1, we
deduce from (6.56) that 〈αr, z2〉 = −1

2 . So the coefficient of αr in γ equals

cm = 1 − 2(1 +
(
−1

2

)
1 + 〈αr, z2〉ν2) = −2〈αr, z2〉ν2.

If ν2 = 1, this forces 〈αr, z2〉 = − cm

2 ; but then the coefficients of z2 and
αr in r · γ cannot both be 1 by (6.56) together with (2.26), contrary to our
construction. If ν2 = cm, the above yields that 〈α, z2〉 = −1

2 ; but then the
coefficient of αr in r · γ2 equals cm − 1 ∈ (0, 1), and this contradicts (2.26).
So I(r · γ) has only one connected component, and since I(r · γ)∩ J0 �= ∅, we
deduce that I(r · γ) ⊆ I0, and hence I(γ) ⊆ I0.
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Since γ has coefficient cm for αr, there exists a w ∈ W
Y \{r} such that

α = w · γ and dp(α) − dp(γ) = l(w). As W
Y \{r} is the direct product of

WJ0 , . . . ,WJk
, there exist wj ∈WIj

for all j ∈ {0, . . . , k} such that w equals
w0 · · ·wk with length adding. Define β = w0 · γ; this is an element of Φ+

I0
with coefficient cm for αr, and clearly

α = (w1 · · ·wk) · β = φ(β, w1 · αr, . . . , wk · αr).

The above proves that φ is onto, and it remains to show for β ∈ Φ+
I0

and w1 ∈WI1 , . . . , wk ∈WIk
that (w1 · · ·wk) · β ∈ Δ if and only if β ∈ Δ or

wj · αr ∈ Δ for some j ∈ {1, . . . , k}.
Set w = w1 · · ·wk, and note that for δ ∈ Φ+

J1
clearly 〈δ, αs〉 = 0 for all

s ∈ Y \ I1; therefore 〈β, δ〉 = cm〈αr, δ〉 and 〈wi · αr, δ〉 = 〈αr, δ〉 for all i in
{2, . . . , k}. This implies that

〈w · β, δ〉 = 〈β, δ〉 + cm〈w1 · αr, δ〉 + cm

k∑
i=2

〈wi · αr, δ〉 − kcm〈αr, δ〉

= cm〈αr, δ〉 + cm〈w1 · αr, δ〉 + cm

k∑
i=2

〈αr, δ〉 − kcm〈αr, δ〉

= cm〈w1 · αr, δ〉.

(∗)

Suppose now that w · β ∈ Δ, and let δ ∈ Φ+ \ {w · β} such that
w · β dom δ. If w−1 · δ is positive, it follows that β dom (w−1 · δ), and since
clearly β �= w−1 · δ, we find that β ∈ Δ. Assume next that δ ∈ N(w−1). An
easy calculation yields that

N(w−1) = N
(
(w1 · · ·wk)−1

)
= N(w−1

1 ) ∪ . . . ∪N(w−1
k ),

and by symmetry we may assume without loss of generality that δ ∈ N(w−1
1 );

then in particular, I(δ) ⊆ J1. Now (3.32) implies that 〈w ·β, δ〉 ≥ 1, and thus

〈w1 · αr, δ〉 ≥ 1
cm

>
1
2

by (∗); since I(w1 · αr) ∪ I(δ) contains only simple bonds, 〈w1 · αr, δ〉 is
an integer multiple of 1

2 , and hence 〈w1 · αr, δ〉 ≥ 1. So w1 · αr dom δ or
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δ dom w1 · αr by (3.32). But w−1
1 · δ is negative, and w1 · αr is not, and so δ

cannot dominate w1 · αr; this forces w1 · αr ∈ Δ, as required.

For the converse, suppose first that β ∈ Δ. Since N(w) ⊆ Φ+

Y \I0
, while

β ∈ Φ+
I0

, it follows easily that N+(w, β) = ∅; so α � β by (3.34), and thus
α ∈ Δ by (3.36).

Now assume that w1 · αr ∈ Δ, and let δ ∈ Φ+ \ {w1 · αr} such that
w1 · αr dom δ. Then w−1

1 · δ ∈ Φ− since αr /∈ Δ, and thus δ ∈ Φ+
J1

. Further,
〈w1 · αr, δ〉 ≥ 1 as w1 · αr dom δ, and (∗) yields that

〈w · β, δ〉 = cm〈w1 · αr, δ〉 ≥ cm ≥ 1.

Since w−1
1 ·δ is negative and w−1 ·(w·β) is not, (3.32) this yields that w·β ∈ Δ,

as required. Symmetrical arguments apply if wj · β ∈ Δ for j ∈ {2, . . . , k},
and this finishes the proof.

(6.98) Lemma Suppose Y contains the following subgraph

• • • •
•

•
•
r1 s1 s2 sn−1 sn

t1

t2

m
............................................................................
..................................

..................................
........

and denote the simple roots corresponding to sj , tk by x, yj and zk respec-
tively. Let α be a root in Φ+

Y with coefficient for x1 greater than 1, coefficients
for y1, . . . , yn greater than or equal to 2 and z1, z2 ∈ supp(α). Then α ∈ Δ.

Proof. Let β � α be a positive root of minimal depth such that z1 and z2
are in the support of β, the coefficient of x1 in β is greater than 1, and the
coefficients of y1, . . . , yn in β are greater than or equal to 2. By (3.36) it
suffices to show that β is in Δ. Let s ∈ R such that s · β ≺ β; we show that
〈s · β, αs〉 ≤ −1, which then implies 〈β, αs〉 ≥ 1, and thus β ∈ Δ by (3.32);
(since β is clearly of depth greater than dp(αs) = 1).

Denote the coefficients of x1, yj , zk in β by λ, μj and νk respectively.
By minimality of β it follows that s equals r1, sj or tk. If s = r1, minimality
of β also implies that the coefficient of x1 in r · β is less than or equal to 1,
and thus equals 0 or 1 by (2.26). If the coefficient of x1 in r ·β equals 0, then
〈r1 ·β, x1〉 ≤ 0+(− cm

2 )μ1 ≤ −1 since μ1 ≥ 2, as required. Suppose next that



Chapter 6 The set of elementary roots 107

the coefficient of x1 in r1 · α equals 1. Then μ1 is an integer multiple of cm
by (6.57) together with (6.93), and thus μ1 ≥ 2cm; hence again

〈r1 · β, x1〉 ≤ 1 + (−cm
2

)μ1 ≤ 1 − c2m ≤ 1 − c24 = 1 −
√

2
2

= −1.

Assume now that s = sj for some j ∈ {1, . . . , n}, and denote the
coefficient of yj in tj ·α by μ′

j . By minimality of β clearly μ′
j < 2, and by the

connectedness of the support of tj · β further μ′
j > 0; thus μ′

j ∈ {1, cm} by
(2.26). Note that μj−1 ≥ 2 if j > 1, and λ ≥ cm if j = 1. Further, μj+1 ≥ 2
if j < n, and ν1, ν2 ≥ 1 if j = n. So if μ′

j = 1, then

〈sj · β, yj〉 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + (− cm

2
)cm + (−1

2
)1 + (−1

2
)1 if 1 = j = n,

1 + (− cm

2 )cm + (−1
2)2 if 1 = j < n,

1 + (−1
2
)2 + (−1

2
)2 if 1 < j < n,

1 + (−1
2)2 + (−1

2)1 + (−1
2 )1 if 1 < j = n,

and thus 〈sj ·β, yj〉 ≤ −1 in any case, as required. Assume now that μ′
j = cm.

If j < n, then μj+1 is an integer multiple of cm by (6.97) for r = sj , and since
μj+1 ≥ 2 we know that μj+1 ≥ 2cm; if j = n, then ν1, ν2 ≥ cm by (6.97) for
r = sj . Therefore

〈sj · β, yj〉 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cm + (− cm

2 )cm + (−1
2 )cm + (−1

2 )cm if 1 = j = n,
cm + (− cm

2
)cm + (−1

2
)2cm if 1 = j < n,

cm + (−1
2 )2 + (−1

2 )2cm if 1 < j < n,
cm + (−1

2
)2 + (−1

2
)cm + (−1

2
)cm if 1 < j = n,

and thus 〈sj · β, yj〉 ≤ −1, as required.

If s = t1, then z1 /∈ supp(t1 · β) by minimality of β, and

〈t1 · β, z1〉 ≤ 0 + (−1
2
)μn ≤ −1

since μn ≥ 2; symmetrical arguments apply if s equals t2, and this finishes
the proof.
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Now let l ≥ 1 be maximal such that there exist r2, . . . , rl ∈ Y with ri
adjacent only to ri−1 and ri+1 in Y for i ∈ {1, . . . , l − 1} (where r0 = s1),
and denote {rl, . . . , r1} by Y ′

1 . Then either Y1 = Y ′
1 , or rl has valency greater

than or equal to 3. Similarly, let n ≥ 1 be maximal such that there exist
s2, . . . , sn ∈ Y2 with sj adjacent only to sj−1 and sj+1 in Y for j = 1, . . . , n−1
(where s0 = r1), and define Y ′

2 = {s1, . . . , sn} and Y ′ = Y ′
1 ∪ Y ′

2 ; then Y ′

equals

• • • • • • • •
rl rl−1 r2 r1 s1 s2 sn−1 sn

m

We denote the simple roots corresponding to ri, sj by xi and yj respectively.

The following result enables us to restrict our main focus to the case
|Y1| = l and |Y2| = n.

(6.99) Lemma Suppose r1 /∈ X and |Y2| > n (that is, Y2 contains a vertex
of valency greater than 2). Then EX

Y is empty unless X ⊆ Y1. Moreover, if
X ⊆ Y1, then EX

Y is the set of

α+ c5β − cmyj

with j ∈ {1, . . . , n}, α ∈ EX
Y1∪{s1,...,sj−1} with coefficient cm for yj and coeffi-

cient greater than or equal to 2 for y1, . . . , yj−1, and β ∈ E
Y2\{s1,...,sj−1} with

coefficient 1 for yj .

Proof. Let γ ∈ EX
Y ; then (6.98) yields that the coefficients of y1, . . . , yn in γ

cannot all be greater than or equal to 2, and since X does not contain any
of the sj by (6.61), there must exist a j ∈ {1, . . . , n} such that the coefficient
of yj in γ equals cm. If we choose j minimal with this property, (6.97) yields
that

γ = α+ cmβ − cmyj

for some α ∈ EY1∪{s1,...,sj−1} with coefficient cm for yj and coefficient greater
than or equal to 2 for y1, . . . , yj−1, and β ∈ E

Y2\{s1,...,sj−1} with coefficient
1 for yj. Since for s ∈ Y2 \ {s1, . . . , sn} the coefficients of αs in γ are
integer multiples of cm, it follows that X ⊆ Y1. Moreover, it is clear that
for r ∈ Y1 ∪ {s1, . . . , sj−1}, the coefficient of αr in α equals 1 if and only if
r ∈ X ; that is, α ∈ EX

Y1∪{s1,...,sj−1}.
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By (6.97), each root of the form described in the assertion is in EX
Y if

X ⊆ Y1, and this finishes the proof.

If |Y1| > l and s1 /∈ X , then symmetrically EX
Y = ∅ unless X ⊆ Y2, and

thus X = ∅; if |Y1| = l and X ⊆ Y1, then X ⊆ {rl} since each element of X
is adjacent to exactly one element of Y \ X .

(6.100) Proposition Suppose r1, s1 /∈ X . Then EX
Y is empty unless X is

empty, or |Y1| = l and X = {rl}, or |Y2| = n and {sn}.

So from now on we only need to determine E∅
Y , E{rl}

Y (for |Y1| = l), and
E{sn}

Y (for |Y2| = n); by symmetry it suffices to investigate only one of the
latter two.

Suppose now that m = 4. An easy induction shows for α ∈ Φ+
Y that

the coefficient of αr in α is an integer for all r ∈ Y1, and an integer multiple
of

√
2 for all r ∈ Y2, or vice versa. This together with (6.99) imply:

(6.101) Proposition Suppose that m = 4. Then EX
Y is empty, unless

|Y1| = l and X ⊆ Y1, or |Y2| = n and X ⊆ Y2.

If m = 4, we assume from now on that |Y1| = l and X ⊆ {rl}. We
first determine EX

Y for |Y2| = n, and then cope with the case |Y2| > n using
(6.99).

It is clear, that EY is independent of R (as long as Y ⊆ R), and so we
may assume without loss of generality that R contains Ỹ2 = {s̃1, . . . , s̃n} and
Y 2 = {s1, . . . , sn} such that Ya = Y ′

1 ∪ Ỹ2 ∪ Y 2 equals
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• • • • • • •

•

•

•

s̃n s̃n−1 s̃1 r1 s1 sn−1 sn

r2

rl−1

rl

Denote the simple roots corresponding to s̃j , sj by ỹj and yj respectively, and
let VY ′ be the subspace of V spanned by xl, . . . , x1, y1, . . . , yn, and Va be the
space spanned by xl, . . . , x1, ỹ1+y1, . . . , ỹn+yn. Further, define φ:VY ′ → Va

by

φ
( l∑

i=1

λixi +
n∑

j=1

μjyj

)
=

l∑
i=1

λixi +
1√
2

n∑
j=1

μj(ỹj + yj).

If v =
∑l

i=1 λixi +
∑n

j=1 μjyj for some λi, μj ∈ R, then

〈φ(v), x1〉 =
l∑

i=1

λi〈xi, x1〉 +
1√
2

n∑
j=1

μj

(〈ỹj , x1〉 + 〈yj , x1〉
)

=
l∑

i=1

λi〈xi, x1〉 + μ1
1√
2

(〈ỹ1, x1〉 + 〈y1, x1〉
)

=
l∑

i=1

λi〈xi, x1〉 + μ1

(
− 1√

2

)
=

l∑
i=1

λi〈xi, x1〉 + μ1〈y1, x1〉

=
l∑

i=1

λi〈xi, x1〉 +
n∑

j=1

μj〈yj , x1〉 = 〈v, x1〉,
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while for i ≥ 2 clearly 〈φ(v), xi〉 = 〈v, xi〉. It follows that φ(ri · v) = ri · φ(v)
for all i ∈ {1, . . . , l}. Furthermore,

〈φ(v), ỹ1〉 =
l∑

i=1

λi〈xi, ỹ1〉 +
1√
2

n∑
j=1

μj

(〈ỹj , ỹ1〉 + 〈yj , ỹ1〉
)

= λ1〈x1, ỹ1〉 +
1√
2

n∑
j=1

μj〈ỹj , ỹ1〉

= λ1

(
−1

2

)
+

1√
2

n∑
j=1

μj〈yj, y1〉

=
1√
2

(
λ1〈x1, y1〉 +

n∑
j=1

μj〈yj , y1〉
)

=
1√
2
〈v, y1〉

and symmetrically 〈φ(v), y1〉 = 〈v, y1〉/
√

2; also, for j ∈ {2, . . . , n} clearly

〈φ(v), ỹj〉 = 〈φ(v), yj〉 =
1√
2
〈v, yj〉.

A straightforward calculation now yields that φ(sj · v) = (s̃jsj) · φ(v) for
j ∈ {1, . . . , n}.

(6.102) Proposition Let m = 4. Then φ defines a one-one correspon-
dence between the set of roots in EY ′ = E{rl,...,r1,s1,...,sn} preceded by x1, and
EYa

∩ Va, the set of roots in E
Y ′

1∪Ỹ2∪Y 2
with coinciding coefficients for ỹj and

yj for all j ∈ {1, . . . , n}.

Proof. Let α ∈ ΦY ′ be an elementary root preceded by x1; then clearly
φ(α) ∈ Va, and we show now that φ(α) is an elementary root. If α has
depth 1, then α = x1 and φ(α) = x1 ∈ E . Suppose next that α is of depth
greater than 1, and assume that φ(β) is an elementary root for all β with
x1 � β ≺ α. Let r ∈ Y such that x1 � r ·α ≺ α; then φ(r ·α) is an elementary
root by induction. Further, 〈α, αr〉 > 0, and thus 〈α, αr〉 ∈ (0, 1), since α
cannot dominate αr; that is, 〈r · α, αr〉 ∈ (−1, 0).

If r = ri for some i, then φ(α) = ri · φ(ri · α) by the above, and since
〈φ(ri · α), xi〉 = 〈ri · α, xi〉 ∈ (−1, 0), it follows by (3.37) that φ(α) is an
elementary root.



Chapter 6 The set of elementary roots 112

Assume next that r = sj for some j. Then φ(α) = (s̃jsj) · φ(sj · α) by
the above. Since 〈φ(sj ·α), yj〉 = 〈sj ·α, yj〉/

√
2 ∈ (−1, 0), it follows by (3.37)

that sj · φ(sj · α) is elementary; furthermore,

〈sj · φ(sj · α), ỹj〉 = 〈φ(sj · α), ỹj〉 =
1√
2
〈sj · α, yj〉 ∈ (−1, 0)

and, again by (3.37), we deduce that (s̃jsj) ·φ(sj ·α) is elementary; therefore
φ(α) is elementary.

Note that this yields that if α ∈ EY ′ is preceded by x1, then φ(α) is an
element of EYa

∩ Va.

Now let β be an elementary root in Va preceded by x1. If β is of depth 1,
then β = x1 = φ(x1). Suppose next that dp(β) > 1, and assume that every
root γ in Va with x1 � γ ≺ β equals φ(δ) for some elementary root δ in ΦY ′

with δ � x1. Further, let t ∈ Ya = Y ′
1 ∪ Ỹ2 ∪ Y 2 with x1 � t · β ≺ β. Since

I(β) ⊆ Ya contains only simple bonds, (6.64) implies that 〈β, αt〉 = 1
2 .

Suppose first that t = ri for some i. Then ri · β ∈ Va, and induction
yields that ri · β equals φ(α) for some elementary root α ∈ ΦY ′ with α � x1.
Now β = ri · φ(α) = φ(ri · α); moreover,

〈α, xi〉 = 〈φ(α), xi〉 = 〈ri · β, xi〉 = −〈β, xi〉 = −1
2
,

and thus ri · α is elementary by (3.37), and ri · α � α � x1, as required.

Assume next that t = s̃j for some j. By symmetry of β, and since s̃j

and sj are not adjoined, we know that

〈sj · β, ỹj〉 = 〈β, ỹj〉 = 〈β, yj〉;

therefore (s̃jsj) · β ≺ β since 〈β, ỹj〉 = 1
2 . Furthermore, if we denote the

coefficient of ỹj in β by μ, the coefficient of yj in (s̃jsj) ·β equals μ−2〈β, yj〉,
while the coefficient of ỹj in (s̃jsj) · β equals

μ− 2〈sj · β, ỹj〉 = μ− 2〈β, yj〉,
and thus (s̃jsj) · β ∈ Va. By induction, (s̃jsj) · β equals φ(α) for some
elementary root α ∈ ΦY ′ preceded by x1. So β = φ(sj · α), and since

〈α, yj〉 =
√

2〈φ(α), ỹj〉 =
√

2〈s̃jsj · β, ỹj〉 = −
√

2〈sj · β, ỹj〉 = − 1√
2
,
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sj · α is elementary by (3.37); the above also yields that sj · α � α � x1, as
required. Symmetrical arguments apply if t ∈ Y 2.

We can now deduce that φ maps the set of roots in EY ′ preceded by x1

onto the set of roots in EYa
∩ Va. For, if β is in EYa

∩ Va, then I(β) = Ya and
since I(β) contains only simple bonds, it follows by (6.69) that β is preceded
by x1. Since φ is clearly one-one this finishes the proof.

Now let α ∈ EYa
with coefficient 1 for xi. An easy modification of

(6.73)(i) yields that the coefficients of xl, . . . , xi+1 in α must also be equal to
1, and we deduce that

EYa
=

l+1⋃
i=1

n+1⋃
j=1

n+1⋃
k=1

E{rl,...,ri}∪{s̃j,...,s̃n}∪{sk,...,sn}
Ya

.

Since E{rl,...,ri}∪{s̃j,...,s̃n}∪{sk,...,sn}
Ya

∩Va is clearly empty if j �= k, this becomes

EYa
∩ Va =

l+1⋃
i=1

n+1⋃
j=1

(E{rl,...,ri}∪{s̃j,...,s̃n}∪{sj ,...,sn}
Ya

∩ Va

)
.

If X ⊆ Y1, we derive from the definition of φ that φ induces a one-one
correspondence between the set of roots in EX

Y preceded by x1, and

n+1⋃
j=1

(EX∪{s̃j,...,s̃n}∪{sj ,...,sn}
Ya

∩ Va

)
.

(6.103) Proposition Suppose that m = 4, |Y1| = l and |Y2| = n. If l = 2,

the elements of E{r2}
Y are

x2 +Mx1 +
√

2
(
M(y1 + · · ·+ yj(M−1)−1)

+ (M − 1)(yj(M−1) + · · · + yj(M−2)−1) + · · ·
· · ·+ 2(yj(2) + · · ·+ yj(1)−1) + (yj(1) + · · ·+ yn)

)
with M ∈ {2, . . . , n+ 1} and 0 < j(M − 1) < j(M − 2) < . . . < j(1) < n+ 1.

If l ≥ 3, the elements of E{rl}
Y are

xl + 2(xl−1 + · · ·+ x1) +
√

2
(
2(y1 + · · ·+ yj−1) + (yj + · · ·+ yn)

)
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with j ∈ {1, . . . , n}. Thus

∣∣E{rl}
Y

∣∣ =
{

2n − 1 if l = 2 and |Y2| = n,

n if l ≥ 3 and |Y2| = n.

Proof. By (6.59) we know that each root in E{rl}
Y is preceded by xl, and it

follows (by a remark at the beginning of this section) that each root in E{rl}
Y

is preceded by x1. Therefore the previous remark yields that

E{rl}
Y = φ−1

(n+1⋃
j=1

E{rl}∪{s̃j,...,s̃n}∪{sj ,...,sn}
Ya

∩ Va

)
.

If l = 2, then Y1 ∪ Ỹ2 ∪ Y 2 equals

• • • • • • •

•

s̃n s̃n−1 s̃1 r1 s1 sn−1 sn

r2

Proposition (6.74) implies that E{r2}
Ya

is empty, and we deduce from (6.72)

(together with (6.57)) that the elements of E{rl}∪{s̃j,...,s̃n}∪{sj ,...,sn}
Ya

∩ Va for
j ∈ {1, . . . , n} are

x2+
(
ỹn + · · ·+ ỹj

)
+ 2

(
yj−1 + · · ·+ yk(3)

)
+ · · ·

· · ·+ (M − 1)
(
ỹk(M−1)−1 + · · · + ỹk(M)

)
+M

(
ỹk(M)−1 + · · · + ỹ1

)
+Mx1 +M

(
y1 + · · · + yk(M)−1

)
+ · · · + (

yj + · · ·+ ym

)
,

with M ∈ {2, . . . , j + 1} and j > k(3) > . . . > k(M) > 0. This yields the
assertion, if we set j(1) = j and j(i) = k(i− 1) for i ∈ {3, . . . ,M}.

Suppose next that l ≥ 3. If n = 1, then Y1 ∪ Ỹ2 ∪ Y 2 equals



Chapter 6 The set of elementary roots 115

• • •

•

•

•

s̃1 r1 s1

r2

rl−1

rl

and (6.77) yields that

E{rl}
Y =

{
φ−1

(
xl + 2(xl−1 + · · · + x1) + ỹ1 + y1

)}
=

{
xl + 2(xl−1 + · · · + x1) +

√
2y1

}
,

as required. Suppose now that n ≥ 2. Then Y1 ∪ Ỹ2 ∪ Y 2 equals

• • • • • • •

•

•

•

s̃n s̃n−1 s̃1 r1 s1 sn−1 sn

r2

rl−1

rl

with l ≥ 3 and n ≥ 2. Now E{rl}
Y ′ is empty by (6.70), and by (6.70)

(and (6.57)), E{rl}∪{s̃j,...,s̃n}∪{sj ,...,sn}
Ya

∩ Va has exactly one element for j ∈
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{1, . . . , n}, namely

xl+2(xl−1 + · · ·+ x2) + (ỹm + · · ·+ ỹj) + 2(ỹj−1 + · · · + ỹ1)
+ 2x1 + 2(y1 + · · ·+ yj−1) + (yj + · · · + ym),

and the assertion follws trivially.

The previous proposition together with (6.99) allow us to conclude the
following:

(6.104) Proposition Suppose that m = 4, |Y1| = l and |Y2| > n. If l = 2,

then E{r2}
Y is the set of

x2 +Mx1 +
√

2
(
M(y1 + · · ·+ yj(M−1)−1)

+ (M − 1)(yj(M−1) + · · ·+ yj(M−2)−1) + · · ·
· · · + 3(yj(3) + · · · + yj(2)−1) + 2(yj(2) + · · ·+ yj(1)−1) + β

)
with M ∈ {2, . . . , n+ 1},

0 < j(M − 1) < j(M − 2) . . . < j(2) < j(1) < n+ 1

and β ∈ E
Y2\{s1,...,sj(1)−1} with coefficient 1 for yj(1).

If l ≥ 3, then E{rl}
Y is the set of

xl + 2(xl−1 + · · · + x1) +
√

2
(
2(y1 + · · ·+ yj−1) + β

)
with j ∈ {1, . . . , n} and β ∈ E

Y2\{s1,...,sj−1} with coefficient 1 for yj .

Thus

∣∣E{rl}
Y

∣∣ =

⎧⎨⎩
∑n

j=1(2
j − 1)

∑
J⊆Y2\{s1,...,sj}

∣∣E{sj}∪J

Y2\{s1,...,sj−1}
∣∣ if l = 2,∑n

j=1

∑
J⊆Y2\{s1,...,sj}

∣∣E{sj}∪J

Y2\{s1,...,sj−1}
∣∣ if l ≥ 3.

Note that the hypothesis |Y2| > n is not necessary in (6.104); for if
|Y2| = n, then E

Y2\{s1,...,sj−1} = {yj + · · ·+ yn}, and the assertion reduces to
(6.103).
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(6.105) Proposition Suppose that m = 4, |Y1| = l and |Y2| = n. Then
E∅

Y is empty unless l = n = 2, or l = 2 and n ≥ 3, or n = 2 and l ≥ 3. If
l = 2 and n = 2, then

E∅
Y =

{
2x2 + 3x1 + 2

√
2y1 +

√
2y2,

√
2x2 + 2

√
2x1 + 3y1 + 2y2

}
,

while if l = 2 and n ≥ 3, the elements of E∅
Y are

2x2 + 3x1 +
√

2
(
3(y1 + · · · + yk−1) + 2(yk + · · ·+ yj−1) + (yj + · · ·+ yn)

)
with 1 ≤ k < j ≤ n. Hence

|E∅
Y | =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if l = 1 or n = 1,

2 if l = n = 2,(
n
2

)
if l = 2, n ≥ 3,(

l
2

)
if l ≥ 3 and n = 2,

0 if l, n ≥ 3.

Proof. As EY does not depend onR, we may assume without loss of generality
that R contains Ỹ1 = {r̃l, . . . , r̃1} and Y 1 = {rl, . . . , r1} such that Ỹ1∪Y 1∪Y2

equals

• • • • • • •

•

•

•

r̃l r̃l−1 r̃1 s1 r1 rl−1 rl

s2

sn−1

sn

Denote the simple roots corresponding to r̃i, ri by x̃i, xi respectively, and let
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Vb the space spanned by x̃l +xl, x̃1 +x1, y1, . . . , yn. Further, let ψ:VY → Vb

be defined by

ψ
( l∑

i=1

λixi +
n∑

j=1

μjyj

)
=

1√
2

l∑
i=1

λi(x̃i + xi) +
n∑

j=1

μjyj .

By a remark at the beginning of this section, each root in EY is is preceded
by x1 or y1 (but certainly not by both), and so the remark following (6.102)
yields that E{rl}

Y is equal to the following disjoint union:

φ−1
(n+1⋃

j=1

E{s̃j,...,s̃n}∪{sj ,...,sn}
Y1∪Ỹ2∪Y 2

∩ Va

)
∪ ψ−1

(l+1⋃
i=1

E{r̃i,...,r̃l}∪{ri,...,rl}
Y2∪Ỹ1∪Y 1

∩ Vb

)
.

If l = 1, then Y1 ∪ Ỹ2 ∪ Y 2 equals

• • • • • • •
s̃n s̃n−1 s̃1 r1 s1 sn−1 sn

and E{s̃j ,...,s̃n}∪{sj ,...,sn}
Y1∪Ỹ2∪Y 2

is empty for all j ∈ {1, . . . , n+1} by (6.66); further-

more, Ỹ1 ∪ Y 1 ∪ Y2 equals

• • •

•

•

•

r̃1 r1s1

s2

sn−1

sn

and E∅
Ỹ1∪Y 1∪Y2

and E{r̃1,r̃1}
Ỹ1∪Y 1∪Y2

are empty by (6.77). Whence E∅
Y = ∅ if l = 1,

and symmetrically E∅
Y = ∅ if n = 1.
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Suppose now that l, n ≥ 2. If both l and n equal 2, Y1 ∪ Ỹ2 ∪ Y 2 and
Ỹ1 ∪ Y 1 ∪ Y2 equal

• • • • • • • • • •

• •

s̃2 s̃1 r1 s1 s2

r2

r̃2 r̃1 s1 r1 r2

s2

respectively, and (6.85) yields that E∅
Y has two elements; namely

φ−1
(
2x2 + ỹ2 + 2ỹ1 + 3x1 + 2y1 + y2

)
= 2x2 + 3x1 +

√
2(2y1 + y2)

and

ψ−1
(
2y2 + x̃2 + 2x̃1 + 3y1 + 2x1 + x2

)
=

√
2(x2 + 2x1) + 3y1 + 2y2,

as required.

Suppose next that n ≥ 3. Then Y2 ∪ Ỹ1 ∪ Y 1 equals

• • • • • • •

•

•

•

r̃l r̃l−1 r̃1 s1 r1 rl−1 rl

s2

sn−1

sn

with n ≥ 3 and l ≥ 2, and thus E{r̃l,...,r̃i}∪{rl,...,ri}
Y1∪Ỹ2∪Y 2

is empty for all i ∈
{2, . . . , l + 1} by (6.70) (and (6.57)), and furthermore empty by (6.77) for
i = 1. So

E{rl}
Y = φ−1

(n+1⋃
j=1

E{s̃j,...,s̃n}∪{sj ,...,sn}
Y1∪Ỹ2∪Y 2

∩ Va

)
.
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If l is also greater than or equal to 3, symmetrical arguments yield that E∅
Y

is empty. Assume next that l = 2; then Y1 ∪ Ỹ2 ∪ Y 2 equals

• • • • • • •

• r2

s̃n s̃n−1 s̃1 r1 s1 sn−1 sn

with n ≥ 3. Lemma (6.77) yields that E{s̃1,...,s̃n}∪{s1,...,sn}
Y1∪Ỹ2∪Y 2

= ∅, and (6.80)

implies that E∅
Y1∪Ỹ2∪Y 2

is also empty. So the above becomes

E{rl}
Y = φ−1

( n⋃
j=2

E{s̃j,...,s̃n}∪{sj ,...,sn}
Y1∪Ỹ2∪Y 2

∩ Va

)
.

Now E{s̃2,...,s̃n}∪{s2,...,sn}
Y1∪Ỹ2∪Y 2

has one element by (6.85), namely

2x1 +
(
ỹn + · · · + ỹ2

)
+ 2ỹ1 + 3x0 + +2y1 +

(
y2 + · · · + yn

)
.

If j ∈ {3, . . . , n}, (6.79)(1) yields that E{s̃j,...,s̃n}∪{sj ,...,sn}
Y1∪Ỹ2∪Y 2

∩ Va is the set of

2x1 +
(
ỹn + · · ·+ ỹj

)
+ 2

(
ỹj−1 + · · · + ỹk

)
+ 3

(
ỹk−1 + · · ·+ ỹ1

)
+ 3x0

+ 3
(
y1 + · · ·+ yk−1) + 2(yk + · · ·+ yj−1) + (yj + · · · + yn

)
,

(∗)

with k ∈ {1, . . . , j − 1}. It is clear that E{s̃j,...,s̃n}∪{sj ,...,sn}
Y1∪Ỹ2∪Y 2

∩ Va for j = 2 is

also of the form (∗), and one can now easily verify that E∅
Y is of the required

shape.

(6.106) Proposition Suppose thatm = 4 and |Y1| = l. Then E∅
Y is empty

unless l = 2 and n ≥ 2, or |Y2| = 2 (and thus |Y2| = n = 2) and l ≥ 3. If
l = 2, n ≥ 2 and |Y2| ≥ 3, the elements of E∅

Y are

2x2 + 3x1 +
√

2
(
3(y1 + · · · + yk−1) + 2(yk + · · ·+ yj−1) + β

)
,
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where 1 ≤ k < j ≤ n and β ∈ E
Y2\{s1,...,sj−1} with coefficient 1 for yj .

Hence ∣∣E∅
Y

∣∣ =
n∑

j=2

(j − 1)
∑

J⊆Y2\{s1,...,sj}

∣∣E{sj}∪J

Y2\{s1,...,sj−1}
∣∣.

Proof. If |Y1| = n, ⋃
J⊆Y2\{s1,...,sj}

E{sj}∪J

Y2\{s1,...,sj−1}
= {yj + · · · + yn},

and the assertion is proved in (6.105). So assume now that |Y2| > n. By
(6.99) we know that every element of E∅

Y can be written as

α+
√

2β −
√

2yj

with j ∈ {1, . . . , n}, α ∈ E∅
Y1∪{s1,...,sj} with coefficient

√
2 for yj and coef-

ficient greater than or equal to 2 for y1, . . . , yj−1, and β ∈ E
Y2\{s1,...,sj−1}

with coefficient 1 for yj. But (6.105) yields that E∅
Y1∪{s1,...,sj} is empty unless

l = 2 and j ≥ 2, or l ≥ 3 and j = 2; if l ≥ 3 and j = 2, (6.105) yields further
that there are no roots in E∅

Y1∪{s1,...,sj} with coefficient
√

2 for y2, and thus

E∅
Y = ∅ unless l = 2 and j ≥ 2 (and thus n ≥ 2).

If l = 2 and n ≥ 2, then E∅
Y1∪{s1} = ∅ by (6.105), and thus E∅

Y is the set
of

2x2 + 3x1 +
√

2
(
3(y1 + · · · + yk−1) + 2(yk + · · ·+ yj−1) + β

)
with 1 ≤ k < j ≤ n and β ∈ E

Y2\{s1,...,sj−1} with coefficient 1 for yj , and the
assertion follows easily.

This leaves us with m = 5. Since{ sin(kπ/n)
sin(π/n)

| n = mrs <∞ for some r, s ∈ Y and 1 ≤ l ≤ k
2

}
equals {1, c5}, and c25 = c5+1, we know by (2.27) that for r ∈ Y the coefficient
of αr in any root in α ∈ ΦY equals a+ bc5 for some a, b ∈ N0.

We start off by stating two easy results (the former a modification of
(6.73)(i), and the latter a corollary of (3.37)). Trivial though they are, these
will make life a lot easier for us.
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(6.107) Lemma Suppose that α is a root in Φ+
Y ′ with x1 ∈ supp(α). Then

the coefficient of xi+1 in α is less than or equal to the coefficient of xi in α
for all i in {1, . . . , l− 1}.
(6.108) Corollary Suppose that γ1, . . . , γk ∈ Φ+ and t1, . . . , tk−1 ∈ R
with γi+1 = ti · γi and 〈γi, αti

〉 ∈ (−1, 0) for all i ∈ {1, . . . , k − 1}. Suppose
furthermore that γ1 ∈ E . Then γi ∈ E for all i ∈ {1, . . . , k}.

The next lemma together with (6.99) will enable us to restrict our main
attention to the case |Y1| = 1 and |Y2| = n.

(6.109) Lemma Suppose there exist t1, t2 ∈ Y such that {t1, r1, s1, t2}
equals

• • • •
t1 r1 s1 t2

5

Denote the simple roots corresponding to t1, t2 by z1 and z2 respectively,
and let α ∈ ΦY such that z1, z2 ∈ supp(α), and the coefficients of x1 and y1
in α are greater than or equal to 2. Then α ∈ Δ.

Proof. Let β � α be a positive root of minimal depth such that z1 and z2 are
in the support of β, and the coefficients of x1 and y1 in β are greater than
or equal to 2. Further, let r ∈ Y such that β � r · β. It suffices to show that
〈r · β, αr〉 ≤ −1; that is, 〈β, αr〉 ≥ 1. For then β ∈ Δ by (3.32), and thus
α ∈ Δ by (3.36).

Denote the coefficients of z1, x1, y1, z2 in β by ν1, λ, μ and ν2 respec-
tively. By minimality of β it follows that r ∈ {t1, r1, s1, t2}, and by sym-
metry we may assume without loss of generality that r ∈ {t1, r1}. Suppose
first that r = t1. Then minimality of β also yields that z1 /∈ supp(t1 · β);
that is, the coefficient of z1 in t1 · β equals 0. Since λ ≥ 2 we deduce that
〈t1 · β, z1〉 ≤ 0 + (−1

2 )λ ≤ −1, as required.

Suppose next that r = r1, and denote the coefficient of x1 in r1 · β by
λ′. Then λ′ < 2 by minimality of β, and λ′ > 0 by connectedness of the
support of r1 · β; hence λ′ equals 1 or c5. If λ′ = 1, Propositions (6.57) and
(6.93) together yield that μ = kc5 for some k ∈ N0, and since μ ≥ 2 we know
that k ≥ 2; since ν1 ≥ 1, this implies that

〈r1 · β, x1〉 ≤ 1 +
(
−1

2

)
ν1 +

(
−c5

2

)
μ ≤ 1 − 1

2
− kc25

2
≤ 1

2
− c25 ≤ −1,
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as required.

Finally, suppose that λ′ = c5. If μ = 2, let γ � r1 · β be of minimal
depth such that the coefficients of x1 and y1 in γ equal c5 and 2 respectively;
then

〈γ, x1〉 ≤ c5 +
(
−c5

2

)
2 = 0 and 〈γ, y1〉 ≤ 2 +

(
−c5

2

)
c5 =

3
2
− c5 ≤ 0,

and therefore neither γ � r1 · γ nor γ � s1 · γ, contradicting the minimality
of γ. So μ > 2, and since μ equals ac5 + b for some a, b ∈ N0 this forces
μ ≥ c5 + 1. Hence

〈r1 · β, x1〉 ≤ c5 + ν1

(
−1

2

)
+ μ

(
−c5

2

)
≤ c5 − 1

2
− c25

2
= −1,

(since ν1 ≥ 1), as required.

(6.110) Lemma Suppose that m = 5, |Y1| = 1 and |Y2| = n, and let α be

in E{sn}
Y . Then α is preceded by

c5x1 + (c5 + 1)(y1 + · · · + yn−1) + yn,

and this is an elementary root.

Proof. By (6.59) we know that α is preceded by yn, and we let β be of
maximal depth with α � β � yn such that I(β) ⊆ Y2. Maximality of β
yields that α � r1 · β � β, and thus 〈β, x1〉 ∈ (−1, 0) by (3.38); if we denote
the coefficient of y1 in β by μ, we find that 〈β, x1〉 = − c5

2
μ, and (2.26) yields

that μ = 1. As s1, sn ∈ I(β), we deduce that I(β) = {s1, . . . , sn}. Now β
is elementary, and I(β) contains only simple bonds, therefore (6.69) implies
that r1 · β � β � y1 + · · · + yn; furthermore, the coefficients of y1 in r1 · β
and y1 + · · · + yn coincide, and thus

r1 · β � r1 · (y1 + · · ·+ yn) = c5x1 + y1 + · · · + yn

by (6.58). It follows by transitivity of � that α is preceded by

γ1 = c5x1 + y1 + · · ·+ yn;
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since y1+· · ·+yn is clearly elementary, and 〈y1+· · ·+yn, x1〉 = − c5
2
∈ (−1, 0),

(3.37) yields that γ1 is elementary. For j ∈ {1, . . . , n− 1}, let γj+1 be equal
to sj · γj. Then a straightforward calculation yields that

γj = c5x1 + (c5 + 1)(y1 + · · ·+ yj−1) + yj + · · ·+ yn

and 〈γj , yj〉 = −1
2
∈ (−1, 0); since γ1 is elementary, (6.108) implies that γj

is elementary for all j ∈ {1, . . . , n}. In particular γn ∈ E , and it remains to
show that α is preceded by γn.

By the above α � γ1, and the proof is finished if n = 1; so suppose
that n ≥ 2. The coefficient of y1 in γ1 equals 1, while the coefficient of y1 in
α is greater than 1, and we let δ be a root with γ1 � δ � α such that the
coefficient of y1 in δ equals 1, and δ ≺ s1 · δ � α. As α is elementary, clearly
s1 · δ ∈ E , and thus 〈δ, y1〉 > −1 by (3.38). The coefficient of y2 in δ equals
1 by (6.107), and we denote the coefficient of y1 in δ by λ. Then

〈δ, y1〉 ≤ 1 +
(
−1

2

)
1 +

(
−c5

2

)
λ,

and thus λ < 3
c5

≤ 2; since λ ≥ c5 as δ � γ1, this yields λ = c5. Hence the
coefficients of x1 in s1 · δ and γ coincide; as |Y2| = n, and the coefficients of
y2 in s1 · δ and γ both equal 1, (6.58) yields that s1 · δ is a successor of s1 ·γ1,
which equals γ2.

If n = 2, this finishes the proof, so suppose n > 2, and assume that
α � γj for some j ∈ {2, . . . , n− 1}. The coefficient of yj in γj equals 1, while
the coefficient of yj in α is greater than 1, and (again) we let δ be a root with
γj � δ � α such that the coefficient of yj in δ equals 1, and δ ≺ rj · δ � α.
As α is elementary, clearly sj · δ ∈ E , and thus 〈δ, yj〉 > −1 by (3.38). The
coefficient of yj+1 in δ equals 1 by (6.107), and we denote the coefficient of
yj−1 in δ again by λ; then

〈δ, yj〉 ≤ 1 +
(
−1

2

)
1 +

(
−1

2

)
λ =

1
2
(1 − λ),

and we deduce that λ < 3. But λ ≥ c5 + 1 as δ � γj , and this only leaves
us with λ = c5 + 1 (since λ equals ac5 + b for some a, b ∈ N0). Hence the
coefficients of yj−1 in sj · δ and γ coincide again. As |Y2| = n, and the
coefficients of yj+1 in sj · δ and γ both equal 1, (6.58) yields that sj · δ is a
successor of sj · γj, which equals γj+1. So by induction α � γn, as required.
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(6.111) Proposition Suppose m = 5, |Y1| = 1 and |Y2| = n.

(i) If n = 2, then

E{s2}
Y = {c5x1 + (c5 + 1)y1 + y2, (c5 + 1)x1 + (c5 + 1)y1 + y2}.

(ii) If n = 3, then

E{s3}
Y = {c5x1 + (c5 + 1)y1 + (c5 + 1)y2 + y3,

(c5 + 1)x1 + (c5 + 1)y1 + (c5 + 1)y2 + y3,

(c5 + 1)x1 + (2c5 + 1)y1 + (c5 + 1)y2 + y3,

(2c5 + 1)x1 + (2c5 + 1)y1 + (c5 + 1)y2 + y3,

(2c5 + 1)x1 + (2c5 + 2)y1 + (c5 + 1)y2 + y3,

(2c5 + 1)x1 + (2c5 + 2)y1 + (c5 + 2)y2 + y3}.

(iii) If n ≥ 4, the elements of E{sn}
Y are exactly the following:

α(1) = c5x1 + (c5 + 1)(y1 + · · ·+ yn−1) + yn,

α
(2)
j = (c5+1)x1+(2c5+1)(y1+· · ·+yj−1)+(c5+1)(yj+· · ·+yn−1)+yn,

with j ∈ {1, . . . , n− 1},

α
(3)
j = (2c5+1)x1+(2c5+1)(y1+· · ·+yj−1)+(c5+1)(yj+· · ·+yn−1)+yn,

with j ∈ {2, . . . , n− 1}, and

α(4) = (2c5 + 1)x1 + (2c5 + 2)y1 + (c5 + 1)(y2 + · · · + yn−1) + yn.

Hence

|E{rl}
Y | =

⎧⎪⎨⎪⎩
2 if |Y1| = 1 and n = 2,

6 if |Y1| = 1 and n = 3,

2n− 1 if |Y1| = 1 and n ≥ 4.

Proof. If n = 2, 3 it can be easily verified that we have in fact enumerated
all roots preceded by c5x1 + (c5 + 1)(y1 + · · ·+ yn−1) + yn with coefficient 1
for yn, and that these are elementary. It remains to show (iii).
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By (6.110) we know that α(1) is elementary. Since 〈α(1), x1〉 = −1
2
, it

follows by (3.37) that r1 · α(1) is also elementary; that is, α(2)
1 ∈ E . Now

α
(2)
j+1 = sj · α(2)

j for j ∈ {1, . . . , n− 1} and further 〈α(2)
j , yj〉 = − c5

2 ∈ (−1, 0);

hence α(2)
j ∈ E for all j ∈ {1, . . . , n} by (6.108). For j ∈ {2, . . . , n} clearly

α
(3)
j = r1 · α(2)

j and 〈α(2)
j , x1〉 = − c5

2 , thus it follows by (3.37) that α(3)
j

is elementary for all j ∈ {2, . . . , n}. Finally, 〈α(3)
2 , y1〉 = −1

2
and therefore

α(4) = s1 · α(3)
2 ∈ E by (3.37). So the above listed vectors are in E , and thus

certainly in E{sn}
Y .

We prove now that all elements of E{sn}
Y have been accounted for. So

let β ∈ E{sn}
Y , and assume for a contradiction that β is not equal to any of

the roots listed above. By (6.110) we know that β is preceded by α(1). As
β �= α(1), and the coefficients of yn in α(1) and β coincide, there exists an
r ∈ {r1, s1, . . . , sn−1} with β � r · α(1); that is, 〈α(1), αr〉 < 0. This forces
r = r1, and thus β � r1 · α(1) = α

(2)
1 . Now let j ∈ {1, . . . , n− 1} be maximal

such that β � α
(2)
j ; that is, β � α

(2)
j by assumption. Then there exists an

s ∈ {r1, s1, . . . , sn−1} with β � s · α(2)
j , and maximality of j forces s = r1

and j ≥ 2. Whence β � r1 · α(2)
j = α

(3)
j , and hence β � α

(3)
j by assumption.

Now let t ∈ {r1, s1, . . . , sn−1} with β � t · α(3)
j . Then 〈α(3)

j , αt〉 < 0, and

thus 〈α(3)
j , αt〉 ∈ (−1, 0), as β is elementary. We find that t = s1 and j = 2;

so β is preceded by s1 · α(3)
2 = α(4). Since 〈α(4), x1〉, 〈α(4), y2〉 ≤ −1 and

〈α(4), αr〉 ≥ 0 for r ∈ Y \ {r1, s1}, we deduce from (3.38) that β = α(4),
contrary to our assumption, and this finishes the proof.

(6.112) Proposition Suppose m = 5, |Y2| = n ≥ 2 and |Y1| > 1. Then

E{sn}
Y equals{
c5α+ (c5 + 1)(y1 + · · · + yn−1) + yn | α ∈ EY1 with coefficient 1 for x1

}
=

{
c5α+ (c5 + 1)(y1 + · · ·+ yn−1) + yn | α ∈

⋃
J⊆Y1\{r1}

EJ∪{r1}
Y1

}
.

Hence ∣∣E{sn}
Y

∣∣ =
∑

J⊆Y1\{r1}

∣∣EJ∪{r1}
Y1

∣∣.
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In particular, if |Y1| = l,

E{sn}
Y =

{
c5(xl + · · · + x1) + (c5 + 1)(y1 + · · · + yn−1) + yn

}
.

Proof. Since c5x1 + (c5 + 1)(y1 + · · · + yn−1) + yn is elementary by (6.110),
Proposition (6.97) yields that

c5α+ (c5 + 1)(y1 + · · · + yn−1) + yn

is an elementary root for α ∈ EY1 with coefficient 1 for x1, and thus certainly
in E{sn}

Y . It remains to show that all elements of E{sn}
Y are of this form.

Let γ ∈ E{sn}
Y . Since the coefficient of yn in γ equals 1, we deduce from

(6.97) that the coefficients of y1, . . . , yn−1 in γ cannot be equal to c5, and
thus must be greater than or equal to 2. In particular, the coefficient of y1
in γ is greater than or equal to 2; since n ≥ 2 and |Y1| ≥ 2, Lemma (6.109)
now forces the coefficient of x1 in γ to be less than 2, and thus equal to c5.
So by (6.97),

γ = c5α+ β − c5x1

for some α ∈ EY1 with coefficient 1 for x1, and β ∈ E{r1}∪Y2 with coefficient
c5 for x1. It is clear that β must be an element of E{sn}

{r1}∪Y2
, and since the

coefficient of x1 in β equals c5, we deduce from (6.111) that

β = c5x1 + (c5 + 1)(y1 + · · · + yn−1) + yn;

whence γ is of the desired shape.

This leaves us with X = ∅.

(6.113) Lemma Suppose that m = 5, |Y1| = l and |Y2| = n, and let
α ∈ E∅

Y . Then
α � c5x1 + c5(y1 + · · · + yn)

or
α = (2c5 + 1)x1 + (2c5 + 2)y1 + (c5 + 2)y2 + (c5 + 1)y3.

Proof. If n = 1, the assertion is certainly true. Now suppose that n ≥ 2 and
assume that the assertion is true for n− 1. Let β be of minimal depth with
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β � α such that β ∈ E∅
Y , and denote the coefficients of x1, yj in β by λ and

μj respectively. Let r ∈ Y such that r · β ≺ β; then 〈r · β, αr〉 ∈ (−1, 0) by
(3.38). Moreover, r ·β is elementary, and since r ·β /∈ E∅

Y by minimality of β,
the coefficient of αr in r · β must be less than or equal to 1, and thus equal
to 0 or 1 by (2.26).

Suppose first that r = r1. If the coefficient of x1 in r1 · β equals 0,
we find that 〈r1 · β, x1〉 = − c5

2
μ1 ≤ −1; for μ1 > 1, and thus μ1 ≥ √

2 by
(2.26). But this contradicts our conclusion that 〈r · β, αr〉 ∈ (−1, 0), and so
the coefficient of x1 in r1 · β equals 1. By (6.93) (together with (6.57)), μ1

equals kc5 for some k ∈ N0, and

〈r1 · β, x1〉 = 1 +
(
−c5

2

)
k = 1 −

(
c5 +

1
2

)
k

forces k = 1 and μ1 = c5. So by (6.97), r1 ·β equals x1 +c5γ for some γ ∈ EY2

with coefficient 1 for y1. Since I(γ) contains only simple bonds, (6.69) yields
that γ � y1 + · · · + yn, and by definition of � there exists a w ∈ WY2 with
γ = w ·(y1 + · · ·+yn) and N(w) = N−(w, y1 + · · ·+yn). Since the coefficients
of y1 in γ and y1 + · · · + yn coincide, we conclude that w ∈ WY2\{s1}, and
thus N(w) ⊆ Φ+

Y2\{s1}. So if δ ∈ N(w), then〈
c5x1 + c5(y1 + · · ·+ yn) , δ

〉
= c5

〈
y1 + · · ·+ yn , δ

〉
< 0,

as δ ∈ N−(w, y1 + · · · + yn); thus N−
(
w, c5x1 + c5(y1 + · · · + yn)

)
= N(w).

Now
β = c5x1 + c5γ = c5x1 + c5

(
w · (y1 + · · ·+ yn)

)
= w · (c5x1 + c5(y1 + · · ·+ yn)

)
and by definition of � this is preceded by c5x1 +c5(y1+ · · ·+yn), as required.

Suppose next that r = sj for some j ∈ {1, . . . , n}. Since the coefficient
of yj in sj ·β equals 0 or 1, while the coefficient of αs in sj ·β is greater than
1 for s ∈ Y \ {sj}, Lemma (6.107) yields that j = n. Suppose first that the
coefficient of yn in sn · β equals 1, and thus sn · β ∈ E{sn}

Y ; then

sn · β � c5x1 + (c5 + 1)(y1 + · · ·+ yn−1) + yn

by (6.111). If μn−1 = c5 + 1, (6.58) implies that

β � sn · (c5x1 + (c5 + 1)(y1 + · · ·+ yn−1) + yn

)
= c5x1 + (c5 + 1)(y1 + · · · + yn−1) + c5yn

= (sn−1 · · · s1) ·
(
c5x1 + c5(y1 + · · ·+ yn)

)
,
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and it can be easily verified that this is preceded by c5x1 + c5(y1 + · · ·+ yn).
Assume now that μn−1 �= c5 + 1; then (6.111) gives that n = 3 and

s3 · β = (2c5 + 1)x1 + (2c5 + 2)y1 + (c5 + 2)y2 + y3.

If α = β = (2c5 +1)x1 +(2c5 +2)y1 +(c5 +2)y2 +(c5 +1)y3 there is nothing
left to show, so suppose that α �= β. Since 〈β, x1〉 = 0 and 〈β, y1〉 as well as
〈β, y3〉 are positive, we deduce that α must be a successor of s2 · β. Now

s2 · β = (2c5 + 1)x1 + (2c5 + 2)y1 + (2c5 + 1)y2 + (c5 + 1)y3
= (s1r1s2s1r1s1s2s3) ·

(
c5x1 + c5(y1 + y2 + y3)

)
,

and it can be easily verified that this is preceded by c5(x3 + x2 + x1) + c5y1.

Finally, suppose that the coefficient of yn in sn · β equals 0. Then
μn ≥ c5 as β ∈ E∅

Y ; furthermore 0 = μn −2〈β, yn〉, and as β cannot dominate
yn, this yields that 1 > 〈β, yn〉 ≥ μn

2 , and thus μn = c5 by (2.26). Since sn ·β
is certainly an element of E∅

Y \{sn}, induction yields that either

sn · α � c5x1 + c5(y1 + · · ·+ yn−1),

or n = 4 and s4 · β = (2c5 + 1)x1 + (2c5 + 2)y1 + (c5 + 2)y2 + (c5 + 1)y3. The
coefficient of yn−1 in sn · β equals c5, and so the latter is impossible, while
the former case together with (6.58) yield that

β � sn · (c5x1 + c5(y1 + · · ·+ yn−1)
)

= c5x1 + c5(y1 + · · · + yn),

and this finishes the proof.

Observe that (6.108) implies that c5x1+c5(y1+· · ·+yn) is an elementary
root. For δ1 = c5x1 +c1y1 is clearly elementary, and if we define δj = sj ·δj−1

for j ∈ {2, . . . , n}, then an easy calculation yields that

δj = c5x1 + c5(y1 + · · ·+ yj)

and 〈δj−1, yj〉 = − c5
2

∈ (−1, 0), and thus δn = c5x1 + c5(y1 + · · · + yn) ∈ E
by (6.108).

Next let β(1)
1 = δn, and for j ∈ {1, . . . , n − 1} define β(1)

j+1 = sj · β(1)
j .

Then a straightforward calculation yields that

β
(1)
j = c5x1 + (c5 + 1)(y1 + · · ·+ yj−1) + c5(yj + · · ·+ yn),

and 〈β(1)
j , yj〉 = −1

2 ∈ (−1, 0); whence (6.108) implies that β(1)
j ∈ E for all

j ∈ {1, . . . , n}.
Note also that β(1)

1 , . . . , β
(1)
n are the only elements of E∅

{r1}∪{s1,...,sn}
with coefficient c5 for x1, and this enables us to prove the next result.
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(6.114) Proposition Suppose that m = 5 and |Y1|, |Y2| ≥ 2. Then E∅
Y is

the set of
c5α+ (c5 + 1)

(
xi−1 + · · ·+ x1

)
+ c5β

with i ∈ {1, . . . , l}, α ∈ E
Y1\{r1,...,ri−1} with coefficient 1 for xi, and β ∈ EY2

with coefficient 1 for y1, and

c5α+ (c5 + 1)(y1 + · · · + yj−1) + c5β

with j ∈ {1, . . . , n}, α ∈ EY1 with coefficient 1 for x1 and β ∈ E
Y2\{s1,...,sj−1}

with coefficient 1 for yj . Hence

∣∣E∅
Y

∣∣ =
( ∑

J⊆Y1\{r1}

∣∣EJ∪{r1}
Y1}

∣∣) ×
( ∑

K⊆Y2\{s1}

∣∣E{s1}∪K
Y2

∣∣)

+
( l∑

i=2

∑
J⊆Y1\{r1,...,ri}

∣∣EJ∪{ri}
Y1\{ri−1,...,r1}

∣∣) ×
( ∑

K⊆Y2\{s1}

∣∣E{s1}∪K
Y2

∣∣)

+
( ∑

J⊆Y1\{r1}

∣∣EJ∪{r1}
Y1}

∣∣) ×
( n∑

j=2

∑
K⊆Y2\{s1,...,sj}

∣∣E{sj}∪K

Y2\{s1,...,sj−1}
∣∣).

Proof. First, let α ∈ EY1 with coefficient 1 for x1, j ∈ {1, . . . , n} and β in
E

Y2\{s1,...,sj−1} with coefficient 1 for yj. Since

c5x1 + (c5 + 1)(y1 + · · · + yj−1) + c5yj

is in E{r1,s1,...,sj} by the remark preceding this proposition, (6.97) yields that

c5α+ (c5 + 1)(y1 + · · ·+ yj−1) + c5yj

is an element of EY1∪{s1,...,sj}, and a repeated application of (6.97) implies
that

c5α+ (c5 + 1)(y1 + · · · + yj−1) + c5β

is an element of EY , and hence clearly in E∅
Y . Symmetrical arguments apply

for i ∈ {1, . . . , l}, α ∈ E
Y1\{r1,...,ri−1} with coefficient 1 for xi, and β ∈ EY2

with coefficient 1 for y1; hence it remains to show that all elements of E∅
Y can

be obtained in this way.



Chapter 6 The set of elementary roots 131

Let γ ∈ E∅
Y . Since |Y1|, |Y2| ≥ 2, Lemma (6.109) gives that the coeffi-

cient of x1 or y1 in γ equals c5, and by symmetry we may assume without
loss of generality that the coefficient of x1 in γ equals c5. Then

γ = c5α+ β − c5x1

for some α ∈ EY1 with coefficient 1 for x1, and β ∈ E{r1}∪Y2 with coefficient
c5 for x1.

If |Y2| = n, the remark preceding ths proposition yields that β equals
β

(1)
j for some j ∈ {1, . . . , n}, and thus

γ = c5α+ (c5 + 1)(y1 + · · ·+ yj−1) + c5(yj + · · ·+ yn);

as yj + · · · + yn is certainly an element of E
Y2\{s1,...,sj−1} with coefficient 1

for yj , it follows that γ is of the required form.

Suppose next that |Y1| > n. Then (6.99) yields that

β = β1 + x5β2 − c5yj

for some β1 ∈ E{r1,s1,...,sj} with coefficient c5 for yj , and coefficient greater
than or equal to 2 for y1, . . . , yj−1, and β2 ∈ EY2\{s1,...,sj−1} with coefficient
1 for yj. Since the coefficient of x1 in β1 must equal c5, and the coefficients
of y1, . . . , yj−1 in β have to be greater than or equal to 2, we find that

β1 = c5x1 + (c5 + 1)(y1 + · · ·+ yj−1) + c5yj.

So
γ = c5α+ (c5 + 1)(y1 + · · ·+ yj−1) + c5β2,

as required.

(6.115) Corollary Suppose that m = 5, |Y1| = l and |Y2| = n. Then E∅
Y

is the set of

c5
(
xl + · · · + xi

)
+ (c5 + 1)

(
xi−1 + · · · + x1

)
+ c5

(
y1 + · · · + yn

)
with i ∈ {1, . . . , l} and

c5
(
xl + · · ·+ x1

)
+ (c5 + 1)

(
y1 + · · ·+ yj−1

)
+ c5

(
yj + · · ·+ yn

)
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with j ∈ {1, . . . , n}. Hence |E∅
Y | = l + n− 1.

(6.116) Corollary Suppose m = 5, |Y1| = l and |Y2| > n. Then E∅
Y is

the set of

c5
(
xl + · · ·+ xi

)
+ (c5 + 1)

(
xi−1 + · · · + x1

)
+ c5β

with i ∈ {1, . . . , l} and β ∈ EY2 with coefficient 1 for y1, and

c5
(
xl + · · · + x1

)
+ (c5 + 1)

(
y1 + · · · + yj−1

)
+ c5β

with j ∈ {2, . . . , n} and β ∈ E
Y2\{s1,...,sj−1} with coefficient 1 for yj . Hence

|E∅
Y | = l ×

∑
K⊆Y2\{s1}

∣∣E{s1}∪K
Y2

∣∣ +
n∑

j=2

∑
K⊆Y2\{s1,...,sj}

∣∣E{sj}∪K

Y2\{s1,...,sj−1}
∣∣.

Assume from now on that |Y1| = 1. It is a tedious but finite task to
verify that the next lemma lists all the roots in ΦY preceded by

c5x1 + c5(y1 + · · ·+ yn),

or equal to (2c5 +1)x1 +(2c5 +2)y1 +(c5 +2)y2 +(c5 +1)y3 for |Y2| = n ≤ 3,
and that these are elementary roots.

(6.117) Lemma Suppose that m = 5, |Y1| = 1 and |Y2| = n.

(i) If n = 1, then E∅
Y = {c5x1 + c5y1}.

(ii) If |Y2| = n = 2, then

E∅
Y =

{
c5x1 + c5(y1 + y2), c5x1 + (c5 + 1)y1 + c5y2,

(c5 + 1)x1 + (c5 + 1)y1 + c5y2, (c5 + 1)x1 + 2c5y1 + c5y2
}
.

(iii) If |Y2| = n = 3,

(2c5 + 1)x1 + (2c5 + 2)y1 + (c5 + 2)y2 + (c5 + 1)y3

is an element of E∅
Y , and we denote this by means of the following dia-

gram:
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• • • •
2c+ 1 2c+ 2 c+ 2 c+ 1

5

The remaining elements of E∅
Y are represented by the following dia-

grams:

• • • •
c c c c

5

• • • •
c c+ 1 c c

5

• • • • • • • •
c+ 1 c+ 1 c c

5

c c+ 1 c+ 1 c

5

• • • • • • • •
c+ 1 2c c c

5

c+ 1 c+ 1 c+ 1 c

5

• • • • • • • •
c+ 1 2c 2c c

5

c+ 1 2c+ 1 c+ 1 c

5

• • • • • • • •
c+ 1 2c+ 1 2c c

5

2c+ 1 2c+ 1 c+ 1 c

5

• • • • • • • •
2c+ 1 2c+ 1 2c c

5

2c+ 1 2c+ 2 c+ 1 c

5

• • • • • • • •
2c+ 1 3c+ 1 2c c

5

2c+ 1 2c+ 2 2c+ 1 c

5
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• • • •
• • • •

• • • •
2c+ 2 3c+ 1 2c c

2c+ 1 3c+ 1 2c+ 1 c

2c+ 1 2c+ 2 2c+ 1 c+ 1

5

5

5

• • • • • • • •
2c+ 2 3c+ 1 2c+ 1 c

5

2c+ 1 3c+ 1 2c+ 1 c+ 1

5

• • • • • • • •
2c+ 2 3c+ 2 2c+ 1 c

5

2c+ 2 3c+ 1 2c+ 1 c+ 1

5

• • • • • • • •
3c+ 1 3c+ 2 2c+ 1 c

5

2c+ 2 3c+ 2 2c+ 1 c+ 1

5

• • • • • • • •
3c+ 1 3c+ 2 2c+ 1 c+ 1

5

2c+ 2 3c+ 2 2c+ 2 c+ 1

5

• • • •
3c+ 1 3c+ 2 2c+ 2 c+ 1

5

• • • •
3c+ 1 3c+ 3 2c+ 2 c+ 1

5

• • • •
3c+ 2 3c+ 3 2c+ 2 c+ 1

5

• • • •
3c+ 2 4c+ 2 2c+ 2 c+ 1

5

• • • •
3c+ 2 4c+ 2 3c+ 1 c+ 1

5
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• • • •
3c+ 2 4c+ 2 3c+ 1 2c

5

Hence

|E∅
Y | =

⎧⎨⎩
1 if n = 1,

4 if n = 2,

32 if n = 3.

(6.118) Proposition Suppose m = 5, |Y1| = 1 and |Y2| = n ≥ 4. Then
E∅

Y consists of the following roots

β
(1)
j = c5x1 + (c5 + 1)

(
y1 + · · · + yj−1

)
+ c5

(
yj + · · · + yn

)
,

with 1 ≤ j ≤ n,

β
(2)
j,k = (c5 + 1)x1 + (2c5 + 1)

(
y1 + · · · + yk−1

)
+ (c5 + 1)

(
yk + · · ·+ yj−1

)
+ c5

(
yj + · · · + yn

)
,

with 1 ≤ k < j ≤ n,

β
(3)
j,k = (2c5 + 1)x1 + (2c5 + 1)

(
y1 + · · · + yk−1

)
+ (c5 + 1)

(
yk + · · ·+ yj−1

)
+ c5

(
yj + · · ·+ yn

)
,

with 2 ≤ k < j ≤ n,

β
(4)
j = (2c5 +1)x1 +(2c5 +2)y1 +(c5 +1)

(
y2 + · · ·+yj−1

)
+ c5

(
yj + · · ·+yn

)
,

with 3 ≤ j ≤ n,

β
(5)
j,k = (c5 + 1)x1 + (2c5 + 1)

(
y1 + · · ·+ yk−1

)
+ 2c5

(
yk + · · · + yj−1

)
+ c5

(
yj + · · ·+ yn

)
,

with 1 ≤ k < j ≤ n,

β
(6)
j,k = (2c5 + 1)x1 + (2c5 + 1)

(
y1 + · · ·+ yk−1

)
+ 2c5

(
yk + · · · + yj−1

)
+ c5

(
yj + · · · + yn

)
,
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with 2 ≤ k < j ≤ n,

β
(7)
j = (2c5 + 1)x1 + (3c5 + 1)y1

+ 2c5
(
y2 + · · ·+ yj−1

)
+ c5

(
yj + · · · + yn

)
,

with 3 ≤ j ≤ n,

β
(8)
j = (2c5 + 2)x1 + (3c5 + 1)y1

+ 2c5
(
y2 + · · ·+ yj−1

)
+ c5

(
yj + · · · + yn

)
,

for 3 ≤ j ≤ n, and

β
(9)
i = αi + c5

(
y4 + · · ·+ yn

)
,

where i ∈ {1, . . . , 5} and

α1 = (2c5 + 1)x1 + (2c5 + 2)y1 + (2c5 + 1)y2 + c5y3,

α2 = (2c5 + 1)x1 + (3c5 + 1)y1 + (2c5 + 1)y2 + c5y3,

α3 = (2c5 + 2)x1 + (3c5 + 1)y1 + (2c5 + 1)y2 + c5y3,

α4 = (2c5 + 1)x1 + (3c5 + 2)y1 + (2c5 + 1)y2 + c5y3,

α5 = (3c5 + 1)x1 + (3c5 + 2)y1 + (2c5 + 1)y2 + c5y3.

Hence |E∅
Y | = 2n2 + 1.

Proof. We show first that the above listed vectors are elementary roots, and
it follows trivially that they are in E∅

Y . We saw before that β(1)
j is elementary

for j ∈ {1, . . . , n}. Since β(2)
j,1 = r1 · β(1)

j and 〈β(1)
j , x1〉 = −1

2
∈ (−1, 0) for

j ∈ {2, . . . , n}, it follows by (3.37) that β(2)
j,1 is elementary. Furthermore,

β
(2)
j,k+1 = sk ·β(2)

j,k and 〈β(2)
j,k , yk〉 = − c5

2 for k ∈ {1, . . . , j−2}, and thus (6.108)

implies that β(2)
j,k is elementary for k ∈ {1, . . . , j − 1}, as required.

If j ∈ {3, . . . , n} and k ∈ {2, . . . , j − 1}, then β
(3)
j,k = r1 · β(2)

j,k and

〈β(2)
j,k , x1〉 = − c5

2
, and it follows by (3.37) that β(3)

j,k ∈ E . Next, β(4)
j = s1 ·β(3)

2,j

and 〈β(3)
2,j , y1〉 = −1

2 for j ∈ {3, . . . , n}; therefore β(4)
j is elementary for all

j ∈ {3, . . . , n} by (3.37).
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Clearly β
(5)
2,1 = s1 · β(2)

2,1 and 〈β(2)
2,1 , y1〉 = 1−c5

2 , and (3.37) yields that

β
(5)
2,1 is elementary. For j ∈ {2, . . . , n− 1} we find that β(5)

j+1,1 = sj · β(5)
j,1 and

〈β(5)
j,1 , yj〉 = 1−c5

2 ; hence β(5)
j,1 is elementary for all j ∈ {2, . . . , n} by (6.108).

Further, β(5)
j,k+1 = sk ·β(2)

j,k and 〈β(2)
j,k , yk〉 = −1

2
for k ∈ {1, . . . , j−2}, therefore

β
(5)
j,k is elementary for all k ∈ {1, . . . , j − 1} by (6.108).

If j ∈ {3, . . . , n} and k ∈ {2, . . . , j − 1}, then β
(6)
j,k = r1 · β(5)

j,k and

〈β(5)
j,k , x1〉 = − c5

2
, and it follows by (3.37) that β(6)

j,k is elementary.

Next, β(7)
j = s1 · β(6)

j,2 and 〈β(6)
j,2 , y1〉 = − c5

2 for j ∈ {3, . . . , n}, and thus

β
(7)
j ∈ E by (3.37). For j ∈ {3, . . . , n} also β(8)

j = r1·β(7)
j , and 〈β(7)

j , y1〉 = −1
2 ,

and hence β(8)
j is clearly elementary by (3.37).

Finally, since y3 + · · ·+ yn is in E{s3,...,sn} with coefficient 1 for y3, and
αi ∈ E{r1,s1,s2,s3} by (6.117)(iii) with coefficient c5 for y3, Proposition (6.97)
yields furthermore that β(9)

i is elementary for i ∈ {1, . . . , 5}.
It remains to show that all elements of E∅

Y have been listed. Suppose
α ∈ E∅

Y ; then α � β
(1)
1 by (6.113) as n ≥ 4. If α = β

(1)
1 , there is nothing

left to show. So assume next that α � β
(1)
1 , and proceed by induction. Let

r ∈ Y with α � r · α � β
(1)
1 ; then 〈r · α, αr〉 ∈ (−1, 0), as α is elementary.

Furthermore, r ·α is elementary, and since r ·α � β
(1)
1 clearly r ·α ∈ E∅

Y . By
induction this gives rise to the following cases:

Case 1: r · α = c5x1 + (c5 + 1)(y1 + · · ·+ yj−1) + c5(yj + · · ·+ yn)
for some j ∈ {1, . . . , n}; then

(i) r = r1 and j ≥ 2, and thus α = β
(2)
j,1 , or

(ii) r = sj and j ≤ n− 1, hence α = β
(1)
j+1.

Case 2: r · α = (c5 + 1)x1 + (2c5 + 1)(y1 + · · ·+ yk−1)
+ (c5 + 1)(yk + · · ·+ yj−1) + c5(yj + · · · + yn)

for some 1 ≤ k < j ≤ n; then

(i) r = r1 and k ≥ 2, and hence α = β
(3)
j,k , or

(ii) r = s1 with j = 2 and k = 1, and α = β
(5)
2,1 , or

(iii) r = sk with k ≤ j − 2, and α = β
(2)
j,k+1, or
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(iv) r = sj with j < n, and thus α = β
(2)
j+1,k.

Case 3: r · α = (2c5 + 1)x1 + (2c5 + 1)(y1 + · · ·+ yk−1)
+ (c5 + 1)(yk + · · ·+ yj−1) + c5(yj + · · · + yn)

for some 2 ≤ k < j ≤ n; then

(i) r = s1 and k = 2, and thus α = β
(4)
j , or

(ii) r = sk and k ≤ j − 2, and α = β
(3)
j,k+1, or

(iii) r = sj and j < n, and thus α = β
(3)
j+1,k.

Case 4: r · α = (2c5 + 1)x1 + (2c5 + 2)y1
+ (c5 + 1)(y2 + · · · + yj−1) + c5(yj + · · ·+ yn),

for some j ∈ {3, . . . , n}; then r = s2 with j = 3, and α = β
(9)
1 .

Case 5: r · α = (c5 + 1)x1 + (2c5 + 1)(y1 + · · ·+ yk−1)
+ 2c5(yk + · · ·+ yj−1) + c5(yj + · · · + yn)

for some 1 ≤ k < j ≤ n; then

(i) r = r1 and k ≥ 2, and hence α = β
(6)
j,k , or

(ii) r = sk with k ≤ j − 2, and α = β
(5)
j,k+1, or

(iii) r = sj and j < n, and thus α = β
(5)
j+1,k.

Case 6: r · α = (2c5 + 1)x1 + (2c5 + 1)(y1 + · · ·+ yk−1)
+ 2c5(yk + · · ·+ yj−1) + c5(yj + · · ·+ yn)

for some 1 ≤ k < j ≤ n,; then

(i) r = s1 and k = 1, and α = β
(7)
j , or

(ii) r = sk with k ≤ j − 2, and α = β
(6)
j,k+1, or

(iii) r = sj and j < n, and thus α = β
(6)
j+1,k.

Case 7: r·α = (2c5+1)x1+(3c5+1)y1+2c5(y2+· · ·+yj−1)+c5(yj+· · ·+yn),
for some j ∈ {3, . . . , n}; then

(i) r = r1 and α = β
(8)
j , or

(ii) r = sj and j < n, and hence α = β
(7)
j+1.
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Case 8: r ·α = (2c5+2)x1+(3c5+1)y1+2c5(y2+· · ·+yj−1)+c5(yj +· · ·+yn)
for some j ∈ {3, . . . , n}; then r = s2 and j = 3, and α = β

(9)
3 .

Case 9: r · α = αi + c5(y4 + · · ·+ yn) for some i ∈ {1, . . . , 5}; then

(i) i = 1, r = s1 and α = β
(9)
2 , or

(ii) i = 2, r = r1 and α = β
(9)
3 , or

(iii) i = 3, r = s1 and α = β
(9)
4 , or

(iv) i = 4, r = r1 and α = β
(9)
5 ,

and this completes the proof.

Lemma (6.99) now yields the following.

(6.119) Proposition Suppose m = 5, |Y1| = 1 and |Y2| > n.

(i) If n = 1, the elements of E∅
Y are

c5x1 + c5α

with α ∈ EY2 with coefficient 1 for y1.

(ii) If n = 2, the elements of E∅
Y are the roots in (i) plus, additionally,

β − c5y2 + c5α,

with α ∈ E
Y2\{s1} with coefficient 1 for y2, and β equal to one of the 3

roots in (6.117)(ii) with coefficient c5 for y2 and coefficient greater than
or equal to 2 for y1.

(iii) If n = 3, the elements of E∅
Y are the roots named in (ii), plus, addition-

ally, the roots
β + c5α− c5y3

with α ∈ EY2\{s1,s2} with coefficient 1 for y3, and β equal to one of the

15 roots in (6.117)(iii) with coefficient c5 for y3 and coefficient greater
than or equal to 2 for y1 and y2.

(iv) If n ≥ 4, the elements of E∅
Y are the roots named in (iii), plus, addi-

tionally,
β − c5(yj + · · ·+ yn) + c5α,
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with j ∈ {4, . . . , n}, α ∈ E
Y2\{s1,...,sj−1} with coefficient 1 for yj , and β

equal to β
(1)
j , β

(4)
j , β

(7)
j , β

(8)
j , or β

(2)
k,j , β

(5)
k,j with k ∈ {1, . . . , j − 1}, or

β
(3)
k,j , β

(6)
k,j with k ∈ {2, . . . , j − 1} as defined in (6.118).

Hence

|E∅
Y | =

n∑
j=1

M(j)
∑

J⊆Y2\{s1,...,sj}

∣∣E{sj}∪J

Y2\{s1,...,sj−1}
∣∣,

with

M(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if j = 1,

3 if j = 2,

15 if j = 3,

4j − 2 if j ≥ 4.
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