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Preface

The aim of this thesis is to investigate two topics relating to geomet-
ric realizations of Coxeter groups. The first is a class of non-orthogonal
geometric realizations of Coxeter groups and the second is the study
of dominance behaviour in the root systems associated with Coxeter
groups extending those examined in [6] and [5].

For arbitrary Coxeter system (W, R), it is well known that W can
be embedded into the orthogonal group of certain bilinear form ( , )
on a real vector space V. The root system of W in V is a certain W-
stable subset of V' corresponding to the set of reflections in W. If the
bilinear form (, ) is non-degenerate then of course V' is W-isomorphic
to its dual V*, but since the form is not always non-degenerate it is
sometimes useful to study both the representation of W on V' and the
contragredient representation on V*. This motivates the slightly more
general approach taken in this thesis, in which we consider a pair of
real vector spaces V; and V5 linked by a W-equivariant bilinear pairing
satisfying a few extra conditions (which are guaranteed to hold in the
case that V; = V and V5 = V*). We show that in this situation W em-
beds (faithfully) in the general linear groups of each of V; and V3, both
images being generated by reflections. The classical theory of geomet-
ric realizations can be recovered as a special case. We define and study
generalized root systems arising in such non-orthogonal geometric real-
izations of Coxeter systems, and compare them with the root systems
arising from the standard geometric realizations. It turns out that it
is natural to consider root systems in both V; and V5; these are in W-
equivariant bijective correspondence with each other and with the root

system in the classical setting. Familiar properties of simple roots and
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iv PREFACE

positive roots generalize to the non-orthogonal case, although it is no
longer necessarily true that the only scalar multiples of a root are itself
and its negative.

The investigation of non-orthogonal geometric realizations will oc-
cupy Chapter 1 and Chapter 2.

In Chapter 3 we study a partial order in the root systems of Coxeter
groups called dominance introduced by B. Brink and R. Howlett. We
first examine the dominance of roots in the classical geometric realiza-
tions and then generalize these results to the non-orthogonal setting. In
[6] and [5] dominance is only defined on the positive roots, but the def-
inition extends naturally to all roots, and it turns out that the geomet-
ric characterization of dominance between roots remains unchanged. In
6], it is found that for all finite rank Coxeter groups, the set of positive
roots dominating no positive roots other than themselves is finite, and
in [5] such sets are explicitly computed. In this thesis we prove that for
all natural numbers n, the set of roots dominating precisely n positive
roots (denoted by D,,) is finite for all finite rank Coxeter groups. The
set of positive roots is obviously the disjoint union of all these D,’s,
and we examine the interaction of this decomposition with the action
of W. For all infinite Coxeter groups of finite rank and for each n, it
turns out that D,, # 0, and we also compute an upper bound of |D,,|
(the size of D,,). In the classical case we study certain cones related to

the Tits cone, and show how they are related to dominance.
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CHAPTER 1

Non-orthogonal Geometric Realizations of Coxeter

Groups

1.1. Paired reflection representations

Let S be an arbitrary set and suppose that each unordered pair
{s,t} of elements in S is assigned an my € Z U {oo}, subject to the
conditions that m,, = 1 for all s in S and mg > 2 for all distinct s, ¢
in S. Suppose that V; and V5, are vector spaces over the real field R,
and suppose that there exists a bilinear map ( , ) : V; x Vo — R and
setsIh ={a,|seS}tCViand I, ={ f, | s €S } C V5 such that
the following conditions hold:

(C1) II; spans V; and Il spans Vs;
(C2) (o, Bs) =1, for all s € S
(C3) (as, Bi) <0, for all distinct s,t € S;
(C4) for all s, t € S,
9 .
(e, Bo) (. ) = cos®(m/mg) if mgy # oo,
~2, for some v > 1 if my = oo;
(C5) for all s,t € S, (as, 5;) = 0 if and only if (o, 55) = 0;
(C6) D egAsvs = 0 with Ay > 0 for all s implies A, = 0 for all s, and
Y ses AsBs = 0 with A > 0 for all s implies A\, = 0 for all s.

Note that (C4) and (C5) combined imply that (as, 5;) and (o, Bs)
are zero if and only if mg = 2. We can also express (C6) more com-
pactly as 0 ¢ PLC(II;) and 0 ¢ PLC(IIy), where PLC(A) (the positive
linear combinations of A) is defined to be

{Z)\aa | Ao >0 forall a € A, and A\ > 0 for some o’ € A}.

acA



2 1. NON-ORTHOGONAL REALIZATIONS

Definition 1.1.1. In the above situation, if conditions (C1) to (C6)
are satisfied then we call € = (S, V1, Vo, Iy, Iy, (, )) a Cozeter datum.
The mg (for s,t € S) are called the Cozeter parameters of €.

Throughout this chapter, € = (S, Vi, Vo, Iy, Iy, (, )) will be a fixed

Coxeter datum with Coxeter parameters mg;.

Definition 1.1.2. For each s € S let py,(s) and py,(s) be the linear

transformations on V; and V5, defined by

Pv;y (8)(.%) =T — 2<$7 ﬂs>as
for all x € Vi, and

pva(8)(y) =y — 2(as, y) Bs
for all y € V5. For each i € {1,2} let R; := {py;(s) | s € S}, and let
W; be the subgroup of GL(V;) generated by R;.

Since (as,Bs) = 1 for all s € S (by (C2) above), we find that
pvi(8)(as) = —as and py, (s)(Bs) = —fPs. It follows that for all v € V7,
Pvi (S>pV1 (S)(U) A (8)(U_2<U7B8>as) = v—2(v,ﬁs)as+2<v, ﬁs>065 =v

showing that py, (s) is an involution. Similarly, py,(s) is also an invo-
lution.

The following result follows readily from these definitions:
Proposition 1.1.3. Let z € V) and y € V,. Then for all s € S,

(v (5)(2), pr (8)(y)) = (T, 9).

Proof. By Definition 1.1.2 and the bilinearity of ( , ), we find that

<pv1(8)(l’),pv2(8)(y)> - <ZL’ - 2<xvﬁs>as: Yy— 2<a87y>/68>
= (z,y) — 4z, Bs) (s, y) + 4, Bs) (s, y) s, Bs)
= (z,y). O

The principal result of this section is that (W, Ry) and (W, Rs) are
isomorphic Coxeter systems, in the sense of Definition 3 of Chapitre 4
of [10]. Recall that (W, R) is a Coxeter system if and only if W is a
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group and R a generating set for W, and in terms of these generators
W is defined by a set of relations of the form (r7/)™"™) = 1, where
m(r,r") = m(r’,r) > 1 whenever r, ' are distinct elements of R and
m(r,r") is defined, and m(r,r) = 1 for all »r € R. We shall show
that if R = {rs | s € S} is in bijective correspondence with S and
m(rs, 1¢) = mg whenever mg < oo, with m(r, ;) undefined otherwise,
then (W3, Ry) and (W5, Ry) are both isomorphic to the Coxeter system
(W, R). We first show (Proposition 1.1.9 below) that (W3, R;) and
(Ws, Rs), satisfy the required relations, after which it suffices to prove

the following theorem:

Theorem 1.1.4. If W is any group generated by a set R := {ry | s € S}
and satisfying the relations (rgry)™* = 1 for all s,t € S such that
mg < 0o, and if f: W — Wi is a group homomorphism satisfying
f(rs) = pv,(s) for all s € S, then f is necessarily injective.

Since W, = (Ry), any such homomorphism f must also be surjec-
tive. So, choosing (W, R) to be the Coxeter system corresponding to
the parameters m,, and observing that Proposition 1.1.9 guarantees
the existence of a homomorphism f: W — W satisfying f(rs) = py, ()
for all s, it follows that f is an isomorphism, as required.

Of course analogous statements apply if W; is replaced by Wh;
hence the claim that (Wy, Ry) and (W, Ry) are isomorphic Coxeter
systems will be established once we have proved Theorem 1.1.4 and

the analogous result for W5. This will occupy the rest of this section.

Lemma 1.1.5. If s is any element of S, then as ¢ PLC(I1; \ {as})
and s ¢ PLC(Ily \ {Bs}). Furthermore, if s,t € S with s # t, then
{as, a4} is linearly independent, and so is {Ss, Bt}

Proof. Suppose for a contradiction that oy, = > Ny, where Ay > 0
teS\{s}
for all t € S\ {s}. By (C2) and (C3) of Definition 1.1.1,

1= <a87/88> = Z )‘t<ataﬁs> < 0

teS\{s}
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which is absurd. Therefore as ¢ PLC(II; \ {as}). Now suppose that
s,t € S with s # t. Obviously a, and a; are both nonzero (by Con-
dition (C2)), and by what has just been proved, «; is not a positive
scalar multiple of «. So to prove that {ay, oy} is linearly independent,
we only need to show that «g is not a negative scalar multiple of «y.
But if ay, = — Ay for some A > 0 then 0 = a, + Ay, contradicting (C6)
of Definition 1.1.1. Hence {ay, oy} is linearly independent, as required.

Essentially the same argument can also be used to prove linear

independence of {0, 5;}. O

Note that the above yields that for each ¢ € {1,2} and distinct
s,t € S we have py,(s) # py; (t).

Lemma 1.1.6. Suppose that s,t € S such that mg ¢ {1,2,00}. Then
foralln € N,

" _ sin(2n +1)0 —cosf sin(2n#)
(le (s>pV1 (t)) (Oés) - sin @ Qs + <Oét, ﬁs> sin @ o
and
sin(2n + 1)0 —cos 0 sin(2n0)

(Pva(8)pv, ()" (Bs) = By

sin 0 ot (g, By)  sinf
where 0 = w/mg.

Proof. Recall from Definition 1.1.2 that py, (s)ar = oz — 2{au, Bs)as,
and py, (s)as = as — 2{ag, Bs)as = —a,. Similar formulas apply to
pv; (t). Thus the matrix of py, (s)py,; (t) in its action on the subspace

with basis {as, a;} is

-1 —2{ay, Bs) 1 0\ [4cos®0—1 2(oy,ps)
0 1 —2(ag, By —1 —2(a, By) —1
since (a, B¢){(ay, Bs) = cos? §. To prove the desired result, we only need

to compute the nth power of the above matrix. Since my # 2 it follows
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that (s, 5;) # 0 # (o, Bs), and we observe that

4cos?—1 2{ay, Bs)
_2<Oésaﬁt> -1

(w5 0 (4eos?0 -1 —2cos0) (55 0
0 1 2cosf —1 0 1

= '1 (_azogf) 0 sin30 — sin 26 ﬁ 0 |
sin ¢ 0 1) \sin20 —sind 0o 1

Now an induction on n yields that for all n € N

dcos?—1 2{ay, Bs) !
_2<as7ﬁt> 1

_ L @‘:Oﬁsg 0) (sin(2n+ 1)0 — sin 2n6 @tcoﬁsj 0 .
sinff \ 0 1 sin2nf  —sin(2n — 1)0 0 1

Expanding the right hand side and examining the coefficients in the

first column yields the formula

sin(2n + 1)6 —cosf sin 2nf
)" (as) = ————a; - .
(le (s)le( )) (Od ) sin Qs + <Oét, 5s> sin @ O
The other formula follows by a similar calculation. 0

Remark 1.1.7. From Lemmas 1.1.6 and 1.1.5 we can see that if
i € {1,2} and my ¢ {2,00} then ord(pv;(s)py;(t)) > mg. Indeed,

in the subspace with basis {as, a;} the elements

s, (pVI (S)pvl (t))(a8)7 (pV1 (S)pV1 (t))Q(QS)v R (PV1 (S)pV1 (t))mSt_l(aé‘)

are all distinct, and in the subspace with basis {f;, 5;} the elements

BS? (pV2 (8)pV2 (t)>(ﬁ5>7 (sz (S)sz (t))z(ﬁ5>7 te (lOV2<S)pV2 (t))mStil(BS)

are all distinct.

Lemma 1.1.8. Suppose that s,t € S such that mg = oo. If we set
0 =1In(y + /7% — 1) = cosh™'(v), where v = \/{as, Bi) (s, Bs), then
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(i) for alln € N

" _sinh(2n +1)0 —~ sinh(2n#)
(pvl (8)pV1 (t)) (Oés) - Sinh 9 s <05t7 ﬁs> Sinh 0 Qi
and

" _ sinh(2n +1)0 —v sinh(2n#0)
(pv2(5)pv2(t)) (55) - Sinh9 68 + <O[5,5t> Sinhe ﬂt’

(ii) for each i € {1,2}, pv.(s)pv;(t) has infinite order in GL(V;).

Proof. (i) The matrix of py, (s)py, (t) in its action on the subspace with

basis {as, a;} is

-1 _2<@t7ﬁs> 1 0 . 472_1 2<at768>
0 1 —2a, 8 -1 )\ =2, 8) -1

since (g, Bi){ay, Bs) = 7* (by (C4) of Definition 1.1.1). As in the proof
of Lemma 1.1.6, to prove the required result we only need to compute

the nth power of the above matrix. Since mg = oo, it follows that

<Oés, 5t> 7£ 0 7£ <Oét7ﬁs>7 and we have
=1 2o, B)
_2<a57 Bt> -1
_ 9 _
— <as:’ét> 0 47 -1 _27 <O¢t,g5> 0
0 1 2y —1 0 1
_ 1 apy O\ (sinh30 —sinh260) (=~ 0 ‘
sinh 6 0 1 sinh26 —sinh6 0 1
Now an induction yields that, for all n € N,
1971 2ar B\
_2<Oés, ﬁt> —1

— 0 sinh(2n+1)0 — sinh(2n6) — 0
_ | Taos o S (o) '
0 1 sinh 0 sinh 6 0 1

Therefore, for each n € N,

i+ sinh(2n 4 1) —7  sinh(2n0)
(pvi (s)pva (1))" (exs) = sinh (ar,Bs) sinh0 o
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A similar argument shows that

sinh(2n 4 1)0

—~  sinh(2nf)
sinh 6 Bo

(pvz(s)pVQ(t))”(Bs) = <045 6t> sinhd t

completing the proof of (i).
(ii) In the subspace with basis {as, a4}, it is clear from (i) above

that the elements oy, (py, (8)pv, () (as), (pv; (8)pvy (t))? (), - - -, are all
distinct, and therefore py, (s)pv, (t) has infinite order in GL(1}). In the

same way, py,(s)pv,(t) has infinite order in GL(V%). O

Proposition 1.1.9. Suppose that s,t are distinct elements of S such
that mg # oo. Then

(i) pvi(s)pvi(t) has order mg in GL(V1);
(ii) pvy(s)pry(t) has order mg in GL(Va).

Proof. Recall that my = 1 if and only if s = t. So in this case the
statement is simply that py,(s)? =1 for each ¢ and all s € S. We have
already noted that this is true.

Let o € V] be arbitrary and let s, t € S be distinct. We see that

(pvi (8)pvs (1) () = pvs (8)(a — 2{av, Br)cur)
= o — 2(«, Bsyas — 2{av, ) (i — 2{cvy, Bs)xs)
= o+ <4<Oé, 5t><at> ﬁs> - 2<a> 65>)0‘s - 2<Oé, ﬁt>at-

In the case that mg = 2 we see that

(pV1 (S)pV1 (t))<a) = (pV1 (t)pV1 (8))(04) =0 — 2(04, BS))O‘S - 2<a7 5,5)(115,

so that py, (s) and py, (t) commute. Hence ord(py, (s)pv, (1)) = 2.
It remains to consider the case when mg > 2. In the cases a = ay

and a = o4 the formula above gives

(v (5) v (£)) (@s) = (A cos>(——) — 1)y — 20, Bi)u

Mgt
and

(pvl (S)pvl (t))(at) = 2<ata /88>a5 — O,
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and therefore the action of py, (s)py, (t) on R{as, ay, a} may be repre-

sented by the following matrix M:

dcos?(m/mg) — 1 2{ay, Bs) 4, Be){ay, Bs) — 2{a, Bs)
M= —2<04575t> —1 —2<0475t>
0 0 1

;2m _2m
It is readily checked that M has distinct eigenvalues ¢'mst | ¢ ‘m«t and 1,

and hence has order mg. Consequently (py, (s)pv, (t))™* () = a. Since
« is arbitrary, it follows that (pv, (s)pv; (¢))™* = 1 in GL(V4). Thus
we have ord(py, (s)pv, (1)) < mg, and in view of Remark 1.1.7 above,
it follows that ord(py, (s)py, (1)) is precisely mg.

The proof that ord(py, (s)pv,(t)) = mg is entirely similar. O

Combining Lemma 1.1.8(ii) and Proposition 1.1.9, we have
Corollary 1.1.10. For each i € {1,2}, and for all s,t € S,
ord(pv; (s)pv;(t)) = M.

U

Utilizing the formulas in Lemma 1.1.6 and Lemma 1.1.8 we may

deduce the following:

Lemma 1.1.11. Suppose that s,t € S, and let n be an integer such
that 0 < n < mg. Write

o P (t)pvl (s)pvl (t) Qs = Anas e
n fa‘c,tors

and

o Py (8)pV1 (t>pV1 (Slat = )‘;1058 + u;l&t'
n fa;;ors

Then A\, >0, pp, >0, X >0 and p, > 0.

Proof. If my = 2 then (ay, 5;) = 0 = (o, Bs), giving py, (t)as = ag
and py, (s)ay = ;. So Ay = g} = 1 and pu; = A = 0. Since obviously

also \g = p, = 1 and py = Aj) = 0, the statement in the Lemma holds
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when my = 2. Thus we may assume that mg > 3. Note in particular

that this gives (ag, i) # 0 # (au, Bs)-
Now suppose that n is even, so that

_ Pvi (t)@/l (8)le (tlas = (pV1 (8)pV1 (t>)n/2as-

n factors

If my < oo then Lemma 1.1.6 gives

sin(n + 1)6 and i, = — cos ) sinnd

(g, Bs) sinf’

where 6 = 7/mg, while if mg = oo then Lemma 1.1.8 gives

_ sinh(n +1)¢
" sinh 6

An =

sin 6

—v  sinhnf
(o, Bs) sinh @’

where v = \/{a, Bs){as, Bi) > 1 and @ = In(y + /72 — 1). Observe

that if 0 <n < mg < oo then 6, nf and (n + 1) all lie in the interval
[0, 7], and since also (a4, 8s) < 0 it follows that A, > 0 and p, > 0

whenever n is even and my, is finite. The same conclusion follows when

and  pu, =

n is even and mgy = 00, since in this case § > 0 (and (o4, Bs) < 0 is
still satisfied).
Next suppose that n is odd. Then

= (v (8)pw (1) s = pi oy (o (8)pwa () D20
n factors

= Pwv (S) (pVI (S)pvl (t))(n+1)/2a8'

Observe that applying py, (t) will not change the coefficient of a; and
applying py, (s) will not change the coefficient of . Hence the coef-
ficient of o, in py; (t)(pvy (8)pvy (£) ™ D20y is \,_; and the coefficient
of ay in py, (5)(pv, (8)pv, (1)) "V 20 is piny1; that is, A, = A\,_; and

fbn = fni1- Applying Lemma 1.1.6 and Lemma 1.1.8 yields

sin nd i
) if mg < 00
A= Ay = sin
sinhnf . ¢ B
sinh 6 H st = 00

and
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—cosf sin(n + 1)0
(o, Bs)  sind

—~ sinh(n +1)0
(oy, Bs)  sinh 6

if mg <

Hn = fin+1 =

if Mg = OO,

where 6 and v are as previously, and it follows that A, > 0 and p, > 0
when 7 is odd and n < mg. Finally by symmetry, A > 0 and u/, > 0

whenever n < myg;. [

Remark 1.1.12. The same argument applies equally well if we replace,

respectively, py; (5), pv; (£); @y and aq by pyy(s), pua(t), By and B,

Definition 1.1.13. Let (W, R) be a Coxeter system. The length func-
tion of W with respect to R is the function [: W — N defined by

l(w)=min{n € N|w=riry---r,, where ry,ra,...,7, € R},

for all w € W. We say that w = ryry---r, with ri,ry,...,7, € Ris a

reduced expression for w if l[(w) = n.

Let W and f be as in the statement of Theorem 1.1.4. The homo-
morphism f: W — Wj permits us to define an action of W on V; by
wz = (f(w))x for all w € W and z € V].

Proposition 1.1.14. Let w € W and s € S. If l(wrs) > l(w), then
wag € PLC(1L).

Proof. Choose w € W of minimal length such that the assertion
fails for some a, € II;, and choose such an «,. Certainly w # 1,
since lag, = ay is trivially a positive linear combination of I1;. Thus
[(w) > 1, and we may choose t € S such that w; = wr; has length
l(w) — 1. If l(wirs) > (wq), then l(wir) > l(wy) for both r = r,
and r = r;. Alternatively, if [(wirs) < l(wy), we define wy = wyry,
and note that I(wer) > l(ws) will hold for both r = ry and r = ry if
[(wary) > I(wq). If this latter condition is not satisfied then we define

w3 = wor;. Continuing in this way we find, for some positive integer
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k, a sequence of elements wy = w, wy, we, - - - , w with [(w;) = l(w) — i
forall i =0,1,2,--- , k, and, when ¢ < k,

w;rs if 7 1s odd
Wit1 =

w;ry if 7 1s even

Now since 0 < l(wy) = l(w) — k, we conclude that [(w) is an upper
bound for the possible values of k. Choosing k to be as large as possible,
we deduce that [(wyr) > l(wg) for both r = ry and r = ry, for otherwise
the process described above would allow a w1 to be found, contrary
to the definition of k. By the minimality of our original counterexample
it follows that way and way are both in PLC(II,).

We have w = wygv, where v is an alternating product of r,’s and
r¢’s, ending in r;, and with k factors altogether. Obviously this means
that I(v) < k. But w = wyv gives [(w) < [(wy) +1(v), so it follows that
[(v) > l(w) — l(wy) = k, and hence [(v) = k. Furthermore, in view of

the hypothesis that [(wry) > l(w), and since wyvry = wr,, we have
lwg) + l(vrs) > Hwrs) > Hw) = l(wg) + k = Lwg) + 1(v),

and hence [(vrg) > I(v). In particular, v cannot have a reduced expres-
sion in which the final factor is ry, for if so vr, would have a strictly
shorter expression.

Since r; and r; satisfy the defining relations of the dihedral group of
order 2my,, it follows that every element of the subgroup generated by
rs and r; has an expression of length less than mg + 1 as an alternating
product of r5 and 7. Thus [(v) < mg. Moreover, if myg, is finite then
the two alternating products of length mg, define the same element; so
[(v) cannot equal my, as v has no reduced expression ending with 7.
Thus Lemma 1.1.11 above yields vay = Ajag + pioy for some non-

negative coefficients A\; and p;. Hence

was = wpvas = Wi (Ao + pray) = Mwgas + ppwgoey € PLO(T)
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since wya, wray € PLC(I1;). This contradicts our original choice of w
and a, as a counterexample to the statement of the proposition; so if
weW,selS, with [(wrs) > l(w), then wa, € PLC(II;). O

Now we are ready to complete the proof of Theorem 1.1.4:

Proof of Theorem 1.1.4. Suppose, for a contradiction, that the ker-
nel of f is nontrivial, and choose w in the kernel of f with w # 1. Then
l(w) > 0, and we may write w = w'ry for some s € S and w’ € W
with [(w") = I(w) — 1. Since [(w'rs) > l(w'), Proposition 1.1.14 yields
w'as € PLC(I1;). But

as = was = (W'ry)as = w'(ryas) = w'(—as) = —w'a,

and hence 0 = a; + w'a; € PLC(II;), contradicting our original as-
sumption that 0 ¢ PLC(IT;) (condition (C6)). Therefore the kernel of

f is trivial, as required. 0

By Proposition 1.1.9 we may define a homomorphism ¢g: W — W,
satisfying g(rs) = py,(s) for all s € S and obtain an action of W on V5.
Applying exactly the same arguments that lead to Theorem 1.1.4 gives

the analogous result for W5 and V5:

Theorem 1.1.15. Suppose that W 1is any group generated by a set
R :={rs | s € S} satisfying the relations (rsr)™t =1 for all s,t € S
such that mg < oo; and suppose that g: W — Wy is a group homo-
morphism satisfying g(rs) = pv,(s) for all s € S. Then g is necessarily

imjective. (l

Combining Theorem 1.1.4 and Theorem 1.1.15, we have now shown
that

W= Wl = W27
where W is the abstract Coxeter group determined by the Coxeter

parameters of our Coxeter datum . We refer to Wi and W5 as the

realizations of W in V; and V5, respectively.
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1.2. Root Systems and Canonical Coefficients

Having established in Section 1.1 that W; and W, are Coxeter
groups, we now wish to develop a theory of root systems for W; and W.

As above, let W be the abstract Coxeter group determined by the
Coxeter datum %, and let R = {r; | s € S} be its distinguished
generating set. Also as above we use the isomorphisms W — W; and
W — Wj to define an action of W on V; and an action of W on V, (so
that rsx = x — 2(x, Bs)as and 13y = y — 2(as, y)Bs for all x € V; and
y € Vo, and all s € S). Observe that these actions are faithful, in the
sense that if wr =« for all z (in V; or V,) then w = 1.

An easy induction on [(w) yields the following extension to Propo-
sition 1.1.3:

Lemma 1.2.1. Let x € Vi, y € Vo. Then (z,y) = (wz,wy), for all
weW. O

The following definition is a natural generalization of the concept
of the root system of a Coxeter group, as defined in [10] and [12], for

example.

Definition 1.2.2. (i) Define ®; := W(II;) = {was | w € W,s € S},
and @y := W(lly) = {wps | w € W,s € S}. For each i € {1,2}, we
call ®; the root system for V;, and its elements the roots of W in V.
We call 1I; the set of simple roots in ®;, and also refer to II; as the root
basis for ®,.

(ii) For each i € {1,2}, set ®; := &, N PLC(II), and ®; = —®;.
We call @ the set of positive roots in ®;, and ®; the set of negative

roots in ®;.

For each i € {1,2}, we adopt the traditional diagrammatic de-
scription of simple roots II;: draw a graph that has one vertex for
each s € S, and join the vertices corresponding to s, € S by an

edge labelled by my if mg > 2. The label my is often omitted if
mg = 3. Thus the diagram T{ \ corresponds to Iy = { a;, as, oy }
S t
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and Iy = { B,, Bs, B }. Unlike in the case of the standard geometric re-
alization of Coxeter groups, this diagram does not uniquely determine
the individual values of (., Bs), (s, Br), {as, Bi), (a4, Bs), {au, B) and

(o, Br), instead we can only tell that

<a7”a 68><Oé87 /6r> = <045, Bt><at, 6s> = <Oét, 51”)(057” /615) = i

Suppose that we know

<aT768> = _1/47 <0557Br> =—1,
<as>ﬁt> = _1/67 <ataﬁs> = _3/27
(e, By) = —1/10, (ar, Be) = —5/2.

Then

— 1 1 1 .
TSl ) 0 = Tr(Gou) = G0+ 35005

1

(
(
(rererers)ar = rs(50s + gau) = Gou;
(
(rerprsreryrs) e = (0w + 5500) = 0.

Remark 1.2.3. We see from the above example that it is possible for
a non-trivial positive scalar multiple of a root to also be a root, lying
in the same W-orbit as the root itself. Clearly if wa = Aa, where
1 # XA € R, then w"a = A\"«, showing that there are infinitely many
scalar multiples of o in ®;. And of course, all roots in the W-orbit of «
will possess this same property. Despite the fact that in this regard &,
and @, are different from root systems defined in orthogonal geometric
realizations, it nevertheless turns out that all major properties of root
systems can be generalized to the non-orthogonal setting. We begin
with the observation that any root in ®; can be expressed as a linear
combination of simple roots from II; with coefficients being all non-

positive or all non-negative:
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Lemma 1.2.4. For each i € {1,2}, ®; = & W &, where W denotes

1)

disjoint union.

Proof. The condition (C6), which says that 0 ¢ PLC(II;) (for each
i € {1,2}), ensures that & N ®; = 0.

Let z € ®;. By Definition 1.2.2(i) there exists w € W and a; € I
with = wa,. Let w' = wr,, noting that the lengths of w and w’
differ by at most 1. Now if [(w') > I(w) then Proposition 1.1.14
yields that * = wa, € ®. On the other hand if I(w) > I(w'),
then Proposition 1.1.14 yields that w'a, € ®, and this in turn gives
r = wry(as) = w(—as) = —w'a, € ®;. This yields that ®; = & WP .

The same reasoning also shows that &y = & & &, . u

The preceding proof shows, incidentally, that [(wrs) = I(w) is not
a possibility, since a root z € ®; (i = 1,2) cannot simultaneously be
positive and negative. This observation natually leads to the following

key combinatorial fact of the action of W on &;, i = 1.2:

Corollary 1.2.5. If w e W and s € S, then

l(w) + 1 if was € ®F, and whBs € OF,
l(w) =1 if was € 7, and whs € O .

l(wrg) =

O

Remark 1.2.6. From the above, we observe that wa, € ®7 if and only
if wB, € ®f, and wa, € ®] if and only if w3, € &7, for all w € W
and s € S.

Remark 1.2.7. Since II; and II, need not be linearly independent,
although we know from Lemma 1.2.4 that each root in ®; is expressible
as a linear combination of simple roots from II; with coefficients all
being of the same sign, that expression need not be unique. Thus the
concept of the coefficient of a simple root in a given root is potentially
ambiguous. The rest of this section is devoted to finding a canonical

way of expressing any given root as a linear combination of simple
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roots, by specifying the canonical coefficients of the simple roots in a

given root.

Let V/ be a vector space over R with basis IT] := {a | s € S} in
bijective correspondence with S, and let Vj be a vector space over R
with basis IT}, := {8, | s € S}, also in bijective correspondence with S.

Define linear maps 7;: V] — V; and my: VJ — V5 by requiring that

() Aal) = Nay and (D pB) =D pb,

ses seSs ses seS

for all A, us € R, and define a bilinear map (, ): V/ x V] — R by
requiring that

<CK;, 6£> = <asa ﬁt>
for all s, t € S. Observe that

(@) = (m(2'), m(y'))

for all 2/ € V{ and ¢/ € Vj.

With these definitions " = (S, V{, V5, 11,115, ( , )) is clearly a
Coxeter datum having the same parameters as our original Coxeter
datum %, and thus corresponding to the same abstract Coxeter system.

For each s € S, define linear transformations py;(s): V{ — V| and
pvy(s): V3 = V3 by

pV{(S)(Q’JI) =1 - 2(‘7:/7 B;)Oé,sa
for all ' € V/, and
pvy()() =y — 2{ei, ) B,

for all y* € V3, noting that mpy/(s) = py,(s)m for all s € S and
i € {1,2}. For each i € {1,2}, let R} = {py/(s) | s € S}, and let W]
be the subgroup of GL(V/) generated by R;.

Defining (W, R) to be the abstract Coxeter system corresponding
to the Coxeter datum %’ (or ”), Theorems 1.1.4 and 1.1.15 yield iso-
morphisms fj: W — W] and f5: W — W, and we use these to define
actions of W on V{ and Vj via w2’ = (f/(w))(z) for all w € W and



1.2. RoOT SYSTEMS AND CANONICAL COEFFICIENTS 17

2" € V/, for each i € {1,2}. Note that since by definition f;(r;) = py(s)

for all s € S, we have
mifi(rs) = fi(rs)m for all s € S and i € {1,2}

where fi: W — Wj is the f of Theorem 1.1.4 and f; is the analogous
isomorphism W — W, Since W is generated by {75 | s € S } it follows
that m; f/(w) = fi(w)m; for all w € W and i € {1,2}. That is,

(1.2.1) mi(wz') = wm(2)  forallw € W and 2/ € V/

for each i € {1,2}. In other words, m; and 7y are W-module homo-

morphisms.

Definition 1.2.8. Define ¢} := {wa, | w € W and s € S} (the root
system for W in V/) and @, := {wp. | w € W and s € S} (the root
system for W in VJ).

Since I} and II, are linearly independent, the expressions of roots
in ) and @) in terms of II} and I}, are unique. In particular, for each
i € {1,2}, the coefficient of a given simple root in II; in any root of @
is uniquely determined. We will utilize this fact to specify a preferred
way of expressing roots in ®; and ®, as linear combinations of elements

from II; and Il;. The following proposition will be a key step:

Proposition 1.2.9. For each i € {1,2}, the restriction of m; defines a
W -equivariant bijection @, — ®,.

Notation: Define ¢;: &; — @] and ¢y: Py — D), to be the inverses of
the bijections guaranteed by Proposition 1.2.9.

To prove Proposition 1.2.9, we need a few elementary results and

some further notation.

Definition 1.2.10. For each i € {1, 2}, define an equivalence relation
~; on ®; as follows: if 2,29 € ®; then z; ~; 25 if and only if z; and 2z,
are (nonzero) scalar multiples of each other. For each z € ®;, write 2

for the equivalence class containing 2, and set ®; = {Z | z € @, }.
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Observe that the action of W on ®; (for i = 1, 2) gives rise to a
well-defined action of W on ®; satisfying wz = wz for all w € W and

all z € ®,.

Definition 1.2.11. For each w € W, define

Ni(w) :={a | a € ®f and w(a) € & }
and
No(w) :={B | B € ®F and w(p) € 35 }.

Observe that N;(w) and No(w) can alternatively be characterised

as follows:

Ni(w):={a | ae ®] and w(a) € & }
and

Ny(w) :=={B | B € ®; and w(B) € f }.

Thus if 7 € ®;, then 2 € N;(w) if and only if one of z and w2 is positive

and the other negative.

Lemma 1.2.12. (i) Ifs € S, then Ny(rs) = {a,} and Na(r,) = {B,}.
(ii) Let w € W. Then Ny(w) and Ny(w) both have cardinality l(w).
(ili) Let wy, wy € W and let + denote set symmetric difference. Then

Ni(wiws) = wy ' Ni(wy) + Nj(wy) for each i € {1,2}.
(iv) Let wy, wy € W. Then for each i € {1,2},

Hwiwz) = l(w:) + U(ws) if and only if Ni(ws) © Ni(wiws).

Proof. (i) Let s € S. Clearly rs(as) = as — 2{as, Bs)as = —ay,
and so a, € Ni(ry). Now let a € ®f, and write a = > \a,
res
with A, > 0 for all » € S. Suppose that ry(a) € ®7; that is,
a— 2a, Bsyas = — > pray, for some p, with g, > 0 for all r € S.
res
Then
(1.2.2) 0= (A + s — 2(e, B)as + Y (A + )y

reS\{s}
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Now apply (, 5s) to this expression. Since (as, Bs) = 1 and (o, 55) <0
whenever r is in S\ {s}, we conclude that A\, + s — 2(«, Bs) must be
nonnegative. But this gives 0 € PLC(II; ), contradicting (C6) of Defini-
tion 1.1.1, unless all coefficients in (1.2.2) are zero. Thus A, = p, =0
for all » € S\ {s}, forcing a to be a positive scalar multiple of a.
Hence the only positive roots in ®; made negative by applying r, are
of the form Aag, where A is positive, that is, N;(rs) = {as}.

Exactly the same reasoning gives that Ny(rg) = {B\s}, and this
completes the proof of (i).

(ii) If w € W, define ni(w) = |Ny(w)| and ny(w) = |No(w)|. We
shall use induction on I(w) to prove that ni(w) = l(w) for all w € W.
Exactly similar arguments can be used to prove that ns(w) = l(w) for
all we W.

If {(w) = 0 then w = 1 and clearly n;(1) = (1) = 0. Now assume
that {(w) > 0. Then there exist s € S and w’ € W such that w = w'r;
and [(w') = l[(w) — 1. If we can prove that

(1.2.3) ni(w') =ny(w) — 1

then it will follow from the inductive hypothesis that

as required. Observe that (1.2.3) will follow if we can prove that
rs(N1(w) \ {as}) = M (w).

Let € Nj(w'), choosing the representative root = to be positive.
Observe that 7 # @y, since l[(w'r,) > I(w') and hence w'a, € ®f
by Corollary 1.2.5. So part (i) yields that rz € ®]. Moreover,
w(rsr) = w'rgrse = w'z € 7 (since T € Ni(w')). Hence r,Z € Ni(w),

and T € r;Ny(w). But clearly T # rya;, and so it follows that

Ni(w') € ro(Ni(w) \ {as})-
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Conversely, let 7 € Ny (w)\{@,} with x € ®]. By part (i) r,x € ®f;

moreover, w'ryx = wrgrsx = wr € 7 (since ¥ € Ny(w)). Hence
rs(Ni(w) \ {ai}) € Ni(w').

Therefore r4(Ny(w) \ {as}) = Ni(w'), as required. This completes the
proof of (ii).

(iii) Suppose that T € Nj(wjws), where we may assume that
r € ® without loss of generality. Observe that this gives wiwyr € ®7 .

If wox € ®f then T ¢ N;(wy), since x and wyx are both positive;
furthermore, wyx € Ni(w1), since wyx is positive and wiwyx is nega-
tive. So 7 € wy ' Ny (w1)+Nyi(ws). On the other hand, if wox € &7 then
T € Ni(wy) and Wy ¢ Ni(w1), again giving Z € wy Ny (w;) + Ny (ws).

Since T was chosen arbitrarily it follows that
Nl(wlwg) g w;lNl(wl) —|— N1<'w2>.

Conversely, suppose that T € wy ' Ny (w; )+ N (wy), choosing x € &
Note that either T € Ny(wy) and T ¢ w; ' Ny(wy), giving T € Ny (ws)
and wyZ ¢ Ni(w1), or else T ¢ Ni(wsy) and T € w, "Ni(wy), in which
case T ¢ Ny(wq) and we@ € Ny(wy).

If Z € Ny(ws) and woZ ¢ Ny(wq), then wyx must be opposite in sign
to x, and wy(wex) must be of the same sign as wex. Thus wyr € O
and wywox € ®7. On the other hand, if T ¢ Nj(ws) and wy € Ny(wy)
then wex must be of the same sign as = and w; (wyz) must be opposite
in sign to wox. Thus wex € @f and wywyr € ®7. So wywer € 7 in
either case, and since T € w; ' N1 (w;) + Ny (w9) was arbitrary it follows
that

U}2_1N1(w1) —|— Nl(wg) g Nl(wle).

Since this reverses the inclusion proved above we conclude that equality
holds, and since exactly similar arguments apply for N, this completes
the proof of (iii).

(iv) By part (ii) above l(wjws) = I(wy) + l(we) if and only if
[Ny (wiws)| = [Ni(wn)| + [Ni(ws)] = [wy ' Ni(wn)| + [Ni(ws)]. By
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part (iii) this happens if and only if wy ' Ny(w;) N Ny(ws) = ), and
this in turn happens if and only if Nj(wy) € Nyj(wiws). As usual, the

same reasoning applies for Ns. O

fw=rgrsg---rs (s1,--+,5 € 95) is such that [(w) = [, then it is
easy to see that

—_—

(1'2'4) Nl(w) = {54-5\17 TSza/Sl—\N FsiTs 1 Qsy_gy - ooy Ty Tsyy - 'TSQO/{-S\I}
and
(1.2.5)  No(w) = {Bs;, 75,8515 Tsi 5118515 «+ s TsyTsy_q - - T'syBsy }-

If wy ,wy € W such that I(wjws) = l(wy) + {(ws), then we call wy a

right hand segment of wyws.

Lemma 1.2.13. W is finite if and only zf&)\l if finite, and if and only
if@ is finite.

Proof. Since |II;| = |S| = {rs | s € S} < |[W], it follows that
IIT;| < oo whenever |W| < co. Then

1P| = |{wz |we W and z € II; }|
<H{wz|weW and x € 11, }|
< (W[
< 00.

Conversely, assume that |&)\1| < 00. Define an equivalence relation ~ on
®; as follows: for x1, o € &1, 11 ~ x5 if there is a positive A such that
1 = A\wo. For each z € @4, write x for the equivalence class containing
z and set @y := {Z | x € &, }. Since —z is a root whenever z is a root,
D] = 2|6\1| < 00. The action of W on ®; naturally induces a well-
defined action of W on ®; satisfying wz := wz. Now for each w € W
define a map o,,: E}Z — ;}I by 0, (z) := wx for all T € E}Z Then o,
is a permutation of Z}i, and furthermore, w — o, is a homomorphism
o: W — Sym(a) (the symmetric group on ?ii) Now if w is in the

kernel of o then wx = x for all x € ®¢, and in particular, wz = z for
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all z € II;. But by Corollary 1.2.5 this means that [(wr,) > l(w) for

all s € S, and therefore w = 1. Thus ¢ is injective, and
W] < |Sym(®))] = [@,]! < o0

as required.
And as usual, exactly similar arguments yield that W is finite if
and only if @, is finite. O

Let K C S. If we define Vi to be the subspace of V; spanned
by Ilix = {as | s € K} and Vi to be the subspace of V5 spanned
by o = {fBs | s € K}, and let { , )k be the restriction of { , )
to Vigx X Vag, then clearly (K, Vig, Vor, i, ok, (, )k ) is a Coxeter
datum with parameters (mg | s,t € K ). Write Wx = (r. | s € K)
for the corresponding abstract Coxeter group, and let n: Wi — W
be the homomorphism defined by 7. + r, for all s € K. It follows
immediately from the formulas for the actions of W on V; and Wy
on Vig that rlv = rev for all s € K and v € Vjg, and therefore
wv = n(w)v for all w € Wi and v € Vig. Since the action of Wik
on Vii is faithful, it follows that 7 is injective. Thus Wy can be
identified with the standard parabolic subgroup of W generated by the
set {rs|se€ K}.

Definition 1.2.14. Given K C S, we define &, and &, to be the
root systems of Wi in Vix and Vo respectively, and CID;FK, @;’K to be

the corresponding sets of positive roots.

In other words,
O ={wa, |weWgandre K}
and
&t = &, N PLO(IL x),
and similarly for @5 and .

Remark 1.2.15. It is a consequence of Lemma 1.2.13 that Wk is finite

if and only if 517( and 527( are finite.



1.2. RoOT SYSTEMS AND CANONICAL COEFFICIENTS 23

It is well known (and in fact follows easily from Corollary 1.2.5
and Lemma 1.2.12) that if Wi is finite then there is a unique longest
element wx € Wy, satisfying Ny(wg) = {a | « € 1k }. However, for
our present purposes we require this only in the special case that K

has cardinality 2.

Notation: Let r, s € S be such such m,; < co. Define wy, oy € (r,,75)
to be the element r,.r,r,--- = ryr.ry---, where there are m,, factors

on each side, the factors being alternately r, and r;.

Lemma 1.2.16. Let w € W and s € S be such that wa, = vay for

some positive scalar v, and suppose that r € S such that l(wr,) < l(w).

Then
(i) (rr,rs) is finite.
(11) Nl(w{r,s},rs) = (I)l{ns} \ {64\5}

(iii) l(wrsw{;s}) = l(w) — l(wirsyrs)-

Proof. (i) Since l(wr,) < l(w), Corollary 1.2.5 yields that wa, € ®7.
Furthermore, wa, # &y, for otherwise a, = a,, forcing r = s by
Lemma 1.1.5, contrary to the fact that way is positive and wa, is

negative. Now observe that
wrg(a,) = w(a, — 2{ay, fs)as) = w(a,.) — 2{a,, Bs)w(a)
- w(ar) - 2<ar7 Bs)at s
~—— —_———

€ o \R{az} 2 scalar multiple of a;

and assume, for a contradiction, that wrs(a,.) € PLC(II;). Rearranging

the above equation gives

wrs(a,) — w(a,) = —2(a, Bs)ay :
€ PL?Jr(Hl) a positive scalar multiple of oy

and, since —w(a,) € (®] \ R{a;}), the left hand side is not a scalar
multiple of a;. So, moving the a; term from the left side to the right,
this expresses Aoy, for some scalar A\, as a positive linear combina-
tion of II; \ {at}. But if A < 0 this implies that 0 € PLC(II;),
contradicting condition (C6) of a Coxeter datum, while if A > 0 it
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implies that oy € PLC(II; \ {a;}) contradicting Lemma 1.1.5. There-
fore wry(a,) € ®7. Since both wrg(a,) and wrs(as) = —ayp are neg-
ative, it follows that wrg(Aa, + pay) is a negative linear combination
of Iy whenever A\, u > 0. Hence wrs(Aa, + pas) € P whenever
Aoy + pog € <I>1+{ sl This says precisely that qir,\s} C N;(wry). Since
Ni(wry) is a finite set of size [(wrs) by Lemma 1.2.12(ii), it follows
from Remark 1.2.15 above that (r,,r,) must be finite. Therefore wy, 5
exists.

(i) Since wy 4 is the longest element in Wy, ) it follows that
Hwirsyrr) < Hwirsy) and H(wyrg7s) < H(wirgy). So Corollary 1.2.5
yields that wg, o, € 7 and wy,. o, € @, This then implies that

Q1153 © Ni(wyrsy). On the other hand wy sy = 1105y -+ - = reryrg - - -,
mys factors mys factors

so it follows from Lemma 1.2.12 (i) and the repeated application of
Lemma 1.2.12 (iii) that Ny (wg ) C qD/l{r\s} whence N (wirs)) = q)/l{r\s}

Observe that wy, g7, = —wy, 305 € T, and so
Pri \ {8} € Milwprgrs).

Thus to show the desired result, we only need to establish that
[Ny (wgryra)| = [ @i ] - 1.

Indeed, Lemma 1.2.12 (ii) yields that |Ny(wg.s7s)| = (wrs7s), and
we have already checked that l[(w.s75) = l(wirsy) — 1, thus

|N1(w{r,s}rs)| - l<w{r,s}rs> - l(w{r,s}) —1= |q)1{r,s}| — 1.

(ili) To show that wy, g7, is a right hand segment of w, it is enough
to show that Ni(wyrs7s) € Ni(w) by Lemma 1.2.12(iv). So let a be
an arbitrary positive root such that & € Ny(w. 4 7,), and observe by

part (ii) that a = Ao, + pag for some A > 0 and g > 0. Thus

wa = AMwa, + pwag = Awa,. + prog.
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Suppose for a contradiction that wa € ®. Then

wa — Aw(a,) = JZen )
—_—— —~—
€ PLC(II1) a positive scalar multiple of ay

and, since —w(a,) € (&7 \ R{a;}), the left hand side is not a scalar
multiple of ;. So, moving the a; term from the left side to the right,
this expresses X oy, for some scalar X, as a positive linear combination
of IT; \ {a;}. But if X < 0 this implies that 0 € PLC(II,), contradicting
condition (C6) of a Coxeter datum, while if X’ > 0 it implies that
a; € PLC(II; \ {a4}) contradicting Lemma 1.1.5. Therefore wa € @7,
and therefore & € Nj(w). Hence all elements of Ny(wy.q7s) lie in

Ni(w), as required. O
Now we are ready to prove Proposition 1.2.9:

Proof of Proposition 1.2.9. Since | = {wa/, | w € W and s € S },
to prove that the restriction of m to @] is bijective it suffices to show
that if m(wal) = m(vay) for some w, v € W and s,t € S, then
wal, = vay. Since mp is a W-homomorphism and (o)) = «; for all
s € S we see that m(wal) = wa, and m(va)) = vay, and deduce
that it suffices to prove the following statement: if way = a; for some
w e W and s, t € S, then wal, = .

We assume that w(as) = oy, and proceed by an induction on I(w).
The case [(w) = 0 reduces to the statement that if o, = o for some
s, t € S then o/, = aj, which is trivially true since II; and II} are both
assumed to be in bijective correspondence with S. So we may assume
that I(w) > 0, and choose r € S such that [(wr,) < l(w). Lemma
1.2.16 yields that (r,,rs) is a finite dihedral group (hence m,. is finite),

and
l(w(w{m}rs)_l) = l(w) - l(w{r,s}rs)-

We treat separately the cases m,.s even and m,.s odd.
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If m,s = 2k is even, then wg, o = (ryrs)* = (rer,)*, and then the

formulas in Lemma 1.1.6 yield

(1.2.6)

(w{ns}?ﬂs)as - _w{r,s}as - _(Tsr'r)k@s
_sin((mg + 1)m/my) —cos(m/mg)  sin(m)
- sin(7m/mg;) Y (o, Be) sin(r/my)
= s,

and by exactly the same calculation in V},
(1.2.7) w7 (o) = a,.
Now since

Oy = Whig = w(w{r,s}rs)_l (w{r,s}rs)<as) - w(w{r,s}rs>_l(as)
—_——

= a5 by (1.2.6)

and l(w(wgsy75) ") < I(w), the inductive hypothesis yields that
(1.2.8) o = w(w{r,s}Ts)fl(O/s)-

It follows that

w(a;) = w(w{r,S}TS)_l (w{r,S}TS)(a;) = w(w{r,S}TS)_l(a;) =
——_— ———

=al, by (1.2.7) by (1.2.8)

{e.

as required.
If mg = 2k+11is odd, then wy grs = ...7rer, = (rer)*. Now
N——

(mys — 1) factors

the formulas in Lemma 1.1.6 yield that
(1.2.9)

(Wi sy7s)os = (rore) o
_ sin () oo T cos(m/(m)) sin(2km/(m)) N
sin(m/(ms)) ’ (ar, Bs) sin(m/(mst)) '
— cos(w/(mst))a
(, By
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and by exactly the same calculation in V},

(1.2.10) (Wiray7s) 0l = %a’

Now since
oy = 'LU(QU{r,s}Ts)_l(w{r7s}r8)a5

(1.2.11) _ et
= W(W{r,s)Ts) (Tﬁs)

and l(w(wy5375) ") < l(w), the inductive hypothesis yields that

o) (by (129))

—cos(m/m,s)

1.2.12 o) = w(wi ars) ! al).

( ) t ( { s } ) ( <a7"768> )

It follows that

wal, = w(w{ns}rs)_l(w{r7s}r5)a;
_q,—cos(m/mys)
= w(Wy,.aTs —F——q, by (1.2.10
(Wirsy7s) ™ ( Tor 5. ) (by ( )

= q (by (1.2.12))

as required.
The other half of the proposition follows by similar arguments ap-
plied in V5 and V3. O

While we are at it, we can also prove the following:

Proposition 1.2.17. Suppose that s,t € S. If w(as) = vay for some

w e W and some non-zero v, then w(fBs) = ;.

Proof. If I(w) = 0, then s = ¢t and v = 1, and there is nothing
to prove. Thus we may assume that [(w) > 1 and proceed by an
induction on [(w). Choose r € S, such that [(wr,) = l(w) — 1. Again
by Lemma 1.2.16 (r,,rs) is finite (and m, is finite too), and hence
wyrs exists. The same rank 2 calculation as used in the proof of
Proposition 1.2.9 above yields that
Qg if m,.s is even,

(1.2.13) (Wirsy7s) (@s) =

— cos(m/mys)

oy if m,, is odd.
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Similarly
B if m,., is even,
(1214) (w{r,s}rS)(BS) = — cos(n/ )
%ﬁ:’;rﬁ@ it m,, is odd.

First suppose that m,.s is even. Since

vay = wog = w(wrgyrs) (Wi rs) (as) = }U(w{r,s}rs)_l(as)J

—
by (1.2.13)

and [(w(wgs375) ") < l(w), the inductive hypothesis yields that

(1215) %Bt - w(w{r,s}rs)_l(ﬁs)'

It follows that

wﬂs - w(w{r,s}rs)_l (w{r,s}rs)(ﬂs) = w(w{r,s}rs) (/Bs) = U/B
—_——— ——
= Bs by (1.2.14) by (1.2.15)
and hence the desired result follows by induction.

Next suppose that m,, is odd. Since

Vo = Wog = w(w{m}?“s)_l(w{r S}Ts)as
cos(m/mys)

— w(w{r,s}rs) 1(War),

(.

by (1.2.14)
or, equivalently,

_y%at = w(w{r,s}rs)_lar’

and since [(w(wg,575) ") < l[(w), the inductive hypothesis yields that

COS(ﬂ'/mrs

v{ar,Bs) 5t - w(w{rs}rs) 1ﬂr-
That is

(1’2'16) %ﬁt = w(w{r,s}rs)_l(_cos ) ﬂr)

as,ﬂr

and it follows that

wﬁs = w(w{r,s}rs)il(w{r s}rs)ﬁs

1 —cos(m/mys)

= W(W{rs)7s)” Tan B

/BT ;6
——
by (1.2.14) by (1.2.16)
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whence the desired result follows by induction. O

It follows immediately from Proposition 1.2.17 that there is a well-
defined map ®; — P, such that wa, — wp for all s € S and w € W.
This is clearly the unique W-equivariant map ®; — &, satisfying
s — B for all s € S.

Definition 1.2.18. Let ¢ : &1 — $5 be the W-equivariant map satis-
fying ¢(as) = B for all s € S.

It follows readily from Proposition 1.2.17 and W-equivariance that

¢ is a bijection and the following holds:

Corollary 1.2.19. Gwent € S and a nonzero scalar v, then vay € O
if and only if %Bt € ®y. Furthermore, if vay € Oy then ¢p(vay) = %ﬁt.
O

In fact we can generalize the above, as follows.

Lemma 1.2.20. Suppose that o € ®1, and v # 0 such that va € .
Then

d(va) = ;o(a).

Proof. Since a € ®;, we may write a = wa; for some w € W and

1

t € S, and since va € @ it follows that vay = vw™'a = wl(ra) is

in ®;. Hence by Corollary 1.2.19 and the W-equivariance of ¢,

¢(va) = d(v(way)) = p(w(vay))
= wo(vay) = w(;(ar)) = yo(way) = ()

as required. O

Equipped with Proposition 1.2.9, we may define the canonical co-
efficient of any simple root of TI; (respectively, of II; ) in a given root
of ®; (respectively, of ®;). Let a € &1 and 3 € $y, and let o/ = ¢y ()
and 8 = ¢2(B) be the corresponding elements of ®| and ®,. Since
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[T} and IT} are linearly independent, for each ¢ € S there are uniquely
determined real numbers coeff,, (o) and coeflg, (5) satisfying
o = Zcoeffat(oz)oz;,

tesS
and

B'=)  cocffs (58]
tes
Then Proposition 1.2.9 yields that
a=m(d)= 7T1<Z coeff,, ()a}) = Z coeff,, (o)
tes tes

and

B = ma(B) = w3 coelf, (8)8) = 3 coeff, (8)6:.

tes tes
Definition 1.2.21. Suppose that a € ®; and 5 € ®,. For each t € 5,

we call coeff,, () the canonical coefficient of «; in the root o and
coeff, () the canonical coefficient of B, in 5.

1.3. The canonical coefficients and the depth of roots

In this section we study the canonical coefficients defined in sec-
tion 1.2. It turns out that for each s € S and a € &1, the coefficient
coeff,, () is closely related to the coefficient coeffs, (¢(3)), where ¢ is
the W-equivariant map defined in Definition 1.2.18. Also we introduce
the concept of depth of a root following the conventions of [6] and [5],
and we give a characterisation of the depth of a root in terms of the

length of the reflection corresponding to that root.

Definition 1.3.1. Given a € ®; and [ € ®,, define the support of «,
written supp(«), and the support of 5, written supp(53), to be the sets:

supp(a) = { ;s | s € S and coeff,, (a) # 0}

and

supp(B) = { Bs | s € S and coefts, (5) # 0 }.
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The following group-theoretic result is purely about Coxeter groups
and is well known (for example, Section 2 of [14]). It is essential
for Proposition 1.3.3 below and it is going to be used repeatedly in

Section 2.3 later. For completeness, a proof is included here.

Lemma 1.3.2. Let I C S and w € W. Choose w' € wW; to be
of minimal length. Then l(w'v) = l(w') + l(v) for all v € W;. In

particular, w'a, € ®] whenever s € 1.

Proof. We prove this result by an induction on [(v), the case I(v) =0
being trivial. So assume that [(v) > 0, and write v = v'rg for some
v' € Wy and s € I such that [(v') = I(v) — 1. If we can show that
[(w'v) = l(w'v") + 1 then the desired result will follow by induction. By
Corollary 1.2.5, to prove that I(w'v) = [(w'v’) + 1 it suffices to show
that (w'v')as € 7.

Observe that, for any ¢ € I, the minimality of {(w’) in wW} together
with Corollary 1.2.5 implies that [(w'r;) = l(w') + 1, and w'cy; € D7 .
Moreover, since [(v'rs) = [(v) = [(v") + 1, Corollary 1.2.5 yields that

va, € @), and so we may write v'a, = > My, where \; > 0 for
tel
all t € I. Since w'ay € ®F C PLC(ILy) for all ¢ € I, it follows that

(w'v)(as) = Y Mw'ay € & NPLC(IL,) = @7, as required. O

tel
Corollary 1.2.19 says that if ¢ € S and A is any nonzero scalar then
Aqy is a root if and only if % B¢ is root. Thus in the case of singleton sup-
port roots @ = Ay and ¢(ar) = 15, (t € S), for any s € S we have either
coeff,, (o) coeft, (d(r)) = 0 (if s # t) or coeft,, () coeffs, (H(r)) = 1

(if s =t). An extension to this fact is given in the next proposition.

Proposition 1.3.3. Let a« € ®]. The for each t € S we have
coeff,, (o) > 0 if and only if coeffp, (4(cr)) > 0

and in this case coeff,, (o) coeffs, (p(ar)) > 1.

Proof. We use induction on the length of w € W to prove that the

statement holds whenever o« = way, for some r € S. Note that a = wa,
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implies that ¢(a) = we(a,.) = wh,. If [(w) = 0 then the assertion is
trivially true.

Suppose then that {(w) > 0, and let s € S and w’ € W be such
that w = w'rg and l(w') = l[(w) — 1. Choose w” to be a minimal length
element of w(r,,rs). Then [(w") < l(wrs) < l(w), and hence the
inductive hypothesis applies to w”a, as well as to w”a, so that for all
t € S either coeff,, (w"a,) coetts, (w”f,) > 1 or else coeff,, (w”a,) and
coeff g, (w” B,.) are both zero, and either coeff,, (w”ay) coef s, (w”Bs) > 1
or else coeff,, (w”ay) and coeff s, (w”B5) are both zero.

Since [(w"r,),l(w"rs) > l(w") by the minimality of [(w”) in the
coset w(r,,rs), it follows from Corollary 1.2.5 that w”«,., w"f,, w”"a;

and wpf, are all positive. Thus for all t € S,

(1.3.1) coeff,, (w”a,.) > 0 and coeff s, (w”B,) >0
and
(1.3.2) coeff,, (w”as) > 0 and coeff, (w”fs) > 0.

Let u € (r,, rs) such that w = w”u. Since w” is of minimal length in the
coset w(r,,rs), it follows from Lemma 1.3.2 that I(w) = [(w") + I(u),
and hence Ny (u) C N;(w) by Lemma 1.2.12. Since wa, € @7, it follows
that ua, € ®f too. Hence Corollary 1.2.5 yields that I(ur,) > I(u),
and, in particular, v has no reduced expression ending in 7,.. This

implies that [(u) < m,s, and so Lemma 1.1.11 yields that
Uty = )‘lar + p10s and uﬂ'r = )\267“ + I’LQ/BS

for some some nonnegative scalars A\, Ao, 41 and ps. Observe that this

implies
upr(a,) = Md1(ay) + mdr(as) and  uga(Br) = Aaga(Br) + p2g2(5s)
Hence

1 (wa) = W'y (uey) = Mw" ér(a,) + pw” dr (o)

and
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bo(wh,) = W Pa(ufy) = Xow" do(By) + prow” d2(Bs).
It follows that for all t € S,

coeff,, (wa,) = coeff,, (W (ua))

(1.3.3) = \; coeff,, (") + py coeff,, (w”a),

and likewise coeff, (wf3,) = Ag coeff g, (w” B,) + pa coetl g, (W 5s).
A direct rank 2 calculation (as in Lemmas 1.1.6 and 1.1.8) yields

explicit formulas for the coefficients A\, p1, A2 and ps, and we find that
(1.3.4) Ay > 0if and only if Ay > 0 and p; > 0 if and only if uy > 0.

Moreover, if m,; = m < oo then Ay and pius belong to the set
{(snE0)2 | 1 < k < m — 1} U {0}, where 6 = 7/m, while if m,, = oo

sin 6

then AjAy and jype belong to { (222E)2 | k € N} U {0}, where

0 = cosh™'(y/{a, Bs)(as, Br)). Tt follows in either case that if A\jAg

or i f4e is nonzero then it is at least 1.

Suppose that coeff,,(wa,) > 0. Then (1.3.3) shows that one of
A1 coeff,,, (w”a,.) or py coeff,, (w”as) must be strictly positive. Now if
A1 coeff, (w”c,.) > 0 then Ay > 0 and coeff,,(w"a,) > 0, and since
[(w") < l(w) the inductive hypothesis yields that coefts, (w”f,) > 0.
Thus in this case (1.3.4) yields that for all t € S,

coeffg, (W) = Ag coefl g, (W"B,.) + g coefl g, (w" Bs)
> Ay coeflg, (w",)

> 0

since pio and coeffg, (w”f5) are both nonnegative. On the other hand,

if py coeff,,, (w”a,) > 0 a similar argument yields that
coeff s, (wf,) > pg coeffs, (w”Bs) > 0,

so that coeff,, (wa,) > 0 implies coeff, (wf,) > 0 in either case.
By symmetry, we can also deduce that coeffs, (w3,) > 0 implies
coeff,,, (wa,) > 0, completing the proof of the first part.
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Suppose that ¢t € S and coeff,, (wa,) and coeff, (wf3,) are positive.
Observe from (1.3.3) that either A, coeff,, (w”a,.) or uy coeff,, (w”ay)
must be positive, and consider first the case A coeff,, (w"a,) > 0.
Then A; > 0, which implies A\;As > 1 by the rank 2 calculation, and
coeff,, (w”a,) > 0, which implies that coeff,, (w”a;) coeff, (w”B,) > 1
by the inductive hypothesis. Hence

coeff,, (way) coef g, (wB,) > (A coeffy, (W) (A2 coefl g, (W 5,))

= (M Ag)(coeff,, (w" ) coefl g, (W 5,))

> 1.
On the other hand, if u; coeff,, (w”a;) > 0 the same conclusion follows,
since

coeff,, (wa,.) coefl g, (wpB,) > (p1 coeffy, (W) (12 coefl g, (W Bs))

= (papa2)(coeff,, (w” aig) coeff g, (w” Bs))
> 1.

by the rank 2 calculation and the inductive hypothesis, and this com-

pletes the proof of the second assertion of the proposition. O

It is readily seen from Proposition 1.3.3 that:
Corollary 1.3.4. Let o € &y, then

a € O if and only if #(a) € ®F,
and

a € ®7 if and only if p(a) € @5 .
Furthermore, supp(¢(a)) = ¢(supp(a)).

Proof. Observe the following if and only if statements: o € ®] if and
only if for some t € S, coeff,, () > 0, and by Proposition 1.3.3 this
happens if and only coeffg, (¢(«v)) > 0 for some ¢ € S, and this in turn
happens if and only if ¢(a) € @3 .



1.3. THE CANONICAL COEFFICIENTS AND THE DEPTH OF ROOTS 35

Replace a by —a, then the above yields that o € &7 if and only if

¢(a) € &,
Finally, Proposition 1.3.3 yields that supp(¢(a)) = ¢(supp(«)). O

Definition 1.3.5. (i) For each o € ®] and 8 € ®; define the depth

of a (written dp,(«) ) and the depth of § (written dpy(3)) to be
dp;(a) = min{l(w) | w € W and wa € O },

and

dpy(8) = min{ l(w) | w e W and wp € ®; }.

(ii) For ay,ay € @] (respectively 1, o € ®F), write a; =<y ay (resp.
B1 =2 B2) if and only if there exists w € W (resp. w' € W) such that
s = way, and dp,(ag) = dp; (o) + I(w) (respectively [y = w'f;, and
dp,(52) = dpy(51) + I(w')). Further we write ag <7 g if @ <1 ag but
a1 # g, and we write 81 <o [2 if 81 =2 B2 but 81 # [Ba.

Lemma 1.3.6. (Lemma 1.6 of [6]) <y and <y are partial orderings on

& and ®F respectively. O
The following result can be easily deduced from Definition 1.3.5.

Lemma 1.3.7. Suppose that ay,ay € ®F and 1,3, € ®F such that

a1 = wag and B = w'Py for some w,w’ € W. Then

| dpy (1) — dps (az)| < l(w) and [dp,y(B1) — dpy(fB2)| < 1(w").

O

Lemma 1.3.8. Suppose that ay,as € ®F, with ay <, ao. Let w € W
be of minimal length such that ce = woy. Let w = rgrs,---Ts,
(s1,++,8 €8) with I = l(w). Then for alli € {1,2,---,1— 1},

(r8i+1 T Tsl)al =<1 (rsi/rsiJrl o ’Tsz)al‘

Proof. Given these conditions, dp,(az) = dpy(a;) + [(w). Observe

that r,,,, ---rg is a right hand segment of r,r,,,, - -7y, which in turn
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is a right hand segment of w, so Lemma 1.2.12 (iv) yields that
NI(TSH-I U TSZ) C Nl(rsirsi-u e TSZ) - Nl(w>7

In particular, (rgrs, - --7s)a; € ®F for all i € {1,---,1} (since
way € ). We prove this lemma by way of contradiction. suppose
the statement of this lemma is false, and choose i € {1,--- ;1 —1} such

that (rs,,, - 7rs)on A (re7s,,, - - 7Ts)on. Thus

(135) dpl((rsi e rsz)a1> S dpl((rsi+l e Tsz)al)‘

Since ag = (rs, ... 75, ) (s, ... T5,0q) it follows that

dp; (1) + l(w) = dp;(az)

< (i—1)+dp,((rs, - 7s)01) (by Lemma 1.3.7)
< (i = 1) +dp(rs,y, - T501) (by (1.3.5))
<(i—1)+(—1)+dps(a1) (by Lemma 1.3.7)

which is absurd. Hence for all i € {1,--- ,1 — 1},

<T3i+1 e rsl)al =1 (Tsi o 'TSz)ah

as requied. O
Remark 1.3.9. Lemma 1.3.7 has a natural analogue in ®; .

The following result is a generalisation of Lemma 1.7 of [6]. Essen-
tially the same reasoning as that used in [6] can be used to prove it,

but for completeness, a proof is included here.

Lemma 1.3.10. Let s € S, a € & \ R{a,}, and B € ®F \ R{p,}.
Then

dp,(a) — 1 if (o, Bs) > 0,
dpl(T’SOZ) = dp1(04) Zf <aaﬁs> = 07
dp,(a) + 1 if {a, B5) < 0;
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and

dp2(ﬁ) —1 Zf <O-/S7B> >
dpy(rsB) = dp,(8) if {as, B)
dpy(8) + 1 if (as, B) <

0,
0,
0.

Proof. If (a, fs) = 0 then rsa = a — 2(«, Bs)as = «; hence trivially
dp, (rsa) = dp; ().

Suppose next that («,s) > 0, By Lemma 1.3.7, it suffices to
show that dp,(rsa) < dp,(«). To do so we construct a w € W with
w(rsa) € ¢ and [(w) < dp;(a). Choose v € W such that vaw € O
and [(v) = dp, (). If va, € P we set w = vrg; then I(w) = [(v) — 1
(by Corollary 1.2.5) and w(rsa) = va € @7, as required. Hence we

may assume that va, € (bf Now

v(rsa) = v(a — 2{(a, fs)as) = \vg/—Q(a,ﬁQvas € o7
€® € -PLC(IL)

Furthermore, the condition a € @ \ R{«,} implies that va and
—2(av, fBs)vas are not scalar multiples of each other, and hence it follows
that there are at least two simple roots in the support of v(rsa). Now
choose r € S, w € W with v = r,w and [(v) = l(w) + 1. Since v(rsa)
has at least two simple roots in its support, it follows that applying r,
will not change the sign of v(rsa) (recall that Ny(r.) = {a;}). Thus
w(rsa) = r(vrsa) € ©; and [(w) < I(v) = dpy ().

Finally, suppose that (o, 85) < 0. Then (rsa, 55) = —(«, Bs) > 0;
so the preceding paragraph shows that

dp, (@) = dp, (rs(rsa)) = dp; (rsa) — L.

As usual, the other half of this lemma follows by an exactly similar

argument. ]
Lemma 1.3.11. Suppose that o« € W. Then dp,(a) = dpy(é(a)).

Proof. Let w € W be such that wa € ®] and dp,(«) = l[(w). Then
¢(wa) € @5 by Corollary 1.3.4. Since ¢ is W-equivariant, it follows
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that w(¢(a)) € &5 . Hence dpy(d(a)) < l(w) = dpy (). By symmetry
we also have dp, (a) < dpy(¢(«)), whence equality. O

Lemma 1.3.12. Suppose that o € &1 and s € S. Then

(v, Bs) > 0 if and only if {a,, §(a)) > 0;

and
(a, Bs) = 0 if and only if (o, p(a)) = 0;
and
(o, Bs) < 0 if and only if (as, ¢(a)) < 0.
Proof. This follows from Lemma 1.3.10 and Lemma 1.3.11. O

And we can generalize the above to:
Corollary 1.3.13. Suppose that ay,ay € 1. Then

(a1, d(az)) > 0 if and only if (as, ¢(ar)) > 0;

and

(a1, 8(az)) =0 if and only if (as, ¢(ar)) = 0;

and
(aq,¢(a2)) <0 if and only if (ag, ¢(an)) <O0.

Proof. Write s = way for some w € W and s € S. Since (, ) is

W-invariant and ¢ is W-equivariant, thus

<a17¢(a2)> = <O‘17wﬁs> = <U}_10417ﬁs>-

Observe that Lemma 1.3.12 yields that (w™'aq, 3s) > 0 if and only if

(g, ¢(w™tay)) > 0 which in turn happens if and only if

(o, p(w™ ) = (was, $(an)) = (@2, (an)) > 0.

The rest of the desired result follows in a similar way. O

Definition 1.3.14. Suppose that a = wag, 5 = ¢(«), where w € W
and s € S. Then define r,, 75 € W by 1, = 75: = wrsw™', and we call
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o the reflection corresponding to o and 74 the reflection corresponding

to f.

Remark 1.3.15. It is clear from Definition 1.3.14 and Lemma 1.2.1
that for all x € ®; and y € P9,

ro(z) =z —2(x,¢(a))a and  rg(y) =y —2(¢ ' (B),y)B.

Observe that r,(z) = —z and r,(y) = —y. Note that r,, =1, 15, = 1¢
for all s,t € S. Clearly for all « € ®; and § € &5, 7, = r_,, and
rg = r_g. Furthermore, suppose that 21, 2o € ®; (i = 1,2). Then

Z1 = 2y if and only if r,, =7,,.

Lemma 1.3.16. Suppose that x € ®1, y € ®3 and w,v € W. Then

Twe = Wryw ™ and ry, = vryo™t.

Proof. Observe that for any v € V;

wryw ™ (v)
= w(w v — 2w v, ¢(z))x)

= v — 2w v, ¢(x))wz

= v — 2(v,wo(z))wz (since (, ) is W-invariant)

=v — 2(v, p(wz))wx (since ¢ is W-equivariant)

= Tue.
Since v € V; was arbitrary, it follows that r,, = wr,w™!. Entirely
similar argument shows that r,, = vr,v™". U

Set T := |J wRw™ and call it the set of reflections in W. For
weW
each i € {1,2} since ®; = WII,, it follows from Lemma 1.3.16 and the

definition of T" that there is a bijection between CIZ and T via z <> 7.

The following Proposition is a natural extension to Corollary 1.2.5:

Proposition 1.3.17. For each i € {1,2}, let w € W and x € ®;. If
l(wry) > l(w) then wx € ®F. If l(wr,) < l(w) then wx € ®; .
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Proof. We prove the statement that [(wr,) > [(w) if and only if wz
is positive in the case x € ®; here, and again we stress that a similar
argument also shows the desired result holds in ®s.

Observe that the second statement follows from the first, applied
to wr, in place of w: indeed if {(wr,) < l(w) then I((wry)ry) > l(wr,)
forcing (wr,)r = w(r,x) = —wz € ®F, that is, wr € ¢ .

Now we prove the first statement in ®;. Proceed by induction on
[(w), the case [(w) = 0 being trivial. If [(w) > 0, there exists s € S
with I(rsw) = I(w) — 1. Then

((rsw)ry) = U(rs(wry)) > l(wry) — 1 > l(w) — 1 = I(rsw).

Then the inductive hypothesis yields that (r,w)z € ®. Suppose for a
contadiction that wx € ®;. Then wz € Ny(r;) and Lemma 1.2.12 (i)
yields that wx = —Aay for some A > 0. But then r,wzr = Aa, would
imply (rsw)r,(rsw)™ = ry by Lemma 1.3.16 and Remark 1.3.15. But
this yields that wr, = ryw contradicting [(wr,) > l(w) > l(rsw). As a

result, wx must be positive. 0

It is readily checked that for all w € W and ¢t € T, l[(wt) = I(w)
modulo 2. In particular, the length of any such ¢ must be odd, which in
turn shows that [(wt) # [(w) Combining this observation with Propo-

sition 1.3.17 we have the following:
Corollary 1.3.18. Let w € W and z € ®} (i € {1,2}). Then
l(wry) > l(w) if and only if wr € ®F,
lwry) < l(w) if and only if we € O .
U

The next result gives a connection between the depth of a root and

the length of the corresponding reflection.

Lemma 1.3.19. Let o € ®] such that a = (rgrs, -+ T4 ), where
S,81,--,8 €S and dp,(a) =1+ 1. Then l(r,) =20 + 1.
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Proof. The proof is based on an induction on [. The case [ = 0
(a = ag) is trivial. Thus we may assume that [ > 1. Observe that
Lemma 1.3.7 and Lemma 1.3.8 yield that dp,(rs, ...75as) = [. Then
the inductive hypothesis yields that

(1.3.6) U(Tsy .. .TsTsrs -+ Tsy) =20 — 1.

That is, (rs,...7s)as <1 (rs,Ts,...Ts ), and hence Lemma 1.3.10

gives
(1.3.7) (Tsy ... 75,05, Bsy) < 0.

Lemma 1.3.12 then yields that (o, (s, ...75,)8s) < 0. Observe that
dp;(a) = dpy(rs,7s, - . . 75,0) = L+ 1 implies that I((rs,7s, ... 75,) =1,

in particular, g, ...7s is a right hand segment of 7, 7s, ... 7. Since

(T,Tsy - - - T, )5 € P, it follows that (r, ...7s)as € @] too. Thus

(1.3.8)
(Pgy oo Ty TsTsy o Tsy) sy = T (roy o) sy
= Qg — ?(asn (TS?. T TSl)BSZ (TSQ o 'TSLO‘SZ
Vv vV
<0 c q>1+
€ of.
Hence

Urg, (Tsy -+ TsTsTsy * - Ts,))

l<<r82 T Ty TsTsy o 'Tsz)rﬂ)

=U((rey - 757575+ 7s,)) + 1 (by Corollary 1.2.5).
Now we claim that
(1.3.9) (PayTay *+TgTsTs, = " Ty ) s, € P
If (1.3.9) were true, then Corollary 1.2.5 would yield that

LT Tsy - T TsTsy = TsyTsy) = L(Ts Tsy - T TsTsy " Tsy) + 1

U(Tsy - TsrsTs, - Tsy) + 2,
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this combining with (1.3.6) gives us I(rs, - - - 75,7s7s, - 7s,) = 20 + 1.
Thus the result follows by induction provided we can prove (1.3.9),
which we shall prove now. Suppose that the opposite to (1.3.9) holds,
then Lemma 1.2.12(i) together with (1.3.8) yields that

(1.3.10) (Toy o T TsTsy "+ Ty ) Qs = A,
for some A > 0. But this says precisely that
(1.3.11) TsTsy - o TsyQlsy = AT'g, ... TsyQls, .

Observe that (1.3.6) forces rg, -+ 75, to be a right hand segment of
Tsy+*TgTsTs ** Tsy. Thus (1.3.8) above yields that (rg, - - 7y, )as, € OF.
Hence r,(ry, -+ 7sy) s, = Mg, - 75, ), € ®F too. This yields that
(s, - .- Tsy) s, 18 DO & positive scalar multiple of as by Lemma 1.2.12(i).

Observe now

Ts(Ts o Tsylsy)
= (s rsp)as, = 2((rs; - 7sy) sy, Bs) s
= ANrg, ... Tsy) s,
forces (rg, -+ rs,as,, Bs) = 0. Since (, ) is W-invariant, it follows that

(g, s Tsy - T, Bs) = 0. Lemma 1.3.12 then yields (r, - - - r5,as, Bs,) = 0,
contradicting (1.3.7). Thus (1.3.9) follows, as required. O



CHAPTER 2

Special Topics in Non-Orthogonal Setting

2.1. Decompositions of Generic Root Systems

Suppose that U; and U, are vector spaces over the real field R and
suppose that there exist a bilinear map (, )’ : U; x Uy — R and linearly
independent sets X; C U; and Xy C U, indexed by the same set S” via
s+ x, € Xy and s — y, € Xy for all s € S”. Furthermore, suppose
that the following condition holds:

(D1) (xs,ys) =1 for all s € 5”.
For each s € S”, define py(z,): Uy — Uy and pa(ys): Us — Us by

for all u € Uy and v € Uy, and for each ¢ € {1,2}, define
R! :={p;(z) | v € X;};
W .= (R");
oY =W/ X;;
/" .= ®” NPLC(X;) and
) = )T,
Proposition 2.1.1. For eachi € {1,2}, suppose that ® = &/ wd! ™.
Then the following conditions must be satisfied for all s, t € S”:

(D2) (zs,y:) <0 and (x4, ys)" < 0 whenever s # t;
(D3) (zs,y:)" = 0 if and only if (z¢,ys)' = 0;
(D4) either (g, ys)' (x1,ys)" = cos?(;I=) for some integer mg > 2, or

else (xs, 1) (xy,ys) > 1.

43
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To prove this proposition we shall need a few technical results first.
These results are essentially taken from [1], and for completeness, their
proofs are included here.

Let &7 be a commutative R-algebra, let q% and X be units of o7,
and let v € R. Define A, B to be 2 by 2 matrices over &/ given by:

—1 2v¢'2X 0
A= v B = 1 .
0 q 2vq'/2 X1 —1

It is easily proved by induction on n € N that

1
n+1 . 7’L+§ X
(2.1.1) BAByr = | 1 Pt T4 TP
" 2pon o Xt —q"pania
1
—q"Pant1 qn+§P2n+2X
(2.1.2) A(BA" = \
_qn+ 2p2nX_1 qn+1p2n+1
1
_an n+§ X
—q" 2pe, X7 ¢"pona
and
1
" n - n—§ nX
(2.1.4) (AB)" _ qlp2 +1 q D2
qn+ 2]92an1 _qnp2n—1

where p, € R (for n € {—1} UN) is defined recursively by

(215) pa=-1,  po=0,  pu1 =270 —Pa1 (neEN).

The solution of the recurrence (2.1.5) is

(2.1.6)
n ify=1
(—=1)"*n ify=-1
Y s AV = (= V=) iRl >
s;?nn: where 6 = cos™! v if |y| < 1.
\



2.1. DECOMPOSITIONS OF ROOT SYSTEMS 45

Note that in the case |y| > 1 we may alternatively write

sinh nf
sinh 6

Dn = where 6 = cosh™' v

(as in Lemma 1.1.8).

Lemma 2.1.2. (Dyer, [1, Lemma 2.2])

(i) Conditions (1") and (2) below are equivalent:
(1) pppns1 >0 for allm € N;
(2") v € {cos(n/m)|meN, m>2}U][l,00).

(i) If v = cosiZ for some k,m € N with 0 < k < m then the
matrices A and B satisfy the equation ABA--- = BAB---,
where there are m factors on either side.

(iii) If g =1 then the matriz AB has order m if v = cos IZ for some
k,m € N with 0 < k < m and ged(m, k) = 1, and has infinite

order otherwise.

Proof. (i):  Assume that (1’) holds. Observe that (2.1.5) yields that
p1 = 1 and py = 27; hence v > 0. Since (2') obviously holds if v > 1,

us

we may assume that 0 < v < 1. Choose 6 so that 0 < § < 7 and

cos = ~, and let m be the largest integer such that
0<f<20<---<mb<m,

noting that m > 2. Now if mf# # 7w then 7 < (m + 1)f < 27, and it
follows that

sin m6
Pm = N >0
sin 6
whereas
sin(m + 1)6
sin

contradicting (1'). Hence mf = m, so that v = cos = for some m > 2,
whence (2') holds. Thus (1’) implies (2).

Conversely, if (2') holds then it follows from (2.1.6) that (1’) holds.
This completes the proof of (i).
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(ii) Suppose first that m is even, and write m = 2r, so that our
task is to prove that (AB)" = (BA)". We have that p, = %,
which gives pg, 11 = % = (=1)* and py,_; = (—1)*! by a
similar calculation, while py, = 0. Hence the required result follows
immediately from (2.1.3) and (2.1.4).

If m is odd our task is to prove that B(AB)" = A(BA)", where
m = 2r + 1. In this case we find that py,; = 0 while po, 1o = (—1)*
and py, = (—=1)*"! and the required result follows immediately from
(2.1.1) and (2.1.2).

(iii) If v = cos ®Z then it follows immediately from Part (ii) that
(AB)™ =1, since A*> = B? = 1 when q = 1. Furthermore, if 0 < n < m
then p, = % # 0, and it follows from (2.1.4) that (AB)™ # 1.
Thus AB has order m. Similarly if |y| > 1 then it follows from (2.1.6)
that p, is nonzero for all integers n > 0, giving (AB)" # 1 for all

such n, so that AB has infinite order. O
Now we are ready to prove Proposition 2.1.1:

Proof of Proposition 2.1.1. We present a proof that ®/ = &/ wd"~
implies conditions (D2), (D3) and (D4) and we stress that the same
argument applies equally to @7.

Suppose that ®/ = & W ®/~. Let s,t € S” be distinct. Consider

the actions of py(z,)p1 () and py(z)pi(z,) in the ({py(z,), pr(we)})-
invariant subspace Rz, + Ray:

(pr(@)pr(ws))(2s) = pr(@e)( w5 — 2(ws,ys) w5 ) = pr(we)(—2s)
= —x, + 2(xs, yi) 4.

Since @} = ®/" W Y~ and X is linearly independent, it follows from
above that (z4,y;)" < 0. Similarly, by looking at (p;(zs)p1(z¢))(x:) we
may deduce that (x;,ys)" < 0, whence (D2) holds.
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Next, suppose that s,t € S” are distinct with (z, y;)’ = 0. Consider

pr(we)pr(ws)(we) = pr(we)( 20 — 2<$tays>,$s )

=~y — 2(T4, Ys) w5 + Hwe, ys) (s, Y1) T

= —Ty — 2<xt7 ys>,xs'
Since @/ = ®/* w &’ and X, is linearly independent, it follows
from above that (x;,ys)’ > 0 and upon combining with (D2), this
in turn yields that (z;,ys)’ = 0. In a similar way, we may deduce that
(x4, y5)" = 0 implies that (zs, ;)" = 0, thus proving (D3).

Observe that if (z5,y;)" = 0 and (24, ys)" = 0 then
<CC'5, yt>/<xta ys>/ = COSQ(W/2)7

satisfying (D4). Thus to prove that (D4) holds, we may assume that
(xs,y) # 0and (z4,ys) # 0. Now let &7, v, q, X, A and B be as defined

above. We set

v =V A{xs, ) (e, ys);
and
— (¢, ys)'

\/<x57 yt>/<xta ys>/ '

Compared with the proofs of Lemma 1.1.6 and Lemma 1.1.8 we see that

A and B are the matrices representing the actions of pi(xs) and p1(x)
respectively on the ({p;(zs), p1(x;)})-invariant subspace Rz +Rx;. By
(2.1.1) and (2.1.4) the condition

({or(s), pr(x)})as U ({pr (@), pr(wo) Pae € 77w @

is equivalent to p,pn,+1 > 0 for all n € N. By Lemma 2.1.2 above, the

condition p,p,+1 > 0 for all n € N is, in turn, equivalent to
(e ) {1,9.)' € {eos® — | m € Nand m > 2} U[L,00),
m

whence (D4) holds.
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Now we are ready for the main result of this section:

Theorem 2.1.3. The following are equivalent:

(1) for eachi € {1,2}, &/ = " W &/~ ;
(2) (8", span Xy, span Xy, X1, Xo, (, )" ) is a Cozeter datum.

Proof. Suppose that (1) holds. It follows from the definition of (, )’
and Proposition 2.1.1 above that conditions (C1) to (C5) of the defini-
tion for a Coxeter datum are all satisfied in our present situation. Since
X; and X are linearly independent, it is clear that 0 ¢ PLC(X;) and
0 ¢ PLC(X3), showing that (C6) of the definition of a Coxeter datum
is also satisfied. Thus (1) implies (2).

Suppose that (2) holds. Then (1) simply follows from Lemma 1.2.4
applied to the Coxeter datum (S”, span X, span X, X1, X, (, )’ ). O

Proposition 2.1.4. Suppose that conditions (D2), (D3) and (D4) of
Proposition 2.1.1 are satisfied. Then (W', R]) and (W), RY) are iso-

morphic Coxeter systems. Furthermore if s,t € 8", s #t, then

m o if (@s, ) (20, ys) = cos* Z,m e N,m > 2

oo Zf <x87yt>/<xt7ys>/ Z 1.

ord(p1(xs)p1(xe)) =

Proof. Keep all notation as in Chapter 1. We have already observed
that (S”,span X1, span Xy, X1, Xo, (, )') is a Coxeter datum; then The-
orems 1.1.4 and 1.1.15 yields that (W/, R}) and (W), RY) are isomor-
phic Coxeter systems. Furthermore, applying Lemma 1.1.8 (ii) and
Proposition 1.1.9 to this Coxeter datum, we duduce that for distinct
s, te S”,

ord(pu(rr(a)) = 4 " el ) = costinm € R 2 2
oo if (s, ye) (2, ys) = 1.
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2.2. Canonical Generators of Reflection Root Subsystems

Keep all notation as in Chapter 1. Recall that T = |J wRw™! is
weW
the set of reflections in W.

Suppose that W' is a subgroup of W. We say that W' is a reflection
subgroup of W whenever W' = (W NT). For each i € {1,2}, if @] is a
subset of ®; such that r,y € @, whenever z,y € ®,, then we call ¢, a
root subsystem of ®;.

If W' is a reflection subgroup of W, set
o;(W"):={xed|r, e W}

Let z,y € ®;(W’). Then r,,r, € W' NT. Since Lemma 1.3.16 yields
that rq,,) = 7r.7yrs, it follows that rg,,) € W' N T showing that
ryy € ®;(W'). Therefore ®;(W’) is a root subsystem of ®; and we
call ®;(W') the root subsystem corresponding to W’'. It can be seen
(for example, (1.4.2) of [11]) that the above correspondence gives a
bijection between reflection subgroups W’ C W and root subsystem
O, (W') C ®;. Observe that ®(W’) is stable under the action of W,

indeed:

Lemma 2.2.1. Let W’ be a reflection subgroup of W. Then for each
ie{1,2}
W', (W' = &,(W").

Proof. We prove that W/®,(W’) = &,(W’) here and we stress that
the other half follows in the same way. Let w € W’. By definition, we
have w = tyty - - - t, where t1,ts,...,t, € W' NT. The definition of T’
yields that, for all i € {1,2,...,n},

1

ty = wirgw; - = T(w;as,)

i ——

by Lemma 1.3.16
for some w; € W and s; € S. Since 7(y,q0,,) € W', it follows that
wias, € O1(W'). Now let € ®(W’) be arbitrary. It follows from
the definition of a root subsystem that {,2 = 7y,a,, v € ®1(W').
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This in turn yields that ¢, it,z € ®1(W') and so on. In particu-
lar, wzr =ty -+ - t,x € &1 (W’). Since x € &1(W’') is arbitrary, it follows
that w®;(W’) C ®;(W’). Finally, replacing w by w™' we see that
B, (W) C wd, (W), 0

Definition 2.2.2. Let W' be a reflection subgroup of W. For each
i€ {1,2}, set

—

AW :={x e d® | N(r,) N®;(W") = {7} }.
We call A;(W’) the canonical roots or canonical generators of ®;(W’).

The key result in this section is a criterion for a set of positive
roots in ®;(W'), for some reflection subgroup W’ of W, to be the set
of canonical roots of ®;(W’). Note that at this stage it is not entirely
obvious that ®;(W’) is generated by A;(W'), and we shall prove this
fact in (iii) of Lemma 2.2.6 below. We acknowledge that the works
presented here closely follow those in Chapter 3 of [1].

Remark 2.2.3. (1)  Note that for each a € ®q, 74 = () (Where
¢ is as in Definition 1.2.18), and it follows that for any reflection
subgroup W’ of W, ¢(®1(W')) = $o(WV').

(2)  For ay,ay € &, Corollary 1.3.4 yields that r,,a € ®] if and
only if r4(a,)¢(a2) € @5 Thus Na(r(ar)) = ¢(N1(7a,))-

These observations lead to:

Lemma 2.2.4. For any reflection subgroup W' of W, ¢ restricts to a
bijection
Al(W,) e AQ(W/)
O
Immediately from this observation we deduce that, for any reflection
subgroup W’ of W,
{ro€eT|aeA(W)}={rgeT|BecA (W)}

and we shall give a set like this a special name:
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Definition 2.2.5. Let W’ be a reflection subgroup of W. Set

SW:={r, €T |ze W)} for any i € {1,2}.

Observe that the definitions of Ny(w), No(w) (w € W) and Propo-
sition 1.3.17 yield that

SWH={teWwW'nT|ift' e W NT with [(tt') < I(t) then t =1}

Thus our S(W’) here defines the same set of reflections in W’ as the
set denoted by S(W’) in [1] (see 1.6 and Theorem 1.8 of [1]). Hence
we may apply Theorem 1.8 of [1] directly:

Lemma 2.2.6. Let W’ be a reflection subgroup of W.

(i) (Lemma (1.7) (ii) [1]) Ift € W' N T, then there exist m € N
and to, -+ ,ty, € S(W') such that t = t,, - - - titoty - - L.
(ii) (Thorem (1.8) (i) [1]) (W', S(W")) is a Cozeter system.
(iii) For each i € {1,2}, let x € II; \ ®;(W’). Then

Ai(r,W'ry) = r (W),

(iv) For each i € {1,2}, &;(W') = W' A;(W').

Proof. Only (iii) and (iv) need to be proved here.
(iii): It is readily checked that r&;(W’) = @;(rW'r) for all r € T..
Since x € II; \ ®;(W"), it follows that r, € R\ W'. Let y € A;(W’) be
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arbitrary. Then

Ni(r ) N Oi(ra W)

—

= N;(ryryry) N @ (r,Wiry)
(by Lemma 1.3.16)

—

= (ryNi(rery) + Ni(rz)) 0@ (r,Wiry)
(by Lemma 1.2.12 (iii))

—

= (ryryNi(ry) + 12 Ni(ry) + Ni(r)) N @ (r,Wiry)

(again by Lemma 1.2.12 (iii))
= 1a((ry Ni(ra)  Ni(ry) + Ni(ra)) O Bo(W7))

o —

= (43} + Ny + {31 N 6 (77)
(by Lemma 1.2.12 (i))

— 1y (Ni(ry) N B, (W7))

—

(since z, 7,7 ¢ ©;(W"))
= {r.y}.

Hence r,y € Ayj(ryW'r,). This proves that r,A;(W') C A;j(r,W'r,).
But z € I1;\r, ®; (W), so the above yields that r,A;(r,W'r,) C A; (W)
proving the desired result.

(iv): Since A;(W') C &,;(W') for each ¢ € {1,2} and ®;(W’) is a
root subsystem it follows that rA;(W’) C &;(W’') for all r € S(W’).
Then part (ii) above yields that W/A;(W') C &,(W").

Conversely if z € ®;(W') then r, € W' NT. By (i) above there are
T0, L1, Tm € A;(W') (m € N) such that

Te =Tz Ty TagTzy " T

m*

Thus Lemma 1.3.16 yields that Az = r(,, ..., )(zo) € W®;(W') for
some (nonzero) scalar X. Since 120 = (r(,,, .ry)) (2) € ®;, it follows
that $20 € A;(W’) and hence © = 7, ..p,)(320) € WA(W') as
required. 0
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Definition 2.2.7. Let W’ be a reflection subgroup of W, and let
' : W" — N be the length function on (W', S(W')) defined by

I'(w)=min{n e N|w=ry---r,, where r; € S(W') }.

fw=ry--r,eW (r; e S(W')) and n = I'(w) then ry - - - r,, is called

a reduced expression for w (with respect to S(W")).

Lemma 2.2.8. Let W' be a reflection subgroup. For each i € {1,2},

—

(i) Ni(ry) N O, (W) ={Z} for all x € A;(W');
(ii) for allwy € W and wy € W’

o — o — o ——

Proof. (i) is just the definition of A;(W’).
(i) Lemma 1.2.12(iii) yields that N;(wiws) = wy ' Ny(wy)+N;(wy),
and hence

— — —

—

Since wy € W' it follows from Lemma 2.2.1 that w, ' ®;(W’) = &;(W').

— —

Thus wy ' N;(w;) N ®; (W) = wy ' (N;(wy) N ®;(W’)) giving us

L — — —

U

Lemma 2.2.9. Let W' be a reflection subgroup. For each i € {1,2}
and all w € W', we have

(i) | Ni(w)ND;(W")| = U'(w). Furthermore, ifw = ry, -+ -1, is reduced
with respect to (W', S(W")) then

Ni(w) N B (W) = {Gh, - G}

where Yj = (Tzn o ‘ij+1)$j fOT a’”j = 17 e,

i) Ni(w) N (W) = {Z € B;(W") | I'(wry) < I'(w)}.
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Proof. (i): Foreachj € {1,--- ,n},sett; =14, - T0, 7o, T,y = Tans
that is, t; =r, . If t; = tx where j > k then

W =Ty Top_ Ty " T, bk

= Tay Ty Tagr  Tanly
— rwl e rmk—lrIkJrl N ij71rxj+1 N rxn
contradicting !'(w) = n. Hence the t;’s are all distinct and conse-

quently all the g;’s are all distinct. Now by repeated application of
Lemma 2.2.8 (ii), for each i € {1,2} we have

Ni(w) HW)
= (N, OB (W7)) + 70 (Ni(r 1) N (W) -

—

7 Ty (Ni(12y) N @ (W7))
= {0} +{na} +--- {0}
= {g\h 7?;1}
and consequently |N;(w) N W)] =1'(w).

(ii): Let w = ry, ---7,, be a reduced expression for w € W’ with
respect to S(W’) (x; € A;(W')). Then (i) yields that for each i € {1, 2}

Ni(w) N &(W) = {Gi, - .G }

where y; = (g, -+ 74,,,)7;, forall j € {1,---,n}. Now for each such j,

Wry, = Wy Ta T Ty Tan = Tay Ty Tajpr T

and so I'(wry,) < n —1 < I'(w). Hence if 7 € Ny(w) N ®; (W’) then
U'(wr,) < U'(w).
Conversely suppose that = € ®;(W') N ®} and T ¢ N;(w). Then
T ¢ ry(Ni(w) N, (W’)) But z € N;(r,) N®;(W’), so
7 € ro(Ni(w) N B (W) + (Ni(r,) N & (W) = N(wr,) N, (W)
and by what has just been proved, this implies that

U'(w) =1 ((wry)ry) < U'(wry).
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Therefore if x € ®;(W’) N ®; such that I'(wr,) < I'(w), then we must

—

have T € NZ(’UJ) N (I)z(W,) ]

Lemma 2.2.10. ((Lemma 3.2) of [1]) Let W' be a reflection subgroup
of W. For each i € {1,2}, let x,y € A;(W') such that r, # r,. Let
n = ord(ryry). Then for 0 <m <n

+ +
CeTyTeTy T € D) and Ce Ty Y € D
—— ——

m factors m factors

Proof. Since z,y € A;(W’) it follows that

U((- o ryrery)re) =m+1>m=1(--ryryry)
S—— N——
m factors m factors

whenever m < n. Then Lemma 2.2.9 (ii) yields that

T & Ni((-ryrery)) N O (W).
e ———
m factors
Therefore (---ryryr,)z € .
f
m factors
By symmetry (-« 7,r,r;) y € ®; too. O
f
m factors

Lemma 2.2.11. ((Lemma 3.3) of [1]) Let W' be a reflection subgroup
of W. For each i € {1,2}, let x,y € A;W') with r, # r,. Let

n = ord(r,ry) and write

(coryrery) @ = cpr +dpy  and  (-ooreryry)y = x4 dLy.
~—— ~———

m factors m factors

Then ¢y, >0, dy, >0, ¢, >0 and d,, > 0 whenever m < n.

Proof. By symmetry, it will suffice to prove that d,, > 0 and d, > 0.
The proof of this will be based on an induction on (7).
Suppose first that I(r,) = 1. Then Az € II; for some A > 0. Write

y = Y. A,z where A, > 0 for all z € II;. In fact, \,, > 0 for some
ZEHZ'

zp € II; \ {z}, since otherwise we would have y € Rz and so r, = r,.
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Now for 0 < m < n, Lemma 2.2.10 yields that

(. .. ryrmry>x = CnT + Z dm>\zz

m factors z€ll;

Observe that the coefficient of zj in this is d,,\,, > 0. Since \,, > 0,
it follows that d,, > 0. Similarly d, > 0.

Suppose inductively now that the result is true for reflection sub-
groups W” of W and ', y' € A;y(W") with r, # r, and I(ry) < I(ry)
where [(r;) > 3. It is well know that there exists 7, € R (so z € 1I;) that
l(ryrer,) = U(ry) — 2. Then I(r,r.) < I(ry), and thus zZ € N;(r,). But
since © € A;(W’) and x # z (since I(r,) > 3), it follows that r, ¢ W'.
Let W = r,W'r,. Lemma 2.2.6 (iii) yields that A;(W") = r,A;(W")
and therefore .z, r,y € A;(W"). Now

(2.2.1) T(roz) = T2TaT> and T(ray) = T2TyTz

and hence ord(7(,,2)7(r.y)) = 0rd(ryry) = n. Since I(rq o)) = (1) — 2,

the inductive hypothesis gives

(\ .r(rzy)r(rzx)T(rzy))(sz) = Cn(127) + dp(r.y)

J

-—
m factors

and

(\ 'T(sz)r(rzy)r(rzwl) (sz) = Clm(rzx) + d;n(rzy)

Vv
m factors

where d,, d,, > 0 for 0 < m < n. By (2.2.1) the result follows on
applying 7, to both sides of the last two equations. O

Proposition 2.2.12. Let W’ be a reflection subgroup of W. Suppose
that .y € Ay(W') with r, # r,. Let n = ord(r,ry) € {oo} UN. Then

(z,0(y)) <0
and
(z, (W) (y, o(x)) = cos® & (n€N,n>2)
(z,0(y))(y, d(x)) € [1,00) (n = o0)
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Proof. Observe that since 74, = 1y # 7y = Tg(), it follows that
{z,y} and {¢(x),¢(y)} are both linearly independent. Therefore we

may apply last section to the present situation, that is,

Xlz{l',y} XQZ{Qb(IL’),Qﬁ(@/)} 7/):¢ <a>/:<7>

and
R =Ry ={rar,} W =W = ({ran})

Consequently & = W'X; = ({ry,m,}){x,y}. Observe that the ele-
ments of U are (- - - ryr,r, )z and (- - - r,ryr, )y (0 < m < ord(r,ry)).

m factors m factors

Lemma 2.2.11 then yields that
U=Utyu,
Therefore Proposition 2.1.1 yields that

(@, o)y, () = cos® 7 (n € N,n > 2)
() € [1,00) (n = 00).

Let A be a subset of ® satisfying the following conditions:
(1) ry #ry forall z,y € Ay, x # .
(2) (z,0(y)) <O0forall x,y € Ay, x #y.
(3) (z,0(y))(y, o(x)) € {cos* L | m € Nym > 2} U [1,00), for all
x,y € Ay
Let W' = (r, | * € Ay). The rest of this section is devoted to
showing that

Most of the arguments to be used in proving this are adapted from [1].
Let A’ be a subset of A;.
Let U be a vector space over R on a basis IT := {e, | x € A} }. Let
U’ be a vector space over R on a basis II' := { fy) | € A7}
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Define a bilinear map (, ) : U x U" — R by requiring
(ers fow) = (@.0(y))  forall 2,y € Al
For each x € Al define a linear transformation p, : U — U by
pz(t) = u — 2(u, fo))es for all w € U.
Let

R"={p. | e A}

W// — <R//>'

U = W'
U+ =¥ NPLC(n);
U™ = -0t

Observe that (A}, U, U’ IL 1T, (, )) is a Coxeter datum, and it follows
by Theorem 1.1.4 (as well as Proposition 2.1.4 above) that (W”, R") is
a Coxeter system. Let [ : W” — N be the length function on (W”, R").
Corollary 1.2.5 applied to this Coxeter datum yields that:

Proposition 2.2.13. Suppose that w” € W" and x € A|. Then

Uw" =1 ifw’e, € U~
Uw")+1 ifw’e, e VT, O

l”(u}”px) —

Note that by Proposition 2.1.4, for z,y € A; with x # y we have:

ord(pa, py)

m (x, fow))(€ys fow)) = cos® T,m € N;m > 2
00 €z, fow) ey, fow) 2 1

m (z, ¢(y))(y, ¢(x)) = cos® ,m € Nym > 2

00 (Y)Y, ¢(x)) = 1
= ord(r,m,) (by Lemma 1.1.8 (ii) and Proposition 1.1.9 )
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Since W” = (R”) the above yield that there exists a homomor-
phism
6:W" — W' such that 6(p,) =r., x€ Al

Next let L : U — V; be the R-linear map such that L(e,) = z, for
all z € A]. We claim that

(2.2.2) L(w"u) =0(w")L(u) w" e W' uel.
To prove (2.2.2) first observe that if z,y € Af, then
L(pa(ey))
= L(ey — 2(ey, fo(a))€a)
=y — 2ey, fo))
=y — 2y, o(x))z
=TzY
= 0(ps) L(ey).
By linearity, this gives that for all x € A,
L(p.(u)) = 0(p,)L(U) for all w € U.

Since W” = (p, | x € A} ) and 6 is a homomorphism, the claim (2.2.2)
therefore follows by an induction on the length of w” in (W”, R").
The following is an adaptation of Lemma 3.6 of [1] into our present

situation.
Proposition 2.2.14. With the above notation,
A(W)C{ I ze®f |[A>0,z€ A}
Proof. Take A} = A;. Since
O(R") ={r, |z e A;} and W' ={(r,|zelA;)

it follows that 6 is surjective.
Let x € Ay(W’'). Choose w € W" with 8(w) = r, € W'. Now let
Puy "+ Pu, (2 € Al) be a reduced expression for w in (W”, R"). Note
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that n > 1. Now !"(wp,,) < I"(w), so by Proposition 2.2.13 we have
we,, € V7, say

we, = — Z Cyey where ¢, > 0 for all y € A].
yeA]
Hence
rz(zn) = 0(w)L(es,) = L(wey,) = L(— Z Cyey) = — Z CyY-
yeA] yeA]

Clearly r,(z,) € ®; and because each y € A; can be expressed as a
nonnegative linear combination of elements of II;, so it follows that
re(z,) € ®7. Since z,, € A} C & (W') C &7 so it follows that

(223) a € Nl(rx) N (I)l(W/)

But z € A;(W’) and so (2.2.3) above yields that + = Az, for some

positive scalar A. Since z € A;(W') was arbitrary it follows that

Al(W')g{)\ZEQ)f‘)\>O,ZEA1}

The following is a generalization of Proposition 3.7 of [1].

Proposition 2.2.15. With the above notation
Al(W/) = {)\Z € (I);r ’ A > O,Z € Al}

Proof. Take A} = A;(W’); this is possible by Proposition 2.2.14 and
Proposition 2.2.12.
Since (W', S(W")) is a Coxeter system we know that

6: (W" R"Y— (W' S(W"))
is a Coxeter system isomorphism. In particular
(2.2.4) 'O =1"(w") for all w" € W”

where [” is the length function on (W', S(W")).
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Let x € A;. Then r, € W/ NT. By Lemma 2.2.6 (i), there exist
xo, -+, T € A(W') = Al such that

Ty = TCEn . 'T:E1TCEOT$1 T

n

Since 1y, Toy TagTae oo ey = Ty = Tay * Ty TagTzy *° ° Tayy, theTe is no

n

loss of generality in assuming that I'(ry, 7o, 7g) > U(Ta, - Tay)-
Then (2.2.4) yields that

l”(pitn U p$1p$0) > l”(p:cn to p:u)a

and thus by Proposition 2.2.13 y := p,, -+ pu, (€z,) € UT, say
Yy = Z cLe, where ¢, > 0 for all z € Al.
z€A]

Now we have L(y) = 1y, - s (z0) = > ¢,z € ®F. Write y = L(y).
z€A]

Then
I R o N
Since x,y’ € ® the above yields that z = uy’ = > (uc.)z for some

zZ€A]
positive scalar .

Now suppose that = ¢ A} (W’) = A}. Then by the definition of Ay,
(r,0(2)) <0  forall z € A, since x # 2.

By Corollay 1.3.13 this imples that (z, ¢(z)) < 0. But now

1= (2,0(z)) = () (ue:)z,6(x)) = > (ne:)(z, ¢(x)) < 0.

zen 2€A]
This contradiction shows that the assumption = ¢ A} (W’) is false.
Since z € Ay was arbitrary it follows that A; C A;(W’). Observe that
if « € A;(W’) then Ao € Ay (W') whenever A\a € ®f. Thus

Finally, (2.2.5) and Proposition 2.2.14 together yield that

{)\ZEE@T|/\>O,ZE€A1}§A1(W,)
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2.3. Comparison with the Standard Geometric Realisation

of Coxeter Groups

In this section we study the connections between the non-orthogonal
geometric realization studied in Chapter 1 with the classical Tits rep-
resention (the standard orthogonal geometric realisation, in the sense
of [10] and [12]) of Coxeter groups. We pay special attention to a
comparisons between the canonical coefficients defined in section 1.2

and their natural counterparts in the classical theory.

Definition 2.3.1. Let V be a vector space over the real field R, and let
(,): V xV — R be a symmetric bilinear form. let II:={~, | s € S}
be a set of linearly independent vectors satisfying the the following

conditions:

(C1") (7s,7s) = 1, for all s € S;

(C2") (vs,71t) <0, forall s,t € S, s #t;

(C3) (76:70)? = (as, Bi) (. Bs), for all s,t € S.
Let p: S — GL(V) be defined by

p(S)(’U)I U= 2(1)7 78)78
forall v e V.
Again it is readily checked that €” = (S, V, V,II,1I, (, )) is a Cox-
eter datum with Coxeter parameters my, s,t € S. Let W be the

associated abstract Coxeter group. Then by Theorem 1.1.4, there is an

isomorphism
f:W = (p(s)|seS) satisfying f(rs) = p(s) for all s € S.

We refer to such V' as the associated (to the non-orthogonal geometric

realization) Standard geometric realisation (Tits representation) of W.

Definition 2.3.2. For all w € W and v € V', we write wv in place of
f(w)v, and let the root system of W in V' be denoted by

O =WIl={wy |weW,seS},
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and we call the elements of ® the set of roots of W in V. Given vy € ®,
and s € 9, define coeff,, € R by requiring that v = ) coeff, (7)7s.

sesS
Define ®* := & N PLC(II), and call elements of ®* the set of positive
roots in V; define ®~ = —®™*, and call the elements of ®~ the set of

negative roots in V.
For v € @, define the depth of v (denoted by dp(y)) to be

dp(y) = min{m € N | w € W such that wy € &~ and l[(w) =m }.

For 1,79 € @, write ; =< 7, if there exists some w € W such that
Y2 = w1, and dp(y2) = dp(y) + l(w). Write 71 < 72 if 11 = 72 and
Y1 # vo. If 1 <X 75, we say that v, precedes .

For each v € ®, define the reflection corresponding to v, ry: V =V

to be the linear transformation given by

ry(v) =v —2(v,7v)y, forallve V.

Observe that the above defintions give a Standard Tits represen-
tation of W in the sense of [12] and [10]. It can be readily checked
that (, ) is W-invariant, that is, (z,y) = (wz,wy) for all z, y € V and
w € W. Suppose that x € & and Az € ® for some scalar \. Then
x = wvs for some w € W and s € S, and it follows from what we have
just noted that

(#,2) = (wys, wys) = (¥, 7s) = 1.

Then A2 = M (z,2) = Az, \z) = (W, wys) = (Vs,7s) = 1 that is,
A = *1. Thus we conclude that in ® the only non trivial scalar multiple
of a root is its negative.

Adapting the results obtained in Section 1.1 and Section 1.3 into

the associated standard realization, we have:

Lemma 2.3.3. (i) (Lemma 1.2.4) ® = dt W O,
(ii) (Lemma 1.2.13) W is finite if and only if ® is finite.
(iii) (Lemma 1.2.1) The symmetric bilinear form (,) is W -invariant,
that is, for all u,v € V and for allw € W, (u,v) = (wu, wv).
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(iv) (Lemma 1.2.5) If w € W and s € S, then

l(w)+1 if wys € O,
l(w) =1 if wys € ™.

l(wrg) =

(v) (Lemma 1.7 of [6]) Let s € S and v € &+ \ 5. Then

dp(y) = 1 4f (v,7s) > 0,
dp(rsy) = ¢dp(y)  if (v,75) =0,
dp(y) + 1 if (7,7s) < 0.

(vi) (Proposition 2.1[5]) Lety € ®, andr € S. Then coeff,, (v) >0
implies that coeft., (v) > 1. Furthermore, if 0 < coeff, (v) < 2,

T
Mryrg

then either coeff, (v) = 1 or coeff, (v) = 2cos( ), where
ri, ro € S with 4 < my,,, < 0.

O

By Lemma 2.3.3(i), for any given v € ®, coeff, () are of the same
sign for all s € S (either all non-negative or all non-positive). The
support supp(y) of v is the set of all v, € II with coeff, (v) # 0.

The following result establishes the connection between the non-
orthogonal geometric realisation of W and the Tits representation de-

fined above.

Proposition 2.3.4. There are W -equivariant maps f;: &1 — @, and
fo: &9 — D, satisfying

fl(as) =Ys = fQ(ﬁs)
forall s € S.

Proof. This result follows from similar arguments to those used to

prove Proposition 1.2.9 and Proposition 1.2.17. U

Remark 2.3.5. Unlike in Proposition 1.2.9, we stress that these W-

equivariant maps f; and f, are not injective in general.
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Lemma 2.3.6. Suppose that a € ®;. Then o € ®F implies that
fi(a) € F, and o € 7 implies that fi(a) € .

Proof. Let a € ®;. Then a = wa,., for some w € W, and r € S. If
a € ®f, then Corollary 1.2.5 yields that [(wr,) = [(w) + 1, in which
case Lemma 2.3.3 (iv) and Proposition 2.3.4 yield that

fila) = filwor) = whi(on) = wy, € 7.
Likewise we see that o € & implies that f;(«a) € . O

Lemma 2.3.7. Suppose that a € ®F. Then dp,(a) = dp(fi(a)), that

18, depth is W-invariant.

Proof. Let w € W be such that wa € ¢, and dp,(«) = {(w). Then
Lemma 2.3.6 and Proposition 2.3.4 yield fi(wa) = wfi(a) € &, and

so dp(fi(a)) < l(w) = dp,(@). By symmetry dp, (@) < dp(fi(a)) as
well, whence equality. 0

Corollary 2.3.8. Suppose that o € &1, and s € S. Then

(fi(a),vs) > 0 if and only if (a, Bs) > 0,

and
(fi(@),vs) = 0 if and only if (a, Bs) = 0,
and
(fi(a),7s) <0 if and only if (a, Bs) <0.
Proof. Follows from Lemma 2.3.7 and Lemma 2.3.3 (v). U

The above can be immediately generalized to the following:

Corollary 2.3.9. Suppose that a1,y € 1. Then

(fi(ar), filaz)) >0 if and only if (a1, d(az)) >0,

and

(fi(a), filaz)) =0 if and only if (a1, d(az)) =0,

and
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(fi(an), filan)) <0 if and only if (o, p(ag)) < 0.

Proof. Apply the same argument used in the proof of Corollary 1.3.13
to Corollary 2.3.8 and the desired result follows.
g

Proposition 2.3.10. For each o € ®1, and for eachr € S,
coeff,, (@) coeffs, (p(ar)) > (coeff,, (fi(a)))?.

Proof. Replace a by —a if necessary, we may assume that o € ®; and
furthermore, we may write &« = way, where w € W and s € S. The
proof is based on an induction on I(w). If [(w) = 0, then the result
clearly holds. Thus we may assume that [(w) > 1, and choose t € S
such that l(wr;) = l[(w) —1. Then we may write w = wyws, where wy is
an alternating product of r, and r;, ending in 7, and w; is of minimal

length in the coset w(rs, ;). Thus Lemma 1.3.2 yields that
l(w) = l(wy) + l(w,), l(wyrs) > (wy), and [(wyr) > U(wy).

Consequently Corollary 1.2.5 yields that wia, € & and wia; € ®.
Now a rank 2 calculation yields that weas = pag + Agay, where A is a

positive constant and pg > 0. If p,q < 0 then
o = wa, = wiwets = w1 (pas + Aqoy) = pwias + Aquioy € 7

contradicting the assumption that o € ®]. Therefore p,q > 0. Now a

direct rank 2 calculation shows that

W2Ys = Ps + qave, Wals = Pl + )\qata and w?ﬁs = pﬁs + %ﬁt

Recall the W-equivariant maps ¢; and ¢o from Proposition 1.2.9 and

we see that the above yields
wacr, = ¢1(wacrs) = par, + Mgy and  wy ], = ¢a(w2fs) = pp, + %5;-
Now we set

z = coefl,, (a) , 2’ = coefs (¢p(v)) , 2" := coefl,, (fi(a));

and
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:= coefl,, (wia;) , ¥ = coeffg (w1 55) , y" := coefl,, (w17s);
and

z = coeff,, (wiay) , 2" := coeffg (w1 3;) , 2" := coefl,,, (w1y;).
Since [(wy) < l(w), it follows from the inductive hypotheis that

yy/ Z (y//)Q and ZZ/ > (ZH)Q.

Now

/

za' — (2")? = (py + Agz)(py' + 342) — (py" + ¢2")?
=y —y") + (22 = 2) + pa(Gy2' + A=y — 2y"2").

From the inductive hypotheis the first two summands are nonnegative.
It follows from the inductive hypotheis and the geometric mean and
arithmetic mean inequality applied to the terms %yz’ and \y'z (indeed
1 "nn .

SV N 2 > 2\ yy 2 > 2"z ) that the third summand

by the inductive hypothesis
pq(%yz/ + A\y'z — 2y"2") is also nonnegative, whence xz’ — z”? > 0 and

the desired result follows by induction. U

Proposition 2.3.11. Suppose that ay,ay € 1. Then

(231) <a17 ¢(O‘2)><O‘2’ ¢(a1)> > (fl (al)v fl (a2>>2'

Proof. Since both (, ) and (, ) are W-invariant, and ¢, f; are W-
equivariant, we may replace oy, and as by ua; and uasy for a suitable
u € W such that as = «, for some s € S. Furthermore, replace oy
by —a; if needs be, we may assume that a; € ®. We proceed by an
induction on the depth of «;.

If dp;(ay) = 1, then ay = Ao, where r € S and ) is a positive
constant. Then Corollay 1.2.19 yields that ¢(c;) = +4,, and hence

<0417 ¢(a2>> <Oég, ¢(@1)> >‘<047“> ﬁs>%<a8a ﬁr> = <Oé7», 5s> <as> 51“)
(%, 7vs)*  (by the definition of (, ))
(fi(an), fi(az)).
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Thus we may assume that dp,(a;) > 1. Next if (aq,5s) > 0, then
Lemma 1.3.10 yields that r,aq <1 a1, and hence

(a1, Bs) (s, dan))

= (rsau, 75 fs) (rscts, o(rson)) = (=(rsan, Bs))(—(as, o(rson)))
(fi(rsa1),7s)*>  (by the inductive hypothesis)
= (
= (

(
fl(a1>’ ’75)
(o)

filag 7%)2

v

as required. Thus we may further assume that (aq, 55) < 0.

Next choose t € S such that ra; <7 a;. Then Lemma 1.3.10
yields that (aq,5;) > 0 and, in particular, s # ¢t. Let w € W be a
maximal length alternating product of r, and r; ending in r; such that
dp;(way) = dpy(a1) — l(w). Ifw =17rs -1y
for w, then Lemma 1.3.8 yields that rsaq <; a1, that is, (o, Bs,) > 0.

, 1s a reduced expression
Therefore s # s;, and w has no reduced expression ending in r,. Fur-
thermore, we observe that dp,(wa;) < dp,(aq), and so the inductive

hypotheis yields that

(2.3.2) (war, B) (a, plwan)) > (s, fi(way))?
and
(2.3.3) (war, By) (ag, plwon)) > (, fr(wan))?.

Since w has no reduced expression ending in r,, it follows that w
is a product of r, and r; with strictly fewer than mg factors. Thus
by Lemma 1.1.11 (or equally a direct rank 2 calculation) there are

nonnegative constants p, ¢ and positive constant A such that

WYs = PYVs + 4Nt and way = pas + Aqat and wﬁs = pﬁs + %QBt
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Thus

(an, Be)(as, ¢(an)) — (s, frlen))?
= (wan, wh) (was, p(war)) — (wys, fr(war))?
( since (, ) and (, ) are W-invariant)
= (won, pBs + L6:) (povs + Aoy, p(wan)) — (fr(wan), prys + 1)’
= p*((wau, By) (s, p(wan)) — (fi(wan), 7:)?)

+ g ((wo, B o, o(wa) = (Hilwar). 7)) + C.

where

C = pq( 3 (way, By) (s, p(war)) + Mway, Bs){ay, p(way))
= 2(filwan),vs) (fr(wan), 1) ).
It follows from (2.3.2) and (2.3.3) that A and B are both nonnegative.

It follows from the geometric mean and arithmetic mean ineqaulity
that

s (wa, Bi){as, plwan)) + Mway, Bs) (ar, p(way))
> 21/ (wan, Bs) (o, plwan)) (wan, Bi) (e, pwan))
> 2(fi(wan), vs)(fr(war),y)  (by (2.3.2) and (2.3.3)),
that is, C' > 0 as well. Therefore (a1, Bs){as, d(a1)) > (7o, fi(a1))2,

and the desired result follows by induction. U

Lemma 2.3.12. Suppose that a € &1, andt € S. Then coeff,,(a) =0
if and only if coeft,, (fi(a)) = 0.

Proof. By Proposition 2.3.10 we only need to show that the condition
coeff.,, (fi(a)) = 0 implies that coeff,, (o) = 0. Replacing a by —a if
needs be, we may assume that a € ®. We may write o = wa, for some
we Wand r € S. If [(w) = 0 then there is nothing to prove. Thus
we may assume that [(w) > 1 and proceed by an induction on I(w).

Choose s € S such that I(wrs) = l[(w) — 1, and write w = wyw, where
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wy € w(ry,rs) is of minimal length, and wy is an alternating product
of r, and rs ending in 7. By Lemma 1.3.2, I(w) = [(wy) + [(w3). Since
wy is a right segment of w, and since a(= wa,.) is positive, it follows

that wyo, € (IDT. Again a rank 2 calculation shows that

WoYr = DPVr + q7Vs, W20, = pa,. + )\qas and w2ﬁr = pﬂr + %Bs

for some non-negative constants p,q and positive constant A\. Again
Proposition 1.2.9 yields that

Wy, = ¢1(wae) = pay, + Agaly  and - wofl, = go(w2f.) = pfi + %Ofls«
Then
0 = coeft,, (f1(a)) = coeft,, (w,) = coeft,, (w1 (pyr + q7s))
= pcoeft,, (w17,) + g coeff,, (w17s).

By Lemma 1.3.2 and Lemma 2.3.3 (iv), w7, and w; s are both positive,

and hence
pcoeff., (w1,) = qcoeff,,, (w1v;) = 0.
Then the inductive hypothesis yields that

p coeff,, (w ) = qcoeff,, (wia) =0
and therefore
coeff,, () = coeff,, (way,.) = pcoeft,, (wia,) + Ag coeff,, (wias) = 0
as required. O

Combining the above with Lemma 2.3.6 we immediately have:

Corollary 2.3.13. Suppose that a € &1, andt € S. Then
coeff,, (o) = 0 if and only if coeft.,(fi(a)) =0,
and
coeff,, (o) > 0 if and only if coeff,, (fi(a)) > 0,
and

coeff,, (o) < 0 if and only if coeft,,(fi(a)) < 0. O



2.3. COMPARISON WITH STANDARD GEOMETRIC REALIZATION 71

Proposition 2.3.14. Suppose that o € ® and r € S. Then

coeff,,, () coeffs (p(v)) =1 if and only if coeft, (fi(a)) = 1.

Proof. Suppose that coeff,, (a)coeffs (¢(a)) = 1. Proposition 2.3.10
and Lemma 2.3.3(vi) combined yield that either coeff, (fi(a)) = 1
or coeff, (fi(a)) = 0. Observe that we can rule out the latter for it
contradicts Corollary 2.3.13.

Next for the converse implication, suppose that coeff, (fi(a)) = 1.
As usual we write a = wa,, w € W and s € S. If [(w) = 0, then there
is nothing to prove. Thus we may assume that {(w) > 0 and proceed
by induction. Again we choose t € S such that I(wr) = [(w) — 1, and
write w = wywsy, where wy € w(rg, ;) is of minimal length, and w, is an
alternating product of ry and r; ending in r;. Lemma 1.3.2 then yields
that, {(w) = l(wy) 4+ [(wy). Since ws is a right hand segment of w, then
the condition wa, € ®] yields that wya, € ®, which in turn yields
that wyy, € ®* by Corollary 2.3.13. Hence, direct rank 2 calculations
yield that there are nonnegative constants p, ¢ and positive constant A
such that

WaYs = PYs + N 5 Walks = pavg + Aqay 5 wafls = pBs + 5ab.
Again Proposition 1.2.9 yields that
Wy = 1 (waas) = paiy + Mgy, and waf; = ga(w2fs) = pBy + 16;.
And consequently
fila) = wys = wi(pys + qn) = pwiys + quiye.
Hence

(2.3.4) 1 = pcoeft,, (w17s) + qcoeff,, (w17).
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It follows from Lemma 1.3.2 and Lemma 2.3.3 (iv) combined that
wyys € @ and wiy; € ®F. Thus Lemma 2.3.3(vi) yields that pre-

cisely one of the following is the case:

coeff., (w17s) = p =1, and gcoeff., (w1v:) =0
or
coeff, (w1y) = ¢ =1, and pcoeft, (w;v;s) = 0.

Since [(wy) < [(w), the inductive hypothesis and Corollary 2.3.13 above
imply either

p? coeff,, (wia,) coeff 5 (w1 85) = 1, and q coeff,,, (wiay) =0
or
q* coeff,, (wyay;) coeffs (w1 ;) = 1, and pcoeff,, (wia,) = 0.

Therefore
coeff . (o) coeff s (d())
= coeff,, (pwyas + Aquiay) coefl 5, (pwn Bs + %qwlﬁt)
= (pcoeff,, (wias) + Agcoeft,, (wiay))-
(p coefts, (w1s) + § coeffs, (w1 ;)
= p? coeff,, (w1 a,) coeff 5 (wy Bs) + %pq coeff,, (wyay) coeft g, (w1 By)
+ Apq coeff,, (wyay) coeff 5 (w1 B5) + ¢° coeff,, (wiay) coeff 5 (w1 3;)
=1
because precisely one summand is nonzero and is equal to 1. O
Proposition 2.3.15. Suppose that o € ® and r € S, such that
1 < coeft,, (a) coeffs, (p(a)) < 4.
Then either
coeff,,, (o) coeff, (p(a)) =1
or
coeff,,, (o) coeff, (p(a)) = 4COS2(%),

where m = my,,, for some r1,r3 € .S and 4 < m < oco.
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Proof. First we write « = way for some w € Wand s € S. If [(w) = 0,
then there is nothing to prove. Thus we may assume that [(w) > 0
and proceed by induction again. Similarly as in Propostion 2.3.14, we
choose t € S such that I(wr,;) = l(w) — 1, and let wy € w(ry, ry) be of
minimal length, and wy € (rg, ;) such that w = wywy. Again as in the
proof of Proposition 2.3.14, there are nonnegative constants p,q and
positive constant A such that

Ways = PYs + Q0 5 Watts = Pas + Mgy 5 walls = pPBs + 54y

Again Proposition 1.2.9 yields that

waly = ¢1(waers) = paly + Mgy and  wy B, = da(wafs) = pPs + L5,
And consequently
coeft,, (@) coeff, (6(a))
= coeffq, (wi(pas + Aqay)) coefts, (w1 (pfs + £51))
= (pcoeff,, (wio) + Ag coeff,, (wiay))
(p coeffg, (w1s) + § coeffs, (w15;))

= p? coeff,, (wia,) coeff 5 (wy B5) + ipq coeff,, (wiay) coeft g, (w1 )

+ Apg coeff, (wiav) coeff g, (w1 ) + ¢° coeff, (wyay) coeft s, (w1 5y).
Suppose that p,q > 0, coeff,, (wias) > 0 and coeff, (wiay) > 0. Since

p = coeff, (weys) and ¢ = coeff,, (weys), it follows from Lemma 2.3.3(vi)

and Proposition 1.3.3 combined that

(2.3.5) p* coeff,, (w1as) coeftg, (w1 85) > 1
and
(2.3.6) q* coeff,, (w1ay) coeffs, (w1 8;) > 1

From these a geometric mean and arithmetic mean inequality argument
yields that

(2.3.7)

%pq coeff,, (wyay) coeft g, (w1 ;) + Apgq coeft, (wiay) coefl g, (wiBs) > 2.
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But (2.3.5), (2.3.6) and (2.3.7) together will give that
coeff,, (o) coefl (p(a)) > 4.

contradicting our assumption. Therefore at least one of the terms p,
q, coeff,, (wyay) or coeff,, (wia;) must be zero. Then Proposition 1.3.3
yields that either
(2.3.8)

1 < coeff,, (@) coeff s (¢()) = p* coeff,, (wia) coeff 5 (w1 35) < 4,

or
(2.3.9)
1 < coeff,,, (@) coeffg (p()) = ¢* coeff,, (wiay) coeff 5 (w1 B;) < 4.

If (2.3.8) is the case, then Proposition 2.3.10 yields that

(2.3.10) 1 < pcoeft,, (w1vs) < 2;

whereas if (2.3.9) is the case, then Proposition 2.3.10 yields that
(2.3.11) 1 < gcoeft,, (w1vy) < 2.

Suppose that (2.3.8) is the case. Then Lemma 2.3.3(vi) yields that at
least one of p or coeff,, (wy7,) must be 1. If p = 1, since {(w;) < l[(w),

it follows from the inductive hypotheis that

coeff,, (o) coefs (p(a)) = coeff,, (wyaas) coett 5, (w1 55)

1
= or
4cos® (L),
where m is an integer of the required form. On the other hand if

coeff,, (wy7s) = 1, then by the last Proposition
coeff,, (wiay) coefs (w1 6;) = 1.

Hence coeff,, (o) coeffs,. (¢(a)) = p?. By Lemma 2.3.3(vi), p? is either

1 or 4cos*(&), where m/ is an integer of the required form.
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Similarly, if (2.3.9) is the case, then

1
coeff,,, (o) coeff 5 (p(ar)) = or

2
4cos® (7)),
where m” is an integer of the required form, and this completes our

proof. O

The following is a well known result due to Dyer. A proof of this
result can be found in [6] (Propositon 1.4) and [13](Proposition 4.5.4).

Proposition 2.3.16. Let v1,v, € ®*. Then the (dihedral) subgroup
of W generated by r., and r., is finite if and only if [(m1,72)] < 1. O

Combining Proposition 2.3.11 and the above, we can immediately

deduce the following:

Corollary 2.3.17. Let oy, a9 € &1 with ro, # ra,. The subgroup of
W generated by o, and ro, is finite if (aq, p(ag)) (e, ¢p(ay)) < 1. O

We prove the converse to Corollary 2.3.17 at the end of Chapter 3
Section 3.5.

Lemma 2.3.18. (Lemma 2.4 (i) of [1]) Suppose that v1,v, € ®* are
distinct. Then

<{T717TV2}>{’71,'72} - PLC({’VL’W}) W — PLC({’Yl"YQ})
if and only if
(71,72) € (—o0, —1] U{—cos% |meN andm >2}.

O

Proof. We apply the results obtained in Section 2.2 here. We set
{7,7%2} = X1 = X, and let ¢ to be the identity map on {vy1,72}.
Consequently (, ) = (, )’ and hence Proposition 2.1.1 yields that

{7 1) 72} € PLC({11,72}) ® = PLC({71,72})

if and only if



76 2. SPECIAL ToPics IN NON-ORTHOGONAL SETTING

(71,72) € (—00, —1]U{ —cos = | m € N and m > 2},
m
as required. 0

Proposition 2.3.19. Suppose that ay,an € ®F such that ro, # re,.
Then

(a1, ¢(a2)) <0 and
(o, d(2)) (@2, ¢(n1)) € {cos? = | m € N and m > 2} U [, 00)

if and only if
(filar), fi(ag)) € (—o0, —1] U { —cos% |meN andm >2}.

Proof. Since ¢, (a,) = Tay 7 Tas = T'fi(as), it follows that both {ay, as}
and {fi(a1), fi(az)} are linearly independent. Now set

X1 = {alvO‘?}? Wlﬂ = <{ra1vra2}>v (I)lll = Wl//Xl

and let ¢ be the restriction of ¢ on ®}. Recall that by Lemma 2.3.6 we
have f1(®]) = ®* and f;'(®*) = ®. Thus Proposition 2.1.1 yields
that

(a1, P(ag)) <0 and
(a1, ¢(az)) (a2, d(ar)) € {cos* Z | m € Nand m > 2} U[1,00)

if and only if 7 = ®”" w &~ and this happens if and only if

(T i) Th(an) PAf1(1), fi(a2)} € PLC({fi(an), fi(az)})
W —PLC({fi(a1), fi(a2)})

and by Lemma 2.3.18 above this happens if and only if

(filow), fi(aw)) € (—o0, —1] U{ —Cos% |meNand m>2}.
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2.4. Dual Spaces of V;, V5 and the Tits cone

Throughout this section we assume that S is finite.
For any real vector space Y, we define Y* = Hom(Y,R), and call
it the algebric dual space of Y. For each i € {1,2}, let C; be a convex

cone in V; and we define
Cr={feV| flv)>0foralveC}.

Similarly for each convex cone F; in V;* we define
Fir={veV;|gv)>0forall ge F,}.

It is readily checked that such C} and F}* are themselves convex cones.

Lemma 2.4.1. (i) For each i € {1,2} the condition 0 ¢ PLC(II;)
implies the existence of an f; € V.* such that f;(x) > 0 for all z € 11;.

(i) For each i € {1,2}, (C})* = C; for each convex cone C; in 'V
(where C; is the topological closure of C; with respect to the standard
topology on V; = R% with d; = dim(span(V};))).
Proof. (i) For each i € {1,2}, set

Xi:{Z)\x:cU\szforallxand Z)\mzl}.
zell; zell;

Let (, ); be a positive definite inner product on V; and let || ||; be the
associated norm. Since X; is topologically closed it follows that there
exists a v; € X; with ||v;||; = (v, v;); being minimal. Now let x; be an

arbitrary element of X; and consider the function
gi(t): = l(1 = tyvi +ta|lf (£ €[0,1]).

Since X, is convex, the choice of v; yields that ¢; attains a mini-
mum at ¢ = 0. Hence ¢;(0) > 0. But ¢/(0) = 2(v;, z; — v;);; hence
(vi, 23); > (vi,v;); > 0. Tt then follows that the linear functional f; de-
fined by fi(z) = (z,v;); takes strictly positive values on II; completing
the proof of (i).

(ii) Clearly for each convex cone C; C V;, C; C (CF)*, furthermore,
since (C)* is topologically closed it follows that C; C (C)*. Thus it
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only remains to prove that (C})* C C;. Suppose for a contradiction
that there exists v; € (CF)* \ Ci. Let (, ); be a positive definite inner
product on V; and let || ||; be the associated norm. Let u; € C; be
chosen so that ||u; — v;]; is minimal. As in the proof of the (i) above,

let z; € C; be arbitrary, and consider the function
hi(t): = [[(1 — t)u; + to; — v;|? (t €10,1]).

Since C; is a convex cone it is clear that C; is also a convex cone. Then

it follows that h; attains a minimum at ¢ = 0. Thus

(2.4.1) 0 < hi(0) = 2(z; — uy, us — v;);.

By specializing z; to, say, 2u; and fu; we see from (2.4.1) that
(2.4.2) 0 = (wi, ui — ;)

Consequently (2.4.1) yields that

(2.4.3) 0 < (4, u; — v;);.

Hence the linear functional f; defined by f;(x) = (z,u; — v;); is in C;.
Now since v; € (Cf)* it follows that 0 < fi(v;) = (v;,u; — v;); and
observe that this and (2.4.2) together yield that (u; — v;, u; —v;); < 0.
Since (, ) is positive definite we have v; = u; contradicting that v; ¢ C;.

U

There is a natural action of W on V;* (i = 1,2) as follows: if w € W
and f; € V* then wf; € V* is defined by
(wf;)(vs) = fi(w ), for all v; € V,.
For each i € {1,2}, set P, := PLC(II;) U{0}. Then
Pr={feV’| f(x) >0 for all x € II,}.
Generalizing the concept of a T'its cone as defined in [18] and in section

5.13 of [12], we define the Tits cone in this non-orthogonal setting to
be

U := U whP;.

weW
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Observe that from these definitions we immediately have

(2.4.4)
U'={veV|(wflu>0foral fe PPandweW }

={veVi| flwv)>0forall f€ Pfandwec W}

= ﬂ{vEVi|f(w’1v)20forallfepf}
weW

- m{wveviff(v)z()forallfepi*}

weWw
= [N {wveVilve(r)}
weW
= ﬂ wP; (by Lemma 2.4.1(ii), since P; is a convex cone)
weW
= ﬂ wh; (since P; is closed).
weW
Observe that then Lemma 2.4.1(i) yields that there are f; € V*
and fo € V' such that fi(x) > 1 for all x € II; and fy(y) > 1 for all

y € Il;. For the next result we fix one such pair of linear functionals

{ /1, f2}-

Proposition 2.4.2. Let vy € Uy and vy € Uy. Then (v1,vq) < 0.

Proof. Suppose for a contradiction that there exists vy € U] and
vy € Uj such that (vq,v9) > 0. Replace vy by a positive scalar multiple

of itself if needed, we may assume that (vy,vy) = 1. Let

B ={zecU| fo(x) < fa(vz) and (z,2) > 1

for some z € Uy with fi(2) < fi(v1) }.

Observe that vy € £, so B # ().

Put € = f12(v1) where n = |S|. We shall show that for any given

xr € A there exists y € £ such that fo(y) < fo(x) — €.
Given z € A, let z = Y Aa € Uf (A, > 0 for all a € 1)

aclly
be such that (z,z) > 1 and fi(z) < fi(v1). Observe that since
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(z,2) = > Afa,z) > 1 it follows that there exists some ag € II;
T

aclly

)
such that A, (ag, ) > %, that is,

1 1 €

> > —
(a0, ) 2 Aag — nfi(vy) 2

because A, < fi(2) < fi(v1). Now let y = ryqq)®. It is clear from
(2.4.4) that U; is W-invariant. Now since z € Uj, it follows that y € Uj
too. Thus

We claim that y € #. To prove this we need to find some t € U such
that (¢t,y) > 1 and fi(t) < fi(v1).

First consider the case that (z,¢(ag)) > 0. Put t = r,,2. Then
t € Uy (since z is and Uy is W-invariant) and

<t,y> = <7”a02,7“¢(a0)$> = <Z,I> > 1

furthermore,

fi(t) = f1(2) = 2(z, 6(a0) f(ao) < fi(2) < fi(vn)

as required. Hence y € % when (z, ¢(ag)) > 0.
Next if (z, ¢(ap)) < 0 then t = z will do; indeed

(1) = (2, — 2(a0,2)0(a0))
— <z,x> -2 <&0,$> <27¢(&0)>
N——

1
(2 >\a0n > 0)
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Furthermore, by our construction z € U and fi(z) < fi(vy). Hence
when (z, ¢(ag)) < 0, y € Z# as well and this establishes the claim.
Starting with © = vy, a finite number of iterations of the above
process will produce a y € & with f5(y) being negative, contradicting
the fact that Uy C P, and fo(FP2) C (0, 00). O

The following is a well-known result:

Lemma 2.4.3. ([13] 4.5.3) Let H be a finite subgroup of W. Then
there exists w € W and J C S such that W; is a finite parabolic
subgroup and wHw=' C Wj. O

Lemma 2.4.4. The set

{ (a1, d(a2))(az, d(a2)) [ a1, a2 € 1 and (o, ¢(az)){az, p(az)) <1}
is finite.
Proof. Let ay, as € @, such that (ay, ¢(az)){as, ¢p(asz)) < 1. By Corol-
lary 2.3.17 we know that H := ({7,,,7a, } ) is a finite dihedral sub-
group of W. Thus Lemma 2.4.3 yields that there are w € W and
J C S such that Wy is finite and wHw™' C W). In particular, there
are z,y € ®;(Wy) such that a; = wx and ay = wy. Now
<a1> ¢(a2)><0527 ¢(@2)>

= (wz, wp(y))(wy, wo(x))

= (z,0(y))(y, ¢(z))

€ {{a,6(0)(b.6(a)) | a,b € By and ro,r e | Wik

I1CS,Wrfinite
Since S is a finite set it follows that the last set on the right is finite
proving the desired result. O

Immediately from the above we have:
Corollary 2.4.5. There is a positive number 6 such that
0 < (a1, p(a2)){aa, d(az)) for all oy, ag € Oy with 0 # (aq, ¢(az)).
O



CHAPTER 3

The Dominance Hierarchy of Root Systems of

Coxeter Groups

3.1. Introduction

If x and y are roots in the root system with respect to the stan-
dard (Tits) geometric realization of a Coxeter group W, we say that
x dominates y (written x domy y) if wy is a negative root whenever
wx is a negative root. We call a positive root x elementary if it does
not dominate any positive root other than x itself. The set of all el-
ementary roots is denoted by &. It has been proven by B. Brink and
R. B. Howlett [Math. Ann. 296 (1993), 179-190] that & is finite if
(and only) if W is a finite rank Coxeter group. Amongst other things,
this finiteness property enabled Brink and Howlett to establish the au-
tomaticity of all finite rank Coxeter groups. Later Brink has also given
a complete description of the set & for arbitrary finite rank Coxeter
groups in [J. Algebra 206 (1998), 371-412]. But until the present, a
systematic study of the dominance behaviour among non-elementary
positive roots still remains to be completed. In this chapter we an-
swer a collection of questions concerning dominance between such non-
elementary positive roots. In particular, we show that for any finite
rank Coxeter group and for any non-negative integer n, the set of roots
dominating precisely n other positive roots is finite. We then give both
upper and lower bounds to the sizes of all such sets as well as an induc-
tive algorithm to compute all such sets. In this chapter, for any given
positive root z, we obtain explicitly the set of positive roots dominated

by x, if there are any.

82
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In Section 3.4, we study some cones closely related to the Tits cone
and their connection with the dominance concept.
We stress that all notations used in this chapter are exactly the

same as those used in previous chapters.
Let N : W — ®* be the function defined by

N(w)={r € " |wr € & }.
It is a well-known fact that
N(w)={x e @' |l(wr,) <l(w)} and [(w) = |N(w)|

(for example, Proposition 5.7 of [12] or Proposition 4.4.6 of [13]). If &’
is a subset of ® such that whenever z,y € ®', r,y € ®, then we call &’
a root subsystem of ®. Now if W’ is a reflection subgroup of W, then
we set
dW)={ac®|r, e W}

Observe that (') is a root subsystem of ®. We call ®(W') the root
subsystem corresponding to W'.

Recall that Lemma 2.2.4 yields f1(A(W')) = fo(Ax(W”)) for all
reflection subgroups W’ of W. This observation enables us to define

the canonical roots of W' in ®.

Definition 3.1.1. For any reflection subgroup W’ of W, let
AW') = filAs (W) = f2(DBa(W)).

Remark 3.1.2. Recall that T := |J wRw™! denotes the set of re-
weW
flections in W. Since for all & € ®; we have r, = 7y (o), it follows

that
SWY={r,eT|xze AW}
With this justification, we call A(W') the canonical roots for ®(W").

Proposition 3.1.3. (1) Suppose that W' is a reflection subgroup
of W. Suppose that a and b € A(W') with a #b. Then

(a,b) € {—cos(m/n) |neN,n>2}U(—o0,—1].
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(i) Let X C @ be a set such that whenever a,b € X a # b the

condition
(a,b) € {—cos(n/n) | neNn>2}U(—o0,—1]
is satisfied. If we set W' = (r, |z € X), then X = A(W').

Proof. (i) Follows from Proposition 2.2.12 and Proposition 2.3.19.
(ii) Follows from Proposition 2.2.15 and Proposition 2.3.19. [

3.2. Rank 2 Root Subsystems

Suppose that ®((r,, 7)) is an infinite rank 2 root system with
canonical roots a and b. In this section we classify the root subsys-
tems of ®((ry,rp)).

Since ®((rq, 1)) is infinite, it follows from Lemma 2.3.3 (ii) that
(ra,mp) (the dihedral subgroup generated by r, and r,) must be infinite.
Thus it follows from Proposition 4.5.4 of [13] that (a,b) < —1. Let

_ -1 . . .__ sinh(z0)
0 = cosh™ (—(a,b)), and for each integer 4, set ¢; := ~z375*. Then

rea = —a, 130 = —b,

sinh(30) sinh(26)

sinh @ ¢ sinh @ b=csat b

(rarp)a =
and
sinh(20)  sinh(30)
sinh ¢ ¢ sinh ¢
An induction shows that for all integer 7,

(rpra)b = b = csa + c3b.

(raTp)'a = Caip1a + Caib;

ro(TeTs)'a = Coip1a + Caipob;
(32.1) b( b>' 9i+1 %i+2
(1o70)'b = coi0 + c2i41b;

Ta(Tp7a)'d = C2it2a + C2i41b.

These calculations lead to the following well known result:

Lemma 3.2.1.

(I)(<7’a,7”b>) = {cl-a + ¢i41b ‘ 1€ Z}
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Observe from Lemma 3.2.1 and (3.2.1) above that w(c,a+c,+10) = a
for some w € (r,, ) if and only if n is odd whereas w'(¢,,b+cype1a) = b
for some w’ € (r,,rp) if and only if m is odd. Furthermore, if 7, j are
integers such that w(c;a + ¢;110) = ¢ja + ¢j11b for some w € (ry, ),
then i = j (mod 2).

Proposition 3.2.2. Suppose that O’ is a root subsystem of ®({rq,74)).

Then @ is at most a rank 2 root subsystem.

Proof. Suppose for a contradiction that there are at least three canon-
ical generators z, y and z for the subsystem ®’. By Lemma 3.2.1, there

are three integers m, n and p such that

T = @ + Cpt1b;

Y = Cpa + Cpt1b;
and

2 = Ccpa + Cpi1b.

If either x = ¢na + ¢pi1b and y = cpa + ¢y or x = cpa + Cp_1b
and y = c¢,a + ¢,—1b, then (x,y) = cosh((m — n)f) > 1, contradicting
Proposition 3.1.3 (i). Without loss of generality, we may assume that
T = ¢pma + Cpq1b, and y = cpa + ¢p—1b. Now if 2 = cpa + ¢p410, then
(x,z) = cosh((m — p)#) > 1, contradicting Proposition 3.1.3 (i); on
the other hand if z = cy,a + ¢,-1b, then (z,y) = cosh((n — p)d) > 1,
again contradicting Proposition 3.1.3 (i). Therefore &' has at most two
canonical generators, that is, ®' is at most rank 2.

O

Suppose that * = ¢,a + ¢pe1b and y = cpa + ¢ (myn € Z),
are roots in ®((ry,7,)). To classify the rank 2 root subsystems of the

form ®((r,,r,)), it suffices to compute explicitly the canonical roots of

O((rz, )

Lemma 3.2.3. Suppose that v = c¢,,a + ¢patb and y = cpa + ¢,_10

are positive roots in ®((rq,ry)) (that is, m is a non-negative integer
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and n is a positive integer). Then x and y are the canonical roots for

O((ry,my)). In particular, ®((ry,r,)) is infinite in size.

Proof. By Proposition 3.1.3 (i), to show that x and y are the canon-
ical roots for @, ..y, it is enough to show that (z,y) < —1. Indeed,
(x,y) = —cosh((n + m)#) < —1. Thus Proposition 4.5.4 of [13]
yields that the dihedral subgroup (r,,r,) is infinite, and consequently
Lemma 2.3.3 (ii) yields that ®((r,,r,)) is infinite in size.

O

Next we compute the canonical roots of ®((r,,,)), where z is of

the form c¢,,a + ¢,,11b and y is of the form c,a + ¢,41b, m # n.

Proposition 3.2.4. Suppose that x = c,a+ ¢pi1b and y = cpa+ cpyq
(m,n € Z, m # n), are roots in ((ry,ry)).

(i) P((rz,7y)) = { E(Chm-n)—m@ + Chm-n)—m—1b) | k € Z'}. In partic-
ular this root subsystem is infinite in size.

(ii) The canonical roots of ®((ry,r,)) are of the form c;a + c¢;_1b and

cja + cj1b, where
i=min{k(m—n)—m|keZ and k(m—n)—m >0}
and
j=min{k(m—n)+m|ke€Z and k(m—n)+m >0}.
Proof. (i) Clearly ®((rs,r,)) consists of all the roots of the form
(rary)', 7y (rery) e, (ryre)'y and 7o (ry72) 'y,

where [ ranges over Z. Depending on the choice of m and n, we have
the following three cases to consider:

(1) Both m and n are even.

(2) Exactly one of m and n is even.

(3) Both m and n are odd.

First suppose that (1) is the case. Then equation (3.2.1) yields that
x = (1yry)™?b, and y = (ry74)"/?b. Consequently

Te = 1(rars)™ = (rora) "o and 1y = 1rp(rery)" = (1p74)" 7.



3.2. RANK 2 ROOT SUBSYSTEMS 87

Thus r,ry, = (ryre)™ ™ and ryr, = (rpr,)" ™. Hence (3.2.1) yields that

for any integer [,

()t = (7)) ) 2

= C2A(m—n)+m@ + CQl(mfn)erJrlb
and

ry(rary)' @ = ry(rars)" (rora) " (ryra) 20

— ,r,b(,r,bra>l(mfn)fn+m/2b

— Ta(TbTa)l(m_n)_n+m/2_1b

= Co(m—n)+m—2n0 + CQl(m—n)+m—2n—1b-

By symmetry, we duduce that (r,r,)'y = CoU(n—m)+n@ + Cot(n—m)+n+1D
and 7, (ry72)'Y = Cum—m)+n—2ma@ + Col(n—m)+n—2m—1b.

Next suppose that (2) is the case. We may assume, without loss of
generality, that m is even. Then z = (rr,)™/2band y = ry(rery) ™9/ %a.

Similar rank 2 calculations as in (1) above yield that for any integer [,

l
TeTy) T = Co(m—n)4+ma + C2l(mfn)+m+1b7

)

Tzry)lx = Col(m—n)+m—2n0 + C2(m—n)+m—2n—1b,
)Y = Cam—m)+nl + C2u(n—m)+n+1D,
)

= C2(n—m)+n—2mad + CZl(n—m)—i—n—Qm—lb-

Now suppose that (3) is the case. Then z = ry(r,r3) ™ V/2a and
y = ry(rery) " V/2a. Again, a rank 2 calculation yields that for every
integer [,
(T:cTy lx = CU(m—n)+ma + CZl(m—n)-l—m—l—lby
Ty(rxry lx = C2A(m—n)+m—2n0 + CZl(mfn)+mf2n71b>
( = C(n—m)+nd + CQl(n—m)+n+1b7
(

= C2(n—m)+n—2ma + CZl(nfm)+n72mflb-
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Thus we see that ®((r,r,)) consists of all roots of the form

(3.2.2) CoU(m—n)+m@ + C2l(m—n)+m+1b,
(3.2.3) Col(n—m)+n@ + C21(n—m)4n+10
and

(3.2.4) CoU(m—n)+m—2n0 T C2U(m—n)+m—2n—1b,
(3.2.5) Col(n—m)+n—2m0 + C2(n—m)4+n—2m—1D,

where [ ranges over Z.

Now let us consider all roots of the form (3.2.4) and (3.2.5). Ob-
serve that 2l(m —n) +m —2n = 2(I + 1)(m — n) —m is of the form
of an even multiple of (m — n) minus m, whereas on the other hand
2l(n—m)+n—2m = —(204+1)(m—n)—m is of the form of an odd mul-
tiple of (m —n) minus m. Thus we conclude that the set of roots of the
form (3.2.4) and (3.2.5) is exactly { cxm—n)—m@+Ci(m-n)-m-10 | k € Z }.
Similarly we could also see that the set of roots of the form (3.2.2) and

(3.2.3) is exactly { Cepm—n)+m@ + Ch(m-n)4m+10 | k& € Z}. Finally we

observe that for each integer [, ¢_; = % = —c¢;. Thus
Ck(m—n)—ma + Ck’(m—n)—m—lb = _(c—k(m—n)—l—ma + C—k(m—n)+m+1b)-
Therefore

B((rp,7y)) = { E(Chimon)-m@ + Chtmn)-m_1b) | k € Z}.

Observe that, in particular, the root subsystem ®((r,,r,)) is infinite in
size. This completes the proof of (i).

(ii) Let o and f be the canonical roots for ®((r,,r,)). Then
a = cja+c;—1b and 8 = cja+cj1b for some positive integer ¢ and some
nonnegative integer j. Indeed, by Lemma 3.2.1, the only other possib-
lities are either a = ¢;a + ¢;11b and B = cja + cj11b or o = c;a + ¢;—1b
and § = ¢;a+c;_1b. But then («a, 5) = cosh((i—7)0) > 1, contradicting
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Proposition 3.1.3 (i). Now by (i) above

O((rs,7y))
= { Ch(m—n)-m@ + Ch(m—n)-m—10, Ch(m—n)+m@ + Ch(m—n)+m+1b [ kK € Z}.
Thus ¢ must be of the form
k(m —n)—m, k € Z,
and j must be of the form
K(m—n)+m, k' €Z.

Since o and [ are the canonical roots for ®((r,,r,)), it follows that i
and j must be as small as possible subject to the requirement that both
a and ( are positive roots. Therefore we conclude that ¢ must be the
least positive integer of the form k(m — n) — m, where k is an integer;
and 7 must be the least nonnegative integer of the form &'(m —n) + m,
where k' is an integer.

O

Finally we look at the root subsystem generated by x = ¢,,11a+¢;,b

and y = c,1a + ¢cb.

Proposition 3.2.5. Suppose that v = ¢, 1a+c,b and y = ¢, 1a+¢,b

are roots in ®((ry,my)).
(i) ®((rz,1y)) = { E£(Chim—n)—m-10 + Chtm-n)—mb) | k € Z}. In
particular, this root subsystem is infinite in size.
(ii) The canonical roots for ® . ..\ are c;a + c;_1b and c;a + cjq1b,
where
i=min{k(m—n)+m|keZ and k(m—n)+m >0}
and

j=min{k(m —n)—m |k €Z and k(m —n) —m >0 }.

Proof. Follows from Proposition 3.2.4 with the roles of a and b inter-
changed. 0
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Combining Lemma 3.2.2, Lemma 3.2.3, Proposition 3.2.4 and Propo-

sition 3.2.5, we immediately deduce that:

Corollary 3.2.6. Suppose that ' is a root subsystem of ®((rq,1s)).

Then either |®'| =2 or @ is an infinite rank 2 subsystem. O

3.3. The Dominance Hierarchy

Definition 3.3.1. (i) For x and y € ®, we say that = dominates vy,

written  domyy y if
{weW|lw-2ed }C{weW|w-yed }.
(ii) For each x € &7, set
D(z)={y € ®"|y#xand z domy y },
and for each n € N, define
D,={xze€®" ||D(x)|=n}

(the set of positive roots x that dominate exactly n other positive

roots).

In [6] and [5] dominance is only defined on ®*, and it is found
in [6] that it is a partial order on ®*. Here we have generalized the
notion of dominance to the whole of ®. It can be readily seen that
this generalized dominance is a partial order on ®. It also turns out
that the geometric characterization of dominance remains the same as
we extend the definition to cover all of ®. It is clear from the above
definition that

ot = |4 D,.
neN
In this chapter we study the above decomposition. We already knew

a good deal about Dy from [6] and [5]: if W is finite then Dy = &7,
whereas if W is an infinite Coxeter group of finite rank, then |Dy| < oco.

Observe that in the latter case |4 D, will be an infinite set. One
neNn>1

major result of this chapter (Theorem 3.3.9 and Corollary 3.3.10 below)
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is that if S is finite then D,, is finite for all natural numbers n. We
also give an upper bound for |D,|. But first we need a few elementary

results.

Lemma 3.3.2. (i) If 2 and y € ®*, then x domy y if and only if
(z,9) > 1 and dp(z) > dp(y).

(i) Dominance is W-invariant: if  domy y then for any w € W,
wz domy wy.

(iii) Suppose that z,y € ®, and x domy y. Then —y domy, —z.

(iv) Suppose that z € &t and y € ®~. Then x domy y if and only if
(z,y) > 1.

(v) Let z,y € ®. Then there is dominance between z and y if and
only if (z,y) > 1.

Proof. (i) See [6, Lemma 2.3].

(ii) Clear from the definition of dominance.

(iii) Suppose for a contradiction that there exists w € W such that
w(—y) € &~ and w(—z) € ®*. Then w(y) € ¢+ yet w(z) € &7,
contradicting the assumption that z domy y.

(iv) Suppose that z domy y. Since dominance is W-invariant, it fol-
lows that r,x domy r,y. Because r,y = —y € &%, so r,z € ®*. Thus
part (i) yields that (r,x,r,y) > 1. Since (, ) is W-invariant, it follows
that (z,y) > 1.

Conversely, suppose that z € ®T, y € &~ with (x,y) > 1. Then
clearly r,x = © — 2(z,y)y € ®*. Thus r,x and r,y = —y are both
positive. Then it follows from part (i) that there is dominance between
ryx and ryy. Since dominance is W-invariant, it follows that there is
dominance between z and y. Finally, since v € ®* and y € &, it is
clear that x domy y.

(v) Suppose that z,y € ®~. Then part (i) yields that there is domi-

nance between —z and —y if and only if (—z, —y) = (x,y) > 1. This

combined with part (i) and part (iv) above yields the desired result.
U
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Lemma 3.3.3. Suppose that x,y € ® with x # y, x domy y and
y € Dy. Then ryz € ®F.

Proof. Suppose for a contradiction that r,x € ®~. Lemma 3.3.2 (ii)
then yields that r,x domy r,y = —y. Now Lemma 3.3.2 (iii) yields that
y domy —ryxz € ®T. Since y € Dy, this forces —r,z = y, contradicting
x #y. O

Proposition 3.3.4. Suppose that x,y € ® are distinct with x domy, y.
(i) Let a,b be the canonical roots for the root subsystem ®({ry,7,)).

Then there is a w € (ry,r,) such that either
wr = a and wy = —b or wr = b and wy = —a.
In particular, (a,b) = —(x,y).
(ii) 2 domy y if and only if v domy,, ;v Y.
(ili) (ryz,z) < =1 and (ryz,y) < —1, and in particular, r,x cannot

dominate either x ory.

Proof. (i) Since |(z,y)| > 1 it follows from Proposition 2.3.16 that
(ra,1p) = (14, 7y) is infinite, and hence (a,b) < —1 by Proposition 3.1.3.
Thus (a, —b) > 1, and a domy —b, and similarly b domy —a. Using
the W-invariance of dominance it follows readily that there are two

dominance chains in the root subsystem ®((r,, 7)), as follows:
(3.3.1) -+ domy 7,1p7e(b) domy rerp(a) domy re(b) domy a
domy (=b) domy 71(—a) domy ryre(—b) domy, ---

and

(3.3.2) -+ domy ryrerp(a) domy 1. (b) domys rp(a) domys b
dompy (—a) domy 7,(—b) domy 7,7(—a) domy --- .

Observe that each element of ®((r,,rp)) lies in exactly one of the above

chains, and the negative of any element of one of these chains lies in

the other. Thus 2/, iy € ®((r,, 7)) are in the same chain if and only if
(',4y") > 1 and in different chains if and only if (2/,y') < —1.
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From (3.3.1) we see that the roots dominated by a are all negative,
and from (3.3.2) we see that the roots dominated by b are all negative.
Since we may choose w € (rq,m) such that wz = a or wr = b, and

since wzr domy wy, it follows that either

(3.3.3) wr=a and wy € P((rq,rp)) NP
or
(3.3.4) wr=>0 and wy € ®((rq,mp)) NP,

Suppose that wz = a. Then (a, —wy) = (wz, —wy) = —(z,y) < —1
and —wy € ®((ry,r,))NP*. Hence it follows from Proposition 3.1.3 (ii)
that {a, —wy} is the set of canonical roots for ®((r,,r,)), forcing
—wy = b. Similarly, in the case wx = b we may conclude that wy = —a.
Finally, observe that in either case, (a,b) = —(wz, wy) = —(z,y).

(ii) First suppose that x domy y. Then
{weW|wred }C{weW |wyed },
and taking the intersection with (r,,r,) gives
{we (ry,ry) |wre d }C{we (ry,ry) |wy e @},

which shows that z domg,, .,y y.

Conversely, suppose that x domy, ,)y. By Lemma 3.3.2 (v) ap-

plied with W replaced by (r,,r,) we see that (z,y) > 1 where (, )’
is the restriction of ( , ) to the subspace spanned by = and y. Thus
(x,y) > 1,applying Lemma 3.3.2 (v) again yields that either z domy, y
or y domy, z. But the latter alternative would imply that y dom,, ),
by the first part of this proof, contrary to the fact that x dom, .\ ¥
and = # y.
(iii) Since = domy y, Lemma 3.3.2 (v) yields that (z,y) > 1. Then
(ryz,y) = (x,—y) < —1 and hence there is no dominance between 7,z
and y. Also (ryz,z) = (z,x) — 2(z,y)* < —1 and consequently there is
no dominance between x and r,x, proving (iii).

O
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Remark 3.3.5. Observe from the proof of Proposition 3.3.4 (ii), that
if x,y € ®* are distinct, and x domyy y, then the depth of z relative
to (W', S(W")) is greater than the depth of y relative to (W', S(W’)).

Lemma 3.3.6. Suppose that x, y € ® are distinct with x domyy y. Let

a and b be the canonical roots for ®((r,r,)). Then either

T = Cpna ~+ Cpi1b and Y = Cm_10 + Cpb
or

T = Cp@ + Cp_1b and Y = Cm_10 + Cp_2b
for some integer m.
Proof. Since z,y € ®((r,, 1)), Lemma 3.2.1 yields that
T = Cp@ + Cpt1b and Y = Cpl + Cpi1b

for some integers m and n. If either x = ¢,,a+c,,11b and y = c,a+c,—1b

or T = ¢y + ¢p_1b and y = ca + ¢,410, then
(z,y) = —cosh((n +m)h) < —1

contradicting « domyy y. Therefore there are only two possibilities

(3.3.5) T = Cpa+ Cpib
o Yy = Cpa+ Chy1b

or

(3.3.6) T = Cmy10 + Cpb
o Y = Cpy1a+ cpb.

First suppose that (3.3.5) is the case. Since a and b are the canonical
roots for ®((ry, 1)) = ®((ry, 1)), it follows from Proposition 3.2.4 (ii)
that there are integers &y and ks such that

l=k(m-n)—m and  0=ke(m—n)+m.

But then ky 4 ky = L0 4 —m — 1_n € Z. Clearly this is only possible

m—n m—n m

when m —n = £1. On the other hand, since x domyy y, it is readily
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seen that m > n, giving us
T = Cpna ~+ Cpib and Y = Cp_10 + Cpb.
If (3.3.6) is the case then similar reasoning as above yields that
T = Cp@ + Cpy_1b and Y = Cm_10 + Cpy_2b.
O

Remark 3.3.7. Let x,y,a and b be as in Proposition 3.3.4 (i) and
Lemma 3.3.6 above. Then in fact z and y are consecutive terms in

precisely one of the dominance chains (3.3.1) or (3.3.2).

Theorem 3.3.8. Dy C {r,b | a,b € Dy}. Furthermore, if |S| < oo
then |D1| S |D0|2 — |D()|

Proof. Suppose that * € D; and {y} = D(z). Clearly y € Dy. By
Lemma 3.3.3, we know that r,o € ®*. Thus to prove Theorem 3.3.8,
we only need to show that r,z € D.

Suppose for a contradiction that r,z € ®*\ Dy. Then there exists
z € &\ {ryx} with r,x domy z. Since dominance is W-invariant, it
follows that  domy r,z. Because z € &%, so clearly r,z # y. Hence
ryz € @7, because D(z) = {y}. Thus (z,y) > 0. Then

1 < (ryz,z)=(r—2(z,9)y, 2)
= (.’ﬂ,Z) - 2(37,9)(?/7 Z)

Since we know that (z,y) > 1 (z domy y) and (z,y) > 0, it follows that
1 < (z,z). Therefore Lemma 3.3.2 (v) yields that either x domy 2z or
z domyy x. Suppose that z domy . Then ryz domy z domyy x, con-
tradicting Proposition 3.3.4 (iii). On the other hand, if x dom z, then
our construction forces z = y. But then r 2 domy, again contradicting
Proposition 3.3.4 (iii)

Thus ryz € Dy, as required. Since x € D; was arbitrary, it follows
that

D1 Q {rab|a,b€D0}.
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Finally, since D; does not contain elements of the form r,a, a € Dy, it
follows that

D, C {Tab’(l,bEDo}\—Dg.

In the case that |S| < 0o, we have |Dy| < oo (by [6, Theorem 2.8]), so
it follows from the above that |D;| < |Dg|* — | Dy|. O

The above treatment of D; can be generalised to D,, for arbitrary

n € N. Indeed we have:
Theorem 3.3.9. Forn € N,

D, C{rebla€Dobe | J Dn}.
m<n—1
Proof. The case n = 1 has been covered by Theorem 3.3.8, so we may
assume that n > 1.

Let x € D,, and suppose that D(z) = {y1,vy2,...,Yn }, With y,
being minimal with respect to dominance. Observe that y, € Dy.
Then Lemma 3.3.3 yields that r,, z € ®*. Hence either r,,x € Dy or
Ty, € DT\ Dy.

If r,x € ®F\ Dy, let z € D(ry,x). We will show that there are at

most (n — 1) possible values for z. Observe that this establishes
Ty, T € L—Ij D,,.
m<n—1

Since ry, x dom z, Lemma 3.3.2 (ii) yields that  domyy, r,, 2. Hence
either ry 2 = y;, for 1 <i<n—-1lorry,z¢c ® . Ifr, 2 € &, then
(Yn, z) > 0, yielding

1< (ry,2,2) = (z = 2(2, Yn)Yn, 2)
- (l’, Z) - 2([[‘, yn)(ym Z)

Now (Y, z) > 0 and (z,y,) > 1 (since « domy y,,), therefore we must
have (x,z) > 1. Similar to the proof of Theorem 3.3.8, we can con-

clude that  domy z. Hence z € {y1,- -, y,}. By Proposition3.3.4(iii)
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we know that z # y,. Thus if r, 2z € &7, then z € {y1, -+ ,yn_1}-
Summing up, if z € D(r,, z), then

ze{r,, (y)|r,(v;)e®t,ie{l,...,.n—1}}
U{yi|ry,(vi)ed,ie{l,...,n—1}}

and this is clearly a disjoint union of size n — 1. Thus 7, (x) € D,,, for

some m < n — 1, and hence

D, C{reblac Dy be [ Dun}.

m<n—1

n

It turns out that we can obtain reasonably nice upper bonds for

|D,,|, indeed we can deduce immediately:

Corollary 3.3.10. Suppose that |S| < co. Then forn € N, |D,,| < co.
Indeed
[ D] < [Do|™" = [ Dy|™.

Proof. Induction on n. The case n = 1 has been shown in Theo-
rem 3.3.8 and thus we may assume that n > 1. Since D; N D; = 0 if
1 # j, it follows from Theorem 3.3.9 that

D,C{rdlac& be |H Dui\(lH Dn).

m<n—1 m<n

Hence in the case |S| < oo,

(3.3.7)
Dyl < |Dol(|Do| + [D1] + -+ + [Dy—1]) = (|Do| + [D1] + - -+ + [ Dp—1])

= (1Dol = D(|Do| + [D1] + - + [ D).
Now the inductive hypothesis yields that
|Do| + |D1| + |Da| 4+ - - + | Dy
< |Do| + [ Dol* = |Do| + [ Do[* = [ Do|* + - --
+ [ Do|" ™ — | Do|" ™% 4 [ Do[" — [ Do|" ™
= [Dol".
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Thus (3.3.7) yields that |D,,| < |Dg|"™* — | Do|™, as required.
U

Remark 3.3.11. (i) It is seen in the proof of Theorem 3.3.9 that
if z, y € ®* with z domy and z € D,,, then r,x € D,,, for
some m < n. It turns out that we can say a bit more on this
and we shall do so in Proposition 3.3.16 and Proposition 3.3.24
below.

(ii) Having shown that for all n € N, |D,| < oo if |S| < oo, it is
not immediately clear, at this stage, that for all n € N, D,, # ().
Lemma 3.3.12 to Corollary 3.3.23 below will, amongest other
things, establish that D,, # 0 for all n € N if W is a finite-rank

infinite Coxeter group.

Lemma 3.3.12. Forn € N,
{wa | a € Dy, we W with l(w) <n}nND,=10.

Proof. Suppose not. Then there exists some n € N and x = wa € D,,
with a € Dy, w € W and {(w) < n. Let D(z) = {y1,...,y, }. Since
dominance is W-invariant, it follows that

wlz =a domw tyy, ..., w ty,.

Note that a ¢ {w™tyy, -+ ,w™y, }, for otherwise = € {y1,y2...,Yn }

which is absurd. Then w™ 'y, -+, w™ly, € &~ (since a € Dy). Hence
Y1, Yo € N(w™1), but this gives a contradiction to the fact that
IN(w | =1l(w™) =l(w) < n. O
Lemma 3.3.13.

RD(] - _DO %) D(] W Dl.

Proof. Let r € R and x € Dg be arbitrary. If rz € &t then Lemma
3.3.12 above yields that rx € Dy Dy. On the other hand, if rz € &,
then x € Il and r = r,. Thus ro = —x € —II. Since r and x were
chosen arbitrarily, it follows that RDg C —I1 W Dy W D;. O

Generalising Lemma 3.3.13, we have:
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Lemma 3.3.14. For alln >1
RD, C D, 1&D,wD,..

Proof. Suppose that n > 1, and let x € D,,, and z € II be arbitrary.
Since x # z it follows that r,z € ®T.

Suppose for a contradiction that .z € D,, for some m > n+2. Let
D(r,x) = {y1,.--,Ym }. Then x domy r,y;, -+ ,7.ym, for dominance
is W-invariant. Since x € D,,, and m > n + 2, it follows that there are
1 <i < j <msuch that r,y; € ®~ and r.y; € ®~. But this is impos-
sible since r, could only make one positive root negative. Therefore we
may conclude that r,z ¢ D,, where m > m + 2. A similar argument

also shows that r,z ¢ D,,, where m’ < n — 2, and we are done. O

Lemma 3.3.15. Suppose that x, y are in ®* with y < x. Let w € W
be such that x = wy and dp(x) = dp(y) + l(w). Then y € D,, implies
that © € D,, for some n > m. Furthermore, wD(y) C D(x).

Proof. It is enough to show that the desired result holds in the case
that w = r, for some a € II. The more general proof then follows from
an induction on [(w).

Since z = 1,y and y < z it follows from Lemma 2.3.3 (v) that
(a,y) < 0. Let D(y) ={ 21,22,...,2m }. Then Lemma 3.3.2 (v) yields
that a ¢ D(y). Since a € II, this in turn implies that r,D(y) C ®*.
Since dominance is W-invariant, it follows that x domy r,z; for all
i€ {1,2...,m}. Hence {r.z1,7022,...,7a2m } € D(z), and thus

x € D,, for some n > m. J

The next proposition, somewhat an analogy to Lemma 2.3.3 (v)
above, has many applications, among which, we can deduce for arbi-
trary positive root x, the integer n for which x € D,,. Furthermore, it
enables us to compute D(z) explicitly as well as to obtain an algorithm

to compute all the D,,’s systematically.

Proposition 3.3.16. Suppose that x € D,,, n > 1, and a € 1. Then
(i) rox € Dy—y if and only if (x,a) > 1;
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(ii) rox € Dpyq if and only if (z,a) < —1;
(iii) rox € Dy, if and only if (z,a) € (—1,1).

Proof. (i) Suppose that x € D,,, a € II such that r,x € D,_;. Let
D(x) ={z1,2,...,2, }. Then rox domy 1,z for alli € {1,2,...,n}
since dominance is W-invairant. Thus at least one of r,z1,..., 7.2,
must be negative. Without loss of generality, we may assume that
rez1 € ®7. Since a € 1II, it follows that a = z;. Then (z,a) > 1 by
Lemma 3.3.2 (v) since = domy a.

Conversely, suppose that x € D,, and a € II such that (z,a) > 1.
Then by Lemma 3.3.2 (v) x domy a; furthermore, Lemma 2.3.3 (v)
yields that r,x < x. Hence Lemma 3.3.15 yields that

(3.3.8) roD(rqx) C D(x).

Now suppose for a contradiction that r,z ¢ D,,_1. Then Lemma 3.3.14
yields that r,x € D, W D,,+1. From (3.3.8) it is clear that r,x & D, 1.
But if r,x € D, then (3.3.8) yields that r,D(r,x) = D(z). Observe
that a € D(x) and a ¢ r,D(r,x), producing a contradiction as desired.
This completes the proof of (i).

(ii) Replace z by r,z in (i) above then we may obtain the desired

result.
(iii) Follows from (i), (ii) and Lemma 3.3.14.

Definition 3.3.17. For each x € ®*, define
S(x)={weW |l(w)=dp(z) —1and w 'z € 11},
T(x)={weW |l(w)=dp(zx) and w 'z € & }.
In other words, for x € &%, S(z) (respectively, T(x)) consists

of all w € W of minimal length such that w™'z € II (repectively,
wlz € o).

Proposition 3.3.18. Suppose that x € ®*. Then x € D, where
n=|{be Nw™") |z domyb}| for all w € S(x). In particular,

Dia)={be N(w )| (¢,0) > 1}
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for allw € S(x).

Proof. Let z € &+ and write © = wa where w € S(x) and a € TI. Let
W ="Tq -+ Tq with [ =l(w). Forallie {2,...,1},
w_l(ralr@ e 'Tai—Q)ai_l
= T‘al .. /r'alral .. /,"ai72a/l.71
- Tal e Tllirtli_la/i—l
= _Tal e Taiai—l-
Since l(ryry_y -+ -ry) = U(ry -+ - riri_1)—1, it follows from Lemma 2.3.3 (iv)
that rq, - - - 7,0,-1 € ®7. Thus
(3.3.9) W (T Tay *+ Tay )01 = —Tay -+ Ta,0i—1 € D
Now by Proposition 3.3.16, we can immediately deduce that x € D,
where
n= | {Z (ai—l » Ta;Taj4q " 'Tala’) <-1 } ‘
= | {Z (ra1 o 'raiq(ai—l) y Tay *- 'Taz(a)) < -1 } |
= | {Z (ral o 'raifl(aifl) ) :C) <-1 } ‘
= | {Z (_ral o 'Tai_2<a/i—1) ) l') S -1 } |
=[{be Nw™): (=b,z) < -1}
=[{be Nw™): (=bz) > 11}
Lemma 3.3.2 (v) yields that either z domy b or b domy, z. Since all
such b are in N(w™') where w € S(z), it follows that w™'z € II and

w™lb € ®=. Thus b cannot dominate z. So we may conclude that
x € D, where

(3.3.10) n=I[{be Nw™) |z domyb}|
for all w € S(x). But (3.3.10) says precisely that D(z) C N(w™') and
D(z)={be N(w™) |z domy b}
={be Nw™") | (x,b) >1}.
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Immediately from Proposition 3.3.18, we have:

Corollary 3.3.19. Let x € ®*. Then D(z) € (] N(w™'). And
weS(x)
D(z) = {b € Nw™) | (x,b) > 1} is independent of the particular

choice of w € S(x).

It turns out that we can also say something about the roots in

N N(w™)\ D(x). Indeed in the next two lemmas we deduce that
weS(x)
if b € Nyesp N(w™), then (z,b) > 0.

Lemma 3.3.20. Suppose that x € &, w € T(z) and b € N(w™).
Then (b, x) > 0.

Proof. If dp(z) = 1, then z € II. Hence T'(x) = {r, } and x = b, and
so (b,z) =1 as required.

Thus we may assume that dp(x) > 1 and proceed by an induction
on dp(z). Let a € TN N(w™!). Then

l(row) = lw™ry) = l(w™) — 1 =l(w) — 1.
Now since (rqw) ! (r,z) = w™tz € &, it follows that
dp(rez) < l(row) < l(w) = dp(x).

Thus Lemma 2.3.3 (v) yields that (a,z) > 0. If b = a then we
are done. So we may assume that b # a and let v’ = r,w. Ob-
serve that then w' € T(ryz). Since b € N(w™!), it follows that
wlreb = wilrgryb = wb € . Thus r,b € N(w'™!). And so
the inductive hypothesis yields that (r,b,7,z) > 0. Since (, ) is W-

invariant, it follows that (b, z) > 0 as required. O

Lemma 3.3.21. Suppose that x € ®T, w € S(x) and b € N(w™!).
Then (b,z) > 0.

Proof. Follows from Lemma 3.3.20 and the fact that for each w € S(x)
there is a w’ € T'(x) such that N(w™') C N(w'™!). O
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Lemma 3.3.22. Forn € N, if D, = (), then D,, = 0 for all m € N
such that m > n.

Proof. Suppose for a contradiction that there exists n € N such that
D, =0 and yet D,,,1 # 0. Let x € D,,;;. Then Lemma 3.3.14 yields
that r,x ¢ D, for all a € TI. Hence if a € TI such that r,x < x then
rex € Dpyq still. Write x = wb, where b € I, and w € S(z). Let
W =7rg - Tq (a; €I, for i = 1,--- 1) be a reduced expression for
w. Then for all ¢ € {1,...,1}, we have that r,, -+ re,re,x € Dyiq.
In particular, b = 74, - 7,2 € D,41, contradicting the fact that
bell C Dy. O

Corollary 3.3.23. Suppose that W is a finite rank infinite Coxeter

group. Then for all nonnegative integers n, D,, # ().

Proof. It is clear from the definition of the D,’s that ®* = ¢ D,,.
n>0

Since W is an infinite Coxeter group, it follows that || = co. On
the other hand, since W is of finite rank, Theorem 3.3.9 yields that
|D,| < oo. Thus Lemma 3.3.22 implies that D,, # ) for all nonnegative

integers n. U
The following is a generalization of Proposition 3.3.16:
Proposition 3.3.24. Let x € D,, with n > 0, and let a € ®*. Then

(i) |D(roz)| < nif (x,a) > 1;
(ii) |D(rez)| > n if (x,a) < —1.

Proof. (i) If dp(a) = 1 then this is just Propostion 3.3.16. Suppose
now that dp(a) > 1, and proceed by induction.
Write a = ¢, where b € II, ¢ € ®* such that

(3.3.11) dp(a) =dp(c) + 1

Now since (z,a) = (z,r,¢) = (rpz,¢) > 1, it follows from the inductive
hypothesis that

(3.3.12) |D(r.(ryz))| < |D(rpx)].
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Now we have three possibilities:

1) (b,z) > 1;
2) (b,z) < —1;
3) (byz) € (—1,1)

If 1) is the case, then Proposition 3.3.16 yields that ryz € D,,_;.

And thus we have in this case

| D(rax)| = [D(ry(rersr))|

< |D(re(rpz))| + 1 (follows from Proposition 3.3.16 )
< |D(rpz)| (follows from (3.3.12))
=n-—1

as required.
If 2) is the case, then Proposition 3.3.16 yields that ryx € D, 1,
and (b, r.(rpx)) = (byrpr — 2(rpx,c)c) = (b,rpyx) —2(z,a)(b,c). By
——

>1

Lemma 2.3.3 (v), equation(3.3.11) above yields that (b,c¢) < 0. Hence
(3.3.13) (b,re(rpz)) > (b, rpz) > 1.

Then Proposition 3.3.16 yields that

| D(raw)| = [D(ry(rersz)]

= |D(rerpz)] — 1 (by (3.3.13) above)
< |D(rpx)| —2 (by (3.3.12))
<n-1 (since rpx € D,,11 in case 2))

as required.
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If 3) is the case, then we are done unless |D(r.(rpyz))] =n — 1, and

(b, reryz) < —1. But this is impossible, since
(b, reryr)
= (b, rpx) — 2(ryz, ) (b, C)
= (b,mpx) — 2(a,z)(b,c)
> (b, rpx) ( since (a,x) > 1, and (b,¢c) <0)
> —1.

Thus |D(rqz)| = |D(rprerpyr)| < n in this case too. This completes the
proof of (7).
(ii) Replace x by r,z, then apply (i) above.
U

Next we give an algorithm to systematically compute all the D,’s

for an arbitrary finite-rank Coxeter group W.

Lemma 3.3.25. Suppose that x € D,, with n > 1. Then there exists
y € D,y such that y < z.

Proof. Suppose that the contrary is true. Let x € D, be such that
there is no root in D,,_; preceding x. Write x = wa, where a € 11, and
w e S(x). Let w =14 - 14 (a; € I,i =1,...,1) be a reduced ex-
pression for w. Then a = r,, - - - 4, 2. Observe that in such case, for all
ie{l,...,l—=1} 1y Tax <74, Tex. Thus Lemma 2.3.3 (v)
yields that (rq, , -+ 7rq,x,a;) > 0 for i € {2,---,1}. So by Proposition
3.3.16, our assumption that x is not preceded by any root in D,
is equivalent to the condition that (r, ,---7re,x,a;) € (0,1) for all
i€ {2,---,l}. Proposition 3.3.16 (iii) then yields that

Ta;Ta;_ " Tay® € Dy

foralli e {1,---,1}. In particular, a =, - - - 7o, € D,, where n > 1,
contradicting that a € II C Dy. 0
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Proposition 3.3.26. Suppose that W is a finite-rank Coxeter group.
Forn > 1, there is an algorithm to compute D, provided that D, 1 is

known.

Proof. We outline such an algorithm:

1) Set D = .

2) Enumerate all the elements of D,,_; in some order, that is, write
Dy, ={x1, -+ ,xn}, where m = |D,_4|.

3) Starting with z;, apply all simple reflections r, (a € II), to z1,
one at a time. If (a,x1) < —1, then add r,x; to D.

4) Repeat 3) to za,- -+, xp,.

5) Enumerate all the elements of the modified set D in some order,
that is, write D = {a, 25, -+, x| }.

6) Starting with z/, apply all simple reflections r, (a € II) to z,
one at a time. If (a,2)) € (—1,0) and r,2| ¢ D, then add r,x}
to D.

7) Repeat 6) to @, -+, z|p).

8) Repeat steps 5) to 7) above.

9) Repeat 8) until no new elements can be added to D.

10) Set D, = D.

Next we show that the above algorithm will be able to produce all
elements of D,, within a finite number of iterations.

Let € D,, (n > 1) be arbitrary. Lemma 3.3.25 yields that there
exists a y € D,_1 with y < z. Write x = wy for some w € W with
l(w) = dp(z) — dp(y). Let w = 14,74y 7q, (a1,...,a; € II) be a

reduced expression for w. Then
Y=<Tq¥y < Ta_Taq,y =< X TqTay " Tqy = .
Since x € D,, and y € D,,_1, it follows from Lemma 3.3.15 that

Tay¥s Tay_1TayYs - - s TasTaz ***Ta,Y € Dp—1 W Dy,
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furthermore, there exists ¢ € {1,2,...,1} such that

Yy e Dn—l

T,y € Dp_1

Tai1Tais " Ta)¥Y € anl
and
Ta, (T%HTGHQ e Taly) S Dn

Ta;_1Ta; (rai+1rai+2 T Tazy) S Dn

TayTas " T,y = T € Dy

Since ro;, Taiys Ty € Dy—1, it follows that ry,ra,, Ta,,, -+ 7oy is an
element of D,, obtainable by going through steps 3) and 4) above. This
in turn implies that r,, 74, - 74,y is an element obtainable by going
through steps 5) to 7). It then follows that 74, 74, 74, - T,y and so
on are all obtainable by (repeated) application of step 8). In particular
T =Tq -+ TqYy can be obtained after (i —2) iterations of step 8). Thus
x can be obtained by going through setps 1) to 8), with step 8) repeated
finitely many times. Since x € D,, was arbitrary, it follows that every
element of D,, can be obtained from the above algorithm in this manner
with step 8) repeated finitely many times.

Finally W is of finite rank, so |D,| < co. Therefore step 9) will
only be repeated a finite number of times and hence the algorithm will

terminate completing the proof. 0

Corollary 3.3.27. If |S| < oo, then we may compute D,, for all
n € N.

Proof. [5] gives a complete description of Dy when [S| < co. Now

combine [5] and Proposition 3.3.26, the result follows immediately. [
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Now a question worth asking is whether, given an arbitrary (finite
rank) Coxeter group W, the successive D,,’s expand or contract in size?
At this stage, unfortunately, a full answer has not yet been found.
However we do know that for a family of special subsets D,,;’s of the
D,,’s to be defined below, the successive D,, ;’s tend to increase in size.

For I C II, the Coxeter group generated by {r, | a € I } is denoted
by Wi, and the root system of W; on the subspace of V' spanned by [
is denoted by ®;. As usual, write ®; for ®; NPLC(/) and write ®; for
—®. The Coxeter graph I'(1) of W; has vertex set I, and two vertices
a, and ag are adjoined by an edge of weight m,,, where r,s € S and
Mys 7 2.

Each root x can be written uniquely as ) .5 Aqa, and we say A,
is the coefficient (witten coeff,(z)) of a in x. The support (written
supp(z)) of z is the set of all a € II with coeff,(z) # 0, and T'(z)
defined by I'(supp(z)) is the corresponding graph. It is readily seen
that I'(supp(z)) is finite and connected.

Definition 3.3.28. For n € N, set

Dp1=D,N{Bed"|coeff () =1, for some x € I }

In Proposition 3.3.30 below we shall prove that, amongest other
things, |Dy, 1| > |Dpal, if n > m.

Lemma 3.3.29. ( (4.4) Lemma of [5]) Let 8 be a positive root and
x € Il with coeff,(8) = 1. Then = < B; that is, there ezists a
w € Waupp(a)\{z} such that f = wz and dp(5) = l(w) + 1. O

Proposition 3.3.30. Let I CII, x € I and I, I C I be such that
[(L \ {z}) and T'(I2 \ {x}) are unions of connected components of
L(I\A{z}) with I =1, U, and I N Iy = {x}. Then
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¢: { (B1, f2) € Bf x ©F | coeff,(81) = coeff,(82) =1}
—{a € ®f | coeff,(a) =1}

(B1,B2) = 1+ P2 —

defines a bijection. Moreover, dp(¢(B1, B2)) = dp(51) +dp(B2) — 1 and
B, B2 = ¢(B1, B2) for B; € @, with coeff,(8;) =1 (i = 1,2).
(ii) @ restricts to a bijection

{ (B, B2) € (@}, N D) x (2, N D;) | coeffy (1) = coeffy () = 1}
< {B€® NDyy | coeff,(8) =1}

Proof. (i) Lemma 4.2 of [5].

(i)  Let 8 € ®; with coeff(8) = 1. Then Lemma 3.3.29 above
yields that 8 = wx, for some w € Wp ;3. We may write w = wws
where w; € Winy and wy € Wi\ py with l(w) = I(wy) + [(w2).
Observe that under this construction, Wi\, commutes with Wr,\ 23
and Wi\ () fixes (D};\{I} pointwise and vice versa. Set (5, = wix and
P2 = wo.

We first show that 5, € D;, 82 € D; implies that 8 € D, ;.

Suppose for a contradiction that g € D, for some n € N and
n#i+j. Let {z,....2} = D(f1) and {zit1,...,2i4; } = D(52).
Since

£1 = wix domyy 21, ..., 2,

it follows from the W-invariance of dominance that

x domy wy 2y, .. wytz.
Since x € II it follows that w;'z,...,wi'z € ®~. Consequently
21,...,% € N(wi') C @Z\{x}. Similar reasoning also yields that

Zigly -, Zitj € N(wy') C @Z\{z}. Observe that in particular, we have
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D(B1) N D(B2) = (. By Lemma 3.3.15,
waD(B1) = waD(wqx)

C D(wowy ) (since w1 < wowyx)

= D(wx)

= D(B).
Similarly wD(82) C D(f). Since ws fixes z1, ..., 2z; pointwise and w;
fixes zit1,. .., 2j+; pointwise, it follows that
(3.3.14) {z1,.. 21, Zix1, - 5 Ziny } C D(B).

Observe that (3.3.14) implies that, in particular, g € D, for some
n > 1+ j. Thus there exists z € ®T such that z € D(f) and

(3.3.15) ZF R Ziy By - e i

B = wz domyy z implies that  domy w™'z. Because x € II, this forces
that w™'z € . Thus z € N(w™') C @} ,,,. Now the connectedness
of I'(z) implies that either z € @Z\{x} or z € (I)Z\{:r}' Suppose that

z € @Z\{x}. Then wz domy, 2z implies that

wir = wy (wz) domyy wy 'z = 2.

Then z € {z,...,2 }, contradicting (3.3.15). Next suppose that
z € @};\{x}. Then # = wxr domy z implies that

wor = wy *(wz) domy witz = 2.

Then z € {zi41,..., 2+, }, again contradicting (3.3.15). Therefore if
p1 € D; and By € D; then 8 € D, ;, as required.

The converse can be shown by a similar argument. U

3.4. The Imaginary Cone and Standard Dominance

The section is devoted to a preliminary study of the so called imag-
inary cone (introduced by Dyer in [3] and [4]) of a Coxeter group and

a stronger form of dominance. In particular, we will show that if x and
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y are roots with x domyy y, then x — y is in this imaginary cone. We

stress that throughout this section S is assumed to be finite.

Definition 3.4.1. Let V* be the dual space of V' (recall that W
acts on V* via the folowing: for all w € W, x € V, and f € V*,
(wf)(z) := f(w™'z)). For any convex cone C' in V, define the dual of
C to be

C*={opeV o) >0, forallveC},

and similarly for a convex cone F'in V*, we define its dual to be
Fr={veV|f(v)>0,foral feF}.

Let P = PLC(IT) U {0}, and we set U = |J wP*.
weW

Remark 3.4.2. Given the finite dimensinality of V' (and hence V*),
it is well known that if C' (respectively, F') is a convex cone in V
(respectively, V*), then then (C*)* (respectively, (F™*)*) is the topolog-
ical closure of C' (respectively, F') in V' with respect to the standard
topology on V' = RIS (respectively, V* with respect to the standard
topology). Furthermore C* (repectively, F*) is always a convex cone
in V (respectively, V*), even if C (respectively, F') is neither convex

nor a cone in V' (respectively, V*).

Lemma 3.4.3. Let w € W be arbitrary and suppose that f € wP*.
Then f(a) > 0 for all but finitely many positive roots a.

Proof.
wP* ={wp e V*|¢(a) >0 foralla e d*}
={feV*|(w'f)(a)>0foralacdt}
={feV*| f(wa) >0 for all a € &}
={feV*| f(b) >0forall bewd"}
={feV*| ifce ®' then f(c) <Oonlyifce N(w')}

Since N(w™!) is a finite set, the desired result follows. O
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Lemma 3.4.4. U consists of all ¢ € V* such that ¢(a) > 0 for all but

finitely many positive roots a.

Proof. Let
X :={vy e V*|(a) > 0 for all but finitely many b € ®* }.

The previous lemma yields that U C X. Now let ¢y € X be arbitrary.
We shall show that v € U by an induction on the size of the set
Neg(¢) :={b e ®T | (b) <0}. If | Neg(¢)) | = 0, then ¢ € P* C U,
so we may assume that Neg(1)) # (). Then there must exist b € II such
that ¢(b) < 0. It is readily observed that the size of Neg(ry)) is one less
than the size of Neg(¢)). Indeed Neg(ryt)) = m,(Neg(¢)) \ {b}). Hence
the inductive hypothesis yields that r,1) € U. Since U is W-invariant,
if follows that ¢ € U since U. Since ¢ € X was arbitrary, it follows
that X C U. U

Remark 3.4.5. By the lemma above, we see that U is a convex cone,
and we call it the Tits Cone.

Lemma 3.4.6.

Ur = m wP.

weW
Proof.
U'={veV]|flv)>0,forall feU}
={veV|(wp)(v) >0, forall p € P*, and for all w € W }
={veV|p(w ) >0, forall ¢ € P*, and for all w € W }
= m{UGV|¢(w’1v)ZO,forall(bEP*}
weW
= (Y {wv eV |g) >0, foral¢ecP}

weWw

= ﬂ{wUEVME(P*)*}
weWw

= ﬂ wP ((P*)* = P, since P is topologically closed).
weW
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O

Adpoting the concept introduced in [3] and [4], we make the fol-

lowing definition.

Definition 3.4.7. We define the imaginary cone QQ of W to be

Q={veU"]|(v,a) <0 for all but finitely many a € ®* }.
Observe that ) is indeed a convex cone.

Lemma 3.4.8. Suppose that v € V' has the property that (a,v) < 0 for
all a € II. Then wv —v € P for all w € W. Moreover, if v € P, then
veU*.

Proof. Use induction on I(w). Noting that if /(w) = 0 then there
is nothing to prove. If l[(w) > 1, then we may write w = w'r, with
w' € W, a eIl and l(w) = I(w') + 1. Then

wv—v=wr,(v) —v=uw(v—-21v,a)a)—v
= (w'v —v) + 2|(a,v)|w'a.

Observe that w'a € P, and w'v — v € P by the inductive hypothesis.
Since P is a cone it follows that wv — v € P as required.
If v € P, then wv = (wv —v) +v € P for all w € W, and so

ve (| wiP=U"
weW 0

Now we are ready to give an alternative characterization of Q:
Proposition 3.4.9.

Q= {wv|weW,ve P such that (v,a) <0 for alla € ®* }.
Proof. First set
X ={wv |w e W,v € PLC(IT) such that (v,a) <0 for all a € " }.

Suppose that v € ). Lemma 3.4.6 yields that u can indeed be

expressed as wv for some w € W and v € P. In particular, u € P. For
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each b € P set Pos(b) := {c € &7 | (b,c) > 0}. If Pos(u) = (), then
trivially v € @ (taking w = 1). Thus we may assume that Pos(u) # ()
and proceed by an induction on |Pos(v)|. Choose a € II such that
(u,a) > 0. Now it is readily checked that Pos(r,u) = r,(Pos(u) \ {a}).
Thus the inductive hypothesis yields that r,u € X. Thus u € X since
X is clearly W-invariant. Since v € ) was arbitrary, it follows that
QCX.

Conversely, if x € X, then x = wv for some w € W and v € P
such that (v,a) < 0 for all a € II. By the previous lemma, z € U*.
Now let y € ®*. Then (x,y) = (wv,y) = (v,w 'y) and (z,y) > 0 only
for those roots b € N(w™'). Clearly there are finitely (indeed, at most
[(w)) many such roots. Thus = € . Since z € X was arbitrary, it
follows that X C (. O

Proposition 3.4.10. Suppose that x,y € ® are distinct with x domyy y.
Then for all w € W, w(xz —y) € PLC(IL), that is, x —y € U*.

Proof. Let W’ be the (infinite) dihedral subgroup of W generated by 7,
and r,. Let S(W') = {s,t} and A(W') = {as, a4 }. Proposition 3.3.4 (i)
and Proposition 4.5.4 (i) of [13] combined yield that a,, o € @
with (as,oq) = —(z,y) < —1. Since z and y € &(W') = WA(W'),

Lemma 3.2.1 yields that there are integers m and n such that

_ sinh(n £ 1)9a sinh(n0)
~ sinh(f) 7 sinh()

o

and
_ sinh(m £1)0 sinh(m#)
v= sinh(0) s sinh(0)

Qg

where 6 = In(—(as, a;) + /(s ;)2 — 1) = cosh™ (— (e, ).
sinh(40)
sinh(6)

Keeping all notation as in Section 3.2, we write ¢; for , for all

i € N. Now let us consider the possible values of (z,y):
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(a) If z = cppras + cpoy and y = 10 + Cpy, then
(x,y) = cosh((n —m)f) > 1.

(b) If x = 105 + cray and y = ¢p—105 + i, then
(x,y) = —cosh((n +m)d) < —1.

(¢) If v = cp1a5 + cpoy and y = 15 + Gy, then
(z,y) = —cosh((n+m)d) < —1.

(d) If z = cp_10s + cpyy and y = ¢ 15 + ¢y, then
(x,y) = cosh((n —m)f) > 1.

Since « domy y, Lemma 3.3.2 (v) yields that (z,y) > 1. Therefore we

can rule out cases (b) and (c) above and conclude that either

_ sinh(n + 1)6’a sinh(n&)a _ sinh(m + 1)0@ sinh(m#@)
T sinh() 7 simh(9) YT T smh(9)  ° 7 sinh(9)

Ol

or

. sinh(n — 1)9@ n sinh(n@)a _sinh(m — 1)9@ n sinh(m@)a
~ sinh(d) ° ' sinh(h) v sinh(#) "7 sinh(h) ¢

Next we shall show that n > m. Suppose for a contradiction that

m > n. Then either z = y (when n = m), or there will be a w € W’
such that wx € ®(W')NP~ and yet wy € (W' )NPT (when n < m), all
contradicting the fact that  domy, y. Since ¢, > ¢, if n > m, it follows
that + —y € PLC(II). Finally because dominance is W-invariant, so
for any w € W, repeat the above argument with z replaced by wx and

y replaced by wy, we may conclude that w(z —y) € PLC(II). O

Theorem 3.4.11. Suppose that x, y € ® are distinct with x domy, y.
Then there exists w € W such that (w(x —y),z) <0, for all z € O,
that 1s, T —y € Q.

Proof. By the previous proposition, we know that x —y € U*. Thus
if we can prove that there exists w € W with (w(x —y), z) < 0 for all
z € &1 then z—y € @ by Proposition 3.4.9 (since U* is W —invariant).
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Clearly it is enough to prove that (w(x —y),z) < 0 for all z € II and
we give an algorithm to find such a w below.

Let W’ be the (infinite) dihedral subgroup of W generated by r,
and r,, and let A(W’) = {ao, by}. By Propostion 3.3.4 (i), ag, by € &7,
and (aop, by) = —(x,y) < —1, and there is some u € (r,,r,) such that
either
(3.4.1)

u(x) = Qg and u(y) = _bO or U(l') = bo and u(y) = —ag.

At any rate, u(z —y) = ag + bp. Obviously (ag + bg,a9) < 0 and
(ap+bo, by) < 0. However there may be ¢; € II such that (ag+bg, ¢;1) > 0.
If this is the case, set

a1 = Te¢ Qo
and
b1 =T b().

Observe that (d,c¢;) <0 for all d € IT\ {1}, so

(3.4.2) ¢1 € supp(ag) Usupp(bo)

Note that ay # c¢; and by # ¢, since (ag + bg,c;) > 0 whereas
(ap + bo,a0) < 0 and (ag + bo,bp) < 0. Thus ay,by € ®, and
(a1,b1) = (ap,bp) < —1. Consequently Proposition 3.1.3 (ii) yields
that aq,b; are the canonical roots for the root subsystem ®((r,,,7,))-
Observe that applying r., to ap and by will only change the coefficient
of ¢y, therefore (3.4.2) yields that

supp(a;) Usupp(b:) C supp(ag) U supp(b).

Furthermore,
Z coeff,(ar) + Z coeff,(by) < Z coeff,(ap) + Z coeff, (by)
acll a€ll acll acll

since the coefficient for ¢; has been stricly decreased as (ag+bg, 1) > 0.

Moreover, since (ag + by, c1) > 0, it follows that at least one of (ag, ¢;)



3.4. THE IMAGINARY CONE AND STANDARD DOMINANCE 117

or (bg, c1) must be strictly positive. Hence Lemma 2.3.3 (v) yields that
dp(ay) + dp(by) < dp(ag) + dp(by).

Repeat this process and we can obtain new pairs of positive roots
{a27 b2 }7 et { Am—1, bm—l }7 {ama bm } with

supp(am) Usupp(by,) C supp(am—1) Usupp(bp-1) < - -
C supp(ag) U supp(bo)

so long as we can find a ¢, € II such that (a;—1 + bm_1,¢m) > 0.
And this process only terminates at { a,,b, } for some n, if for all
z € II, (an + bp,2) < 0. Thus if we could show that this process
terminates at {a,,b,} for some finite n, then we have in fact found a

W =", e, , T, € W such that
(w<x - y)v Z) = (r% o 'T61(a0 + bO)v Z) <0

for all z € II, which in turn will establish that x —y € Q.

Since the set of positive roots having depth less than a specific
bound and support in a fixed finite subset of II is finite, it then follows
that the possible pairs of positive roots {a;, b;} obtained in this process

must be finite too. Finally since

Z coeff,(a;) + Z coeff,(b;) < Z coeff,(a;) + Z coeff, (b;)

a€ll a€ll a€ll a€ll
for all j > i, therefore the sequence {ag, bo}, {a1, b1}, - - - must terminate
at {an, by}
Incidentally, observe that for all i € {1,--- ,n}, where n is as

above, r..a;_1 € &1 and r.b;_1 € ®T. So we can easily deduce that
Te, Te(ao) € ®F, and 1, -+ 1. (bo) € @, for all i € {1,--- ,n}.
Hence, let w € W be as above, (3.4.2) yields that either

WT =T, T uay € OF and wy =7Te, Tou(—by) € P
or

Wr =7¢, - Toubg €PT and  wy =7, - reu(—ag)P.
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O

The observation made at the end of the proof of Theorem 3.4.11
yields that:

Corollary 3.4.12. Let x,y € ® be distinct with x domy, y. Then there
exists w € W such that wr € T, wy € &~, and (w(x —y),z) <0 for
all z € O+, O

Corollary 3.4.13. Suppose that x, y € ® are distinct with x domy, y.

Then the following are equivalent:

(i) whenever x domy z domy y for some z € ®, then either z = x
orz=vy;

(ii) there exists a w € W such that w(x) € Dy and w(y) € —Djy.

Proof. (i) implies (ii): Let w be as in the previous corollary. First
we show that then wx € Dy. Suppose for a contradiction that wx ¢ Dj.
Let z € D(wx). Then the last corollary yields (wy,z) > 1 too, for
(wy, z) > (wzx,z) > 1. Since the last Corollary yields that wy € &,
it follows that z domy wy. But this gives us z domy w™ 'z domy y
with z # w™'z # y, contradicting (i). Therefore wx € Dy, as required.
Similarly we may also deduce that wy € —Dy.
(ii) implies (i): Clear.
O

Definition 3.4.14. Suppose that z,y € ®, x domy y satisfy both (i)
and (ii) of Corollary 3.4.13, then we say that the dominance between

x and y is minimal.

Proposition 3.4.15. Suppose that x,y € ® are distinct, and xr domyy y.
Then the dominance between x and y with respect to the subgroup

(rs, ry) is minimal.

Proof. Let a and b be the canonical roots for ®((r,,r,)). Again as in

the proof of Proposition 3.3.4 (i) we see that every root in ®((r,,,))
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must be in exactly one of the following two dominace chains:

(3.4.3) -+ domyy 7,1p1e(b) domy rerp(a) domy re(b) domy a
domy, (=b) domy 7p(—a) domys ryre(—b) domy ---

and

(3.4.4) -+ domy ryrerp(a) domy 17, (b) domys rp(a) domys b

domy (—a) domy r,(—b) domy r.ry(—a) domy ---

Upon inspecting (3.4.3) and (3.4.4), we can readily see that the only
elementary roots in this root subsystem with respect to domy,_ .y are a
and b. By Proposition 3.3.4 (i), we know that there is some w € (r,,7,)
such that either

wr = a and wy = —b
or

wr = b and wy = —a,

therefore Corollary 3.4.13 yields that the dominance between x and y

with respect to (r,r,) is minimal. O

3.5. Dominance in ®;

In this section we generalize the results obtained in Section 3.3
into the non-orthogonal geometric realization studied in Chapter 1 and
Chapter 2. In particular, we prove an analogue of Theorem 3.3.9 and
Corollary 3.3.10 adapted to the non-orthogonal setting, namely, for
a suitable definition of roots, the set of roots dominating precisely n
other positive roots is finite in size, for any positive integer n. The
conclusion drawn towards the end of this section is that the dominance
concept, especially those results analogous to Theorem 3.3.9 and Corol-
lary 3.3.10 are in fact dependent only on the underlying Coxeter group
and not on the particular geometric realization used.

Keeping all notation as in Chapter 1, in this section we adapt the

notion of dominance to the roots in ®;. We stress that all the results



120 3. STANDARD DOMINANCE HIERARCHY

obtained throughout this section equally apply to the roots in ®5. We
begin by define what is meant by saying that a root in ®; dominates

another root in ®4.

Definition 3.5.1. For ay,as € &1, we say that oy dominates as with

respect to W (written oy domyy a) if
{weW |wa; €]} C{weW way € P }.

Lemma 3.5.2. Suppose that aq,as € ®1. Then oy domy oy if and
only if fi(a1) domyy fi(as).

Proof. By definition, ar; domyy «s if and only if whenever w € W and
way € P then was € &7, Since f; is W-equivariant, if follows from
Lemma 2.3.6 that

way € &7 if and only if  fi(way) = wfi(ay) € O
and
way € &7 if and only if  fi(was) = wfi(az) € .

Thus oy domyy s if and only if fi(a;) domy fi(a2), as required.
U

Lemma 3.5.2 combined with results obtained in Section 3.3 enables

us to deduce the following facts concerning dominance in ;.

Lemma 3.5.3. Let ay,ay € ®] such that oy is not a scalar multiple
of ay and oy domy ay. Then

(i) (o, paz)) > 0;

(ii) (woy) domy (wag) for all w € W, that is, dominance is W -

movariant;

(iii) dp; (1) > dp;(az);

(iv) —ag domy —ag.
Proof. (i) Lemma 3.3.2 (i), Corollary 2.3.9 and Lemma 3.5.2 com-
bined yield the desired result.
(ii) Follows from Lemma 3.3.2 (ii) and Lemma 3.5.2.
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(iii) Follows from Lemma 3.3.2 (i), Lemma 2.3.7 and Lemma 3.5.2.
(iv) Follows from Lemma 3.3.2 (iii) and Lemma 3.5.2. O

Lemma 3.5.4. Suppose that W is a finite Coxeter group. Then the

only domincance in ®, is of the form a dom A\« for some A > 0.

Proof. If W is finite, then there is a unique wy € W of maximal length.
So l(wrs) < l(w) for all s € S, and this implies that wa, € ®7 for all
s € §. Thus wy(®]) = ®;. Hence Ny(wgy) = &D\l and consequently
w € W, l(wow) = I(wy) — I(w). Furthermore, wy = wy'. Now suppose
that « € ®/. Then —wpa € &}, and

dp; (—wor) = 1 (I(r—(wya)) +1) (by Lemma 1.3.19 of Chapter 1)

(
= 5(I(worawo) +1)
= 5(I(wo) — I(rawo) + 1)
= 5(I(wo) — lwora) + 1)
= 5(I(wo) — Uwo) +1(ra) + 1)
= 5(lra) +1)
= dp,(«) (agaim by Lemma 1.3.19 of Chapter 1).

Therefore the map sending each positive root o to —wga is a depth
preserving permutation.

Now suppose for a contradiction that aq,as € ®; which are not
scalar multiples of each other and a; domy, as. Without loss of gener-
ality we may assume that a;, s € ®f. Then Lemma 3.5.3 (v) yields
that —wgae domy —wpay, and by Lemma 3.5.3 (iv) this in turn implies
that

dp;(a2) = dpy(—woarz) > dpy(—woa) = dpy(ar),
contradicting Lemma 3.5.3 (iv). O

Now we give a geometric characterization of dominance in ®4:

Lemma 3.5.5. Let o and oo be arbitrary roots in ® which are not

scalar multiples of each other. Then oy domy s if and only if the
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following three conditions are satisfied:

(2, p(n)) > 0, (e, paz))(ag, ¢(ar)) = 1 and dp,(ay) > dp,(az).

Proof. Suppose that a; domy ap. By Lemma 3.5.3 (i) and (iv) we
only need to prove that (o, ¢(as))(ag, d(ay)) > 1.

If {aq, p(ag)) (e, p(a)) < 1, then by Corollary 2.3.17, it follows
that D the subgroup of W generated by r,, and r,, is finite. By
Lemma 3.5.4 there is no non-trivial dominance in D, hence there exists
w € D such that way € &7 and way € <I>]L. Since D C W, this contra-
dicts our hypothesis that oy domyy ae. Thus (aq, ¢(az)){ag, p(aq)) > 1
as required.

Conversely, assume that (o, ¢(az)){az, ¢(aq)) > 1, (a1, ¢(az)) >0
and dp,(ay) > dp(as). First consider the case that ay = «, for some
r € S. Clearly r,a; € ®f, for a; is not a positive scalar multiple of

(because dp;(ay) > dpy(ae) ), and

(a1, p(rran))(rran, g(an))
= (a1, (1) — 2(ar, p(n)) B,) (a1 — 2{a, Br) i, d(r))

= ({on, d(an)) — 2{a, Br) (o, d(en)))?
1.

v

Now direct calculations similar to those in Lemma 1.1.8 of Chap-
ter 1 yield that there are infinitely many elements in </I>\1 of the form
Aal/—i-ﬁ“ral, where A\, ;n > 0. Suppose for a contradiction that oy
does not dominate o, and choose w € W such that wa; € ®; and

wa, € ®F. Then
w(ryar) = w(og — 2{(ay, Bryay) = way + 2{a, By) (—wa,.).

By Corollary 2.3.13, (a1, ) > 0 (since (a,, ¢(aq1)) > 0), so we see that
w(ry.aq) is negative. So Nj(w) contains both «; and r,.aq, and hence
all the roots of the form )\041:;"74041 where A, 4 > 0, contradicting the
finiteness of Ny (w).
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Proceeding by induction on dp, (az), suppose that now dp, (as) > 1,
and choose s € S such that ryas <1 ag. Since dpy(«;) > dp;(ag) > 1,
it follows that r,ay € ®. Now

(rsar, () (rsaa, sd(0on)) = (o, d(ar)) (g, d(aq)) > 1

and (rsag, s¢(a)) = (g, ¢(ay)) > 0, and furthermore,
dp(rsar) = dpy (1) — 1 > dpy(az) — 1 = dp, (rsas).

Hence the inductive hypothesis yields that rya; domy rsas, and by

Lemma 3.5.3 (ii), this implies that «; domy as. O

Using similar arguments as those used in the proofs of Lemma 3.3.2

part (iv) and part (v), we may extend the last lemma to the following:

Proposition 3.5.6. Let ay, s € ®1. Then there is dominance between

ay and as if and only if

(a1, (2)) >0 and (o, p(az))(az, ¢(en)) > 1.

Now we are able to prove the converse of Corollary 2.3.17:

Lemma 3.5.7. Suppose o,y € ®1 with ry, # ra,. If the subgroup of
W generated by o, and r, is finite then (ay, ¢(ae)){az, d(aq)) < 1.

Proof. Suppose for a contradiction that (r,,,r.,) is finite and yet
(an, p(a2)){ag, p(aq)) > 1. Since r,, = 7_4,, we may replace ay by
—ay if needed and assume that (ay, ¢(az)) > 0. Then Proposition 3.5.6
yields that there is dominance with respect to W between «; and as.
Proposition 3.3.4 (ii) and Lemma 3.5.2 combined yield that there is
dominance with respect to (14, ra,) between a; and aw, contradicting
Lemma 3.5.4. dJ

Recall the equivalence relation and the set of equivalence classes
(f}i defined in the proof of Lemma 1.2.13.
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Proposition 3.5.8. There is a W -equivariant bijection fl: :}i — ¢
satisfying

fi@) = f(a),

for all a € ®4.

Proof. Since f is W-equivariant, it follows that if such a map fl exists,
then it must be W-equivariant. Furthermore, it can be readily checked
that if such ﬁ exists, then it must be bijective. Thus all that remains
is to prove that such ]?1 is well-defined, that is, we need to show that if
a and Aa are in ®; with A > 0 and A # 1, then fi(a) = fi(Aa). Our
proof will be based on an induction on the depth of « (which is equal
to the depth of \a).

If dp, («) = 1, then o = pav, for some s € S and p > 0. Then Corol-
lary 1.2.19 yields that ¢(a) = iﬁs. Now Corollary 2.3.13 yields that
coeff.,, (fi(a)) = 0forallt € S\{s}. Since coeff,, (a) coeffs, (4(a)) = 1,
it follows from Proposition 2.3.14 that fi(«) = v,. Similarly if Ao € @7,
then fi(Aa) =7s. Hence fi(a) = fi(Aa) when dp(a) = 1.

Next we may assume that dp;(«) > 1, and choose ¢t € S such that
ria <1 a. By Lemma 1.3.10 this means (a, §;) > 0. Then (Ao, ;) > 0
too, and so r:(Aa) <1 (Aa) as well. Now by the inductive hypothesis

filria) = fi(ri(Aa)) =~

for some v € . Then

fila) = rifi(ria)) = rey = r(fi(ri(Aa))) = fi(Ae)

as required. O

Definition 3.5.9. Let a7y, as € E}i, we say that a7 dominates oy with
respect to W (written oy domyan), if a; domy, ap. For each nonneg-

ative integer n, define

l/?;; ={ae &)? | @ dominates exactly n elements in &D\f“ \ {a} }.

Proposition 3.5.10. For each nonnegative integer n, ﬁ(Dl,n) =D,.
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Proof. Follows readily from Proposition 3.5.8 and Lemma 3.5.2. [

Now we are ready to prove the following main result of this section:

Theorem 3.5.11. Suppose that S s finite. Then 517) 18 finite in size.
Furthermore, for eachn € N, |51\n] < oo and \51\71] < |Do|™ "t — | Do|™.

Proof. Follows from Theorem 3.3.8, Theorem 3.3.9, Proposition 3.5.10
and Corollary 3.3.10. O
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