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Abstract

This thesis is essentially a numerical investigation of planar velocity dynamos. It
was believed that the existence of planar velocity dynamos is ruled out by the
planar velocity theorem (PVT). The PVT is an example of an anti dynamo theorem.
This particular theorem eliminates the possibility of having a dynamo process when
the flow is planar (i.e. parallel to some plane). All PVT proofs, given by earlier
authors (e.g. Zel’dovich (1957), Lortz (1968), and Moffat (1978)), were based on
the conductor occupying all space. Bachtiar, Ivers and James (BIJ, 2006) showed
that the PVT proofs fail for a finite spherical conductor. BIJ found a numerical
model, model p1Y22DM12, that indicates the possible existence of a planar velocity
dynamo. However, BIJ did not obtain fully satisfactory results due to convergence
problems.

In Chapter 3, the BIJ successful model is reconsidered using higher truncation levels,
to get better convergence than BIJ. A sub-band method is devised in order to
obtain numerical results at these higher truncation levels. The size of the matrix
band is up to 39 GB. Using these higher truncation levels, the convergence level of
the eigenvalue (λmax) is significantly better than that of BIJ. In addition, a more
prospective model, model p1q10Y22DM12, is investigated. The λmax of this model
converges better than that of p1Y22DM12.

In Chapter 4, insulating and conducting inner cores are included in our numerical
experiments, to investigate the effect of an inner core on the convergence level of
models p1Y22DM12 and p1q10Y22DM12. The boundary conditions for both types
of inner core are derived. The numerical results show that the convergence levels for
models p1Y22DM12 and p1q10Y22DM12, are better in spherical shells. It is also
shown that a simple modification of the Pekeris, Accad, Skholler (PAS, 1973) flow,
in a spherical shell, allows us to transform that flow into a planar flow. This leads
us to propose two modifications of the PAS flow that can be fully planarized in a
sphere.

Thus, two PAS-like flows, BiPAS and QuasiPAS, are introduced in Chapter 5. The
unplanarized, partly planarized and fully planarized versions of these flows are in-
vestigated. Nineteen new successful dynamos are found for the unplanarized and
partly planarized versions of the BiPAS and QuasiPAS models. Fourteen of these
new dynamos have lower critical Reynolds numbers than that of model PAS. No
dynamos were found for the fully planarized version of the BiPAS and QuasiPAS
models over the interval of Reynolds numbers investigated.

Lastly, in Chapter 6, the convergence of kinematic dynamos is investigated using sev-
eral convergence tests. The aim of this chapter is to closely examine the convergence
of planar velocity dynamos. Besides some classical tests (e.g the λ,B, (S, T ) tests),
two new convergence tests: SRMS and VRMS are introduced. These tests are ap-
plied to the some historical models, to determine the most sensitive and convenient
test. It is found that no test is always most sensitive, and that the SRMS graphs are
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the most convenience visual test to use, especially for higher truncation levels. Fi-
nally, all of the above tests are applied to models p1Y22DM12 and p1q10Y22DM12.
All tests, except the λmax test, reveal that these models have converged below a 1%
level (in various senses as defined in Chapter 6).
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Chapter 1

Introduction

Credit for the initial dynamo hypothesis for an astro-planetary magnetic field is usu-
ally given to Larmor (1919). He proposed self-excited dynamos as an explanation
for the magnetic fields of the Sun and the Earth. Later, researchers found several
conditions that prevent dynamo action from being maintained. These conditions
form the basis of anti-dynamo theorems. The first anti-dynamo theorem was es-
tablished by Cowling (1934). He showed that a steady axisymmetric magnetic field
cannot be maintained by an axisymetric velocity field, where magnetic and veloc-
ity fields are in a meridional plane. Backus and Chandrasekhar (1956) attempted
to generalize Cowling’s theorem by using axisymetric magnetic and velocity fields
which are not in a meridional plane. A more general and extensive investigation on
the axisymetric anti-dynamo theorem was given by Ivers and James (1984, IJ).

However, Backus (1958) and Herzenberg (1958) established that self-excited dy-
namos do exist. Later on, in 1970, Childress and G.O. Roberts showed the im-
possibility of establishing a general anti-dynamo theorem (Merrill, McElhinny and
McFadden, 1996). Furthermore, several researchers, including G.O. Roberts, found
flow models that can induce a self-excited dynamo.

Although self-excited dynamo models are well established, some scientists are still
interested in the study of anti-dynamo theorems. The planar velocity theorem, one
of the anti-dynamo theorems, was recently discussed by Bachtiar, Ivers and James
(2006, BIJ). This theorem was originally considered by Zel’dovich (1957). In this
work, Zel’dovich proved a planar velocity is not able to maintain a magnetic field,
when the conducting fluid occupies all space. BIJ showed that Zel’dovich’s proof
is not valid for a finite volume conductor. They also discovered a Y 2

2 (spherical
harmonic) model that supports their claim. However, their numerical results did
not achieve a fully satisfactory level of convergence.

In this thesis, we try to provide better numerical evidence for the existence of planar
velocity dynamos, following BIJ’s work. We discuss some numerical investigations
of planar velocity dynamos which include: evaluating BIJ’s model using higher
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truncation levels, studying variations of BIJ’s model including the presence of an
inner core, studying several partly and fully planarized flows based on the Pekeris,
Accad and Skholler (1973, PAS) flow, and investigating the convergence of planar
velocity dynamos.

In Chapter 2, we provide a brief introduction to kinematic dynamo theory. Then,
the spectral form of the induction equation is explained and the numerical methods
used are detailed. At the end of Chapter 2, we discuss the planar velocity theorem,
including its original proof and an argument that shows that the proof fails for finite
conductors, such as a sphere.

The numerical investigation of planar velocity dynamos is the subject of Chapter
3. We start our discussion with the derivation of the spectral form of planar flows.
Then, we investigate some planar flows which are: (a) single harmonic flows and
(b) planarized versions of three historical flows (Bullard and Gellman flow (1954,
BG), PAS flow and Kumar and Roberts flow (1975, KR)). A modification of our
numerical dynamo routine using a sub-band method is detailed. This method allows
us to present results using much higher truncation levels. We present the numerical
results of four dynamo models with a single harmonic flow using high truncation
levels.

In Chapter 4, we include both insulating and conducting inner cores in our models.
We begin with the discussion of some earlier research that involved inner cores. After
that, boundary conditions for inner cores are discussed. The aim of this chapter is
to investigate the effect of an inner core on the convergence level of our previous
models. To achieve this aim, we conduct numerical experiments and present the
results for insulating and conducting cores. We conclude this chapter by showing
that a simple modification of the PAS flow allows us to fully planarize it inside a
spherical shell.

In Chapter 5, we introduce two new modification of PAS-like flows which we label
biPAS and quasiPAS flows. These PAS-like flows have the advantage that they may
be fully planarized inside a sphere. We present numerical results for biPAS and
quasiPAS flows including partly and fully planarized versions.

The convergence of planar velocity dynamos is closely examined in Chapter 6. We
compare the sensitivity of various conventional tests and several new tests which we
define. Later, we apply all of the convergence tests to Y 2

2 models and discuss the
results.

To conclude this thesis, in Chapter 7 we summarize all of our results and make
suggestions for future work.
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Chapter 2

Kinematic Dynamo Theory

2.1 Geomagnetic Field

As an introduction, we try to explain the history of the geomagnetic field. We will
start by discussing the earliest studies, the reversal behaviour and the source of the
geomagnetic field. Most information in this section is taken from Merrill, McElhinny
and McFadden (1996).

It is generally believed that the geomagnetic field, the so-called main field, has
existed for around 2.7 billion years. De Magnete (Gilbert, 1600) is probably the
first publication which contains a comprehensive description of the main field. This
book was written by William Gilbert in 1600, physician for Queen Elizabeth I and
President of the Royal College of Physicians, and contains his thoughts and inves-
tigations on magnetism over many years (Malin, 1987). In an experiment, Gilbert
used a spherical magnet (Figure 2.1), made from a lodestone, and observed the mag-
netic force’s direction over its surface. Gilbert concluded that the Earth itself is a
huge magnet and thought that there was a permanent magnet inside the Earth.

The recognition of the main field began many years before De Magnete’s time. It
started with observations on magnets by the Greek philosopher Thales in the sixth
century B.C and was followed by Chinese literature between the third century B.C.
and the sixth century A.D. The first discussion of a compass was written by Shen
Kua, a Chinese scientist, in the eleventh century A.D. (Rikitake and Honkura, 1985).
Apparently, the Chinese people had used compasses since early in the twelfth cen-
tury (Rikitake and Honkura, 1985). Meanwhile, it is believed that Arabs brought
compasses into Europe during the twelfth century by sea route. Moreover, in 1190
an English monk, Alexander Neckham, wrote what is considered to be the earliest
European article on compasses.

Shen Kua observed that the compass needle does not point to exact geographical
north. Such a phenomenon is called compass error or declination. In 1510, Georg
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Figure 2.1: Model spherical lodestone of Gilbert (1600). Gilbert used this lodestone
to observe the direction of magnetic force.

Hartmann, a Nuremberg priest, observed the declination and published his work
in Rome. He also found the magnetic inclination, the dip of a compass needle, in
Konigsberg in 1544. In 1576, Robert Norman in England rediscovered Hartmann’s
result. Henry Gellibrand, Professor of astronomy at Gresham college, observed the
change in the magnetic inclination in 1634. Earlier, Edmund Gunter had observed
inclination in 1622, but thought it was due to measurement errors.

When rocks are formed from lava, they became magnetized in the direction of the
local main field. This magnetization is called the natural remanent magnetization
(Rikitake and Honkura, 1985). Palaeogmagnetism, a study of the past main field,
is based on the observation of the magnetic direction in rocks. From this study,
the reversal behaviour of the main field was discovered. Reversal behaviour is also
found in the magnetic field of the Sun.

The study of palaeomagnetism was initiated in 1904 by David, followed by Brunhes
in 1906. They discovered that magnetic directions in lava flows differ from that of
the present main field. The discovery was confirmed by Matuyama in 1929. He
observed more than 100 lava flows from Japan and Manchuria and found similar
phenomena. However, in 1955 Néel proposed a self reversal theory for magnetized
rocks leading to some uncertainty concerning the reversal of the main field. In
contrast, Wilson (1962a, 1962b) observed the magnetic direction of doubly baked
and baked contact rocks. From these experiments, he concluded that his results
could only be explained by the reversal of the main field.

If rocks preserve the polarity of the past main field, we can determine the period of
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the reversal of the main field. Mercanton, in 1926, suggested that this period must
be recorded in rocks around the world. Later, many scientists tried to produce a
geomagnetic polarity time scale. One such time scale was made by Cande and Kent
in 1995. In this time scale, they present the geomagnetic polarity for the past 160
Ma. However, the first scale that covers the geomagnetic polarity for the past 160
Ma was probably produced by Kent and Gradstein in 1986. Figure 2.2 contains a
geomagnetic polarity time scale which is a combination of the work by Cande and
Kent in 1995 and Kent and Gradstein in 1986.

Long after Gilbert had proposed that there is a huge magnet inside the Earth,
Blackett conjectured in 1947 that all huge rotating bodies might possess magnetic
fields. He could not explain his hypothesis theoretically and tried unsuccessfully to
provide experimental evidence. Later, Inglis (1955) found that Blackett’s hypothesis
cannot be applied to the Earth because of it’s high temperature and pressure. Other
researchers proposed different hypotheses about the source of the main field. For
example, Hollenbach and Herndon (2001) suggested that the main field may be
produced by a nuclear fission reactor inside the Earth.

However, most scientists believe that the main field is produced by a self-excited
dynamo process as proposed by Larmor (1919). He proposed that there is an inter-
action between a moving electrically conducting fluid and magnetic field inside the
Earth. Such interaction generates electric currents that may maintain the magnetic
field. Larmor’s concept is supported by seismic evidence on the structure of the
Earth’s interior. It is believed that the Earth has two cores. The inner core, with
a radius of about 1,220 km, is probably solid. Meanwhile, the outer core, with a
radius of about 3,480 km, is mostly comprised of electrically conducting fluid which
consists of iron and other light elements, possibly silicon, oxygen, and sulfur.

2.2 Dynamo Theory

One example of a self-excited dynamo is the disk dynamo invented by Michael
Faraday. Bullard (1955) investigated three types of disk dynamos: frictionless,
viscous free and an externally loaded disk dynamo. He reported that these dynamos
can maintain a magnetic field. However, no-sign of reversal was found. He predicted
that a more complicated disk dynamo might have reversal behaviour.

Following Bullard’s suggestion, Rikitake (1958) investigated a coupled disk dynamo
as depicted in Figure 2.3. Bullard (1949) suggested that there are at least four
phases of induction required to produce the main field. Rikitake thought a series
of disk dynamos could produce a similar field with reversal behaviour. Rikitake’s
system (Figure 2.3) is governed by

L1
dI1
dt

+R1I1 = ω1M1I2
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Figure 2.2: A combination of Kent and Gradstein (1986) and Cande and Kent (1995)
geomagnetic polarity time scales. This picture is taken from Merrill et al (1996).
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Figure 2.3: Model coupled disk dynamo of Rikitake (1954). This system is able to
show reversal of a magnetic fields.

L2
dI2
dt

+R2I2 = ω2M2I1

C1
dω1

dt
= G1 −M1I1I2

C2
dω2

dt
= G2 −M2I1I2,

where L is the self-inductance of the coil, R is the resistance of the coil, I is the
electric current, M is the mutual inductance between the coil and the periphery of
the disk, ω denotes the angular velocity, C indicates the moment of inertia of the
disk around the axle and G is the torque. Rikitake (1958) considered a two disk
system with

L1 = L2, R1 = R2, I1 = I2, M1 = M2, C1 = C2, G1 = G2,

and solved the resulting dimensionless differential equations numerically. He found
that the electric current did reverse which indicates reversal of the magnetic field.

Although it shows reversal behaviour, this disk dynamo is not an accurate model
for the Earth’s dynamo. On the other hand, magnetohydrodynamics (MHD) is a
good model for the Earth’s dynamo since the outer core is a fluid. In MHD, we
need to simultaneously solve: the induction equation, the Navier-Stokes equation,
the mass conservation equation, Poisson’s equation for gravity, the heat equation
and an equation of state (Merrill, McElhinny and McFadden, 1996).

Solution of MHD problems is very difficult, requiring high level mathematical anal-
ysis and a huge amount of calculation. However, a comprehensive numerical inves-
tigation has been successfully performed by Glatzmaier and Roberts (1995). Their
model shows reversal behaviour as seen in the Earth’s reversal record. The decay
rate of the magnetic field is also similar to the Earth’s one. They discovered that
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the conducting fluid in the outer core attempted to reverse the field continuously
but the inner core discouraged the process since the field required a longer time to
reverse in the inner core.

In this work, we only consider the kinematic dynamo problem where the flow is
specified and the induction equation is solved for the magnetic field. Despite the
simplification, this problem still requires extensive computations.

2.3 Kinematic Dynamo Theory

To define the kinematic dynamo problem, we start with the pre-Maxwell equations:

∇×B = µj, (2.1)

∇ · B = 0, (2.2)

∇×E = −∂B/∂t, (2.3)

∇ ·E = I /ε, (2.4)

where B is the magnetic induction field, E is the electric field, j is the electric
current density, µ is the permeability, I is the charge density and ε is the dielectric
constant. Equation (2.1) is referred to as the quasi-steady approximation which is
valid when L/τ ≪ c. τ is the time scale of the variation in field. L is the length scale
of the system and c is the velocity of light in a vacuum. A more detailed discussion
is presented in Roberts (1967). We also need Ohm’s law for a moving conductor,

j = σ(E + v ×B), (2.5)

where σ is the electrical conductivity and v is the velocity of the conductor. Using
equations (2.1–2.3) and vector identities, we can recast Ohm’s law as

∂B/∂t = ∇× (v × B) + η∇2B, (2.6)

where η = 1/µσ, is the magnetic diffusivity. Equation (2.6) is the induction equa-
tion.

In this work, the conducting fluid occupies finite spherical volume V , and has an
incompressible time-dependent flow i.e.

∇ · v = 0. (2.7)

Outside the sphere is an insulating environment V̂ , where

∇× B̂ = 0, (2.8)

∇ · B̂ = 0, (2.9)

∇× Ê = −∂B̂/∂t, (2.10)

∇ · Ê = 0. (2.11)
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Having no current source in V̂ implies

|B̂| = O(1/r3), as r → ∞. (2.12)

B is continuous across the boundary, Σ, of V i.e.

[B] = 0, across Σ, (2.13)

where [Q] refers to the jump in Q across Σ. On Σ, v satisfies the rigid boundary
condition

n · v = 0, (2.14)

where n is the unit normal, and sometimes the no-slip condition

v = 0. (2.15)

The non-dimensionalized form of the induction equation is

∂B

∂t
= R∇× (v ×B) + ∇2B, (2.16)

where R = UL/η is the magnetic Reynolds number, U is a characteristic velocity,
L is the radius of the sphere, and time is measured in units of the diffusion time
(L2/η).

2.3.1 The Spectral Form of the Induction Equation

We expand B and v in poloidal-toroidal form, using scalar fields S, T and s, t,
respectively:

B = S + T = ∇×∇× (Sr) + ∇× (T r), (2.17)

v = s + t = ∇×∇× (sr) + ∇× (tr); (2.18)

and expand S, T in spherical harmonics

S =
∑

n,m

Sm
n (r, t)Y m

n (θ, φ),

(2.19)

T =
∑

n,m

Tm
n (r, t)Y m

n (θ, φ),

and similarly for s, t, where m = −n, ..., n and n = 1, 2, 3, .... In the above equation,

Y m
n = (−)m

[
2n+ 1

2 − δ0
m

] 1
2

Pm
n (cos θ)eimφ = (−)mY −m

n , (2.20)
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where Pm
n is the Schmidt-normalized Legendre function defined by

Pm
n (µ) =

[
(2 − δ0

m)(n−m)!

(n +m)!

] 1
2 (1 − µ2)m/2

2nn!

[
d

dµ

]n+m

(µ2 − 1)n. (2.21)

The overbar (...) means complex conjugate and δ0
m is the Kronecker delta. We will

use n1, n2, n3 notation instead of BG’s notation (α, β, γ) and drop the m superscripts
when possible. Our definition of T and S differs slightly from that of BG, who used

S = ∇×∇× (Ser),

T = ∇× (Ter).

The spectral form of equation (2.16) is
(
∂

∂t
−Dn3

)
Sn3 = R

∑

n1n2

[(tn1Sn2Sn3) + (sn1Tn2Sn3) + (sn1Sn2Sn3)],

(2.22)
(
∂

∂t
−Dn3

)
Tn3 = R

∑

n1n2

[(tn1Tn2Tn3) + (tn1Sn2Tn3) + (sn1Tn2Tn3)

+ (sn1Sn2Tn3)],

where

Dn ≡ ∂2

∂r2
+

2

r

∂

∂r
− n(n + 1)

r2
.

The interactions in equations (2.22) are

(tn1Sn2Sn3) =
n2(n2 + 1)

4πrn3(n3 + 1)
(−)m3Etn1Sn2, (2.23)

(sn1Tn2Sn3) =
n1(n1 + 1)

4πrn3(n3 + 1)
(−)m3Esn1Tn2 , (2.24)

(tn1Tn2Tn3) =(−)m3Etn1Tn2/4πr, (2.25)

(sn1Sn2Sn3) =
{
n1(n1 + 1)[n1(n1 + 1) − n2(n2 + 1) − n3(n3 + 1)]

sn1

r
S ′

n2
+ (n1 − n2)(n1 + n2 + 1)[n1(n1 + 1) + n2(n2 + 1)

− n3(n3 + 1)]
sn1

r

Sn2

r
+ n2(n2 + 1)[n1(n1 + 1)

− n2(n2 + 1) + n3(n3 + 1)]
Sn2

r
s′n1

} (−)m3A

8πn3(n3 + 1)
(2.26)

(tn1Sn2Tn3) =
{
n3(n3 + 1)[n1(n1 + 1) + n2(n2 + 1) − n3(n3 + 1)]

tn1

r

(
Sn2

r
+ S ′

n2
) + n2(n2 + 1)[n1(n1 + 1) − n2(n2 + 1)

+ n3(n3 + 1)](t′n1

Sn2

r
+
tn1

r
S ′

n2
)
} (−)m3A

8πn3(n3 + 1)
, (2.27)

(sn1Tn2Tn3) =
{
n3(n3 + 1)[n3(n3 + 1) − n1(n1 + 1) − n2(n2 + 1)]

Tn2

r
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(
sn1

r
+ s′n1

) + n1(n1 + 1)[n1(n1 + 1) − n2(n2 + 1)

− n3(n3 + 1)](T ′
n2

sn1

r
+
Tn2

r
s′n1

)
} (−)m3A

8πn3(n3 + 1)
, (2.28)

(sn1Sn2Tn3) =
{

[n1(n1 + 1) + n2(n2 + 1) + n3(n3 + 1)]
sn1

r

Sn2

r2

− n1(n1 + 1)
sn1

r
S

′′

n2
− [n1(n1 + 1) + n2(n2 + 1)

− n3(n3 + 1)](S ′
n2

sn1

r2
+
s′n1

r
S ′

n2
+
Sn2

r2
s′n1

)

− n2(n2 + 1)s′′n1

Sn2

r

} (−)m3E

4πn3(n3 + 1)
, (2.29)

where

A =

∫

4π

Y m1
n1
Y m2

n2
Y −m3

n3
sin θdθdφ,

(2.30)

E =

∫

4π

(
∂Y m1

n1

∂θ

∂Y m2
n2

∂φ
− ∂Y m1

n1

∂φ

∂Y m2
n2

∂θ

)
Y −m3

n3
dθdφ,

and S ′ = dS/dr, S ′′ = d2S/dr2, A is the Adams integral and E is the Elsasser
integral. The spectral form of the induction equation in the present formalism was
considered by James (1974), and will be referred to herein as the complex Y-form.
The alternative BG form of the interactions can be seen in BG and Dudley (1988).

In solving equation (2.16), we need to satisfy

Tn = Sn = 0, at r = 0, (2.31)

Tn =
∂Sn

∂r
+ (1 + n)Sn = 0, at r = 1. (2.32)

Equation (2.31) results from the differentiability of B with respect to x, y, z at r = 0
(discussed in more detail in §2.3.4). Boundary condition (2.32) reflects the current

free nature of V̂ and the vanishing of B as r → ∞. The spectral form of the rigid
boundary condition (2.14) is

sn = 0, at r = 1, (2.33)

and the no-slip condition (2.15) is

tn =
∂sn

∂r
= 0, at r = 1. (2.34)

2.3.2 Numerical Method

For a successful dynamo, we need to have a growing solution B of the induction
equation (2.16). In general, it is impossible to solve the induction equation unless
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we truncate the expansion of B and v in poloidal-toroidal forms (2.17), (2.18) at
some degree n = N . In the radial direction, we divide the interval 0 ≤ r ≤ 1 into
J equal subintervals. We call a pair of N and J the truncation level, [J,N ]. The
solutions are meaningless unless they converge for increasing N and J .

Since v is time dependent, we may seek the solution in the form

B(r, t) =
∑

λ

Bλ(r, θ, φ)eλt,

assuming non-degeneracy of the problem. We use the second order central difference
schemes,

f ′
j =

(fj+1 − fj−1)

2h
+O(h2), (2.35)

f ′′
j =

(fj+1 − 2fj + fj−1)

h2
+O(h2), (2.36)

in the radial direction, where h = 1/J . This method requires the third derivative
of fj to be continuous, i.e. fj ∈ C(3)(r). C(p)(r) means p times continuously dif-
ferentiable with respect to r. Equations (2.22) are second order coupled differential
equations and s′′n, t

′
n are the highest s, t derivatives in the coefficients of S, T in the

interaction terms (2.23)–(2.29). It follows that S, T ∈ C(3)(r) if

s′′n, t
′
n ∈ C(1)(r). (2.37)

This is true for all flows where (2.35) and (2.36) are used numerically in this thesis.
The spectral form (2.22) then reduces to an ordinary eigenvalue problem

Ax = λx, (2.38)

where A is a banded matrix. Our aim is to find λ such that real part of λ ≥ 0, which
implies the existence of a successful dynamo. For each R, we let λmax denote the λ
with maximum real part, i.e. representing the slowest decaying or fastest growing
mode.

Earlier researchers had difficulty in increasing [J,N ] due to computer limitations.
Dudley (1988) stated that BG and Lilley (1970) used insufficient [J,N ], which led
them to erroneous conclusions. In particular, Lilley had s′′ discontinuous at r = 0.5,
which significantly hinders convergence since (2.37) is invalid there. Although more
sophisticated computers, in terms of memory and speed, are now available, we still
need to ensure that we use sufficiently high [J,N ] to indicate convergence.

There are at least three methods to increase [J,N ]. The first one is by constructing
a sparse banded matrix so that we only need to store the band of the matrix. In
order to do that, we define

Fnj = [S−n
n , S−n+1

n , . . . , Sn
n , T

−n
n , . . . , T n

n ],

at grid point r = jh and arrange the elements of the eigenvector x in (2.38) in the
following order,

x = (F11, F21, . . . , FN1, F12, F22, . . . , FN2, . . . , F1J , F2J , . . . , FNJ).
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The boundary values FnJ , n = 1, ..., N , only consist of S contributions due to the
boundary conditions (2.32).

The second method is by choosing an appropriate v so that the B−harmonics de-
couple into two or more independent sets. Each of these sets can be investigated
separately. We give a more detailed discussion about this method in §2.3.3.

The last method involves dividing the matrix into sub-bands and processing one
sub-band at a time. Details of this method are given in Chapter 3. If applicable,
we can obtain even higher [J,N ] by combining two or more of the above methods.

In solving the eigenvalue problem in equation (2.38), we need to choose an appro-
priate method to preserve the structure of the matrix. If the band structure is
destroyed then we will need to store a larger matrix. Consequently, the optimum
[J,N ] cannot be achieved. Considering this, we choose the inverse iteration method
to solve our problem because it is known that this method may be programmed to
preserve the band structure.

2.3.3 Selection Rules

The interaction terms on the right side of the spectral form (2.22) consist of either
Adams or Elsasser integrals. These integrals are zero unless some selection rules are
satisfied. James (1974) showed that these integrals are proportional to Wigner 3− j
coefficients. From the Wigner 3− j coefficient, we can obtain the following selection
rules:

SR1: (sn1Sn2Sn3), (sn1Tn2Tn3), and (tn1Sn2Tn3) depend on A and are zero unless
n1 + n2 + n3 is even, and |n1 − n2| ≤ n3 ≤ n1 + n2 .

SR2: (sn1Tn2Sn3), (sn1Sn2Tn3), (tn1Sn2Sn3), and (tn1Tn2Tn3) depend on E and are
zero unless n1 + n2 + n3 is odd, and |n1 − n2| < n3 < n1 + n2 .

SR3: (sn1Sn2Sn3), . . . , (tn1Tn2Tn3) are all zero unless m3 = m1 +m2.

Using SR1 and SR2, we can reduce the size of the matrix. This gives a large
computational saving. If the degree of harmonics of sn1 is even and the degree of
harmonics of tn1 is odd, we can separate B into dipole (D) and quadrupole (Q)
parities

D: S0
1 , S

1
1 , T

0
2 , T

1
2 , T

2
2 , S

0
3 , S

1
3 , S

2
3 , S

3
3 , T

0
4 , T

1
4 , T

2
4 , T

3
4 , T

4
4 , . . .

Q: T 0
1 , T

1
1 , S

0
2 , S

1
2 , S

2
2 , T

0
3 , T

1
3 , T

2
3 , T

3
3 , S

0
4 , S

1
4 , S

2
4 , S

3
4 , S

4
4 , . . .

(2.39)

where Sm
n denotes the presence of Sm

n and its conjugate, S−m
n , and similarly for T .

Each parity has its own solution and can be investigated independently. Further-
more, BIJ showed that the presence of sodd or teven prohibits the possibility of having
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D or Q parity. Their argument can be seen in Table 1 of BIJ. In this work, we are
going to call the separation (2.39) the DQ-decoupling.

Besides the DQ-decoupling, BIJ also decoupled B using SR3. If the orders of har-
monics of the flow satisfy

m1 = 0 mod k

for some integer k, then B can be separated into independent chains and each chain
can be investigated separately. In these chains, the orders of the harmonics satisfy

m = l mod k or m = (l − k) mod k, l = 1, 2, ..., k

We label these chains Mlk and call this m-decoupling. For example, if k = 2, we
have 2 different chains:

M02 : S0
1 , T

0
1 , S

0
2 , T

0
2 , S

2
2 , T

2
2 , S

0
3 , T

0
3 , S

2
3 , T

2
3 , S

0
4 , T

0
4 , S

2
4 , T

2
4 , S

4
4 , T

4
4 , . . .

M12 : S1
1 , T

1
1 , S

1
2 , T

1
2 , S

1
3 , T

1
3 , S

3
3 , T

3
3 , S

1
4 , T

1
4 , S

3
4 , T

3
4 , S

1
5 , T

1
5 , S

3
5 , T

3
5 ,

S5
5 , T

5
5 , . . .

Sometimes, we can combine the DQ and m decouplings to get a smaller matrix. For
example, if we can use D parity and m-decoupling with k = 2, then we will have
the following independent chains:

DM02 : S0
1 , T

0
2 , T

2
2 , S

0
3 , S

2
3 , T

0
4 , T

2
4 , T

4
4 , S

0
5 , S

2
5 , S

4
5 , T

0
6 , T

2
6 , T

4
6 , T

6
6 , . . .

DM12 : S1
1 , T

1
2 , S

1
3 , S

3
3 , T

1
4 , T

3
4 , S

1
5 , S

3
5 , S

5
5 , T

1
6 , T

3
6 , T

5
6 , . . .

A more detailed discussion can be found in BIJ(2006).

2.3.4 Differentiability Conditions

In general, if we want to solve the induction equation (2.16), then B and v have to
satisfy differentiability conditions. According to Friedman (1964), if v ∈ C(p)(x, y, z)
then B ∈ C(p+1)(x, y, z). Here, C(p)(x, y, z) means p times continuously differentiable
with respect to x, y, z. As a minimal condition, B needs to be in C(2)(x, y, z) to satisfy
the induction equation. This will be true if v ∈ C(1)(x, y, z). For other purposes, B
may need a higher level of differentiability as discussed in detail by Dudley (1988).

It is known (Hobson, 1931) that rnYn is a homogeneous multinomial of degree n in
x, y, z and hence infinitely differentiable. It follows that if

sm
n = rn(a0 + a2r

2 + a4r
4 + a6r

6 + . . .), (2.40)

tmn = rn(a0 + b2r
2 + b4r

4 + b6r
6 + . . .), (2.41)

then v is infinitely differentiable with respect to x, y, z, and this will ensure any
higher differentiability requirement of B (e.g. as required if Richardson extrapolation
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is used). If (2.40) and (2.41) are not satisfied, then the point r = 0 is problematic,
since the (x, y, z) higher derivatives of v may be multivalued or infinite, and this
may lead to convergence or other numerical problems.

Several early authors (e.g. BG, KR, Gubbins (1973)) used flows that violated (2.40)
and (2.41). However, their numerical results are acceptable because r = 0 is not used
in the computations, and the s, t radial derivatives used in (2.37) and the spectral
form of the induction equations (2.22), are well behaved. (The discontinuity in s′′

in the model of Lilley occurs at r = 0.5 and has been discussed in §2.3.2 earlier.) In
the new models introduced in this thesis, we require (2.40) and (2.41), which ensure
infinite differentiability, even at r = 0.

2.4 Anti-dynamo Theorems

Besides the Cowling theorem, a number of other anti-dynamo theorems have been
proven. Examples include: the toroidal velocity theorem (BG) and the radial veloc-
ity theorem (Namikawa and Matsushita, 1970). A common characteristic of these
theorems is that the magnetic field decouples in some fashion. It has been occasion-
ally conjectured that if the toroidal and poloidal components of the magnetic field
decouple, then the magnetic field will decay (See references in Ivers and James, 1988
IJ).

IJ discussed 4 different conditions that can decouple the magnetic field: (i) B and
v are axisymmetric about the same axis, (ii) B and v are independent of any one
of the cartesian coordinates, (iii) the radial component of v is independent of θ and
φ, and (iv) one of the cartesian components is independent of xj (i 6= j).

A special case of (iv) is the planar velocity theorem. In this theorem, one of the
velocity components is zero. Hence, it is independent of all coordinates. This
theorem is the subject of our present work. We will discuss it in more detail in the
next section.

2.4.1 Planar Velocity Theorem

The Planar Velocity Theorem (PVT) is an analogue of the Toroidal Velocity Theo-
rem (BG) in cartesian coordinates. The PVT precludes the existence of a dynamo
process made by an incompressible flow lacking one cartesian component. Here, we
assume that the flow has no z-component.

Theorem The Planar Velocity Theorem: if v · ez = 0, then |B| → 0 as t→ ∞.

The PVT was considered by Zel’dovich (1957). He discussed the theorem in the con-
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text of two-dimensional turbulence. Later, Lortz (1968) provided a proof. However,
Moffat considered Lortz’s proof is weaker than that of Zel’dovich. Moffat (1978)
gave a similar proof to Zel’dovich. In all of these proofs, it was assumed that the
conductor occupies all space.

Recently, BIJ gave a more detailed proof of the PVT as below
Proof :
Firstly, we assume that an incompressible flow fills an infinite volume V∞ and sat-
isfies:

v = ∇f × ez. (2.42)

We dot product equation (2.6) with ez to get the z-component of the induction
equation

∂Bz

∂t
= −v · ∇Bz + η∇2Bz. (2.43)

Now, we multiply the above equation with Bz, integrate over a spherical volume Vr

of radius r and surface Σ, and apply the divergence theorem to get

d

dt

∫

Vr

1

2
B2

zdV = −
∫

Σ

1

2
B2

zv · dΣ + η

∫

Σ

Bz∇Bz · dΣ

− η

∫

Vr

(∇Bz)
2dV, (2.44)

where dΣ = erdΣ = err
2 sin θdθdφ is the surface differential pointing outward.

Provided v, Bz → 0 sufficiently fast as r → ∞, we let r → ∞ to get

d

dt

∫

V∞

1

2
B2

zdV = −η
∫

V∞

(∇Bz)
2dV

≤ 0 (2.45)

Equation (2.45) indicates that either Bz is decaying in time or Bz ≡ 0. We need to
show that Bx and By also decay. We introduce scalars φ and Φ such that

Bx =
∂Φ

∂y
+
∂φ

∂x

(2.46)

By = −∂Φ
∂x

+
∂φ

∂y
.

Applying (2.2) to (2.46) gives

∇2
2φ = −∂Bz

∂z
, (2.47)

where

∇2
2 =

∂2

∂x2
+

∂2

∂y2
.

Equation (2.47) yields

φ = − 1

2π

∫
log |r− r′|

(
∂Bz

∂z

)′

dx′dy′, (2.48)
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where the integral is over the plane z′ = z. From the last equation, we can conclude
that φ ≡ 0 or decays in time because Bz decays. As a result, B = ∇ × (Φer) as
t→ ∞. If we let t→ ∞ and uncurl the equation (2.6) then we have

∂Φ

∂t
= −v · ∇Φ + η∇2Φ +

∂ψ

∂z
, (2.49)

where ψ = ψ(z, t). If we take the average of Φ over a disc A with radius ̟ at fixed
z and apply the divergence theorem in the plane, then we get

∂Φ

∂t
=

1

A

∫

C

(
η
∂Φ

∂̟
− v̟Φ

)
dC + η

∂2Φ

∂z2
+
∂ψ

∂z
, (2.50)

where C is the perimeter of the disk and

Φ =
1

A

∫

A

Φ dA. (2.51)

We can add to Φ a function of z without affecting Bx and By so that Φ(∞, z) = 0.
Now, if we let ̟ → ∞ then ∂ψ/∂z = 0. If we assume v,Φ → 0 as r → ∞ and use
the same manipulation as for Bz, then we can recast equation (2.50) into

d

dt

∫

V∞

Φ2dV = −η
∫

V∞

(∇Φ)2dV.

The above equation implies Φ ≡ 0 or Φ decays in time. Hence, Bx and By decay
too.

Zel’dovich and Ruzmaikin (1980) gave a similar PVT proof. Furthermore, BIJ
(2006) argued that the proof fails if the conducting fluid occupies a finite volume,
such as a sphere, surrounded by insulating environment. We let f± represent the
values on the inside (−) and outside (+) of Σ. If the flow satisfies boundary condition
(2.33), then we can recast equation (2.44) into

d

dt

∫

V

1

2
B2

zdV = η

∫

Σ

(Bz∇Bz)
− · dΣ − η

∫

V

(∇Bz)
2dV, (2.52)

provided Bz = O(1/r3) as r → ∞. We take the curl equation (2.8), apply the
divergence theorem and take the z-component to get

∫

bV

(∇Bz)
2dV = −

∫

Σ

(Bz∇Bz)
+ · dΣ. (2.53)

We combine equations (2.52) and (2.53) and use the continuity of Bz across Σ to
get

d

dt

∫

V

1

2
B2

zdV = −η
∫

Σ

Bz

[
∂Bz

∂r

]
· dΣ − η

∫

V∞

(∇Bz)
2dV. (2.54)

We cannot determine the first term of the right side of equation (2.54) since ∂Bz/∂r
is, in general, discontinuous across Σ. Hence, we have no conclusion regarding
the decay Bz. If we impose continuity on ∂Bz/∂r then we will overdetermine the
problem, which may then have no solution.
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Since the proof fails for a finite volume, BIJ(2006) investigated the PVT problem
in a sphere numerically. They found one model, p1Y22DM12, that indicates the
existence of non-decaying magnetic fields. They argued that maximum principles
applied to equation (2.44) implied that the maximum of Bz must occur at the
boundary r = 1 (Sperb, 1981). They therefore suggested that a flow with more
shear near the boundary might give a better result. In this work, we continue their
work in trying to definitely establish the existence of planar velocity dynamos.

2.5 Chapter Summary

The geomagnetic field is a key feature of the Earth. This field has existed for bil-
lions of years and reversed many times in the past. It is generally believed that
the Earth’s main magnetic field is caused by a self-excited dynamo. The first com-
prehensive discussion of the main field was written by William Gilbert in 1600.
Later, Larmor (1919) proposed that there is a self-excited dynamo process inside
the Earth that produces the main field. Recently, researchers have been trying to
find an appropriate MHD model for this process.

The main subject of this thesis is the planar velocity theorem (PVT) which precludes
magnetic field maintenance when the flow is parallel to a plane. The PVT was
first proposed by Zel’dovich in 1957. Proofs of the PVT have been given by Lortz
(1968) and Moffat (1978). However, these proofs assumed that the conducting fluid
occupies all space. For a conductor in a finite volume, such as a sphere, no one has
yet proven the PVT. BIJ (2006) argued that the proof fails for a finite conductor.
Furthermore, they found one model that gives strong numerical evidence for the
existence of planar velocity dynamos.
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Chapter 3

Planar Velocity Dynamos

3.1 Formula for Planar Velocity Dynamos

A planar flow is a flow without one cartesian component. We assume a flow with
no z-component, i.e.

v = ∇f × ez. (3.1)

As in the previous chapter, we expand the velocity field into toroidal and poloidal
fields. Thus, we need to express a planar flow in the poloidal-toroidal form (2.18),
which includes coefficients sm

n , t
m
n . First, we define the following notation

T{g} = ∇× (gr),

S{g} = ∇×∇× (gr),

with properties

∇× T{g} = S{g},
∇× S{g} = T{−∇2g}.

Expanding f =
∑

n,m f
m
n Y

m
n in (3.1), using vector identities and dotting (2.18) with

r gives

L2sm
n Y

m
n = fm

n

∂Y m
n

∂φ
, (3.2)

where

L2Y m
n = −

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]

Y m
n ,

= n(n + 1)Y m
n .

For simplicity, we frequently suppress the superscript m. Equation (3.2) implies

sn =
im

n(n + 1)
fn. (3.3)

27



To obtain the toroidal coefficient tmn of the flow, we take the curl of equation (2.18),

∇× v = S{t} + T{−∇2s}, (3.4)

and then we dot equation (3.4) with r and make use of equation (3.1) to get:

L2t = r · ∇ × v,

= r · ∇ × (∇f × ez),

= ∇ · ((∇f × ez) × r),

= ∇ · (r · ∇f)ez −∇ · (z∇f),

=
1

r2

(
∂

∂r
r2(r cos θ

∂f

∂r
)

)
+

1

r sin θ

∂

∂θ

(
−r sin2 θ

∂f

∂r

)

− cos θ
∂f

∂r
+

sin θ

r

∂f

∂θ
− r cos θ∇2f,

= r cos θ
∂2f

∂r2
− sin θ

∂2f

∂θ∂r
+

sin θ

r

∂f

∂θ
− r cos θ∇2f,

= −2 cos θ
∂f

∂r
+

cos θ

r
L2f +

sin θ

r

∂

∂θ

(
f − r

∂f

∂r

)
. (3.5)

Based on Chapman and Bartels (1962), we have the following recurrence relations:

cos θ Yn = αn+1Yn+1 + αnYn−1,

sin θ
∂Yn

∂θ
= nαn+1Yn+1 − (n+ 1)αnYn−1,

where αn :=
√

[(n2 −m2)/(4n2 − 1)]. These relations are for surface harmonics as
defined in equation (2.20). Using these relations, we obtain :

n(n+ 1)tn = −(n+ 1)αnd1−nfn−1 + nαn+1dn+2fn+1, (3.6)

where dn := d/dr + n/r. This implies that, for each fm
n , there are two toroidal

coefficients:

tn−1 =
αn

n
dn+1fn, (3.7)

tn+1 = − αn+1

n + 1
d−nfn, (3.8)

and a poloidal coefficient sm
n given by equation (3.3). Therefore, to construct a planar

flow, we can define fn and find the corresponding poloidal and toroidal coefficients
from (3.3), (3.7) and (3.8).

Another way to construct a planar flow is by transforming a given flow, v, into a
planar flow. We can take the poloidal and toroidal parts of v and add the corre-
sponding poloidal and toroidal coefficients using equation (3.3), (3.7) and (3.8). We
call this procedure the planarizing process.

Suppose,

v = (2 − δ0
m)ℜ{sm

n + tm
n },
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where ℜ indicates the real part. For the given sm
n (m 6= 0), we can derive fn from

equation (3.3) and construct tn±1 from equations (3.7) and (3.8). The combination
sm
n +tm

n−1+tm
n+1 is then planar, and sm

n has been planarized. However, it is impossible
to find fn for given s0

n, due to the m factor in the numerator of equation (3.3).

There are two options for planarizing the tm
n component. We can either (i) derive

fn+1 from tn using equation (3.7), or (ii) derive fn−1 from tn using equation (3.8). In
case (i), we generate sn+1 and tn+2 using equation (3.3) and (3.8) to get the planar
combination tm

n +tm
n+2 +sm

n+1. In case (ii), we generate sn−1 and tn−2 using equation
(3.3) and (3.7) in order to get the planar combination tm

n +tm
n−2 +sm

n−1. For given tn,
the f -solutions of equations (3.7) and (3.8) satisfying the rigid boundary condition
(2.33) at r = 1 are

fn+1 =
n + 1

αn+1
r−n−2

∫ r

1

rn+2 tn dr ,

(3.9)

fn−1 = − n

αn
rn−1

∫ r

1

r−n+1 tn dr .

In case (i), tn must also satisfy the consistency condition
∫ 1

0

rn+2 tn dr = 0 , (3.10)

in order for fn+1 given by equation (3.9a) to satisfy the differentiability conditions
(2.40) and (2.41). Otherwise, tn cannot be planarized by method (i). In case (ii), the
fn−1 of equation (3.9b) satisfies the differentiability condition. However, if n = |m|,
the flow cannot be planarized by method (ii) since αn = 0.

Due to the above constraints, some flows can only be partly planarized. For example,
for the flow of PAS only the poloidal part can be planarized. This example will be
discussed later in §3.2.2

3.2 The Preliminary Results

In this section §3.2, we discuss the history of our investigation on planar velocity
dynamos. Most of the content of this section is from BIJ (2006). Also, some
background theory and low truncation numerical results were reported earlier in my
MSc (by coursework) project. However, this discussion is important because the
earlier results are the foundation of our current investigation.

3.2.1 Single Harmonic Flows

BIJ considered flows with a single harmonic degree, with stream function

fm
n = rn(1 − r2)pY m

n , (3.11)
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where 1 6 n 6 4, −n 6 m 6 n and p = 1, 2, 3. The choices of n,m, p values were
due to computer limitations and convergence difficulties. The associated planar flow
is

v = (2 − δ0
m)ℜ{sm

n + tm
n−1 + tm

n+1} , (3.12)

where sm
n , t

m
n−1 and tmn+1 are derived from fn using equation (3.3), (3.7) and (3.8).

These flows satisfy the differentiability conditions (2.40) and (2.41), the rigid bound-
ary condition (2.33) and, if p > 1, the no-slip conditions (2.34). For these flows, we
can use DQ- and m-decoupling for the magnetic chain as we discussed in Chapter
2.

BIJ considered 36 models and found that, where convergence was evident, all of
their models, except one, supported the planar velocity anti-dynamo theorem. BIJ
labeled a model with flow parameters n = 4, m = 2 and magnetic field chain DM12
by the acronym Y42DM12, and if p = 1 then by p1Y42DM12. Here, we follow their
nomenclature for naming single harmonic flows. The BIJ exceptional case is when
n = 2, m = 2, p = 1 using DM12 decoupling, i.e. model p1Y22DM12, with stream
function

f 2
2 = r2(1 − r2)Y 2

2 . (3.13)

The streamlines of this model are depicted in Figure 3.1. The profile of λmax can be
seen in Figure 3.2. The profile suggests that p1Y22DM12 can produce a successful
dynamo. The critical magnetic Reynolds number (Rcrit) is around 210. The graph
shows that the profile has converged to some extent. However, the numerical results,
in Table 3.1, show that the change in λ is around 10% as N is increased and 40% as
J is increased at R = 220. On the other hand, Figure 3.2 shows that p2Y22DM12
and p3Y22DM12 do not maintain a magnetic field for R < 220.

BIJ were unable to obtain higher accuracy due to computer limitations. High ac-
curacy for model p1Y22DM12 can be achieved by increasing [J,N ]. The method of
doing this will be discussed in §3.3.

Besides p1Y22DM12, some indication of growing modes were also found for two
other models i.e. p1Y42DM12 and p1Y44DM24; due to poor convergence these
results were not published. The stream functions of these models are

f 2
4 = r4(1 − r2)Y 2

4 , (3.14)

f 4
4 = r4(1 − r2)Y 4

4 . (3.15)

We will reconsider these models at higher [J,N ] later in §3.4.
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Figure 3.1: The streamlines f 2
2 = const. for p1Y22DM12 at z = 0, 0.4, 0.8. Solid

(dashed) lines represent positive (negative) f 2
2 . Flow direction is determined by

vφ = −∂f/∂̟.

N J = 400 J = 800

24 1.404215 1.002401
25 1.542941 1.120445
28 0.919501
29 1.188013
30 0.979911

Table 3.1: λmax for model p1Y22DM12 at R = 220. The size of the matrix band is
around 3 GB.
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Figure 3.2: λmax{R} profiles for model p1Y22DM12, with p = 2, 3 using
[J,N ] = [200, 20], and p = 1 using the six truncation levels [J,N ] =
[1200, 22], [800, 24], [800, 25], [400, 28], [400, 29], [400, 30].

31



3.2.2 Planarizing Three Historical Flows

In this section, we try to planarize three well-known flows: the Bullard & Gellman
flow (1954), the Kumar & Roberts flow (1975), and the Pekeris, Accad & Shkoller
flow (1973). Before planarizing them, we outline the properties of these flows. A
more comprehensive discussion of the original unplanarized flows can be found in
Dudley & James (1989, DJ).

To planarize the above flows, we need to find, for each s and t component of the
original flow, appropriate s and t planarizing coefficients. We need to use (3.3),
(3.7) and (3.8) and the planarizing procedure given on page 28–29. Our aim is to
see whether the planarization process enhances dynamo action.

Bullard & Gellman Flow

This flow was firstly discussed by BG. Later on, DJ re-examined BG’s work using
higher [J,N ] with J 6 125 and N 6 12, and investigated non-steady solutions. In
our formalism, the BG flow is

v = ǫt0
1 + 2ℜ{s2

2}, (3.16)

where

t01 =
1√
3
r(1 − r), (3.17)

s2
2 = s−2

2 =

√
6

5
r2(1 − r)2. (3.18)

This flow satisfies the rigid boundary condition (2.33) and no-slip conditions (2.34),
but not the differentiability conditions (2.40) and (2.41). The λmax-profile can be
seen in Figure 3.3a. In order to planarize the poloidal part s2

2, we need to add t2
3 to

the flow. In contrast, the toroidal part t0
1 is already planar. Thus, the planarized

version of BG flow is
v = ǫt0

1 + 2ℜ{s2
2 + t2

3}, (3.19)

where

f 2
2 = −3is2

2, (3.20)

t23 = − 1

3
√

7

(df2

dr
− 2

r
f2

)
. (3.21)

The t23 coefficient is derived using equation (3.8). In this project, we use ǫ = 5 with
DM02 magnetic chain decoupling.

No one has yet shown the ability of the original BG flow to maintain a magnetic
field. BIJ’s results reveal that the magnetic field of the planarized version decays
over a certain range of the magnetic Reynolds number. The λmax-profiles can be
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seen in Figure 3.3a on page 35. The planar decay-rate is better than the original.
Moreover, the λmax-profile of the planar version is purely real, whereas the original
one is complex for R & 30.

Kumar & Roberts Flow

In our formalism, the Kumar & Roberts (KR) flow is

v = t0
1 + ǫ1s

0
2 + 2ǫ2ℜ{s2

2}, (3.22)

where

t01 =
r(1 − r2)√

3
, (3.23)

s0
2 =

r5(1 − r2)3

√
5

, (3.24)

s−2
2 = s2

2 =
ir3(1 − r2)2e−ikπr

√
10

. (3.25)

This flow satisfies the rigid boundary condition (2.33) and no-slip conditions (2.34),
but not the differentiability conditions (2.40) and (2.41). We use ǫ1 = 0.03, ǫ2 =
0.04, k = 3 and DM02 decoupling, a set of parameters shown by the earlier re-
searchers to maintain the magnetic field. This flow was established by KR and
reconsidered using higher [J,N ] by DJ.

It is impossible to fully planarize this flow due to the presence of the meridional
circulation s0

2. BIJ were unable to use equation (3.3) to find the corresponding
toroidal coefficients because m = 0. As a result, they only planarized s2

2 and defined
the partly planarized version of the KR flow

v = t0
1 + ǫ1s

0
2 + 2ǫ2ℜ{s2

2 + t2
3}, (3.26)

where

f 2
2 = −3is2

2, (3.27)

t23 = − 1

3
√

7

(df2

dr
− 2

r
f2

)
. (3.28)

As shown in Figure 3.3b, the partly planarized KR model does not produce dynamo
action for the given parameters. Although not shown on the graph, the λmax-profile
remains flat over the interval |R| 6 25000. The λmax-profile of the partly planarized
model is purely real, whereas the original KR model has an oscillatory mode for
−1300 6 R 6 −1000.

Sarson and Gubbins (1996) showed that the KR flow (3.22) is still able to produce
dynamo action without the meridional component, i.e. with ǫ1 = 0, although
R > 20000 is required. Following this result, BIJ fully planarized the KR flow with
ǫ1 = 0. They discovered that the magnetic field decays over the entire interval
|R| 6 25000. Thus, in this case planarization has destroyed the dynamo action
found by Sarson and Gubbins.

33



Pekeris, Accad & Shkoller Flow

In their last trial, BIJ attempted to planarize the Pekeris, Accad and Shkoller (PAS)
flow. BIJ chose this flow because λmax easily converges at a relatively low critical
magnetic Reynolds number, Rcrit ≈ 0.37. They also believed that it might be
possible to fully-planarize PAS flow due to the absence of meridional circulations.

The PAS flow in our formalism is

v = 2ℜ{s2
2 + t2

2}, (3.29)

where

s2
2 = KΛj2(Λr), (3.30)

t22 = Λs2
2(r). (3.31)

Here, K =
√

6/5, and Λ is a positive root of the spherical Bessel function

j2(r) =

(
3

r3
− 1

r

)
sin r − 3

r2
cos r. (3.32)

This flow satisfies the rigid boundary condition (2.33) and the differentiability con-
ditions (2.40) and (2.41), but not the non-slip conditions (2.34). This flow was
proposed by PAS and reconsidered by DJ using higher [J,N ].

To planarize s2
2, BIJ used equation (3.3) to define

f 2
2 = −3iKΛj2(Λr),

and constructed t23 using equation (3.8). A problem emerged when they wanted to
planarize t2

2. BIJ constructed f 2
3 using equation (3.7). However, the t22 term does not

satisfy the consistency condition (3.10). As a consequence, f 2
3 cannot satisfy both

the differentiability conditions (2.40) and (2.41), and the rigid boundary condition
(2.33). Thus, similar to the KR flow, they only planarized s2

2 and defined the partly
planarized version of PAS flow:

v = 2ℜ{s2
2 + t2

2 + t2
3}, (3.33)

Here, they used Λ = 12.3229 and magnetic chain M02. As presented in Figure 3.3c
on the next page, the growth rate of the partly planarized model is significantly
better than the original PAS model. Moreover, Rcrit is reduced from 0.37 to about
0.26.

Of the three trials, BIJ succeeded in fully-planarizing the BG flow but failed to
planarize the others. We conclude that it is not always easy to planarize an existing
flow. It may be necessary to modify the original flow slightly in order to construct
a fully-planarized version.
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Figure 3.3: λmax{R} profiles for original (•) and planarized (◦) flows of (a) BG with
[J,N ] = [100, 12], (b) KR with [J,N ] = [150, 12], and (c) PAS with [J,N ] = [100, 15],
ℜλmax{R}(solid line),ℑλmax{R} (dashed line).
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3.3 The Sub-Band Method

Although Figure 3.2 shows a growing mode, the convergence level, i.e. the conver-
gence of the first two leading digits, of the eigenvalues in Table 3.1 is still around
10%. This is not quite a satisfactory level of convergence, since, in most work, the
level of convergence is usually around 1%. In order to get a better convergence level,
we need to increase [J,N ]. However, the problem is the size of the matrix band has
reached the maximum RAM capacity of our computers.

To overcome this problem, we modified our dynamo routine so that it stores the
matrix on a disk and processes sub-bands of the matrix one at a time. To fit the
available computer memory, the size of each sub-band needs to be controlled. First,
we create a sub-band of the matrix and store it on the disk. We repeat this procedure
until the whole matrix is stored. After that, we retrieve a sub-band of the matrix,
process it and store it back on the disk. This process is repeated until the whole
matrix is processed. We call this procedure the sub-band method. Unfortunately,
each sub-band requires information from the previous sub-band. So, we cannot
apply parallel computing techniques to the routine.

An example of the banded matrix can be seen in Figure 3.4. We only need to store
the matrix band. If the band structure is destroyed, the size of the matrix will
increase dramatically which means more memory will be needed. To avoid that
situation, we needed to write our own routine rather than use any available software
package.

Using the sub-band method, we can attain higher [J,N ] for model p1Y22DM12 and
thus expect to get better convergence. However, due to the retrieving and storing
process, the modified routine is slower than the original. A sufficiently large and
fast disk space is needed to avoid the modified routine being impracticable.

Before applying the modified routine to higher [J,N ], we ran it using small [J,N ]
and compared the results against those calculated using the original routine. We
achieved exact agreement which indicates that the modification has been appropri-
ately conducted.
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Figure 3.4: Matrix of model p1Y22DM12 using a low [J,N ] = [10, 3] which has
sparse and banded structure.
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3.4 Higher Truncation Level Results

In this section, we present the results for model p1Y22DM12 using higher [J,N ]. To
achieve these results, we used a 64 bit machine with 8 GB of RAM. In addition to
model p1Y22DM12 results, we also present models p1Y42DM12 and p1Y44DM24
results using higher [J,N ]. Furthermore, we find a modified p1Y22DM12 model
which has a better convergence level than the original p1Y22DM12 model.

In presenting our results, we use several different convergence tests. Each of the
models uses all or part of the following tests. The classical ones are the growth
rate graph and the λmax table using several [J,N ]. We also plot λmax against N ,
i.e. λ(N), with various J . The last indicator is the plot of λmax against h2, i.e.
λ(h2), with various N . We do not use the graphs of Sm

n (r) and Tm
n (r) because it is

inconvenient to use these for high [J,N ]. We will discuss this issue in Chapter 6.

3.4.1 Model p1Y22DM12

For higher [J,N ], the sub-band routine requires a long computer run time for each
combination of N, J,R. Therefore, we decided to observe the change in λ at a fixed
slightly supercritical Reynolds number in order to reduce the number of runs. From
Figure 3.2, Rcrit for model p1Y22DM12 appears to be about 210. Thus, we choose
R = 220 for our numerical investigation.

Our aim is to get around a 1% convergence level for λmax. First, we run the model
at a fixed J , and vary N . Based on preliminary results, we choose [400, 25] as
the minimum [J,N ] level. Fixing J = 400, we get a 0.1% change in λmax with
N = 55, 56. The matrix band-size is around 38 GB. On the other hand, if we fix N
and vary J , we obtain a best result of about 5% at N = 35 and J = 1600, 2400. The
change in λmax is presented in Table 3.2. In addition, several computer run times
for model p1Y22DM12 are presented in Table 3.3.

In Figure 3.5, we plot λ(N) with various values of J . It is observable that conver-
gence is occurring as we increase N and J . The graph suggests that it is possible to
obtain a satisfactory convergence level. However, higher [J,N ] are needed to achieve
this aim. In figure 3.6, we plot λ(h2) with N = 35 − 45.

At the moment, the largest achievable matrix band-size is around 38 GB which
is equivalent to [J,N ] such as [J,N ] = [400, 56], [800, 45], [1600, 35]. Reaching the
maximum disk space of our machine, we have to stop increasing the size of the
matrix. From Figure 3.5, we predict that we need to run the model with J =
1600, 2400 and N = 55, 56 to get a 1% level of convergence. However, the matrix
band-size then is around 230 GB and would require more that a week to run on our
machine for each N, J,R combination.
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Because of time constraints, we have to put off investigating this model in order to
investigate other planar flow models. We leave this model for future work when a
faster computer with a greater memory is available for us to use.

N J = 400 J = 800 J = 1600 J = 2400

31 0.768363 0.362947 0.261183 0.242320
32 0.877181 0.471211 0.369300 0.350410
33 1.045474 0.635773 0.532922 0.513857
34 0.988497 0.579102 0.476332 0.457282
35 0.861048 0.455024 0.353103 0.334210

55 0.929184
56 0.930387

Table 3.2: λmax for model p1Y22DM12. The convergence level is around 5% with
respect to J and 1% with respect to N .

J N matrix band(GB) sub-band(GB) run-time(hr)
400 56 38 7 107
800 45 33 7 91
1600 35 26 7 70
2400 35 39 7 91

Table 3.3: The computer run time of model p1Y22DM12 using higher [J,N ]. A 64
bit machine with 8 GB of RAM is used.
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Figure 3.5: λmax(N) for model p1Y22DM12 with various J at R = 220. The
convergence level is less than 1% for J=200,400 with N=54,55.
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Figure 3.6: λmax(h
2) for model p1Y22DM12 with J = 200, 400, 800 and N = 35−45

at R = 220. These lines are parallel and their gaps become smaller as we increase
N .
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3.4.2 Models p1Y42DM12 and p1Y44DM24

In the preliminary results of §3.2, model p1Y42DM12 and p1Y44DM24 indicate
the existence of a dynamo process. However, the indication is weaker than that of
model p1Y22DM12. Streamlines of these flows can be seen in Figures 3.7–3.8. These
contours indicate steeper gradients than for the p1Y22DM12 flow in Figure (3.1).
Furthermore, p1Y44DM24 has 8 cells compared to 4 cells in p1Y22DM12 flow. We
expect therefore that it is even more difficult to obtain convergent results for these
flows compared to the p1Y22DM12 flow.

As a start, we investigate these flows using [J,N ], which are equivalent to 3 GB
matrix size. Growth rates for these models can be seen in Figure 3.9–3.10. As
expected, the convergence is much worse than for model p1Y22DM12. Consequently,
the [J,N ] required for these models is impracticable. However, Figures 3.9–3.10 show
that these models might have growing modes. Thus, we may investigate these flows
in the future.
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Figure 3.7: The streamlines f 2
4 = const. for p1Y42DM12 at z = 0, 0.4, 0.8. Solid

(dashed) lines represent positive (negative) f 2
4 . Flow direction is determined by

vφ = −∂f/∂̟.
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Figure 3.8: The streamline f 4
4 = const. for p1Y44DM24 at z = 0, 0.4, 0.8. Solid

(dashed) lines represent positive (negative) f 4
4 . Flow direction is determined by

vφ = −∂f/∂̟.
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Figure 3.9: λmax(R) for model p1Y42DM12 using the three truncation levels
[J,N ] = [400, 25], [400, 28], [400, 29]. The convergence level is inadequate but sug-
gestive of a growing mode.
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Figure 3.10: λmax(R) for model p1Y44DM24 using the four truncation levels
[J,N ] = [200, 34], [200, 35], [400, 34], [400, 35]. The convergence level is inadequate
but suggestive of a growing mode.
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3.4.3 Model p1q10Y22DM12

In the original proof of the PVT, Bz decays as t→ ∞. However, for a finite volume,
the second term of (2.44) does not vanish. BIJ argued, using maximum principles,
that maxima of Bz must occur at the boundary. One might expect that there is a
mechanism near the boundary that generates Bz. Once Bz is generated, the other
two components of B are also created.

Following the above argument, we modify the p1Y22DM12 radial function, f 2
2 , to

have steeper gradients near r = 1 and hope to get better convergence. The modified
stream functions are:

f 2
2 = r2(1 − rq)pY 2

2 (3.34)

where p = 1, q = 4, 6, 8, ....
We label these models p1q4Y22DM12, p1q6Y22DM12, p1q8Y22DM12,.... Prelim-
inary results are shown in Table 3.4. The table shows results for λmax at slightly
supercritical R. These results suggest that q = 10 is optimum with respect to
convergence, and lowest Rcrit without normalization.

Plots of the radial parts f 2
2 for the p1Y22DM12 and p1q10Y22DM12 flows can

be seen in Figure 3.11. It can be seen that f 2
2 for p1q10Y22DM12 flow has a

steeper gradient near r = 1. Meanwhile, Figure 3.12 shows the streamlines of
p1q10Y22DM12 at certain levels of z.

The numerical results for model p1q10Y22DM12 can be seen in Table 3.5. The
convergence level in the N direction, i.e. where we fix J and vary N , is much better
than the p1Y22DM12 model. Using the same [J,N ], N = 31− 35 and J = 400, the
convergence level for λmax of the p1Y22DM12 model is around 10%. Meanwhile, the
p1q10Y22DM12 model has around 1–3% convergence level.

To be able to compare the Rcrit of models p1Y22DM12 and p1q10Y22DM12, we
normalized the Rcrit using: root-mean-square of v, rms(v), and maximum of |v|,
max |v|. The normalized Rcrit can be seen in Table 3.6. If we use rms(v), then
model p1q10Y22DM12 has lower Rcrit. However, if we use max |v|, then model
p1Y22DM12 has lower Rcrit. Thus, we can make no conclusion on which model has
lower Rcrit.

Figures 3.13 and 3.14 are similar to those of the p1Y22DM12 model in Figures 3.5
and 3.6 and indicate that convergence is occurring, and at a faster rate than for
model p1Y22DM12.
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N J = 400 J = 800
R=220 q=2

28 0.919 0.513
29 1.188 0.775
30 0.979 0.569

R=120 q=4
28 1.658 1.262
29 1.877 1.476
30 1.763 1.363

R=90 q=6
28 2.324 1.890
29 2.514 2.075
30 2.434 1.995

R=75 q=8
28 2.556 2.082
29 2.719 2.242
30 2.661 2.183

R=65 q=10
28 2.178 1.688
29 2.311 1.817
30 2.270 1.776

R=60 q=12
28 2.401 1.855
29 2.527 1.977
30 2.489 1.938

R=50 q=20
28 2.263 1.522
29 2.361 1.616
30 2.326 1.580

R=47 q=50
28 1.913 0.525
29 2.029 0.643
30 1.919 0.526

Table 3.4: λmax for model p1qY22DM12 with various q. With q = 10, the flow has
lower Rcrit compared to model p1Y22DM12 (i.e. model p1q2Y22DM12) and has
reasonable convergence with respect to N and J .
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Figure 3.11: The radial functions for the p1Y22DM12 and p1q10Y22DM12 flows.
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Figure 3.12: The streamline f 2
2 = const. for p1q10Y22DM12 at z = 0, 0.4, 0.8. Solid

(dashed) lines represent positive (negative) f 2
2 . Flow direction is determined by

vφ = −∂f/∂̟.
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N J = 400 J = 800 J = 1600 J = 2400

31 2.169138613 1.678021203 1.554858646 1.532034014
32 2.182484715 1.691741681 1.568671992 1.545864522
33 2.259949847 1.766388264 1.642612095 1.619673714
34 2.256005780 1.762247456 1.638422579 1.615475209
35 2.192478621 1.701350714 1.578185492 1.555360372

Table 3.5: λmax of p1q10Y22DM12 model at R = 65. The maximum size of the
band matrix is around 38 GB. The convergence level is around 1% with respect to
J and 4% with respect to N .

Model Rcrit Normalized Rcrit

rms(v) max |v|
p1Y22DM12 210 317.49 1150.17

p1q10Y22DM12 63 285.74 1725.32

Table 3.6: Rcrit comparison for models p1Y22DM12 and p1q10Y22DM12.
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Figure 3.13: λmax(N) of p1q10Y22DM12 model with various J at R = 65. The
convergence level is less than 1% for J=200,400 with N=45,46.
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lines are parallel and their gaps are smaller than for p1Y22DM12 in Figure 3.6.

3.5 Chapter Summary

BIJ began their numerical investigation using single harmonic (fm
n ) planar flows.

They found that most of the models supported the planar velocity theorem. How-
ever, one model, p1Y22DM12, indicated existence of a planar velocity dynamo. In
addition, two other models, p1Y42DM12 and p1Y44DM14, revealed a weaker indi-
cation of the existence of planar velocity dynamos.

BIJ also tried to planarize three well-known models based on: the BG, the PAS, and
the KR flows. BIJ were able to fully planarize the BG flow, and partly planarize
the other two flows. BIJ found that the planarized version of the BG flow does not
produce a dynamo over the interval 0 ≤ R ≤ 80. However, the planarization process
improved the λmax profile. Moreover, the partly planarized PAS flow has a higher
λmax profile than the original PAS, and significantly lower Rcrit. On the other hand,
the partly planarized KR flow fails to maintain a magnetic field.

To get a better convergence level for model p1Y22DM12, we modified our program
using a sub-band method so that it can run higher [J,N ]. We calculated model
p1Y22DM12 using higher [J,N ], up to matrix band size 38 GB, and achieved better
convergence. Our plots in Figures 3.5–3.6 show that λmax converges, but indicate
that [J,N ] ≥ [400, 56], i.e. a band size ≥ 38 GB, is needed to get accuracy . 1% in
λmax.

The convergence problem for models p1Y42DM12 and p1Y44DM24 are much worse
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than for model p1Y22DM12. So, we have to defer the investigation of these models
to some future time.

In §3.4.3, we reported that certain modified p1Y22DM12 flows also indicated they
could support planar velocity dynamos. By modifying the radial function of model
p1Y22DM12 to have a greater gradient near the boundary, better convergence and
lower Rcrit were obtained. Model p1q10Y22DM12 is found to be optimum in this
regard as shown by Table 3.4.
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Chapter 4

The Effect of Spherical Shells on
Planar Velocity Dynamos

4.1 The Effect of Spherical Shells on Kinematic

Dynamos

In the previous Chapter, we assumed that the fluid occupies a sphere. However,
for modelling planetary magnetism, it is not accurate to have such an assumption.
From seismological data, researchers believe that the Earth has a solid inner core
and liquid outer core. The radius of the Earth’s inner core is around 1,220 km. The
radius of the outer core is around 3,480 km. Some dynamo models include an inner
core. This means the fluid occupies a spherical shell instead of a sphere. In this
section, we review some earlier work on kinematic dynamos in spherical shells.

The first dynamo work using a spherical shell may have been that by PAS. PAS
allowed for an insulating inner core represented by boundary conditions (4.4), (4.5)
later herein (equation (92) in PAS). PAS reported that the inner core has no sig-
nificant effect on their dynamo. Unfortunately, they did not include any numerical
results.

Sarson and Gubbins (1996,SG) investigated the effect of inner cores on one of the
KR flows. In their work, SG considered both insulating and conducting inner cores.
They reported no significant effect for either type of inner core on their particular
model.

Another investigation was conducted by Holme (1997). He also included both type
of cores. Holme used three different flows. The first flow was the KR flow defined
by equation (3.22). He also investigated an altered KR flow, his KR′ flow, where s0

2
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is altered to become (in our formalism)

s0
2 =

r2(1 − r2)2

√
5

.

The last flow that he investigated was one of the DJ flows: in our formalism,

v = t0
1 + ǫ s0

2, (4.1)

where

t01 = sin(πr)/
√

3,

s0
2 = r sin(πr)/

√
5,

with magnetic chain: S1
1 , T

1
1 , S

1
2 , T

1
2 , S

1
3 , T

1
3 , ...

Holme extrapolated his results to get Rcrit with h → 0 and had similar results to
SG. Holme’s results can be seen in Table 4.1. We used his results as a benchmark
for our computer routine and obtained satisfactory agreement. (Small differences
were present presumably due to the different methods used.)

rc Conducting Insulating
(a)
0.1 4461.78 4461.08
0.2 5149.98 5135.86
0.3 6010.60 5936.21
0.4 7083.33 6861.10
(b)
0.1 129.123(20.401) 129.099(20.399)
0.2 272.640(29.597) 271.843(29.508)
(c)
0.1 3962.12 3960.85
0.2 4688.29 4671.54
0.25 163.636 165.572
(d)
0.1 144.661 144.657
0.2 157.906 158.413

Table 4.1: Rcrit and non-zero ℑ{λ} (shown in brackets) extrapolated to h → 0 for
(a) KR flow, N = 16, ǫ1 = 0.03, ǫ2 = 0.04, (b) DJ flow, N = 32, ǫ = 0.13, (c) KR′

flow, N = 16, ǫ1 = 0.005, ǫ2 = 0.04, (d) KR′ flow, N = 16, ǫ1 = 0.2, ǫ2 = 0.6.

In the original proof of the PVT, Bz decays. However, if the fluid occupies a finite
volume, the proof fails. Moreover, in BIJ, it was shown that the contours of Bz were
concentrated near the boundary, r = 1. Therefore, in this chapter, we included an
inner core to both models p1Y22DM12 and p1q10Y22DM12. We hope that more
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Bz will be generated because of the presence of an inner boundary and that the
convergence problem will be reduced.

To achieve our aim, there were several steps needed. First, we derived the bound-
ary conditions for the inner core and tested numerical codes utilizing these bound-
ary conditions. Then, we mapped the p1Y22DM12 and p1q10Y22DM12 flows into
spherical shells and investigated them numerically.

4.2 Boundary Conditions

For full sphere models, we have the boundary condition (2.32) at r = 1 (outer core
boundary, OCB), so that B will be continuous and match with the external field.
As mentioned earlier, the exterior of the sphere is an insulator.

Meanwhile, for spherical shells, we have two boundaries. The outer boundary is the
same as the full sphere outer boundary. At the inner boundary (ICB), where r = rc

say, there are two types of inner environment to consider: insulating and conducting
inner cores.

4.2.1 Insulating Inner Core

From potential theory, the finite solutions of the Laplace equation, ∇2Φ = 0 inside
and outside a sphere of radius r = a are

Φ =
∑

n,m

Φm
n

(r
a

)n

Y m
n (θ, φ), r ≤ a, (4.2)

Φ =
∑

n,m

Φm
n

(a
r

)n+1

Y m
n (θ, φ), r ≥ a. (4.3)

We will use the above results in deriving the boundary conditions.

Using the notation introduced in §3.1
∇× B̂ = ∇× T{T̂} + ∇× S{Ŝ},

= S{T̂} + T{−∇2Ŝ}.
The current free condition (2.8) implies T̂ = 0 and ∇2Ŝ = 0 in V̂ . From equation
(4.3) and the continuity of B across the boundary, we derive the boundary condition
for the OB:

∂Sn

∂r
+ (n+ 1)Sn = Tn = 0 , at r = 1 . (4.4)

Applying a similar argument for the insulating inner core, we can use equation (4.2)
to derive the boundary condition,

∂Sn

∂r
− n

rc
Sn = Tn = 0 , at r = rc . (4.5)
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4.2.2 Conducting Inner Core

For a conducting inner core, we consider two methods.

Method 1
Here, we take v = 0 for r ≤ rc. This is a simpler approach since we do not have to
apply a boundary condition on B at the ICB. We assume the conductivity of the
inner core is equal to that of the fluid in the spherical shell. However, the memory
usage is as much as for the full sphere problem. If the flow satisfies the conditions

sn = s′n = s′′n = 0, (4.6)

tn = t′n = 0, (4.7)

at r = rc then by (2.37) the O(h2) error of the finite difference approximations
(2.35) and (2.36) on page 20 will be preserved. These conditions (4.6), (4.7) are not
satisfied by models p1Y22DM12 and p1q10Y22DM12, but we do not use method 1
for these models.

Method 2
Here, we represent the ICB by boundary conditions on B at r = rc. This method is
valid when we have a stationary field,

∇2B = 0 , for r < rc, (4.8)

and no-slip conditions at the ICB, the need for which will be explained below. Using
this method, we can get more accurate results for the same [J,N ] since all of the
grid points can be put inside the shell.

To understand the need for the no-slip conditions, let us apply Faraday’s law,
∮

E · dt̂ = − ∂

∂t

∫

A

B · dS (4.9)

to the small rectangle A shown in Figure 4.1, where t̂ is the tangential unit vector.
If we let δ → 0 then the RHS of equation (4.9) tends to 0. This implies,

E− · t̂ = E+ · t̂, (4.10)

where E− and E+ are the electric field just below and just above the ICB. So E · t is
continuous. If v satisfies the no-slip condition at the ICB then from the pre-Maxwell
equation (2.1) and Ohm’s law (2.5), ∇×B = σµE, or

S{T} + T{−∇2S} = σµE. (4.11)

We introduce the transverse divergence,

∇T · A =
1

r sin θ

∂

∂θ
sin θAθ +

1

r sin θ

∂

∂φ
Aφ,
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Figure 4.1: A small surface, A, that cuts the inner boundary.

where A is an arbitrary field. The transverse divergence has the following properties:

∇T · S = −L2(rSn)′Yn, (4.12)

∇T · T = 0, (4.13)

[∇T · E] = 0 if [t · E] = 0. (4.14)

Therefore, applying ∇T· to (4.11), we obtain

[−L2(rTn)′Yn] = 0. (4.15)

which implies [dTn/dr] = 0 since [Tn] = 0. The solutions of (4.8) are of the form

B = ∇×∇× (Sr) + ∇× (T r),

where

S =
∑

n,m

(
r

rc

)n

Y m
n Sm

n (rc),

T =
∑

n,m

(
r

rc

)n

Y m
n Tm

n (rc).

Matching the magnetic field in rc < r < 1 to this solution at r = rc gives the
following boundary conditions at r = rc:

∂Sn

∂r
− n

rc

Sn = 0,

(4.16)

∂Tn

∂r
− n

rc
Tn = 0.

The derivation of boundary conditions for a non steady field is harder and is beyond
the range of our discussion.
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4.3 Validation of Methods 1 and 2

From numerical comparisons, we found that methods 1 and 2 for treating the con-
ducting core give good agreement when both methods are applicable, for example
in model KR′ as shown in Table 4.2(b). However, we also found that both methods
give reasonable agreement even when method 2 is not applicable, for example in
model DJ. Table 4.2(a) compares methods 1 and 2 applied to model DJ (4.1) near
Rcrit ≈ 129.123. Strictly method 2 is not applicable since ℑ{λmax} 6= 0, but Table
4.2(a) shows good agreement between methods 1 and 2. Furthermore, the results
satisfactorily agree with those of Holme.

(a) DJ Method 1 Method 2
R = 129.123 λ = (0.0003067, 20.4008) λ = (0.0004573, 20.4007)
rc = 0.1

(b) KR′ Method 1 Method 2
R = 163.636 λ = (0.003951, 0) λ = (0.001417, 0)
rc = 0.25

Table 4.2: Comparison of methods 1 and 2 for (a) DJ flow model 4.1 with [J,N ] =
[3200, 32]. (b) KR′ model with [J,N ] = [300, 16].

4.4 Models p1Y22DM12 and p1q10Y22DM12 in

a Spherical Shell

Having validated our code, we were ready to include inner cores in models p1Y22DM12
and p1q10Y22DM12. However, we needed to transform the corresponding full sphere
flows of these models into a spherical shell. Like Holme (1997), we used the linear
transformation

r∗ =
r − rc

1 − rc

(4.17)

to rescale our radial functions.

For any flow, in general, the poloidal and toroidal scalars appropriate for the shell
are simply1

tsh(r) = t(r∗),

(4.18)

ssh(r) = s(r∗).

1To compare with Holme’s results, it was necessary to use the BG form. If we used our formal-
ism, then (4.6) would not be satisfied and the O(h2) error of the finite difference approximations
would not be preserved.
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However, for planar flows, such transformations do not produce planar flows in a
shell. Indeed, using (3.3), (3.7) and (3.8) inside the shell we would have,

ssh
n =

im

n(n + 1)
f sh

n ,

tshn−1 =
αn

n

( 1

1 − rc

d

dr∗
+
n+ 1

r∗
)
f sh

n , (4.19)

tshn+1 = − αn+1

n + 1

( 1

1 − rc

d

dr∗
− n

r∗
)
f sh

n ,

where f sh
n = fn(r∗). The resulting v, given by (3.12), satisfies rigid boundary

conditions for a shell
vr = 0, at r = rc, 1, (4.20)

but is not planar. On the other hand, if we transform fn in (3.11) and apply (3.3),
(3.7) and (3.8), we obtain

ssh
n =

im

n(n+ 1)
f sh

n ,

tshn−1 =
αn

n

( d

dr
+
n + 1

r

)
f sh

n , (4.21)

tshn+1 = − αn+1

n + 1

( d

dr
− n

r

)
f sh

n .

Here, the v given by (3.12) satisfies the rigid boundary conditions for the shell and
is planar.

From Chapter 3, we know that the p1Y22DM12 and p1q10Y22DM12 flows do not
satisfy the no-slip conditions at the OCB. However, using the above transformation,
they do satisfy the no-slip conditions at the ICB. The streamlines of the shell flows
can be seen in Figures 4.2-4.3 on page 57. These streamlines are similar to the full
sphere model.
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Figure 4.2: the streamlines f 2
2 = const. for p1Y22DM12 in a spherical shell at

z = 0, 0.4, 0.8 with:(a) rc = 0.1, (b) rc = 0.3 and (c) rc = 0.6. Solid (dashed) lines
represent positive (negative) f 2

2 . Flow direction is determined by vφ = −∂f/∂̟.
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Figure 4.3: the streamlines f 2
2 = const. for p1q10Y22DM12 in a spherical shell at

z = 0, 0.4, 0.8 with:(a) rc = 0.1, (b) rc = 0.3 and (c) rc = 0.6. Solid (dashed) lines
represent positive (negative) f 2

2 . Flow direction is determined by vφ = −∂f/∂̟.
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4.4.1 Insulating Inner Core Results

Here, we report our results for an insulating inner core, i.e. using boundary condi-
tions (4.4) and (4.5). We began using model p1Y22DM12. First, we searched for
the optimum core radius i.e. the core radius that gives us the smallest Rcrit. The
results are in Table 4.3 and Figure 4.4. Based on these results, we concluded that
rc = 0.24 is the optimum.

From Figure 4.4, we can see that Rcrit decreases in 0 ≤ rc ≤ 0.24 and increases af-
terward. This result differs from the earlier results of Holme and SG. Using different
models, they found that Rcrit increased monotonically with rc.

Figure 4.5 on page 60 contains λmax profiles of model p1Y22DM12 using various
core radii. The matrix band sizes were about 2GB so that we did not need to use
our sub-band routine. We can see that the insulating shell models have growing
λmax profiles. However, the same convergence problem occurred as in the full sphere
model. Also, the convergence becomes worse as rc increases.

For rc = 0.24, Rcrit ≈ 160. Thus, we investigated this particular model at R = 170
using higher [J,N ]. We can see in Table 4.4 that the convergence has improved
compared to p1Y22DM12. However, still higher [J,N ] are needed to obtain 1%
level of convergence, and we defer this to possible future work.

For model p1q10Y22DM12, we only concentrated on using rc = 0.24. λmax profiles
are presented in Figure 4.6. This figure shows that Rcrit is smaller than that of
model p1Y22DM12. However, the convergence problem still exists. So, we have not
investigated higher [J,N ] for this model.

Core radius λmax

0.10 5.903868719
0.15 7.657371000
0.20 8.664416643
0.22 8.847559000
0.23 8.893496426
0.24 8.909649000
0.25 8.896454000
0.30 8.399736627
0.40 5.152603133
0.50 -2.325973850

Table 4.3: Comparison of λmax for model p1Y22DM12 using different insulating core
radii with R = 220 and [J,N ] = [400, 25] showing that rc = 0.24 is the optimum
radius.
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Figure 4.4: Rcrit for p1Y22DM12 using several different insulating core radii at
[J,N ] = [400, 25] showing that rc = 0.24 has the lowest Rcrit.
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Figure 4.5: λmax for model p1Y22DM12 using an insulating core with [J,N ] =
[400, 24], [400, 29], [400, 30], [800, 24]. The convergence level becomes worse for
R & 150 as we increase rc.

Core radius R J N ℜ{λmax} |△λmax|/λmax

0.0 220 400 30 0.979910 11%
36 0.888190

800 36 0.482005 27%
1600 36 0.380043

0.24 170 400 30 0.463459 9%
36 0.509152

800 36 0.327397 16%
1600 36 0.281917

Table 4.4: Comparison of the change in λ for model p1Y22DM12 at high [J,N ].
The convergence level with respect to J and N using an insulating inner core with
rc= 0.24 is better than for the full sphere.
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Figure 4.6: λmax for model p1q10Y22DM12 using an insulating core with [J,N ] =
[400, 24], [400, 29], [400, 30], [800, 24] with rc = 0.24. Rcrit ≈ 59 compared to 160 for
model p1Y22DM12 with the same rc.
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4.4.2 Conducting Inner Core Results

Here, we report our results for conducting inner cores, i.e. using method 2 and
boundary conditions (4.4) and (4.16). As in the previous section, we seek to find the
optimum rc for model p1Y22DM12. Figure 4.7 shows Rcrit for model p1Y22DM12
in a spherical shell using various core radii and [J,N ] = [400, 25]. Rcrit decreases;
its minimum occurs at rc ≈ 0.6 before it increases as rc → 1. In addition, Table
4.5 gives λmax for model p1Y22DM12 in a conducting spherical shell with R = 220,
various core radii and [J,N ] = [400, 25]. The Table shows that λmax increases as
rc increases. However, from the earlier insulating results in Figure 4.5 on page 60,
[J,N ] = [400, 25] may be inadequate for rc & 0.5.

Given the above results, we decided to produce λmax profiles using the same [J,N ]
as in Figure 4.5 on page 60. The results are presented in Figure 4.8. We observe
that growing modes exist for all rc considered, and Rcrit decreases as rc increases.
However, the convergence deteriorates as rc increases. This confirms our expectation
that [J,N ] = [400, 25] is inadequate for rc = 0.6.

We could have attempted to use higher [J,N ], but we decided, as with insulating
shell models, to concentrate our investigation in a different direction (as in Chapter
5 which follows). For model p1q10Y22DM12, we only performed a preliminary
investigation using rc = 0.2. Comparing Figures 4.8 and 4.9, it shows that the
convergence improved compared to model p1Y22DM12. Figure 4.8 also shows in
spite of convergence difficulties as rc increases, growing modes persist across all
[J,N ].

Our results reveal that conducting shells give lower Rcrit compared to insulating
shells. Similar results were also found in non planar velocity dynamos by Bullard
and Gubbins (1977).

Core radius λ

0.1 6.066273
0.2 11.807154
0.3 19.235281
0.4 28.586418
0.5 40.040387
0.6 54.020910
0.7 70.754739
0.8 85.645352

Table 4.5: Comparison of λ for model p1Y22DM12 using different conducting core
radii with R = 220 and [J,N ] = [400, 25] showing that λ increases as we increase rc.
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Figure 4.7: Rcrit for model p1Y22DM12 using different conducting core radii at
[J,N ] = [400, 25]. The model with rc = 0.6 has the lowest Rcrit.
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Figure 4.8: λmax for model p1Y22DM12 using conducting cores with [J,N ] =
[400, 24], [400, 29], [400, 30], [800, 24] showing that these [J,N ] are inadequate for the
model with rc = 0.6.
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Figure 4.9: λmax for model p1q10Y22DM12 using a conducting core with [J,N ] =
[400, 24], [400, 29], [400, 30], [800, 25] with rc = 0.2. Rcrit ≈ 55 compared to 160 for
model p1Y22DM12 with the same rc.
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4.5 Adding a Constant to The PAS t2
2 Flow

In this section, we will show how a simple modification of PAS flow results in a
fully planarized flow in a shell. In §3.2.2, it was shown that s2

2 of PAS flow could
be planarized by adding a t2

3 component. Similarly, s2
2 mapped via transformation

(4.18) can be planarized by addition of t2
3 as shown more generally in §4.4.

Planarization of the PAS t22 is more difficult since, as shown in §3.2.2, the consistency
condition (3.10) is not satisfied. However, this condition can be satisfied by a simple
modification

t22 = KΛ2j2(Λr) + C, (4.22)

where C is an appropriate constant. But, the resulting flow t2
2 will be multivalued

at r = 0. This problem can be overcome by confining the t2
2 flow to a shell.

Thus, we can construct s2
3 and t2

4 to planarize the modified t2
2. The resulting f 2

3

from (3.9a) is

f 2
3 =

3

α3
r−4

∫ r

1

(
r4Λ2Kj2(Λr) + r4C

)
dr, (4.23)

which using the identity
d

dr

1

Λ
r4j3(Λr) = r4j2(Λr),

becomes,

f 2
3 = 3

√
7r−4

(
ΛK(r4j3(Λr) − j3(Λ)) +

C

5
(r5 − 1)

)
.

The rigid boundary condition (4.20) requires f3 = 0 at r = rc, i.e.

C = − 5ΛK

(r5
c − 1)

(
r4
cj3(Λrc) − j3(Λ)

)
.

Finally given f 2
3 , we can use (3.3) to obtain

s2
3 =

i

6
f 2

3 , (4.24)

and (3.8) to obtain

t24 = −α4

4

( d

dr
− 3

r

)
f 2

3 . (4.25)

Combining all of the components described in this section results in modified PAS
flow

v = 2ℜ{(s2
2 + t2

3) + (t2
2 + s2

3 + t2
4)}. (4.26)

which is planar and satisfies the rigid boundary condition for a shell (4.20). Unfor-
tunately, our numerical investigations only produce decaying magnetic fields so we
do not report in detail here. However, our contemplation in this section led us to
other planar velocity dynamo investigations which will be discussed in Chapter 5.
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4.6 Chapter Summary

The possibility of creating Bz by planar flows results from the jump in ∂Bz/∂r at
the boundary in (2.54). In the successful p1Y22DM12 model of BIJ, the Bz contours
are concentrated near the boundary r = 1, see BIJ (2006) Figure 4. Thus, we have
considered shell dynamos in order to increase the possibility of generating more Bz.
We have considered two types of inner core: insulating and conducting.

In §4.2.1, we showed that the ICB for an insulating inner core can be represented
by the magnetic boundary condition in (4.5). In §4.2.2, we considered the ICB of a
conducting inner core. We discussed that the full sphere approach with v = 0 for
r ≤ rc is needed (method 1). For the steady magnetic field, conducting inner core
can be represented by the magnetic boundary condition given in (4.16) (method 2).
In §4.3, we validated our numerical routine by comparing our results with those of
other authors. Interestingly, we found that method 2, although not valid for steady
fields, gave quite good agreement to method 1.

Figures 4.5,4.6 and 4.8, show that planar flows in shells can generate and maintain
magnetic fields. Indeed, for the shells, Rcrit is significantly reduced compared to the
full sphere model p1Y22DM12 of BIJ. For the shells, the convergence is somewhat
better than the full sphere as shown in Table 4.4. Where reasonable convergence is
obtained, an optimum rc exists associated with the lowest Rcrit.

Finally, in §4.5, we showed that a minor modification allows full planarization of the
PAS flow in a shell. Although the resulting magnetic field decays, this modification
led us to the subject of Chapter 5 that follows.

67



Chapter 5

Modified PAS Models

5.1 Introduction

The PAS model was one of the first successful numerical dynamos. This model has
low Rcrit and converges at low [J,N ]. The PAS flow (3.29) is a Beltrami flow, i.e.

v = k∇× v, (5.1)

where k is a constant. As shown in §3.2.2, the PAS flow cannot be fully planarized by
the method of §3.1. The toroidal scalar t22 does not satisfy the consistency condition
(3.10).

In this chapter, we establish two modifications of the PAS flow that can be fully
planarized in a full sphere.

5.2 BiPAS Models

5.2.1 BiPAS Definition

The biPAS model is defined by the superposition of two PAS flows, i.e.

v = 2ℜ{s2
2 + t2

2}, (5.2)

where

s2
2 = KΛij2(Λir) + CKΛkj2(Λkr), (5.3)

t22 = KΛ2
i j2(Λir) + CKΛ2

kj2(Λkr), (5.4)
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K =
√

6/5, C is a constant, Λi and Λk are positive roots of j2(r), and with one of
the magnetic chains
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We use the first three positive roots of j2(r), which are approximately:

Λ = 5.3674, 9.0950, 12.3229. (5.5)

The flow (5.2) satisfies the rigid boundary condition (2.33), the differentiability
conditions (2.40) and (2.41), but not the optional no-slip conditions (2.34). We
choose C so that t22 satisfies consistency condition (3.10). Using the identity

∫
rn+1jn−1(Λr) dr =

1

Λ
rn+1jn(Λr) + const., (5.6)

gives
∫ 1

0

r4(KΛ2
i j2(Λir) + CKΛ2

kj2(Λkr)) dr = 0, (5.7)

if

K(Λij3(Λi) + CΛkj3(Λk)) = 0, (5.8)

which implies,

C = − Λij3(Λi)

Λkj3(Λk)
. (5.9)

From (5.3), (5.4), and (5.9), it is necessary to have i 6= k, in order to avoid free
decay. It is easy to show that

s2
2[Λk,Λi] = −Λkj3(Λk)

Λij3(Λi)
s2
2[Λi,Λk], (5.10)

where s2
2[Λi,Λk] = s2

2 in (5.3) and

s2
2[Λk,Λi] = KΛkj2(Λkr) +

(
−Λkj3(Λk)

Λij3(Λi)

)
KΛij2(Λir), (5.11)

similarly for t22. So, the Λi Λk combinations that are possible candidates for dynamo
are: Λ1 Λ2,Λ1 Λ3,Λ2 Λ3.

5.2.2 Planarizing BiPAS

Given the consistency condition (3.10) has now been satisfied, we can fully planarize
the biPAS flow (5.2). (As noted in §3.2.2, BIJ were unable to fully planarize the
original PAS flow (3.29) on page 34 because it does not satisfy the consistency
condition.) Now, we define t23 to planarize s2

2. From (3.3) and (5.3), we have

f 2
2 = −3is2

2 = −3iK(Λij2(Λir) + CΛkj2(Λkr)). (5.12)
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Thus, using (3.8) and the identity

n

r
jn(Λr) − d

dr
jn(Λr) = Λjn+1(Λr), (5.13)

gives

t23 = −α3

3
d−2f

2
2 ,

= −α3 iK
(
Λ2

i j3(Λir) + CΛ2
kj3(Λkr)

)
. (5.14)

The next step is to planarize the toroidal scalar t22 of the biPAS flow. From (3.9b),
we have

f 2
3 =

3

α3

r−4

∫ r

1

r4t22 dr,

=3
√

7r−4K
[
[Λir

4j3(Λir) − Λij3(Λi)]

− Λij3(Λi)

Λkj3(Λk)
[Λkr

4j3(Λkr) − Λkj3(Λk)]
]
,

=3
√

7K Λi

(
j3(Λir) −

j3(Λi)

j3(Λk)
j3(Λkr)

)
. (5.15)

Using (3.3) and (3.8)

s2
3 =

i

6
f 2

3 , (5.16)

t24 = −α4

4
d−3f

2
3 ,

=
1

2
K
√

3Λi

(
Λij4(Λir) −

j3(Λi)

j3(Λk)
Λkj4(Λkr)

)
, (5.17)

where j3(r) is the spherical Bessel function of order 3,

j3(r) =
(15

r4
− 6

r2

)
sin r −

(15

r3
− 1

r

)
cos r, (5.18)

and j4(r) is the spherical Bessel function order 4,

j4(r) =

(
105

r5
− 45

r3
+

1

r

)
sin r −

(
105

r4
− 10

r2

)
cos r. (5.19)

Therefore, the fully planarized biPAS model is:

v = 2ℜ{(s2
2 + ǫst

2
3) + (t2

2 + ǫt(s
2
3 + t2

4))}, (5.20)

where ǫs = ǫt = 1, with magnetic chains: M02, M12. For arbitrary ǫs and ǫt, the
flow (5.20) satisfies the boundary condition (2.33), the differentiability conditions
(2.40) and (2.41), but not the optional no-slip conditions (2.34). In addition to the
unplanarized and fully planarized biPAS models, we also investigated the partly
planarized version of model biPAS defined by (5.20) with ǫs = 1, ǫt = 0 or ǫs =
0, ǫt = 1. First, we investigated these models with R ∈ [0, 0.4]. It is easy to
show that a rotation through ∆φ = π/2 makes λ(−R) = λ(R). (The detail of the
rotation through ∆φ = π/2 can be found in Dudley (1998)). So, it is not necessary
to use R < 0. We went beyond this interval if a growing mode was indicated. We
used the same m-decoupling of the magnetic chain as in models p1Y22DM12 and
p1q10Y22DM12.
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5.2.3 Results

For model biPAS, i.e. ǫs = ǫt = 0, using all three combinations of Λi and Λk available
in (5.5) gives three new successful dynamos. Table 5.1 shows good convergence of
these models. In addition, Figure 5.1 shows growing λmax profiles.

For the partly planarized biPAS, we also find three new successful dynamos using
different combinations of Λi and Λk with ǫs = 1, ǫt = 0. Table 5.2 shows good
convergence of these models. In addition, Figure 5.2 shows growing λmax profiles.
On the other hand, no new dynamo was found if we only planarize the toroidal part
t22, i.e. ǫs = 0, ǫt = 1 in (5.20).

For the fully planarized biPAS (i.e. ǫs = ǫt = 1), we found no growing magnetic
fields for 0 ≤ R ≤ 0.4 using any combinations of Λi and Λk. The decay rate of these
models at R = 0.4 can be seen in Table 5.3. The λmax profile of model Λ1 Λ2 is
depicted in Figure 5.3. The other λmax profiles are similar to Figure 5.3. Thus, we
do not provide them in this thesis.

For all successful dynamos, we found that λmax was real for 0 ≤ R ≤ 3. Without
any normalization, all Rcrit were smaller than that of the original PAS model, i.e.
Rcrit ≈ 0.37. A more detailed discussion is given later in §5.4.

Model R N J = 100 J = 200
Λ1 Λ2 0.20 11 0.44797 0.45087

12 0.44801 0.45092
13 0.44795 0.45086

Λ1 Λ3 0.23 15 0.94276 0.94276
16 0.94272 0.95373
17 0.94159 0.95261

Λ2 Λ3 0.125 11 1.00819 1.01746
12 1.00827 1.01753
13 1.00770 1.01697

Table 5.1: λmax for model biPAS with M12 magnetic chain and various Λi and Λk,
showing that these models can act as a dynamo. Model Λi Λk means model biPAS
(5.2) using the i-th and k-th roots of j2.
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Λi Λk R N J = 100 J = 200
Λ1 Λ2 0.22 11 0.85539 0.86114

12 0.85595 0.86170
13 0.85402 0.85977

Λ1 Λ3 0.27 15 0.38185 0.36578
16 0.37130 0.35529
17 0.36565 0.34969

Λ2 Λ3 0.14 12 0.90915 0.92749
13 0.89861 0.91698
14 0.89815 0.91653

Table 5.2: λmax for model partly planarized (ǫs = 1, ǫt = 0) biPAS with M12
magnetic chain and various Λi and Λk. Model Λi Λk means partly planarized biPAS
model using the i-th and k-th roots of j2.

Model N J = 100 J = 200
Λ1 Λ2 11 -24.8382 -24.8784

12 -26.8392 -26.8303
13 -24.5238 -24.5510

Λ1 Λ3 11 -25.9743 -25.9899
12 -26.4116 -26.3559
13 -27.9236 -27.8956

Λ2 Λ3 11 -26.1995 -26.1905
12 -26.7390 -26.7808
13 -28.3623 -28.3663

Table 5.3: λmax for model fully planarized biPAS with M12 magnetic chain and
various Λi and Λk, at R = 0.4. Model Λi Λk means fully planarized biPAS (5.20)
using the i-th and k-th roots of j2.
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Figure 5.1: λmax(R) profiles for unplanarized biPAS using various Λi and Λk with
[J,N ] = [100, 12] and M12 magnetic chain. Model Λi Λk means unplanarized biPAS
using the i-th and k-th roots of j2.
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Figure 5.2: λmax(R) profiles for partly planarized biPAS (ǫs = 1, ǫt = 0) using
various Λi and Λk with [J,N ] = [100, 12] and M12 magnetic chain. Model Λi Λk

means partly planarized biPAS using the i-th and k-th roots of j2.
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Figure 5.3: λmax(R) profiles for fully planarized biPAS with Λ1 and Λ2, [J,N ] =
[100, 12] and M12 magnetic chain.
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5.3 QuasiPAS Models

5.3.1 QuasiPAS Definition

The second modification of PAS is the quasiPAS model defined by

v = 2ℜ{s2
2 + t2

2}, (5.21)

where

s2
2 = KΛij2(Λir), (5.22)

t22 = KΛ2
i j2(Γkr), (5.23)

K =
√

6/5, Λi is the i-th root of j2, Γk is the k-th root of j3, and with one of
magnetic chains
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Here, we use the first three positive roots of j2 and j3, which are approximately:

Λ = 5.3674, 9.0950, 12.3229,

Γ = 6.98793, 10.4171, 13.6980.

So, the Λi Γk combinations that are possible candidates for dynamo are: Λ1 Γ1,Λ1 Γ2,
Λ1 Γ3,Λ2 Γ1,Λ2 Γ2,Λ2 Γ3,Λ3 Γ1,Λ3 Γ2,Λ3 Γ3. The flow of this model satisfies the bound-
ary condition (2.33), the differentiability conditions (2.40) and (2.41), but not the
no-slip conditions (2.34). Furthermore, t22 satisfies the consistency condition (3.10)

∫ 1

0

r4KΛ2
i j2(Γk r)dr = K

Λ2
i

Γk
r4j3(Γk r)

∣∣1
0
,

= 0. (5.24)

5.3.2 Planarizing QuasiPAS

To planarize the poloidal part of the flow s2
2, we first use (3.3) to obtain

f 2
2 = −3is2

2 = −3iKΛij2(Λir).

Then, we use (3.8) and (5.13) to obtain

t23 = −α3

3
d−2f

2
2 = −α3iKΛ2

i j3(Λir). (5.25)
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We planarize t22 using (3.9a),

f 2
3 =

3

α3
r−4

∫ r

1

r4KΛ2
i j2(Γkr) dr,

=
3

α3
K

Λ2
i

Γk
j3(Γkr). (5.26)

We then use (3.3), (3.8) and (5.13) to obtain

s2
3 =

i

6
f 2

3 =
i

2α3

Λ2
i

Γk
Kj3(Γkr), (5.27)

t24 = −α4

4
d−3f

2
3 = KΛ2

i

√
3

2
j4(Γkr). (5.28)

The fully planarized quasiPAS model is thus defined by

v = 2ℜ{(s2
2 + ǫst

2
3) + (t2

2 + ǫt(s
2
3 + t2

4))}, (5.29)

where ǫs = ǫt = 1 and with magnetic chains M02, M12. The flow of this model satis-
fies the boundary condition (2.33), the differentiability conditions (2.40) and (2.41),
but not the no-slip conditions (2.34). Similar to model biPAS, we also consider the
partly planarized versions of model quasiPAS where ǫs = 1, ǫt = 0 (i.e. planarizing
s2
2 only) or ǫs = 0, ǫt = 1 (i.e. planarizing t22 only). Similar to biPAS, we started the

investigation of these models using magnetic chain M12, with R ∈ [0, 0.4].

5.3.3 Results

We found that eight of the nine unplanarized quasiPAS models were successful
dynamos. Convergence of λmax was achieved easily at relatively low [J,N ] for each
case. ℜ{λmax} ≥ 0 also converged at relatively low R. Corresponding λmax profiles
can be seen in Figure 5.4. It can be seen that all λmax are real except for the Λ1 Γ1

model. This model has complex λmax at R & 1.1. Table 5.4 shows the convergence
of λmax for the successful dynamos. The only model that cannot produce a dynamo
action is model unplanarized quasiPAS with Λ1 Γ3.

For the nine partly planarized quasiPAS with ǫs = 1, ǫt = 0, we found five new suc-
cessful dynamos. Similar to the unplanarized quasiPAS, the λmax are well converged
at relatively low [J,N ]. ℜ{λmax} ≥ 0 also converged at relatively low R. Figure 5.5
contains λmax profiles. Model Λ1 Γ1 exhibits a mode crossing at R ≈ 0.8 and has a
complex λmax for R & 0.8. Also, Model Λ2 Γ2 exhibits a mode crossing at R ≈ 0.5
and has a complex λmax for R & 0.5. Otherwise, all the λmax are real. Table 5.5
shows the convergence of λmax of these models. Using the chosen interval of R and
magnetic chain, there was no dynamo found if we planarize the toroidal part t22, i.e.
ǫs = 0, ǫt = 1 in (5.29).

For fully planarized quasiPAS (i.e. ǫs = ǫt = 1), we found no dynamo generated
using different combinations of Λi and Γk in the interval 0 ≤ R ≤ 0.4. The conver-
gence of λmax at R = 0.4 can be seen in Table 5.6. The λmax profile of model Λ1 Γ1
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is depicted in Figure 5.6. The other λmax profiles are similar to Figure 5.6. Thus,
we do not provide them in this thesis.

Model R N J = 100 J = 200 J = 400
Λ1 Γ1 1.65 15 0.76319(15.5186) 0.76800(15.4650)

16 0.76489(15.5163) 0.76971(15.4628)
17 0.75943(15.5064) 0.76436(15.4530)

Λ1 Γ2 2.1 15 1.25098 1.27094
16 1.21959 1.23967
17 1.24670 1.26565

Λ2 Γ1 0.28 11 0.54980 0.55255
12 0.54975 0.55251
13 0.55144 0.55420

Λ2 Γ2 0.4 11 1.98289 2.00828
12 1.97981 2.00522
13 1.98667 2.01203

Λ2 Γ3 1.05 22 0.43719 0.60306 0.64406
23 0.46125 0.62721 0.66803
24 0.46070 0.62664 0.66749

Λ3 Γ1 0.25 13 0.51587 0.53019
15 0.51327 0.52760
16 0.51345 0.52778

Λ3 Γ2 0.2 13 0.48316 0.49379
15 0.48301 0.49364
16 0.48301 0.49364

Λ3 Γ3 0.23 11 0.36786 0.39800
12 0.36679 0.39694
13 0.36523 0.39539

Table 5.4: λmax for model quasiPAS with M12 magnetic chain and various Λi and
Γk. Model Λi Γk means quasiPAS (5.21) using the i-th root of j2 and k-th root of
j3. The non-zero ℑ{λmax} are shown in brackets.
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Model R N J = 100 J = 200
Λ1 Γ1 1.50 15 0.76250(23.2700) 0.75926(23.2402)

16 0.77127(23.2670) 0.76795(23.2372)
17 0.74650(23.2072) 0.74341(23.1777)

Λ2 Γ1 0.30 11 0.72303 0.72709
12 0.72483 0.72889
13 0.72878 0.73283

Λ2 Γ2 0.70 11 5.22681(18.4455) 5.21363(18.4107)
12 5.10061(18.4951) 5.08767(18.4594)
13 5.08786(18.0274) 5.07431(17.9913)

Λ3 Γ2 0.22 11 0.53463 0.54966
12 0.54233 0.55733
13 0.55314 0.56804

Λ3 Γ3 0.28 11 1.17245 1.26500
12 1.15481 1.24763
13 1.12840 1.22081

Table 5.5: λmax for the partly planarized (ǫs = 1, ǫt = 0) quasiPAS model with M12
magnetic chain and various Λi and Γk. Model Λi Γk means quasiPAS (5.21) using
the i-th root of j2 and k-th root of j3. The non-zero ℑ{λmax} are shown in brackets.
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Figure 5.4: λmax(R) profiles for unplanarized quasiPAS using various Λi and Γk with
[J,N ] = [100, 12], except for Λ2 Γ3 with [J,N ] = [200, 22]. Model Λ1 Γ1 has complex
λmax at R & 1.1 represented by dashed line.
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Figure 5.5: λmax(R) profiles for partly planarized quasiPAS (ǫs = 1, ǫt = 0) using
various Λi and Γk with [J,N ] = [100, 12]. Model Λ1 Γ1 and Λ2 Γ2 has complex λmax

at R & 0.8 and R & 0.5 respectively, represented by dashed line.
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Model N J = 100 J = 200
Λ1 Γ1 11 -17.3852 -17.3854

12 -17.6912 -17.6913
13 -17.5052 -17.5054

Λ1 Γ2 11 -17.0302 -17.0303
12 -17.1027 -17.1025
13 -17.0605 -17.0603

Λ1 Γ3 11 -15.2126 -15.2114
12 -15.2009 -15.1997
13 -15.2087 -15.2075

Λ2 Γ1 11 -22.4570 -22.4719
12 -22.6345 -22.6512
13 -23.2292 -23.2272

Λ2 Γ2 11 -20.6365 -20.6407
12 -20.5597 -20.5631
13 -20.6645 -20.6659

Λ2 Γ3 11 -20.6310 -20.6311
12 -20.4188 -20.4194
13 -20.5398 -20.5398

Λ3 Γ1 11 -14.0506 -14.1939
12 -15.0011 -15.0295
13 -16.9940 -17.0563

Λ3 Γ2 11 -25.6350 -25.7109
12 -24.9181 -24.9563
13 -26.1947 -26.2533

Λ3 Γ3 11 -22.2624 -22.2769
12 -23.0515 -23.0562
13 -22.6904 -22.6958

Table 5.6: λmax for fully planarized quasiPAS with M12 magnetic chain and various
Λi and Γk, at R = 0.4. Model Λi Γk means fully planarized quasiPAS (5.21) using
the i-th root of j2 and k-th root of j3.
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5.4 Rcrit Comparison

Here, we compare Rcrit of the unplanarized and partly planarized biPAS and quasi-
PAS models. As in Chapter 3, we normalized the Rcrit using rms(v) and max |v|.
The numerical results are presented in Tables 5.7 and 5.8. Our results reveal that
fourteen out of nineteen new successful dynamos have lower normalized Rcrit, using
both normalization, than that of the original PAS model in equation (3.29). Three
of the unplanarized quasiPAS have higher normalized Rcrit than that of PAS. We
note that partly planarized quasiPAS models with Λ1 Γ1 and Λ2 Γ2 are exceptional:
the order of Rcrit is reversed for the two normalizations. Unlike PAS flow, the bi-
PAS and quasiPAS flows are not Beltrami flows. This shows that flows that do not
have strong helicity can produce a dynamo at lower R compared to a Beltrami flow.
These results are contrary to our expectation, since earlier researchers (e.g. Parker
(1955) and Moffat (1970)) argued that it is an advantage for dynamo action to have
strong helicity, v · ∇ × v.

Model Rcrit
Normalized Rcrit

rms(v) max |v|
PAS 0.37 29.67 113.15

biPAS
Λ1 Λ2 0.19 12.83 41.09
Λ1 Λ3 0.22 18.77 56.55
Λ2 Λ3 0.12 11.86 54.59

quasiPAS
Λ1 Γ1 1.60 52.58 116.45
Λ1 Γ2 2.10 61.60 162.37
Λ2 Γ1 0.27 17.85 43.64
Λ2 Γ2 0.35 19.20 62.14
Λ2 Γ3 1.00 49.84 190.50
Λ3 Γ1 0.25 27.54 79.25
Λ3 Γ2 0.19 16.51 54.01
Λ3 Γ3 0.23 17.49 74.04

Table 5.7: Normalized Rcrit for PAS, biPAS and quasiPAS.

Model Rcrit
Normalized Rcrit

rms(v) max |v|
biPAS
Λ1 Λ2 0.21 15.16 44.15
Λ1 Λ3 0.27 24.63 74.68
Λ2 Λ3 0.14 14.79 61.80

quasiPAS
Λ1 Γ1 1.42 50.54 96.30
Λ2 Γ1 0.28 19.52 54.31
Λ2 Γ2 0.60 35.50 99.86
Λ3 Γ2 0.22 20.24 73.86
Λ3 Γ3 0.27 22.11 81.97

Table 5.8: Normalized Rcrit for partly planarized biPAS and quasiPAS.
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5.5 Chapter Summary

In §4.5 on page 66, we modified the PAS flow so that the new flow could be planarized
within a spherical shell. In this chapter, we modified the PAS flow into two new
flows: biPAS and quasiPAS flows. These flows can be planarized in a sphere.

All the three unplanarized biPAS models were found to be successful dynamos. We
also found that three of the six possible partly planarized biPAS models were suc-
cessful dynamos. λmax converged well at relatively low [J,N ], and ℜ{λmax} ≥ 0
converged at relatively low R. Tables 5.1–5.2 show the convergence of these success-
ful dynamos. The λmax profiles of these successful dynamos can be seen in Figures
5.1–5.2. However, we could not find any of the fully planarized biPAS models that
acted as a dynamo in the interval 0 ≤ R ≤ 0.4. Table 5.3 shows the decay rate of
the fully planarized biPAS models at R = 0.4.

Of nine quasiPAS models, we found eight new successful dynamos and of the eighteen
partly planarized models, we found five new successful dynamos. For the successful
dynamos, λmax converged well at relatively low [J,N ], and ℜ{λmax} > 0 converged at
relatively low R. The change in λmax can be seen in Tables 5.4–5.5. Corresponding
λmax profiles can be seen in Figures 5.4–5.5. Similar to biPAS, no fully planarized
quasiPAS models were found to act as dynamos in the interval 0 ≤ R ≤ 0.4. The
decay rates of these models can be seen in Table 5.6.

It is interesting to note that the successful partly planarized biPAS and quasiPAS
models, all resulted from planarizing the poloidal part of the flow and leaving the
toroidal part unplanarized. In contrast, we do not find any dynamos if we planarize
the toroidal part only.

We found that most Rcrit of the successful dynamos were lower than that of the
original PAS model. Our lowest Rcrit, without any normalization, is 0.12 which is
a significant improvement compared to 0.37 for PAS. Our results reveal that the
fourteen out of nineteen new dynamos perform better that the PAS dynamo, even
though they are not Beltrami flows.
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Chapter 6

The Convergence of Kinematic
Dynamos

Although we are convinced that models p1Y22DM12 and p1q10Y22DM12 do act as
dynamos, the relative change of λmax, shown in Table 3.2 on page 39 and Table 3.5 on
page 46 is about 1–5%. Also, our use of spherical shells in Chapter 4 did not
significantly improve the convergence of λmax. Therefore, in this chapter, we provide
additional convergence evidence that planar flows can maintain a magnetic field.

Various convergence tests have been used by earlier researchers (e.g. Gubbins (1973),
KR, DJ). Most researchers used the change in λmax as a convergence test. Some
researchers also use the eigenvector elements (i.e. the elements of x in (2.38) on
page 20) to indicate convergence. Gubbins (1973) stated that the change in the
higher harmonics of the eigenvector is a better test than the change in λmax. Later,
DJ introduced another test based on the root-mean-square of B over spherical sur-
faces regarded as a function of r.

In this chapter we discuss the above convergence tests and introduce two new tests:
SRMS and VRMS. We compare the various tests based on sensitivity and conve-
nience and apply them to models p1Y22DM12 and p1q10Y22DM12.

6.1 Some Existing Tests for Convergence

6.1.1 The Eigenvalue (λ) Test

In this test, values of λmax(J,N,R) are first calculated. Then, we can tabulate and
plot them in various ways. For visual presentation, we can plot λmax(R) for various
[J,N ] as in Figures 3.2–3.3 on page 35. Alternatively, we can plot λmax(N) for
various J and a fixed R as in Figure 3.5 on page 40 and Figure 3.13 on page 46. We
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can also plot λmax(h
2) for various N where h = 1/J at fixed R as in Figure 3.6 on

page 40 and Figure 3.14 on page 47.

In most work, tables of λmax are used to demonstrate convergence. In this chapter
to quantify convergence, we calculate the absolute difference (AD)

AD(λmax) := |λmax(J2, N2) − λmax(J1, N1)|,

where [J1, N1], [J2, N2] are two different truncation levels at fixed R with J2 = J1 +
∆J,N2 = N1 + ∆N and ∆J,∆N ≥ 0.
We also calculate the mixed difference (MD)

MD(λmax) := AD(λmax)/(1 + |λmax(J2, N2)|),

and the relative difference (RD)

RD(λmax) := AD(λmax)/|λmax(J2, N2)|.

6.1.2 The Eigenvector (S, T ) Test

For this test, we need the eigenvector in (2.38) on page 20 which has element

X := Sm
n (rj) or Tm

n (rj),

where rj = jh; j = 1, . . . , J . We normalized the eigenvector to make the element
with maximum magnitude equal to 1. (The first-found element with maximum
magnitude was used) Earlier researchers used this method to indicate convergence
by comparing visually the graphs of X(rj) for each n,m at two different truncation
levels (see Gubbins (1973), KR, Dudley (1988)).

We attempt to quantify this test by calculating the maximum absolute difference
(MAD)

MAD(X) := max
S,T,j,n,m

|X(J2, N2) −X(J1, N1)|,

the maximum mixed difference (MMD)

MMD(X) := max
S,T,j,n,m

|X(J2, N2) −X(J1, N1)|/(1 + |X(J2, N2)|),

and the maximum relative difference (MRD)

MRD(X) := max
S,T,j,n,m

|X(J2, N2) −X(J1, N1)|/|X(J2, N2)|.

However, we found MRD to be impractical because some |X| ≪ 1, which made
MRD(X) ≫ 1, even when RD(λmax) < 1%.
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6.1.3 The Vector Field (B) Test

For given λ = µ+ iω and λ = µ− iω, the λ contribution to B is

B = (Bλe
λt + Bλ e

λt)/(1 + δ0
ω), (6.1)

= eµt
(
(Bλ + Bλ) cos(ωt) + i(Bλ −Bλ) sin(ωt)

)
/(1 + δ0

ω), (6.2)

where Bλ = Bλ. For real λ, we only need to consider the first term of (6.2) since
Bλ = Bλ. In this chapter, we only use models that have real eigenvalues. To be
comparable to other tests, we normalized B such that |B| = 1 at t = 0.

For visual comparison, we can plot contours of Br, Bθ, Bφ in planes φ = const.
and planes z = const. BIJ used such contours to infer convergence for model
p1Y22DM12. In addition, for quantitative comparison, we calculate the maximum
absolute difference (MAD)

MAD(B) := max
ξ

|Bξ(J2, N2) −Bξ(J1, N1)|,

the maximum mixed difference (MMD)

MMD(B) := max
ξ

|Bξ(J2, N2) −Bξ(J1, N1)|
1 + |Bξ(J2, N2)|

,

where ξ = r, θ, φ. We do not use MRD because we found the same problem as in
the (S, T ) test.

6.2 Surface Root Mean Square (SRMS) Tests

6.2.1 Definition

This is our first new test. From (6.1),

B2 = e2µt
(
B2

λe
2ωit + B2

λ̄e
−2ωit + 2Bλ · Bλ̄

)
/(1 + δ0

ω).

Consideration of the weighted average of B2 over time span τ = π/ω

1

τ

∫ τ

0

B2e−2µtdt = Bλ · Bλ̄ (2 − δ0
ω),

led us to define the SRMS quantities

srmsB(r) =
( 1

4π

∫

4π

Bλ · Bλ sin θ dθ dφ
) 1

2
, (6.3)

srmsB(θ) =
( 1

π

∫ 1

0

∫ 2π

0

Bλ · Bλ r dφ dr
) 1

2
, (6.4)
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srmsB(φ) =
( 2

π

∫ 1

0

∫ π

0

Bλ · Bλ r dθ dr
) 1

2
. (6.5)

The factor (2−δ0
ω) has been dropped since we only consider real eigenvalues (ω = 0).

srmsB(r) is an average over the spherical surface

r = const., 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π;

srmsB(θ) is an average over the conical surface

θ = const., 0 ≤ r ≤ 1, 0 ≤ φ ≤ 2π;

and srmsB(φ) is an average over the semi-circular surface

φ = const., 0 ≤ θ ≤ π, 0 ≤ r ≤ 1.

The associated SRMS of B components are

srmsBξ(r) =
( 1

4π

∫

4π

BξλBξλ̄ sin θ dθ dφ
) 1

2
, (6.6)

srmsBξ(θ) =
(1

π

∫ 1

0

∫ 2π

0

BξλBξλ̄ r dφ dr
) 1

2
, (6.7)

srmsBξ(φ) =
(2

π

∫ 1

0

∫ π

0

BξλBξλ̄ r dθ dr
) 1

2
. (6.8)

Equations (6.3)–(6.5) and (6.6)–(6.8) are related by:

srmsB(ξ) =
√

(srmsBr(ξ))2 + (srmsBθ(ξ))2 + (srmsBφ(ξ))2. (6.9)

This test is an extension of DJ’s test, in which srmsB(r) was used to indicate
convergence (DJ’s Brms). We normalized SRMS quantities such that

max
ξ

srmsB(ξ) = 1. (6.10)

The SRMS tests involve the amplification factors n(n+1), ∂S/∂r, ∂Y/∂θ and ∂Y/∂φ.
Thus, we expect that this test is more sensitive than the (S, T ) test. Furthermore,
each SRMS graph indicates the structure of the magnetic field in an average sense.
The graphs, however, do not reflect any large but localized field values which do not
significantly contribute to the average.

6.2.2 The Numerical Integrations

Here, we explain the numerical methods that are used in calculating the integrals
in the SRMS formula. For each λ,

Bλ = Sλ + Tλ (6.11)
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where, in our formalism,

Sλ =
∑

n,m

(n(n + 1)

r
Sm

nλY
m
n ,

1

r

(
rSm

nλ

)′∂Y m
n

∂θ
,

1

r sin θ

(
rSm

nλ

)′∂Y m
n

∂φ

)
,

Tλ =
∑

n,m

(
0,
Tm

nλ

sin θ

∂Y m
n

∂φ
,−Tm

nλ

∂Y m
n

∂θ

)
.

Therefore,

BrλBrλ =
∑

n1,m1

∑

n2,m2

(
n1(n1 + 1)

r
Sn1λY

m1
n1

n2(n2 + 1)

r
Sn2λY

m2
n2

)

BθλBθλ =
∑

n1,m1

∑

n2,m2

(
1

r
(rSn1λ)

′∂Y
m1

n1

∂θ

1

r
(rSn2λ)

′∂Y
m2
n2

∂θ
+
Tn1λ

sin θ

∂Y m1
n1

∂φ

Tn2λ

sin θ

∂Y m2
n2

∂φ

+ 2ℜ
{1

r
(rSn1λ)

′∂Y
m1
n1

∂θ

Tn2λ

sin θ

∂Y m2
n2

∂φ

})

BφλBφλ =
∑

n1,m1

∑

n2,m2

(
1

r sin θ
(rSn1λ)

′∂Y
m1
n1

∂φ

1

r sin θ
(rSn2λ)

′∂Y
m2
n2

∂φ
+ Tn1λ

∂Y m1
n1

∂θ
Tn2λ

∂Y m2
n2

∂θ

− 2ℜ
{ 1

r sin θ
(rSn1λ)

′∂Y
m1
n1

∂φ
Tn2λ

∂Y m2
n2

∂θ

})
.

Substituting the above equations into equations (6.6)–(6.8), led us to evaluate three
types of integral: r, θ, and φ integrals. However, for the surface integrals in (6.3)
and (6.6), the calculations are shortened by the use of orthogonality.

r Integrals

There are four different integrals

Ir1 =

∫ 1

0

1

r2
Sn1λ Sn2λ dr

Ir2 =

∫ 1

0

Tn1λ Tn2λ dr

Ir3 =

∫ 1

0

1

r2
(rSn1λ)

′ (rSn2λ)
′ dr

Ir4 =

∫ 1

0

1

r
(rSn1λ)

′ Tn2λ dr

We approximate these integrals using Simpson’s rule. This rule is adequate, having
error O(h4) compared to the error O(h2) of our second order central difference
scheme (2.35) and (2.36) on page 20.
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θ Integrals

There are five integrals

Iθ1 =

∫ π

0

Pm1
n1

(cos θ)Pm2
n2

(cos θ) dθ, (6.12)

Iθ2 =

∫ π

0

d

dθ
Pm1

n1
(cos θ)

d

dθ
Pm2

n2
(cos θ) dθ, (6.13)

Iθ3 =

∫ π

0

m1m2

sin2 θ
Pm1

n1
(cos θ)Pm2

n2
(cos θ) dθ, (6.14)

Iθ4 =

∫ π

0

d

dθ
Pm1

n1
(cos θ)

m2

sin θ
Pm2

n2
(cos θ) dθ, (6.15)

Iθ5 =

∫ π

0

m1

sin θ
Pm1

n1
(cos θ)

d

dθ
Pm2

n2
(cos θ) dθ, (6.16)

As defined in (2.21) on page 18, Pm
n is the Schmidt normalized Legendre function.

This normalization is commonly used in geomagnetism and geophysics (Chapman
and Bartels, 1962). The alternative Neumann normalized Legendre function, Pn,m,
used by BG and PAS and the default in Matlab and Mathematica, is

Pn,m =

{
Pm

n , when m = 0,(
2 (n−m)!

(n+m)!

)
Pm

n , when m > 0.

In calculating integrals (6.12)–(6.16), we used various numerical methods:

1. Built in Legendre Function and numerical integration in Matlab.

2. Built in Legendre Function and integration in Mathematica.

3. The Gauss-Kronrod (GK) method available as a Fortran routine from the
Guide to Available Mathematical Software (GAMS) web site.

We first consider integral (6.12) using both the Neumann and Schmidt normaliza-
tions to determine the numerical suitability.

In our experiment on integral (6.12), we sometimes could not obtain agreement
between Matlab, Mathematica and the GK method, using Neumann normalization.
However, apart from a very small values, agreement was obtained using the Schmidt
normalization. As a further check, we also evaluated

∫ 1

−1

Pm1
n1

(cos θ)Pm2
n2

(cos θ) d cos θ, (6.17)

using the above methods and the formula of Schuster (1903) (see appendix), and
reached the same conclusion. These results confirm the generally accepted rule that
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Schmidt normalization is better for numerical work. The integration differences are
explainable since the integrand of (6.12) can be highly oscillatory for some n and
m, and the amplitudes with Neumann normalization can be much bigger than with
Schmidt, as shown in Figure 6.1.

We conclude that it is convenient to use the Schmidt normalized Legendre function
with the GK method for evaluating integral (6.12). Furthermore, using the Schmidt
normalization, the recurrence relations (Chapman and Bartels, 1962):

d

dθ
Pm

n =1
2
{δ0

m−1(n +m)(n−m+ 1)} 1
2Pm−1

n

− 1
2
{(n+m+ 1)(n−m)} 1

2Pm+1
n (m > 0) (6.18)

d

dθ
P 0

n = − {1
2
n(n + 1)} 1

2P 1
n (6.19)

2
m

sin θ
Pm

n ={δ0
m−1(n+m)(n +m− 1)} 1

2Pm−1
n−1

+ {(n−m)(n−m− 1)} 1
2Pm+1

n−1 (m > 0), (6.20)

allow us to rewrite integrals (6.13)–(6.16) in terms of (6.12).

φ Integrals

There is just one integral

∫

2π

e(m1−m2)iφ dφ = 0, for m1 −m2 6= 0

= 2π, for m1 −m2 = 0. (6.21)

92



(a)
-1 -0.5 0.5 1

-0.2

-0.1

0.1

0.2

0.3

(b)
-1 -0.5 0.5 1

-200000

-100000

100000

200000

(c)
-1 -0.5 0.5 1

-1000

-500

500

1000

Figure 6.1: Plot of (a) P 5
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7 using Schmidt normalization, (b)P 5
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7 using Neumann

normalization, and (c)P 2
30P
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6 using Neumann normalization.
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6.2.3 Visual and Numerical Presentation for SRMS

For visual presentation, we need only twelve graphs for srmsB(ξ), srmsBξ(ξ). To
observe convergence, in each graph, we plot a SRMS quantity for two different
[J,N ] values.

For numerical presentation, we calculate the maximum absolute difference (MAD)

MAD(srmsX) := max
ξ

| srmsX(ξ, J2, N2) − srmsX(ξ, J1, N1)|,

the maximum mixed difference (MMD)

MMD(srmsX) := max
ξ

| srmsX(ξ, J2, N2) − srmsX(ξ, J1, N1)|
1 + | srmsX(ξ, J2, N2)|

,

and the maximum relative difference (MRD)

MRD(srmsX) := max
ξ

| srmsX(ξ, J2, N2) − srmsX(ξ, J1, N1)|
| srmsX(ξ, J2, N2)|

.

where X = B, Bξ and maxξ srmsB(ξ) = 1.

6.3 The Volume Root Mean Square (VRMS) Test

In their earlier work, PAS used the magnetic energy

E =
1

2µ

∫

V

|B|2 dV, (6.22)

where µ is the permeability, to test convergence. PAS maintained that this test
is more stringent than the λ test. In this chapter, we construct a volume root-
mean-square (VRMS) test which is similar to SRMS and has the same sensitivity
as E:

vrmsB : =

[
3µE

2π

]1/2

,

=

[
3

4π

∫

V

|B|2 dV

]1/2

,

=
[ ∑

n,m

3n(n + 1)

∫ 1

0

(
n(n + 1)|Sm

n |2

+

∣∣∣∣
d

dr
(rSm

n )

∣∣∣∣
2

+ |rTm
n |2

)
dr

]
. (6.23)

We expect that VRMS is less sensitive than SRMS because the volume integral
decreases sensitivity. There is no natural way of normalizing vrmsB. If we normalize

94



vrmsB using a sensitive factor, such as B, then it become artificially sensitive. We
decided to calculate vrmsB directly from the (S, T ) eigenvector, in which case it has
normalization as in the (S, T ) test.

For numerical presentation, we calculate the absolute difference (AD)

AD(vrmsB) := | vrmsB(J1, N1) − vrmsB(J2, N2)|,

the mixed difference (MD)

MD(vrmsB) :=
AD(vrmsB)

1 + | vrmsB(J2, N2)|
,

and the relative difference (RD)

RD(vrmsB) := AD(vrmsB)/| vrmsB(J2, N2)|,

so that we can compare it with the other tests.

6.4 Comparison of Convergence Tests

To determine the most sensitive and convenient test, we apply the above tests to
the following models: (a) PAS as defined in (3.29) , (b) KR as defined in (3.22),
(c) DJ, (d) α2-dynamo (Roberts, 1972), and (e) free decay. In general, to calculate
MAD, MMD and MRD, we use the grid r = j/J1, (j = 0, ..., J1), θ = πk/100, φ =
2πk/100, (k = 0, ..., 100). The following is the DJ model,

v = t0
2 + ǫs0

2, (6.24)

where
t02 = s0

2 = r sin(πr) , ǫ = 0.14 ,

with magnetic chain: S1
1 , T

1
1 , S

1
2 , T

1
2 , S

1
3 , T

1
3 , ...

In the α2-dynamo, the dimensionless induction equations are

∂S

∂t
= RαT + ∇2S, (6.25)

∂T

∂t
= −Rα∇2S + ∇2T, (6.26)

where Rα is a mean-field magnetic Reynolds number and Rcrit ≈ 4.49, with magnetic
chain: S0

1 , T
0
1 .

We originally intended to use (M)RD to compare all tests. However, this was not
possible due to the very large errors as discussed previously in §6.1.2. As a result,
we used (M)RD for comparing the λ, SRMS and VRMS tests. And we used (M)AD
and (M)MD for comparing the B, (S, T ), SRMS and VRMS tests.
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6.4.1 The Free Decay Model

In this problem, it can be proved theoretically that the change in λ is second order
in the change of the (S, T ) eigenvector. Suppose

η∇2f =

{
λf in V ;

0 in V̂ ;
(6.27)

∇f = O(1/r2) as r → ∞; (6.28)

[g∇f ] = 0 across Σ; (6.29)

g = O(1/r) as r → ∞. (6.30)

Our magnetic scalars (S, T ) actually satisfy ∇f = O(1/r3), g = O(1/r2) as r → ∞.
The valid choices for (f, g) are: (S, S), (T, T ), (T, S), but not (S, T ) since (6.29) is
invalid. Using (6.27)–(6.30), we consider the following integral:

λ

∫

V

fg dV = η

∫

V

∇2f · g dV,

= −η
∫

bV

∇ · (g∇f) dV + η

∫

Σ∞

g∇f · er dΣ

− η

∫

V

∇f · ∇g dV,

= −η
∫

V∞

∇f · ∇g dV − η

∫

bV

g∇2f dV

+ η

∫

Σ∞

O(1/r3)r2 dΣ ,

= −η
∫

V∞

∇f · ∇g dV . (6.31)

The special choices g = f, g = δf yield

λ

∫

V

f 2 dV = −η
∫

V∞

(∇f)2 dV , (6.32)

λ

∫

V

f(δf) dV = −η
∫

V∞

∇f · ∇(δf) dV . (6.33)

Varying (6.32),

(λ+ δλ)

∫

V

(f + δf)2 dV = −η
∫

V∞

(
∇f + ∇(δf)

)2
dV . (6.34)

Using (6.32) and (6.33),

λ

∫

V

(δf)2 dV + δλ

∫

V

(f + δf)2 dV = −η
∫

V∞

(
∇(δf)

)2
dV . (6.35)
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On the right hand side of (6.35), if f = T , then V∞ can be replaced with V

since T = δT = 0 in V̂ . Equation (6.35) implies that δλ is second order in
(δf) and ∇(δf), where f = S, T . Our numerical results, as presented in Ta-
ble 6.1, reveal MAD((S, T )) ≈ MAD(SRMS), MMD((S, T ))≈MMD(SRMS) and
RD(λ) ≪ MRD(SRMS). These results confirm that (S, T ) is more sensitive than λ
for free decay. In the steady kinematic dynamo problem, where the eigenvalue is R,
a similar result to (6.35) has been discussed by Gibson and Roberts (1967).

J N λ SRMS B ST VRMS

10 1 -9.8805767 2.4936311
20 1 -9.8723019 2.5025770

(M)AD 0.0096578 0.0110236 0.0057261 0.0089459
(M)MD 0.0053984 0.0059406 0.0035758 0.0025541
(M)RD 0.000838 0.0434350 0.0035746

Table 6.1: Comparison of λ, SRMS, B, ST and VRMS for the free decay problem
using J = 10, 20 and N = 1.

6.4.2 PAS, KR, DJ and α2-Dynamo Models

Here, we compare convergence tests. The comparison of convergence tests is divided
into two groups. In the first group, we use the same R as earlier researchers (i.e.
PAS, KR, and DJ), given in Tables 5, 6 and Figure 8 of DJ. In the second group,
we use R+ such that λmax(R+) ≈ 1. With the chosen R, generally we aim for 1%
and 5% changes in λmax but this is not always obtainable.

All of the differences have magnitude O(h2) due to the O(h2) accuracy of the eigen-
value and eigenvector. Consequently, the estimates of the differences depend on the
numerical methods used. For example, we found that the MAD of SRMS, B and
(S, T ) depended on the type of interpolation used (e.g. linear or spline) in their
calculation. To remove this dependence, we chose J1 to be a divisor of J2, and used
J1 radial subintervals, so that no interpolation was needed.

We rank the tests using the following rules: (a) Ranks 1–5 were given, where 1 is
the most sensitive, and (b) two tests will be given the same rank if they agree to
within 0.5 in the leading digit. The numerical results can be seen in Tables 6.2–6.8.
In addition, the comparative rankings are shown in Tables 6.9–6.11.

In (M)AD rankings, we found the B test to be the most sensitive in the majority
of cases followed by SRMS, (S, T ) and VRMS. However, there are some exceptional
cases. In Tables 6.4b, 6.8a and 6.8b, SRMS is as sensitive as B. In Table 6.7b,
(S, T ) is as sensitive as SRMS and more sensitive than SRMS in Table 6.6b. VRMS
is the least sensitive test in all cases, except in Table 6.8a where (S, T ) is the least
sensitive one.
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In (M)MD rankings, we found that the rank order is similar to that in (M)AD. We
also found some exceptional cases, as in the (M)AD rankings. In Tables 6.4b, 6.5b,
6.8a and 6.8b, SRMS is as sensitive as B. In Table 6.6a and b, (S, T ) seems to be
as sensitive as SRMS. VRMS is the least sensitive test in almost all cases, except in
Table 6.8a, where (S, T ) is least sensitive.

In (M)RD rankings, VRMS is still the least sensitive test in all cases. We reach
no conclusion on the most sensitive test. 50% of our results show that λ is more
sensitive than SRMS but the other 50% show vice versa.

In the second group except for VRMS, we used (M)AD to compare the tests. This
seems reasonable for B, (S, T ) and SRMS, given the normalization specified in §6.1.2,
§6.1.3, and §6.2. This also seems reasonable for λ since λmax(R) ≈ 1 and hence
AD ≈ RD, this choice of R in effect normalizes λmax. However, lacking any obvious
way of normalizing VRMS, we used RD to compare it with the other tests. The
differences and comparative rankings are shown in Table 6.12. In determining their
rank, we use the same rules as used above for the first group.

Similar to the first group, we are unable to draw any general conclusion regarding to
the most sensitive test. However, our results show that λ is often more sensitive than
the (S, T ) eigenvector, and sometimes even more sensitive than B. Moreover, either
λ or B is always the most sensitive test. Meanwhile, SRMS is usually more sensitive
than (S, T ) and VRMS. VRMS seems to be the least sensitive test in all cases, except
when we compare two truncation levels, ([J1, N1] = [100, 15], [J2, N2] = [200, 15]), of
the DJ model.

Our results, in the PAS, KR, DJ and α2 models tested, reveal that λmax is usually
a more sensitive measure of convergence than (S, T ) eigenvector. This is contrary
to expectations and common belief. Gubbins (1972) argued that the magnitude of
the higher harmonics in X are more sensitive than λmax with respect to changing N
and keeping J fixed. However, his argument only applies when the matrix in (2.38)
is sparse but not banded.
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J N λmax SRMS B (S, T ) VRMS

a 100 15 2.0398095 0.5391634
100 16 2.0276901 0.5393975

(M)AD 0.0010093 0.0138683 0.0004388 0.0002341
(M)MD 0.0008689 0.0116743 0.0003377 0.0001520
(M)RD 0.0059769 0.0062496 0.0004340

b 50 11 2.3097980 0.5363805
100 11 2.3140750 0.5346440

(M)AD 0.0078823 0.0083763 0.005726 0.0017365
(M)MD 0.0044972 0.0069540 0.0034252 0.0011315
(M)RD 0.0513505 0.0512122 0.0032479

Table 6.2: Comparison of λ, SRMS, B, (S, T ) and VRMS for PAS. The changes in
λmax are less than 1%. We vary N in (a) and J in (b).

J N λmax SRMS B (S, T ) V RMS

a 100 13 1.9246983 0.5410935
100 14 1.9729995 0.5402251

(M)AD 0.0020500 0.0281684 0.0016901 0.0008683
(M)MD 0.0017677 0.0240300 0.0009737 0.0005638
(M)RD 0.0244811 0.0190023 0.0016073

b 50 9 1.0148861 0.5574653
100 9 1.0501654 0.5561781

(M)AD 0.0069606 0.0102706 0.0044087 0.0012871
(M)MD 0.0039658 0.0069611 0.0034251 0.0008271
(M)RD 0.0335938 0.0383175 0.0023142

Table 6.3: Comparison of λ, SRMS, B, (S, T ) and VRMS for PAS. The changes in
λmax are less than 5%. We vary N in (a) and J in (b).

J N λmax SRMS B (S, T ) VRMS

a 800 11 0.1908203 1.1766875
800 12 0.1921644 1.1768992

(M)AD 0.0250262 0.0341076 0.0010932 0.0002117
(M)MD 0.0171473 0.0251564 0.0010796 0.0000973
(M)RD 0.0069948 0.1053402 0.0001799

b 800 12 0.1921644 1.1768992
1600 12 0.1910535 1.1769060

(M)AD 0.0001232 0.0001369 0.0000516 0.0000068
(M)MD 0.0001056 0.0001155 0.0000431 0.0000031
(M)RD 0.0058146 0.0022149 0.0000058

Table 6.4: Comparison of λ, SRMS, B, (S, T ) and VRMS for KR. The changes in
λmax are less than 1%. We vary N in (a) and J in (b).
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J N λmax SRMS B (S, T ) VRMS

a 100 9 0.2830387 1.1763992
100 10 0.2864833 1.1756805

(M)AD 0.0432499 0.0740190 0.0040132 0.0007188
(M)MD 0.0286046 0.0536863 0.0039638 0.0003304
(M)RD 0.0120235 0.1160508 0.0006114

b 400 10 0.1967945 1.1770135
800 10 0.1923502 1.1770804

(M)AD 0.0004955 0.0005556 0.0002020 0.0000669
(M)MD 0.0004245 0.0004691 0.0001773 0.0000307
(M)RD 0.0231053 0.0082287 0.0000568

Table 6.5: Comparison of λ, SRMS, B, (S, T ) and VRMS for KR. The changes in
λmax are less than 5%. We vary N in (a) and J in (b).

J N λmax SRMS B (S, T ) VRMS

a 100 9 1.4510494 0.9801350
100 10 1.4614627 0.9808524

(M)AD 0.0047974 0.0625658 0.0036968 0.0007175
(M)MD 0.0033303 0.0606694 0.0030416 0.0003623
(M)RD 0.0071253 0.0064795 0.0007315

b 50 9 1.4607313 0.9803844
100 9 1.4510494 0.9801350

(M)AD 0.0014877 0.0033139 0.0025158 0.0002495
(M)MD 0.0011018 0.0023958 0.0012595 0.0001260
(M)RD 0.0066723 0.0027058 0.0002545

Table 6.6: Comparison of λ, SRMS, B, (S, T ) and VRMS for DJ. The changes in
λmax are less than 1%. We vary N in (a) and J in (b).

J N λmax SRMS B (S, T ) VRMS

a 100 6 1.5510714 0.9840762
100 10 1.4614627 0.9808524

(M)AD 0.0568522 0.1891378 0.0234026 0.0032237
(M)MD 0.0349397 0.1821002 0.0227682 0.0016248
(M)RD 0.0613144 0.0908874 0.0032867

b 20 9 1.5767503 0.9754851
100 9 1.4510494 0.9801350

(M)AD 0.0101338 0.0252767 0.0109626 0.0046499
(M)MD 0.0068365 0.0172203 0.0059534 0.0023538
(M)RD 0.0866276 0.0196633 0.0047441

Table 6.7: Comparison of λ, SRMS, B, (S, T ) and VRMS for DJ. The changes in
λmax are less than 5%. We vary N in (a) and J in (b).
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J N λmax SRMS B (S, T ) VRMS

a 15 1 0.7383134 0.9311456
90 1 0.7031502 0.9369293

(M)AD 0.0125802 0.0125100 0.0030344 0.0057837
(M)MD 0.0069817 0.0068032 0.0021006 0.0029860
(M)RD 0.0500080 0.3458718 0.0061731

b 30 1 0.7111874 0.9363679
90 1 0.7031502 0.9369293

(M)AD 0.0034270 0.0034386 0.0006458 0.0005614
(M)MD 0.0018758 0.0018481 0.0004662 0.0002899
(M)RD 0.0114302 0.0728596 0.0005992

Table 6.8: Comparison of λ, SRMS, B, (S, T ) and VRMS for α2 dynamo. The
changes in λmax are less than 1% in (a) and 5% in (b).

Table
6.2a 6.2b 6.3a 6.3b 6.4a 6.4b 6.5a 6.5b 6.6a 6.6b 6.7a 6.7b 6.8a 6.8b

SRMS 2 2 2 2 2 1 2 2 2 3 2 2 1 1
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(S, T ) 3 3 3 3 3 3 3 3 3 2 3 2 4 3
VRMS 4 4 4 4 4 4 4 4 4 4 4 4 3 4

Table 6.9: (M)AD rankings of SRMS, B, (S, T ) and VRMS tests using models PAS,
KR, DJ and α2.

Table
6.2a 6.2b 6.3a 6.3b 6.4a 6.4b 6.5a 6.5b 6.6a 6.6b 6.7a 6.7b 6.8a 6.8b

SRMS 2 2 2 2 2 1 2 1 2 2 2 2 1 1
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(S, T ) 3 3 3 3 3 3 3 3 2 2 3 3 4 3
VRMS 4 4 4 4 4 4 4 4 4 4 4 4 3 4

Table 6.10: (M)MD rankings of SRMS, B, (S, T ) and VRMS tests using models
PAS, KR, DJ and α2.

Table
6.2a 6.2b 6.3a 6.3b 6.4a 6.4b 6.5a 6.5b 6.6a 6.6b 6.7a 6.7b 6.8 6.8b

SRMS 1 1 1 1 1 2 1 2 2 2 1 2 1 1
VRMS 3 3 3 3 3 3 3 3 3 3 3 3 3 3

λ 1 1 1 1 2 1 2 1 1 1 2 1 2 2

Table 6.11: (M)RD rankings of λ, SRMS and VRMS tests using models PAS, KR,
DJ and α2.
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[J1, N1] λmax AD(λ) AD(B) AD(ST) AD(SRMS) RD(vrmsB)

α2: R+ = 4.786, λmax = 1.0001443 for [J2, N2] = [200, 1]

[40, 1] 1.005095 0.004951 0.002321 0.000538 0.002308 0.000039

1 2 4 2 5

[20, 1] 1.020566 0.020422 0.008017 0.001502 0.007983 0.001233

1 2 4 2 4

[10, 1] 1.082441 0.082296 0.026389 0.009813 0.025933 0.001664

1 2 4 2 5

PAS: R+ = 0.38272, λmax = 1.000245 for [J2, N2] = [200, 20]

[200, 15] 1.017098 0.016853 0.014666 0.000559 0.001461 0.000564

1 1 4 3 5

[200, 13] 0.930966 0.069279 0.032761 0.002291 0.003470 0.002235

1 2 4 3 4

[100, 20] 0.994794 0.005451 0.001692 0.000812 0.002063 0.000521

1 2 4 2 5

[50, 20] 0.977180 0.023065 0.008376 0.004329 0.008871 0.001728

1 2 4 2 5

KR: R+ = 4421, λmax = 1.000215 for [J2, N2] = [900, 12]

[900, 11] 0.997686 0.002530 0.051397 0.002250 0.037393 0.000300

3 1 3 2 5

[900, 7] 0.931474 0.068742 0.251715 0.035478 0.184483 0.007109

3 1 4 2 5

[300, 12] 1.011288 0.011072 0.001370 0.000502 0.001210 0.000088

1 2 4 2 5

[150, 12] 1.048831 0.048615 0.006020 0.002153 0.005289 0.000491

1 2 4 3 5

DJs2t2: R+ = 57.963, λmax = 1.000787 for [J2, N2] = [200, 15]

[100, 15] 1.003094 0.002307 0.000789 0.000348 0.000477 0.000411

1 2 5 3 4

[200, 9] 0.994274 0.006513 0.100818 0.004081 0.038555 0.000498

3 1 4 2 5

[200, 8] 1.042718 0.041931 0.155070 0.009068 0.080278 0.000169

3 1 4 2 5

[50, 15] 1.012371 0.011584 0.003994 0.001598 0.001844 0.001629

1 2 3 3 3

Table 6.12: Difference results, and rankings, for α2, PAS, KR, DJ, at various [J,N ],
keeping J fixed and varying N , and vice versa.
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6.4.3 The Visual Convergence Test

In this section, we will consider convergence tests based on graphical presentation
of the B, (S, T ) and SRMS tests. To test convergence of the eigenvector visually, we
apply SRMS, (S, T ), and B tests to the PAS model, using [J,N ] = [100, 13], [100, 14]
and magnetic chain M12 at R = 0.4. The graph of the SRMS quantities can be seen
in Figure 6.2. In addition, the (S, T ) plots and the contours of B’s components can
be seen in Figures 6.3 and 6.4, respectively. The good convergence of PAS is reflected
by the fact that Figures 6.2–6.4 for the two [J,N ] are virtually indistinguishable.

For SRMS, we only need 12 graphs to see the distribution of SRMS fields. On the
other hand, with the above [J,N ], O(N2) (i.e. about 150) graphs may be needed for
the (S, T ) test. Figure 6.3 shows some of the Sm

n (r), Tm
n (r) plots. We observe that

there are already 25 plots where N ≤ 5. Moreover, Sm
n (r), Tm

n (r) plots give little or
no information about the spatial structure of B (which involve sums of product and
derivative of (Sm

n , T
m
n ) and spherical harmonics). For the B test, the graphs give

information about the spatial variation of B as shown in Figure 6.4. But, we need
to plot the contour of B’s components in many meridional and equatorial planes
to observe global convergence visually. For visual presentation, we conclude that
SRMS graphs are the most convenient to use.

For the λ test, we visually observe the convergence of PAS by using λmax(R), λmax(N)
and λmax(h

2) plots. These plots are given in Figure 6.5 on page 107. Again, the good
convergence of PAS is reflected in these plots. λmax(R) plots show the convergence
of λmax and also Rcrit. λmax(N) and λmax(h

2) plots show the convergence of λmax

with respect to J and N .
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Figure 6.2: SRMS quantities for model PAS at R = 0.4 using [J,N ] = [100, 13] and
[J,N ] = [100, 14] represented by solid and dashed line respectively. The difference
between the two [J,N ] curves is indistinguishable in each case.
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Figure 6.3: A selection of (Sm
n (r), Tm

n (r)) plots for model PAS at R = 0.4 using
[J,N ] = [100, 13] and [J,N ] = [100, 14]. A complete (Sm

n (r), Tm
n (r)) plot for this

model may consist of more than 50 graphs.
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Figure 6.4: Br, Bθ, Bφ contours for model PAS at R = 0.4, in the plane φ = 0,
are presented in the first column using [J,N ] = [100, 13] and in the second column
using [J,N ] = [100, 13]. Br, Bθ, Bφ contours, in the plane φ = π/2, are presented in
the third column using [J,N ] = [100, 13] and in the fourth column using [J,N ] =
[100, 13].
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Figure 6.5: Plot of (a) λmax(R) using [J,N ] = [100, 12], [100, 13], [200, 12], [200, 12];
(b)λmax(N) using J = 50, 100, 150, 200 at R = 0.4; and (c) λmax(h

2) at R = 0.4 for
the PAS model with magnetic chain M12.
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6.5 Application to Planar Velocity Dynamos

In Chapter 3, one of the highest [J,N ] used, was [2400, 35], which is approximately
equivalent to a 39 GB matrix band size and a 70 MB eigenvector size. These
size arrays are difficult to store. Here, we use less demanding [J,N ] to test the
convergence of models p1Y22DM12 and p1q10Y22DM12, using SRMS, B, (S, T )
and VRMS tests. Nevertheless, we use [J,N ] that give the same level of convergence
at the same supercritical R as shown in Table 3.2 on page 39 and Table 3.5 on page 46
(i.e. RD(λmax) . 0.1% for fixed J and RD(λmax) . 5% for fixed N).

In Chapter 3, we used the terminology “level of convergence” with reference to λmax

(we spoke of 1% convergence when RD(λmax) ≈ 0.01). In this section, we more
generally use the wording “1% level of convergence” for any convergence tests where
the associated measure [i.e. (M)AD, (M)MD, (M)RD] is . 0.01; similarly for 2%
and so on.

To test convergence with respect to N , we chose [J,N ] = [400, 56], [400, 55] for
p1Y22DM12 and [J,N ] = [400, 49], [400, 50] for p1q10Y22DM12. The results are
shown in Table 6.13. For the B test, which is the most sensitive test (according to
our results in §6.4), Table 6.13 shows that MAD(B), MMD(B) give . 0.5% level of
convergence. In addition, all other tests give . 0.2% level of convergence.

To test convergence with respect to J , we chose [J,N ] = [2400, 28], [1600, 28] for
models p1Y22DM12 and p1q10Y22DM12. The results are shown in Table 6.14.
For the B test, Table 6.14 shows that MAD(B), MMD(B) give ≪ 1% level of
convergence. In addition, all other tests, except the λ test, give . 0.5% level of
convergence.

To test convergence visually, it is inconvenient to show a large number of (Sm
n (r), Tm

n (r))
graphs (e.g for N=56, as many as 1624 graphs may be needed in general). On the
other hand, it is very easy to show the 12 SRMS graphs, as in Figures 6.6–6.8.
These Figures show unobservable differences between [J,N ] = [400, 55], [400, 56],
[J,N ] = [400, 56], [2400, 28] and [J,N ] = [2400, 28], [1600, 28], and hence demon-
strate convergence. In addition, these graphs give some idea of the distribution
of B throughout the sphere, in an average sense, for models p1Y22DM12 and
p1q10Y22DM12.

All srmsBξ(r) fields are concentrated near r = 0, and have similar magnitude;
srmsBr(θ) is concentrated near the equator, θ = π/2; srmsBθ(θ) is stronger near the
polar axis. Meanwhile, srmsBφ(θ) is stronger near θ = 0, π/2, π. In the φ direction,
srmsBr(φ) and srmsBθ(φ) are concentrated near φ = 3π/4, 7π/4, i.e. at the cell
boundaries of the planar flow (see Figure 3.1 on page 31). In contrast, srmsBφ(φ)
field is flat, except near the cell boundaries where the field is nearly zero. SRMS
graphs of p1q10Y22DM12 are similar to those of p1Y22DM12, except for srmsBφ(r)
which is greater for model p1q10Y22DM12 near r = 1.
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At this point, we conclude that models p1Y22DM12 and p1q10Y22DM12 can main-
tain a magnetic field since all tests, except the λ test, give < 1% level of convergence.

J N λmax SRMS B (S, T ) VRMS

a 400 55 0.929184 1.213290
400 56 0.930387 1.213283

(M)AD 0.000022 0.002371 0.000014 0.000007
(M)MD 0.000018 0.002489 0.000013 0.000003
(M)RD 0.001293 0.001717 0.000006

b 400 49 2.227584 2.308324
400 50 2.227706 2.308351

(M)AD 0.000048 0.004595 0.000024 0.000027
(M)MD 0.000041 0.004548 0.000024 0.000008
(M)RD 0.000055 0.001290 0.000012

Table 6.13: Comparison of λ, SRMS, B, (S, T ) and VRMS for (a) model
p1Y22DM12 at R = 220 using [J,N ] = [400, 55], [400, 56] and (b) model
p1q10Y22DM12 at R = 65 using [J,N ] = [400, 46], [400, 47].

J N λmax SRMS B (S, T ) VRMS

a 1600 28 0.411688 1.695922
2400 28 0.392799 1.695956

(M)AD 0.000073 0.000088 0.000040 0.000034
(M)MD 0.000045 0.000079 0.000036 0.000013
(M)RD 0.048088 0.003436 0.000020

b 1600 28 1.565015 2.296459
2400 28 1.542210 2.296093

(M)AD 0.000134 0.000125 0.000145 0.000367
(M)MD 0.000130 0.000116 0.000125 0.000111
(M)RD 0.014572 0.004230 0.000160

Table 6.14: Comparison of λ, SRMS, B, (S, T ) and VRMS for (a) model
p1Y22DM12 at R = 220 using [J,N ] = [2400, 28], [1600, 28] and (b) model
p1q10Y22DM12 at R = 65 using [J,N ] = [2400, 28], [1600, 28].
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Figure 6.6: SRMS quantities for model p1Y22DM12 atR = 220 using two truncation
levels: [J,N ] = [400, 55] and [J,N ] = [400, 56].
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Figure 6.7: SRMS quantities for model p1Y22DM12 atR = 220 using two truncation
levels: [J,N ] = [400, 56] and [J,N ] = [2400, 28].
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Figure 6.8: SRMS quantities for model p1q10Y22DM12 at R = 65 using two trun-
cation levels: [J,N ] = [1600, 28] and [J,N ] = [2400, 28].

112



6.6 λmax Estimation

Besides indicating convergence, λmax(h
2) and λmax(N) plots can also be used in

estimating λmax for higher [J,N ]. For λmax(h
2), we can estimate λmax, for a fixed N

and J → ∞, by linearly extrapolating our data to get λmax(h
2) as h→ 0. Table 6.15

shows the λmax estimation for models p1Y22DM12 and p1q10Y22DM12 using the
extrapolation of λmax(h

2) plots in Figures 3.6 and 3.14. The earlier plots, Figures
3.5 and 3.13, show that the variation of λmax decreases a N increases. Therefore, we
estimate the bound of λmax for J,N → ∞ using Table 6.15. For model p1Y22DM12,

0.35 < λmax(∞,∞) < 0.45. (6.36)

For model p1q10Y22DM12,

1.54 < λmax(∞,∞) < 1.59. (6.37)

The behaviour of λmax(N) for various fixed J , as shown in Figures 3.5 and 3.13,
suggests λmax(N) might be extrapolated using the underdamped oscillator function

λmax(J,N) = λmax(J,∞) + b(J)e−αN cos(βN + γ). (6.38)

A similar function was used by PAS (1973) in estimating Rcrit for their model. Least
squares fitting of (6.38) results in the parameter values for λmax, b(J), α, β, γ shown
in Tables 6.16 and 6.17. From these tables, we infer λmax ≈ 0.39 at R = 220 for
p1Y22DM12 and λmax ≈ 1.59 at R = 65 for p1q10Y22DM12. These estimates are
consistent with the bounds in (6.36) and (6.37). Based on Tables 6.16 and 6.17,
the convergence level for models p1Y22DM12 and p1q10Y22DM12 are 5% and 1%
respectively. In addition, the visual fits of (6.38) of these models are shown in
Figure 6.9, which shows the data are well represented by (6.38) and convergence is
occurring.
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λmax(h
2 = 0)

N p1Y22DM12 p1q10Y22DM12
R = 220 R = 65

36 0.3466 1.5372
37 0.4485 1.5858
38 0.4321 1.5868
39 0.3520 1.5464
40 0.3609 1.5451
41 0.4266 1.5784
42 0.4201 1.5793
43 0.3674 1.5515
44 0.3718 1.5509
45 0.4147 1.5740

Table 6.15: λmax estimation for models p1Y22DM12 and p1q10Y22DM12 using
λmax(h

2) plot. These numbers are the y-intercept of the lines in Figures 3.6 on
page 40 and 3.14 on page 47.

J N λmax(J, N → ∞) b(J) α β γ

200 [25..55] 2.5383 -79.419 0.1908 1.5182 2.9114
400 [25..56] 0.93297 -66.633 0.1867 1.5173 2.9602
800 [25..45] 0.52431 -74.465 0.1915 1.5137 3.0658
1600 [25..35] 0.41600 -74.127 0.1915 1.5093 -3.1007
2400 [25..35] 0.39699 -73.989 0.1915 1.5093 -3.1009

Table 6.16: λmax estimation for model p1Y22DM12 using the underdamped oscilla-
tory function (6.38). The convergence with respect to J is around 5%.

J N λmax(J, N → ∞) b(J) α β γ

200 [25..55] 4.1686 -33.447 0.1914 1.5154 2.6714
400 [25..56] 2.2235 -39.426 0.1999 1.5086 2.9155
800 [25..45] 1.7318 -47.443 0.2075 1.5045 3.0389
1600 [25..35] 1.6117 -48.192 0.2087 1.4986 3.2096
2400 [25..35] 1.5890 -48.532 0.2091 1.4984 3.2163

Table 6.17: λmax estimation for model p1q10Y22DM12 using the underdamped os-
cillatory function (6.38). The convergence with respect to J is around 1%.
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Figure 6.9: The plot of (a) the underdamped oscillatory function (6.38) for model
p1Y22DM12 using the same [J,N ] as in Figure 3.5, (b) the underdamped oscillatory
function (6.38) for model p1q10Y22DM12 using the same [J,N ] as in Figure 3.13.
The convergence with respect to J and N is observable.
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6.7 Chapter Summary

In Chapter 3, we pursued better convergence levels for models p1Y22DM12 and
p1q10Y22DM12 by increasing [J,N ] up to the limit of our computational capacity.
Although we achieved much better convergence results than BIJ, we still could not
get 1% convergence levels. This led us to assess various convergence tests and apply
them to p1Y22DM12 and p1q10Y22DM12.

There are various tests that have been used by other authors to study the con-
vergence of kinematic dynamos. The λ, (S, T ) and B tests are the most common
tests. We introduced two new tests: SRMS and VRMS, the latter is a modifica-
tion of the test used by PAS (1973). Before applying them to p1Y22DM12 and
p1q10Y22DM12, we compared their performance visually and numerically using the
models of PAS, KR, DJ, α2 and free decay.

We came to no general conclusion as to which test is the most sensitive. However,
our numerical results reveal:

1. No test is always most sensitive.

2. SRMS is usually more sensitive than (S, T ) and VRMS.

3. VRMS is the least sensitive with two exceptional cases.

4. SRMS graphs are convenient to observe convergence visually.

When we applied the tests to p1Y22DM12 and p1q10Y22DM12, we found that the
convergence level of B is less than 1%, as indicated by MAD(B) and MMD(B). In
§6.6, we showed that λmax ≈ 0.4 for model p1Y22DM12 at R = 220, and λmax ≈ 1.6
for model p1q10Y22DM12 at R = 65. So, we conclude that models p1Y22DM12 and
p1q10Y22DM12 do provide numerical evidence of successful dynamos and that the
planar velocity anti dynamo theorem does not apply for finite spherical conductors.
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Chapter 7

Conclusions

In this thesis, we have studied planar velocity dynamos. We have extended the
work of BIJ (2006) who proposed model p1Y22DM12 that indicates the existence of
a planar velocity dynamo. We have conducted a number of numerical experiments,
which we now summarize to conclude this thesis.

In Chapter 3, we began our experiment by investigating p1Y22DM12 at higher
[J,N ]. We used a sub-band method to achieve higher [J,N ] and obtained better
convergence results. The convergence level of λmax, as measured by RD(λmax), is now
around 1–5% compared to BIJ’s approximately 10% level. The numerical results are
presented in Table 3.2 on page 39 and Figure 3.5 on page 40. In addition, we found
another model, p1q10Y22DM12, which has better convergence (RD(λmax) . 1.5%)
compared to p1Y22DM12. This model is a modification of p1Y22DM12; its radial
function f 2

2 has greater gradient near r = 1. Table 3.5 on page 46 and Figure 3.13 on
page 46 show the numerical results for this model. We also investigated several
related models: p1Y42DM12 and p1Y44DM24 in §3.4.2. These gave preliminary
indication of possibly successful dynamos, but our investigation proved them to
have worse convergence problems than p1Y22DM12.

In Chapter 4, we allowed two types of inner core: insulating and conducting. Our
numerical results, presented in Tables 4.3–4.5 on page 62 and Figures 4.4–4.9 on
page 65, reveal that inner cores may improve the convergence level of λmax. However,
to get a 1% level of convergence, we needed to use almost the same [J,N ] as for
p1Y22DM12. Thus, we did not attempt to use higher [J,N ] but rather, sought
other planar flows that might converge better. In Chapter 4, we also showed that
the PAS flow, with a minor modification, can be fully planarized inside spherical
shells. Although, this flow was not found to be capable of maintaining a magnetic
field, the modification process led us to investigate other planar flows.

In Chapter 5, we modified the PAS flow so that it could be fully planarized in a
sphere. We constructed two modified PAS flows: biPAS and quasiPAS, and investi-
gated the unplanarized, partly planarized and fully planarized versions of these. In
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total, we discovered nineteen new successful dynamos in the unplanarized and partly
planarized versions of biPAS and quasiPAS models. Some of these dynamos have a
lower Rcrit than that of PAS. The numerical results are shown in Tables 5.1–5.6 on
page 82. However, we were not able to find a fully planarized versions of biPAS
and quasiPAS models that acted as a dynamo, in the interval 0 ≤ R ≤ 0.4 with
magnetic chain M12.

Lastly in Chapter 6, we investigated the convergence of models p1Y22DM12 and
p1q10Y22DM12 using various convergence tests, which we called the λ, B, (S, T ),
SRMS and VRMS tests. We discovered that all convergence tests, apart from the λ
test, show that p1Y22DM12 and p1q10Y22DM12 were able to maintain a magnetic
field. Our results revealed that λmax is quite sensitive to [J,N ] changes in these
models. By using both linear extrapolation, and least squares fitting of an under-
damped oscillatory function, we obtained supercritical estimation of λmax ≈ 0.39 at
R = 220 for p1Y22DM12, and λmax ≈ 1.59 at R = 65 for p1q10Y22DM12. The
numerical results supporting these estimations, are shown in Table 6.9 on page 115.

Our results clearly indicate models p1Y22DM12 and p1q10Y22DM12 are convergent.
But achieving 1% convergence level would require more computer capacity in terms
of speed and memory or an alternative numerical method not based on spherical
harmonics.

For future work, there are at least two directions that we can follow: solving the
problem using parallel computing techniques, or using a time-stepping method so
we only have to store the eigenvector. Both directions require a new different com-
putational dynamo routine.
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Appendix Schuster’s Formula

The Schuster formula (Schuster, 1903) is

∫ 1

−1

Pm1
n1

(cos θ)Pm2
n2

(cos θ) d cos θ =

c

i=n1∑

i=m1

(2) (−1)
i−m1

2
(n1 +m1)!!(n1 + i− 1)!!(n2 +m2 − 1)!!(n2 − i− 2)!!(m2 + i)!!

(n1 −m1 − 1)!!(n1 − i)!!(n2 −m2)!!(n2 + i+ 1)!!(m2 − i− 2)!!

1

(i−m1)!!(i+m1)!!
,

where
∑i=n1

i=m1
(2) means summing for i = m1, m1 + 2, m1 + 4, ..., n1, c equal to 2 or π

according as m2 −m1 is even or odd and

n!! =






n(n− 2)(n− 4).... , when n is positive, the last factor is either 1

or 2 according as n is odd or even,

(−1)
−n−1

2 1
(−n−2)!!

, when n is negative and odd,

∞ , when n is negative and even.
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Appendix Program list

Below are the programs used. The author was A.A. Bachtiar (AAB) except where
otherwise indicated. All programs have been checked independently by R.W. James
(RWJ) except where indicated by (*). Some abbreviations: Fortran77(F77), For-
tran90(F90), Matlab(M), Mathematica(Math).

Routine Software Comments

1. Main dynamo program F77, F90 Written by M.L. Dudley, modified by
RWJ, followed by AAB to allow sub
band method, checked against results
from earlier researchers.

2. Planar flows F90 Independently checked by D.J.Ivers.

3. Spherical shell dynamo F90 Checked against results from earlier re-
searchers.

4. BiPAS flow of §5.2 on page 68 F90

5. QuasiPAS flow of §5.3 on page 76 F90

6. SRMS test of §6.2 on page 88 F90

7. VRMS test of §6.3 on page 94 F90

8. B test of §6.1.3 on page 88 F90

9. (S,T) test of §6.1.2 on page 87 M

10. Planar velocity’s Streamlines M

11. Least square fitting of un-
derdamped oscillator function of
§6.6 on page 113

M Written by RWJ.

12. Evaluation of
∫

π

0
Pm1

n1
Pm2

n2
dθ M(*) Using built-in functions: legendre and

quad, checked using the methods below.

Math(*) Using built-in functions: LegendreP
and Integrate.

F90 Using Gauss-Kronrod method available
from Guide to Available Mathematical
Software(GAMS).

F90(*) Formula given by Schuster (1903).
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