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Preface

The aim of this thesis is to investigate two topics relating to geomet-

ric realizations of Coxeter groups. The first is a class of non-orthogonal

geometric realizations of Coxeter groups and the second is the study

of dominance behaviour in the root systems associated with Coxeter

groups extending those examined in [6] and [5].

For arbitrary Coxeter system (W,R), it is well known that W can

be embedded into the orthogonal group of certain bilinear form ( , )

on a real vector space V . The root system of W in V is a certain W -

stable subset of V corresponding to the set of reflections in W . If the

bilinear form ( , ) is non-degenerate then of course V is W -isomorphic

to its dual V ∗, but since the form is not always non-degenerate it is

sometimes useful to study both the representation of W on V and the

contragredient representation on V ∗. This motivates the slightly more

general approach taken in this thesis, in which we consider a pair of

real vector spaces V1 and V2 linked by a W -equivariant bilinear pairing

satisfying a few extra conditions (which are guaranteed to hold in the

case that V1 = V and V2 = V ∗). We show that in this situation W em-

beds (faithfully) in the general linear groups of each of V1 and V2, both

images being generated by reflections. The classical theory of geomet-

ric realizations can be recovered as a special case. We define and study

generalized root systems arising in such non-orthogonal geometric real-

izations of Coxeter systems, and compare them with the root systems

arising from the standard geometric realizations. It turns out that it

is natural to consider root systems in both V1 and V2; these are in W -

equivariant bijective correspondence with each other and with the root

system in the classical setting. Familiar properties of simple roots and
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positive roots generalize to the non-orthogonal case, although it is no

longer necessarily true that the only scalar multiples of a root are itself

and its negative.

The investigation of non-orthogonal geometric realizations will oc-

cupy Chapter 1 and Chapter 2.

In Chapter 3 we study a partial order in the root systems of Coxeter

groups called dominance introduced by B. Brink and R. Howlett. We

first examine the dominance of roots in the classical geometric realiza-

tions and then generalize these results to the non-orthogonal setting. In

[6] and [5] dominance is only defined on the positive roots, but the def-

inition extends naturally to all roots, and it turns out that the geomet-

ric characterization of dominance between roots remains unchanged. In

[6], it is found that for all finite rank Coxeter groups, the set of positive

roots dominating no positive roots other than themselves is finite, and

in [5] such sets are explicitly computed. In this thesis we prove that for

all natural numbers n, the set of roots dominating precisely n positive

roots (denoted by Dn) is finite for all finite rank Coxeter groups. The

set of positive roots is obviously the disjoint union of all these Dn’s,

and we examine the interaction of this decomposition with the action

of W . For all infinite Coxeter groups of finite rank and for each n, it

turns out that Dn 6= ∅, and we also compute an upper bound of |Dn|
(the size of Dn). In the classical case we study certain cones related to

the Tits cone, and show how they are related to dominance.
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Chapter 1

Non-orthogonal Geometric Realizations of Coxeter

Groups

1.1. Paired reflection representations

Let S be an arbitrary set and suppose that each unordered pair

{s, t} of elements in S is assigned an mst ∈ Z ∪ {∞}, subject to the

conditions that mss = 1 for all s in S and mst ≥ 2 for all distinct s, t

in S. Suppose that V1 and V2 are vector spaces over the real field R,

and suppose that there exists a bilinear map 〈 , 〉 : V1 × V2 → R and

sets Π1 = { αs | s ∈ S } ⊆ V1 and Π2 = { βs | s ∈ S } ⊆ V2 such that

the following conditions hold:

(C1) Π1 spans V1 and Π2 spans V2;

(C2) 〈αs, βs〉 = 1, for all s ∈ S;

(C3) 〈αs, βt〉 ≤ 0, for all distinct s, t ∈ S;

(C4) for all s, t ∈ S,

〈αs, βt〉〈αt, βs〉 =

cos2(π/mst) if mst 6=∞,

γ2, for some γ ≥ 1 if mst =∞;

(C5) for all s, t ∈ S, 〈αs, βt〉 = 0 if and only if 〈αt, βs〉 = 0;

(C6)
∑

s∈S λsαs = 0 with λs ≥ 0 for all s implies λs = 0 for all s, and∑
s∈S λsβs = 0 with λs ≥ 0 for all s implies λs = 0 for all s.

Note that (C4) and (C5) combined imply that 〈αs, βt〉 and 〈αt, βs〉
are zero if and only if mst = 2. We can also express (C6) more com-

pactly as 0 /∈ PLC(Π1) and 0 /∈ PLC(Π2), where PLC(A) (the positive

linear combinations of A) is defined to be

{
∑
a∈A

λaa | λa ≥ 0 for all a ∈ A, and λa′ > 0 for some a′ ∈ A }.

1



2 1. Non-orthogonal Realizations

Definition 1.1.1. In the above situation, if conditions (C1) to (C6)

are satisfied then we call C = (S, V1, V2,Π1,Π2, 〈 , 〉) a Coxeter datum.

The mst (for s, t ∈ S) are called the Coxeter parameters of C .

Throughout this chapter, C = (S, V1, V2,Π1,Π2, 〈 , 〉) will be a fixed

Coxeter datum with Coxeter parameters mst.

Definition 1.1.2. For each s ∈ S let ρV1(s) and ρV2(s) be the linear

transformations on V1 and V2 defined by

ρV1(s)(x) = x− 2〈x, βs〉αs
for all x ∈ V1, and

ρV2(s)(y) = y − 2〈αs, y〉βs

for all y ∈ V2. For each i ∈ {1, 2} let Ri := {ρVi(s) | s ∈ S}, and let

Wi be the subgroup of GL(Vi) generated by Ri.

Since 〈αs, βs〉 = 1 for all s ∈ S (by (C2) above), we find that

ρV1(s)(αs) = −αs and ρV2(s)(βs) = −βs. It follows that for all v ∈ V1,

ρV1(s)ρV1(s)(v) = ρV1(s)(v−2〈v, βs〉αs) = v−2〈v, βs〉αs+2〈v, βs〉αs = v

showing that ρV1(s) is an involution. Similarly, ρV2(s) is also an invo-

lution.

The following result follows readily from these definitions:

Proposition 1.1.3. Let x ∈ V1 and y ∈ V2. Then for all s ∈ S,

〈ρV1(s)(x), ρV2(s)(y)〉 = 〈x, y〉.

Proof. By Definition 1.1.2 and the bilinearity of 〈 , 〉, we find that

〈ρV1(s)(x), ρV2(s)(y)〉 = 〈x− 2〈x, βs〉αs, y − 2〈αs, y〉βs〉

= 〈x, y〉 − 4〈x, βs〉〈αs, y〉+ 4〈x, βs〉〈αs, y〉〈αs, βs〉

= 〈x, y〉. �

The principal result of this section is that (W1, R1) and (W2, R2) are

isomorphic Coxeter systems, in the sense of Definition 3 of Chapitre 4

of [10]. Recall that (W,R) is a Coxeter system if and only if W is a
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group and R a generating set for W , and in terms of these generators

W is defined by a set of relations of the form (rr′)m(r,r′) = 1, where

m(r, r′) = m(r′, r) > 1 whenever r, r′ are distinct elements of R and

m(r, r′) is defined, and m(r, r) = 1 for all r ∈ R. We shall show

that if R = { rs | s ∈ S } is in bijective correspondence with S and

m(rs, rt) = mst whenever mst <∞, with m(rs, rt) undefined otherwise,

then (W1, R1) and (W2, R2) are both isomorphic to the Coxeter system

(W,R). We first show (Proposition 1.1.9 below) that (W1, R1) and

(W2, R2), satisfy the required relations, after which it suffices to prove

the following theorem:

Theorem 1.1.4. If W is any group generated by a set R := {rs | s ∈ S}
and satisfying the relations (rsrt)

mst = 1 for all s, t ∈ S such that

mst < ∞, and if f : W → W1 is a group homomorphism satisfying

f(rs) = ρV1(s) for all s ∈ S, then f is necessarily injective.

Since W1 = 〈R1〉, any such homomorphism f must also be surjec-

tive. So, choosing (W,R) to be the Coxeter system corresponding to

the parameters mst, and observing that Proposition 1.1.9 guarantees

the existence of a homomorphism f : W → W1 satisfying f(rs) = ρV1(s)

for all s, it follows that f is an isomorphism, as required.

Of course analogous statements apply if W1 is replaced by W2;

hence the claim that (W1, R1) and (W2, R2) are isomorphic Coxeter

systems will be established once we have proved Theorem 1.1.4 and

the analogous result for W2. This will occupy the rest of this section.

Lemma 1.1.5. If s is any element of S, then αs /∈ PLC(Π1 \ {αs})
and βs /∈ PLC(Π2 \ {βs}). Furthermore, if s, t ∈ S with s 6= t, then

{αs, αt} is linearly independent, and so is {βs, βt}.

Proof. Suppose for a contradiction that αs =
∑

t∈S\{s}
λtαt, where λt ≥ 0

for all t ∈ S \ {s}. By (C2) and (C3) of Definition 1.1.1,

1 = 〈αs, βs〉 =
∑

t∈S\{s}

λt〈αt, βs〉 ≤ 0



4 1. Non-orthogonal Realizations

which is absurd. Therefore αs /∈ PLC(Π1 \ {αs}). Now suppose that

s, t ∈ S with s 6= t. Obviously αs and αt are both nonzero (by Con-

dition (C2)), and by what has just been proved, αs is not a positive

scalar multiple of αt. So to prove that {αs, αt} is linearly independent,

we only need to show that αs is not a negative scalar multiple of αt.

But if αs = −λαt for some λ > 0 then 0 = αs+λαt, contradicting (C6)

of Definition 1.1.1. Hence {αs, αt} is linearly independent, as required.

Essentially the same argument can also be used to prove linear

independence of {βs, βt}. �

Note that the above yields that for each i ∈ { 1, 2 } and distinct

s, t ∈ S we have ρVi(s) 6= ρVi(t).

Lemma 1.1.6. Suppose that s, t ∈ S such that mst /∈ {1, 2,∞}. Then

for all n ∈ N ,

(ρV1(s)ρV1(t))
n(αs) =

sin(2n+ 1)θ

sin θ
αs +

− cos θ

〈αt, βs〉
sin(2nθ)

sin θ
αt

and

(ρV2(s)ρV2(t))
n(βs) =

sin(2n+ 1)θ

sin θ
βs +

− cos θ

〈αs, βt〉
sin(2nθ)

sin θ
βt

where θ = π/mst.

Proof. Recall from Definition 1.1.2 that ρV1(s)αt = αt − 2〈αt, βs〉αs,
and ρV1(s)αs = αs − 2〈αs, βs〉αs = −αs. Similar formulas apply to

ρV1(t). Thus the matrix of ρV1(s)ρV1(t) in its action on the subspace

with basis {αs, αt} is

(
−1 −2〈αt, βs〉
0 1

)(
1 0

−2〈αs, βt〉 −1

)
=

(
4 cos2 θ − 1 2〈αt, βs〉
−2〈αs, βt〉 −1

)

since 〈αs, βt〉〈αt, βs〉 = cos2 θ. To prove the desired result, we only need

to compute the nth power of the above matrix. Since mst 6= 2 it follows
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that 〈αs, βt〉 6= 0 6= 〈αt, βs〉, and we observe that(
4 cos2 θ − 1 2〈αt, βs〉
−2〈αs, βt〉 −1

)

=

(
− cos θ
〈αs,βt〉 0

0 1

)(
4 cos2 θ − 1 −2 cos θ

2 cos θ −1

)(
− cos θ
〈αt,βs〉 0

0 1

)

=
1

sin θ

(
− cos θ
〈αs,βt〉 0

0 1

)(
sin 3θ − sin 2θ

sin 2θ − sin θ

)(
− cos θ
〈αt,βs〉 0

0 1

)
.

Now an induction on n yields that for all n ∈ N(
4 cos2 θ − 1 2〈αt, βs〉
−2〈αs, βt〉 1

)n

=
1

sin θ

(
− cos θ
〈αs,βt〉 0

0 1

)(
sin(2n+ 1)θ − sin 2nθ

sin 2nθ − sin(2n− 1)θ

)(
− cos θ
〈αt,βs〉 0

0 1

)
.

Expanding the right hand side and examining the coefficients in the

first column yields the formula

(ρV1(s)ρV1(t))
n(αs) =

sin(2n+ 1)θ

sin θ
αs +

− cos θ

〈αt, βs〉
sin 2nθ

sin θ
αt.

The other formula follows by a similar calculation. �

Remark 1.1.7. From Lemmas 1.1.6 and 1.1.5 we can see that if

i ∈ {1, 2} and mst /∈ {2,∞} then ord(ρVi(s)ρVi(t)) ≥ mst. Indeed,

in the subspace with basis {αs, αt} the elements

αs, (ρV1(s)ρV1(t))(αs), (ρV1(s)ρV1(t))
2(αs), . . . , (ρV1(s)ρV1(t))

mst−1(αs)

are all distinct, and in the subspace with basis {βs, βt} the elements

βs, (ρV2(s)ρV2(t))(βs), (ρV2(s)ρV2(t))
2(βs), . . . , (ρV2(s)ρV2(t))

mst−1(βs)

are all distinct.

Lemma 1.1.8. Suppose that s, t ∈ S such that mst = ∞. If we set

θ = ln(γ +
√
γ2 − 1) = cosh−1(γ), where γ =

√
〈αs, βt〉〈αt, βs〉, then
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(i) for all n ∈ N

(ρV1(s)ρV1(t))
n(αs) =

sinh(2n+ 1)θ

sinh θ
αs +

−γ
〈αt, βs〉

sinh(2nθ)

sinh θ
αt

and

(ρV2(s)ρV2(t))
n(βs) =

sinh(2n+ 1)θ

sinh θ
βs +

−γ
〈αs, βt〉

sinh(2nθ)

sinh θ
βt,

(ii) for each i ∈ {1, 2}, ρVi(s)ρVi(t) has infinite order in GL(Vi).

Proof. (i) The matrix of ρV1(s)ρV1(t) in its action on the subspace with

basis {αs, αt} is(
−1 −2〈αt, βs〉
0 1

)(
1 0

−2〈αs, βt〉 −1

)
=

(
4γ2 − 1 2〈αt, βs〉
−2〈αs, βt〉 −1

)
since 〈αs, βt〉〈αt, βs〉 = γ2 (by (C4) of Definition 1.1.1). As in the proof

of Lemma 1.1.6, to prove the required result we only need to compute

the nth power of the above matrix. Since mst = ∞, it follows that

〈αs, βt〉 6= 0 6= 〈αt, βs〉, and we have(
4γ2 − 1 2〈αt, βs〉
−2〈αs, βt〉 −1

)

=

(
−γ
〈αs,βt〉 0

0 1

)(
4γ2 − 1 −2γ

2γ −1

)(
−γ
〈αt,βs〉 0

0 1

)

=
1

sinh θ

(
−γ
〈αs,βt〉 0

0 1

)(
sinh 3θ − sinh 2θ

sinh 2θ − sinh θ

)(
−γ
〈αt,βs〉 0

0 1

)
.

Now an induction yields that, for all n ∈ N,(
4γ2 − 1 2〈αt, βs〉
−2〈αs, βt〉 −1

)n

=

(
−γ
〈αs,βt〉 0

0 1

)(
sinh(2n+1)θ

sinh θ
− sinh(2nθ)

sinh θ
sinh(2nθ)

sinh θ
− sinh(2n−1)θ

sinh θ

)(
−γ
〈αt,βs〉 0

0 1

)
.

Therefore, for each n ∈ N,

(ρV1(s)ρV1(t))
n(αs) =

sinh(2n+ 1)θ

sinh θ
αs +

−γ
〈αt, βs〉

sinh(2nθ)

sinh θ
αt.
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A similar argument shows that

(ρV2(s)ρV2(t))
n(βs) =

sinh(2n+ 1)θ

sinh θ
βs +

−γ
〈αs, βt〉

sinh(2nθ)

sinh θ
βt,

completing the proof of (i).

(ii) In the subspace with basis {αs, αt}, it is clear from (i) above

that the elements αs, (ρV1(s)ρV2(t))(αs), (ρV1(s)ρV2(t))
2(αs), · · · , are all

distinct, and therefore ρV1(s)ρV1(t) has infinite order in GL(V1). In the

same way, ρV2(s)ρV2(t) has infinite order in GL(V2). �

Proposition 1.1.9. Suppose that s, t are distinct elements of S such

that mst 6=∞. Then

(i) ρV1(s)ρV1(t) has order mst in GL(V1);

(ii) ρV2(s)ρV2(t) has order mst in GL(V2).

Proof. Recall that mst = 1 if and only if s = t. So in this case the

statement is simply that ρVi(s)
2 = 1 for each i and all s ∈ S. We have

already noted that this is true.

Let α ∈ V1 be arbitrary and let s, t ∈ S be distinct. We see that

(ρV1(s)ρV1(t))(α) = ρV1(s)(α− 2〈α, βt〉αt)

= α− 2〈α, βs〉αs − 2〈α, βt〉(αt − 2〈αt, βs〉αs)

= α + (4〈α, βt〉〈αt, βs〉 − 2〈α, βs〉)αs − 2〈α, βt〉αt.

In the case that mst = 2 we see that

(ρV1(s)ρV1(t))(α) = (ρV1(t)ρV1(s))(α) = α− 2〈α, βs〉)αs − 2〈α, βt〉αt,

so that ρV1(s) and ρV1(t) commute. Hence ord(ρV1(s)ρV1(t)) = 2.

It remains to consider the case when mst > 2. In the cases α = αs

and α = αt the formula above gives

(ρV1(s)ρV1(t))(αs) = (4 cos2(
π

mst

)− 1)αs − 2〈αs, βt〉αt

and

(ρV1(s)ρV1(t))(αt) = 2〈αt, βs〉αs − αt,
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and therefore the action of ρV1(s)ρV1(t) on R{αs, αt, α} may be repre-

sented by the following matrix M :

M =

 4 cos2(π/mst)− 1 2〈αt, βs〉 4〈α, βt〉〈αt, βs〉 − 2〈α, βs〉
−2〈αs, βt〉 −1 −2〈α, βt〉

0 0 1

 .

It is readily checked that M has distinct eigenvalues e
i

2π
mst , e

−i 2π
mst and 1,

and hence has order mst. Consequently (ρV1(s)ρV1(t))
mst(α) = α. Since

α is arbitrary, it follows that (ρV1(s)ρV1(t))
mst = 1 in GL(V1). Thus

we have ord(ρV1(s)ρV1(t)) ≤ mst, and in view of Remark 1.1.7 above,

it follows that ord(ρV1(s)ρV1(t)) is precisely mst.

The proof that ord(ρV2(s)ρV2(t)) = mst is entirely similar. �

Combining Lemma 1.1.8(ii) and Proposition 1.1.9, we have

Corollary 1.1.10. For each i ∈ {1, 2}, and for all s, t ∈ S,

ord(ρVi(s)ρVi(t)) = mst.

�

Utilizing the formulas in Lemma 1.1.6 and Lemma 1.1.8 we may

deduce the following:

Lemma 1.1.11. Suppose that s, t ∈ S, and let n be an integer such

that 0 ≤ n < mst. Write

· · · ρV1(t)ρV1(s)ρV1(t)︸ ︷︷ ︸
n factors

αs = λnαs + µnαt

and

· · · ρV1(s)ρV1(t)ρV1(s)︸ ︷︷ ︸
n factors

αt = λ′nαs + µ′nαt.

Then λn ≥ 0, µn ≥ 0, λ′n ≥ 0 and µ′n ≥ 0.

Proof. If mst = 2 then 〈αs, βt〉 = 0 = 〈αt, βs〉, giving ρV1(t)αs = αs

and ρV1(s)αt = αt. So λ1 = µ′1 = 1 and µ1 = λ′1 = 0. Since obviously

also λ0 = µ′0 = 1 and µ0 = λ′0 = 0, the statement in the Lemma holds



1.1. Paired reflection representations 9

when mst = 2. Thus we may assume that mst ≥ 3. Note in particular

that this gives 〈αs, βt〉 6= 0 6= 〈αt, βs〉.
Now suppose that n is even, so that

· · · ρV1(t)ρV1(s)ρV1(t)︸ ︷︷ ︸
n factors

αs = (ρV1(s)ρV1(t))
n/2αs.

If mst <∞ then Lemma 1.1.6 gives

λn =
sin(n+ 1)θ

sin θ
and µn =

− cos θ

〈αt, βs〉
sinnθ

sin θ
,

where θ = π/mst, while if mst =∞ then Lemma 1.1.8 gives

λn =
sinh(n+ 1)θ

sinh θ
and µn =

−γ
〈αt, βs〉

sinhnθ

sinh θ
,

where γ =
√
〈αt, βs〉〈αs, βt〉 ≥ 1 and θ = ln(γ +

√
γ2 − 1). Observe

that if 0 ≤ n < mst <∞ then θ, nθ and (n+ 1)θ all lie in the interval

[0, π], and since also 〈αt, βs〉 < 0 it follows that λn ≥ 0 and µn ≥ 0

whenever n is even and mst is finite. The same conclusion follows when

n is even and mst = ∞, since in this case θ > 0 (and 〈αt, βs〉 < 0 is

still satisfied).

Next suppose that n is odd. Then

· · · ρV1(t)ρV1(s)ρV1(t)︸ ︷︷ ︸
n factors

αs = ρV1(t)(ρV1(s)ρV1(t))
(n−1)/2αs

= ρV1(s)(ρV1(s)ρV1(t))
(n+1)/2αs.

Observe that applying ρV1(t) will not change the coefficient of αs and

applying ρV1(s) will not change the coefficient of αt. Hence the coef-

ficient of αs in ρV1(t)(ρV1(s)ρV1(t))
(n−1)/2αs is λn−1 and the coefficient

of αt in ρV1(s)(ρV1(s)ρV1(t))
(n+1)/2αs is µn+1; that is, λn = λn−1 and

µn = µn+1. Applying Lemma 1.1.6 and Lemma 1.1.8 yields

λn = λn−1 =


sinnθ

sin θ
if mst <∞

sinhnθ

sinh θ
if mst =∞

and
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µn = µn+1 =


− cos θ

〈αt, βs〉
sin(n+ 1)θ

sin θ
if mst <∞

−γ
〈αt, βs〉

sinh(n+ 1)θ

sinh θ
if mst =∞,

where θ and γ are as previously, and it follows that λn ≥ 0 and µn ≥ 0

when n is odd and n < mst. Finally by symmetry, λ′n ≥ 0 and µ′n ≥ 0

whenever n < mst. �

Remark 1.1.12. The same argument applies equally well if we replace,

respectively, ρV1(s), ρV1(t), αs and αt by ρV2(s), ρV2(t), βs and βt.

Definition 1.1.13. Let (W,R) be a Coxeter system. The length func-

tion of W with respect to R is the function l : W → N defined by

l(w) = min{n ∈ N | w = r1r2 · · · rn, where r1, r2, . . . , rn ∈ R },

for all w ∈ W . We say that w = r1r2 · · · rn with r1, r2, . . . , rn ∈ R is a

reduced expression for w if l(w) = n.

Let W and f be as in the statement of Theorem 1.1.4. The homo-

morphism f : W → W1 permits us to define an action of W on V1 by

wx := (f(w))x for all w ∈ W and x ∈ V1.

Proposition 1.1.14. Let w ∈ W and s ∈ S. If l(wrs) ≥ l(w), then

wαs ∈ PLC(Π1).

Proof. Choose w ∈ W of minimal length such that the assertion

fails for some αs ∈ Π1, and choose such an αs. Certainly w 6= 1,

since 1αs = αs is trivially a positive linear combination of Π1. Thus

l(w) > 1, and we may choose t ∈ S such that w1 = wrt has length

l(w) − 1. If l(w1rs) ≥ l(w1), then l(w1r) ≥ l(w1) for both r = rs

and r = rt. Alternatively, if l(w1rs) < l(w1), we define w2 = w1rs,

and note that l(w2r) ≥ l(w2) will hold for both r = rs and r = rt if

l(w2rt) ≥ l(w2). If this latter condition is not satisfied then we define

w3 = w2rt. Continuing in this way we find, for some positive integer
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k, a sequence of elements w0 = w,w1, w2, · · · , wk with l(wi) = l(w)− i
for all i = 0, 1, 2, · · · , k, and, when i < k,

wi+1 =

{
wirs if i is odd

wirt if i is even

Now since 0 ≤ l(wk) = l(w) − k, we conclude that l(w) is an upper

bound for the possible values of k. Choosing k to be as large as possible,

we deduce that l(wkr) ≥ l(wk) for both r = rs and r = rt, for otherwise

the process described above would allow a wk+1 to be found, contrary

to the definition of k. By the minimality of our original counterexample

it follows that wαs and wαt are both in PLC(Π1).

We have w = wkv, where v is an alternating product of rs’s and

rt’s, ending in rt, and with k factors altogether. Obviously this means

that l(v) ≤ k. But w = wkv gives l(w) ≤ l(wk)+ l(v), so it follows that

l(v) ≥ l(w) − l(wk) = k, and hence l(v) = k. Furthermore, in view of

the hypothesis that l(wrs) ≥ l(w), and since wkvrs = wrs, we have

l(wk) + l(vrs) ≥ l(wrs) ≥ l(w) = l(wk) + k = l(wk) + l(v),

and hence l(vrs) ≥ l(v). In particular, v cannot have a reduced expres-

sion in which the final factor is rs, for if so vrs would have a strictly

shorter expression.

Since rs and rt satisfy the defining relations of the dihedral group of

order 2mst, it follows that every element of the subgroup generated by

rs and rt has an expression of length less than mst+1 as an alternating

product of rs and rt. Thus l(v) ≤ mst. Moreover, if mst is finite then

the two alternating products of length mst define the same element; so

l(v) cannot equal mst, as v has no reduced expression ending with rs.

Thus Lemma 1.1.11 above yields vαs = λ1αs + µ1αt for some non-

negative coefficients λ1 and µ1. Hence

wαs = wkvαs = wk(λ1αs + µ1αt) = λ1wkαs + µ1wkαt ∈ PLC(Π1)
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since wkαs, wkαt ∈ PLC(Π1). This contradicts our original choice of w

and αs as a counterexample to the statement of the proposition; so if

w ∈ W , s ∈ S, with l(wrs) ≥ l(w), then wαs ∈ PLC(Π1). �

Now we are ready to complete the proof of Theorem 1.1.4:

Proof of Theorem 1.1.4. Suppose, for a contradiction, that the ker-

nel of f is nontrivial, and choose w in the kernel of f with w 6= 1. Then

l(w) > 0, and we may write w = w′rs for some s ∈ S and w′ ∈ W

with l(w′) = l(w) − 1. Since l(w′rs) > l(w′), Proposition 1.1.14 yields

w′αs ∈ PLC(Π1). But

αs = wαs = (w′rs)αs = w′(rsαs) = w′(−αs) = −w′αs

and hence 0 = αs + w′αs ∈ PLC(Π1), contradicting our original as-

sumption that 0 /∈ PLC(Π1) (condition (C6)). Therefore the kernel of

f is trivial, as required. �

By Proposition 1.1.9 we may define a homomorphism g : W → W2

satisfying g(rs) = ρV2(s) for all s ∈ S and obtain an action of W on V2.

Applying exactly the same arguments that lead to Theorem 1.1.4 gives

the analogous result for W2 and V2:

Theorem 1.1.15. Suppose that W is any group generated by a set

R := {rs | s ∈ S} satisfying the relations (rsrt)
mst = 1 for all s, t ∈ S

such that mst < ∞; and suppose that g : W → W2 is a group homo-

morphism satisfying g(rs) = ρV2(s) for all s ∈ S. Then g is necessarily

injective. �

Combining Theorem 1.1.4 and Theorem 1.1.15, we have now shown

that

W ∼= W1
∼= W2,

where W is the abstract Coxeter group determined by the Coxeter

parameters of our Coxeter datum C . We refer to W1 and W2 as the

realizations of W in V1 and V2 respectively.
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1.2. Root Systems and Canonical Coefficients

Having established in Section 1.1 that W1 and W2 are Coxeter

groups, we now wish to develop a theory of root systems for W1 and W2.

As above, let W be the abstract Coxeter group determined by the

Coxeter datum C , and let R = { rs | s ∈ S } be its distinguished

generating set. Also as above we use the isomorphisms W → W1 and

W → W2 to define an action of W on V1 and an action of W on V2 (so

that rsx = x − 2〈x, βs〉αs and rsy = y − 2〈αs, y〉βs for all x ∈ V1 and

y ∈ V2, and all s ∈ S). Observe that these actions are faithful, in the

sense that if wx = x for all x (in V1 or V2) then w = 1.

An easy induction on l(w) yields the following extension to Propo-

sition 1.1.3:

Lemma 1.2.1. Let x ∈ V1, y ∈ V2. Then 〈x, y〉 = 〈wx,wy〉, for all

w ∈ W . �

The following definition is a natural generalization of the concept

of the root system of a Coxeter group, as defined in [10] and [12], for

example.

Definition 1.2.2. (i) Define Φ1 := W (Π1) = {wαs | w ∈ W, s ∈ S },
and Φ2 := W (Π2) = {wβs | w ∈ W, s ∈ S }. For each i ∈ {1, 2}, we

call Φi the root system for Vi, and its elements the roots of W in Vi.

We call Πi the set of simple roots in Φi, and also refer to Πi as the root

basis for Φi.

(ii) For each i ∈ {1, 2}, set Φ+
i := Φi ∩ PLC(Π), and Φ−i = −Φ+

i .

We call Φ+
i the set of positive roots in Φi, and Φ−i the set of negative

roots in Φi.

For each i ∈ {1, 2}, we adopt the traditional diagrammatic de-

scription of simple roots Πi: draw a graph that has one vertex for

each s ∈ S, and join the vertices corresponding to s, t ∈ S by an

edge labelled by mst if mst > 2. The label mst is often omitted if

mst = 3. Thus the diagram
r

s t

•
• •

corresponds to Π1 = {αr, αs, αt }
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and Π2 = { βr, βs, βt }. Unlike in the case of the standard geometric re-

alization of Coxeter groups, this diagram does not uniquely determine

the individual values of 〈αr, βs〉, 〈αs, βr〉, 〈αs, βt〉, 〈αt, βs〉, 〈αr, βt〉 and

〈αt, βr〉, instead we can only tell that

〈αr, βs〉〈αs, βr〉 = 〈αs, βt〉〈αt, βs〉 = 〈αt, βr〉〈αr, βt〉 = 1
4
.

Suppose that we know

〈αr, βs〉 = −1/4, 〈αs, βr〉 = −1,

〈αs, βt〉 = −1/6, 〈αt, βs〉 = −3/2,

〈αt, βr〉 = −1/10, 〈αr, βt〉 = −5/2.

Then

rsαr = αr − 2〈αr, βs〉αs = αr + 1
2
αs;

(rrrs)αr = rr(αr + 1
2
αs) = 1

2
αs;

(rtrrrs)αr = rt(
1
2
αs) = 1

2
αs + 1

6
αt;

(rsrtrrrs)αr = rs(
1
2
αs + 1

6
αt) = 1

6
αt;

(rrrsrtrrrs)αr = rr(
1
6
αt) = 1

6
αt + 1

30
αr;

(rtrrrsrtrrrs)αr = rt(
1
6
αt + 1

30
αr) = 1

30
αr.

Remark 1.2.3. We see from the above example that it is possible for

a non-trivial positive scalar multiple of a root to also be a root, lying

in the same W -orbit as the root itself. Clearly if wα = λα, where

1 6= λ ∈ R, then wnα = λnα, showing that there are infinitely many

scalar multiples of α in Φ1. And of course, all roots in the W -orbit of α

will possess this same property. Despite the fact that in this regard Φ1

and Φ2 are different from root systems defined in orthogonal geometric

realizations, it nevertheless turns out that all major properties of root

systems can be generalized to the non-orthogonal setting. We begin

with the observation that any root in Φi can be expressed as a linear

combination of simple roots from Πi with coefficients being all non-

positive or all non-negative:
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Lemma 1.2.4. For each i ∈ {1, 2}, Φi = Φ+
i ] Φ−i , where ] denotes

disjoint union.

Proof. The condition (C6), which says that 0 /∈ PLC(Πi) (for each

i ∈ {1, 2}), ensures that Φ+
i ∩ Φ−i = ∅.

Let x ∈ Φ1. By Definition 1.2.2(i) there exists w ∈ W and αs ∈ Π1

with x = wαs. Let w′ = wrs, noting that the lengths of w and w′

differ by at most 1. Now if l(w′) ≥ l(w) then Proposition 1.1.14

yields that x = wαs ∈ Φ+
i . On the other hand if l(w) ≥ l(w′),

then Proposition 1.1.14 yields that w′αs ∈ Φ+
i , and this in turn gives

x = wrs(αs) = w(−αs) = −w′αs ∈ Φ−1 . This yields that Φi = Φ+
1 ]Φ−1 .

The same reasoning also shows that Φ2 = Φ+
2 ] Φ−2 . �

The preceding proof shows, incidentally, that l(wrs) = l(w) is not

a possibility, since a root z ∈ Φi (i = 1, 2) cannot simultaneously be

positive and negative. This observation natually leads to the following

key combinatorial fact of the action of W on Φi, i = 1.2:

Corollary 1.2.5. If w ∈ W and s ∈ S, then

l(wrs) =

l(w) + 1 if wαs ∈ Φ+
1 , and wβs ∈ Φ+

2 ,

l(w)− 1 if wαs ∈ Φ−1 , and wβs ∈ Φ−2 .

�

Remark 1.2.6. From the above, we observe that wαs ∈ Φ+
1 if and only

if wβs ∈ Φ+
1 , and wαs ∈ Φ−1 if and only if wβs ∈ Φ−1 , for all w ∈ W

and s ∈ S.

Remark 1.2.7. Since Π1 and Π2 need not be linearly independent,

although we know from Lemma 1.2.4 that each root in Φi is expressible

as a linear combination of simple roots from Πi with coefficients all

being of the same sign, that expression need not be unique. Thus the

concept of the coefficient of a simple root in a given root is potentially

ambiguous. The rest of this section is devoted to finding a canonical

way of expressing any given root as a linear combination of simple
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roots, by specifying the canonical coefficients of the simple roots in a

given root.

Let V ′1 be a vector space over R with basis Π′1 := {α′s | s ∈ S } in

bijective correspondence with S, and let V ′2 be a vector space over R
with basis Π′2 := { β′s | s ∈ S }, also in bijective correspondence with S.

Define linear maps π1 : V ′1 → V1 and π2 : V ′2 → V2 by requiring that

π1

(∑
s∈S

λsα
′
s

)
=
∑
s∈S

λsαs and π2

(∑
s∈S

µsβ
′
s

)
=
∑
s∈S

µsβs,

for all λs, µs ∈ R, and define a bilinear map 〈 , 〉 : V ′1 × V ′2 → R by

requiring that

〈α′s, β′t〉 = 〈αs, βt〉

for all s, t ∈ S. Observe that

〈x′, y′〉 = 〈π1(x′), π2(y′)〉

for all x′ ∈ V ′1 and y′ ∈ V ′2 .

With these definitions C ′ = (S, V ′1 , V
′

2 ,Π
′
1,Π

′
2, 〈 , 〉) is clearly a

Coxeter datum having the same parameters as our original Coxeter

datum C , and thus corresponding to the same abstract Coxeter system.

For each s ∈ S, define linear transformations ρV ′1 (s) : V ′1 → V ′1 and

ρV ′2 (s) : V ′2 → V ′2 by

ρV ′1 (s)(x′) = x′ − 2〈x′, β′s〉α′s,

for all x′ ∈ V ′1 , and

ρV ′2 (s)(y′) = y′ − 2〈α′s, y′〉β′s,

for all y′ ∈ V ′2 , noting that πiρV ′i (s) = ρVi(s)πi for all s ∈ S and

i ∈ {1, 2}. For each i ∈ {1, 2}, let R′i = { ρV ′i (s) | s ∈ S }, and let W ′
i

be the subgroup of GL(V ′i ) generated by R′i.

Defining (W,R) to be the abstract Coxeter system corresponding

to the Coxeter datum C ′ (or C ′), Theorems 1.1.4 and 1.1.15 yield iso-

morphisms f ′1 : W → W ′
1 and f ′2 : W → W ′

2, and we use these to define

actions of W on V ′1 and V ′2 via wz′ = (f ′i(w))(z′) for all w ∈ W and
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z′ ∈ V ′i , for each i ∈ {1, 2}. Note that since by definition f ′i(rs) = ρV ′i (s)

for all s ∈ S, we have

πif
′
i(rs) = fi(rs)πi for all s ∈ S and i ∈ {1, 2}

where f1 : W → W1 is the f of Theorem 1.1.4 and f2 is the analogous

isomorphism W → W2. Since W is generated by { rs | s ∈ S } it follows

that πif
′
i(w) = fi(w)πi for all w ∈ W and i ∈ {1, 2}. That is,

(1.2.1) πi(wz
′) = wπi(z

′) for all w ∈ W and z′ ∈ V ′i

for each i ∈ {1, 2}. In other words, π1 and π2 are W -module homo-

morphisms.

Definition 1.2.8. Define Φ′1 := {wα′s | w ∈ W and s ∈ S} (the root

system for W in V ′1) and Φ′2 := {wβ′s | w ∈ W and s ∈ S} (the root

system for W in V ′2).

Since Π′1 and Π′2 are linearly independent, the expressions of roots

in Φ′1 and Φ′2 in terms of Π′1 and Π′2 are unique. In particular, for each

i ∈ {1, 2}, the coefficient of a given simple root in Π′i in any root of Φ′i

is uniquely determined. We will utilize this fact to specify a preferred

way of expressing roots in Φ1 and Φ2 as linear combinations of elements

from Π1 and Π2. The following proposition will be a key step:

Proposition 1.2.9. For each i ∈ {1, 2}, the restriction of πi defines a

W -equivariant bijection Φ′i → Φi.

Notation: Define φ1 : Φ1 → Φ′1 and φ2 : Φ2 → Φ′2 to be the inverses of

the bijections guaranteed by Proposition 1.2.9.

To prove Proposition 1.2.9, we need a few elementary results and

some further notation.

Definition 1.2.10. For each i ∈ {1, 2}, define an equivalence relation

∼i on Φi as follows: if z1, z2 ∈ Φi then z1 ∼i z2 if and only if z1 and z2

are (nonzero) scalar multiples of each other. For each z ∈ Φi, write ẑ

for the equivalence class containing z, and set Φ̂i = { ẑ | z ∈ Φi }.
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Observe that the action of W on Φi (for i = 1, 2) gives rise to a

well-defined action of W on Φ̂i satisfying wẑ = ŵz for all w ∈ W and

all z ∈ Φi.

Definition 1.2.11. For each w ∈ W , define

N1(w) := { α̂ | α ∈ Φ+
1 and w(α) ∈ Φ−1 }

and

N2(w) := { β̂ | β ∈ Φ+
2 and w(β) ∈ Φ−2 }.

Observe that N1(w) and N2(w) can alternatively be characterised

as follows:

N1(w) := { α̂ | α ∈ Φ−1 and w(α) ∈ Φ+
1 }

and

N2(w) := { β̂ | β ∈ Φ−2 and w(β) ∈ Φ+
2 }.

Thus if ẑ ∈ Φ̂i, then ẑ ∈ Ni(w) if and only if one of z and wz is positive

and the other negative.

Lemma 1.2.12. (i) If s ∈ S, then N1(rs) = {α̂s} and N2(rs) = {β̂s}.
(ii) Let w ∈ W. Then N1(w) and N2(w) both have cardinality l(w).

(iii) Let w1, w2 ∈ W and let u denote set symmetric difference. Then

Ni(w1w2) = w−1
2 Ni(w1)uNi(w2) for each i ∈ {1, 2}.

(iv) Let w1, w2 ∈ W . Then for each i ∈ {1, 2},

l(w1w2) = l(w1) + l(w2) if and only if Ni(w2) ⊆ Ni(w1w2).

Proof. (i) Let s ∈ S. Clearly rs(αs) = αs − 2〈αs, βs〉αs = −αs,
and so α̂s ∈ N1(rs). Now let α ∈ Φ+

1 , and write α =
∑
r∈S

λrαr

with λr ≥ 0 for all r ∈ S. Suppose that rs(α) ∈ Φ−1 ; that is,

α − 2〈α, βs〉αs = −
∑
r∈S

µrαr, for some µr with µr ≥ 0 for all r ∈ S.

Then

(1.2.2) 0 = (λs + µs − 2〈α, βs〉)αs +
∑

r∈S\{s}

(λr + µr)αr.
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Now apply 〈 , βs〉 to this expression. Since 〈αs, βs〉 = 1 and 〈αr, βs〉 ≤ 0

whenever r is in S \ {s}, we conclude that λs + µs − 2〈α, βs〉 must be

nonnegative. But this gives 0 ∈ PLC(Π1), contradicting (C6) of Defini-

tion 1.1.1, unless all coefficients in (1.2.2) are zero. Thus λr = µr = 0

for all r ∈ S \ {s}, forcing α to be a positive scalar multiple of αs.

Hence the only positive roots in Φ1 made negative by applying rs are

of the form λαs, where λ is positive, that is, N1(rs) = {α̂s}.
Exactly the same reasoning gives that N2(rs) = {β̂s}, and this

completes the proof of (i).

(ii) If w ∈ W , define n1(w) = |N1(w)| and n2(w) = |N2(w)|. We

shall use induction on l(w) to prove that n1(w) = l(w) for all w ∈ W .

Exactly similar arguments can be used to prove that n2(w) = l(w) for

all w ∈ W .

If l(w) = 0 then w = 1 and clearly n1(1) = l(1) = 0. Now assume

that l(w) > 0. Then there exist s ∈ S and w′ ∈ W such that w = w′rs

and l(w′) = l(w)− 1. If we can prove that

(1.2.3) n1(w′) = n1(w)− 1

then it will follow from the inductive hypothesis that

n1(w) = n1(w′) + 1 = l(w′) + 1 = l(w)

as required. Observe that (1.2.3) will follow if we can prove that

rs(N1(w) \ {α̂s}) = N1(w′).

Let x̂ ∈ N1(w′), choosing the representative root x to be positive.

Observe that x̂ 6= α̂s, since l(w′rs) > l(w′) and hence w′αs ∈ Φ+
1

by Corollary 1.2.5. So part (i) yields that rsx ∈ Φ+
1 . Moreover,

w(rsx) = w′rsrsx = w′x ∈ Φ−1 (since x̂ ∈ N1(w′)). Hence rsx̂ ∈ N1(w),

and x̂ ∈ rsN1(w). But clearly x̂ 6= rsα̂s, and so it follows that

N1(w′) ⊆ rs(N1(w) \ {α̂s}).
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Conversely, let x̂ ∈ N1(w)\{α̂s} with x ∈ Φ+
1 . By part (i) rsx ∈ Φ+

1 ;

moreover, w′rsx = wrsrsx = wx ∈ Φ−1 (since x̂ ∈ N1(w)). Hence

rs(N1(w) \ {α̂s}) ⊆ N1(w′).

Therefore rs(N1(w) \ {α̂s}) = N1(w′), as required. This completes the

proof of (ii).

(iii) Suppose that x̂ ∈ N1(w1w2), where we may assume that

x ∈ Φ+
1 without loss of generality. Observe that this gives w1w2x ∈ Φ−1 .

If w2x ∈ Φ+
1 then x̂ /∈ N1(w2), since x and w2x are both positive;

furthermore, ŵ2x ∈ N1(w1), since w2x is positive and w1w2x is nega-

tive. So x̂ ∈ w−1
2 N1(w1)uN1(w2). On the other hand, if w2x ∈ Φ−1 then

x̂ ∈ N1(w2) and ŵ2x /∈ N1(w1), again giving x̂ ∈ w−1
2 N1(w1)uN1(w2).

Since x̂ was chosen arbitrarily it follows that

N1(w1w2) ⊆ w−1
2 N1(w1)uN1(w2).

Conversely, suppose that x̂ ∈ w−1
2 N1(w1)uN1(w2), choosing x ∈ Φ+

1 .

Note that either x̂ ∈ N1(w2) and x̂ /∈ w−1
2 N1(w1), giving x̂ ∈ N1(w2)

and w2x̂ /∈ N1(w1), or else x̂ /∈ N1(w2) and x̂ ∈ w−1
2 N1(w1), in which

case x̂ /∈ N1(w2) and w2x̂ ∈ N1(w1).

If x̂ ∈ N1(w2) and w2x̂ /∈ N1(w1), then w2x must be opposite in sign

to x, and w1(w2x) must be of the same sign as w2x. Thus w2x ∈ Φ−1

and w1w2x ∈ Φ−1 . On the other hand, if x̂ /∈ N1(w2) and w2x̂ ∈ N1(w1)

then w2x must be of the same sign as x and w1(w2x) must be opposite

in sign to w2x. Thus w2x ∈ Φ+
1 and w1w2x ∈ Φ−1 . So w1w2x ∈ Φ−1 in

either case, and since x̂ ∈ w−1
2 N1(w1)uN1(w2) was arbitrary it follows

that

w−1
2 N1(w1)uN1(w2) ⊆ N1(w1w2).

Since this reverses the inclusion proved above we conclude that equality

holds, and since exactly similar arguments apply for N2, this completes

the proof of (iii).

(iv) By part (ii) above l(w1w2) = l(w1) + l(w2) if and only if

|N1(w1w2)| = |N1(w1)| + |N1(w2)| = |w−1
2 N1(w1)| + |N1(w2)|. By
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part (iii) this happens if and only if w−1
2 N1(w1) ∩ N1(w2) = ∅, and

this in turn happens if and only if N1(w2) ⊆ N1(w1w2). As usual, the

same reasoning applies for N2. �

If w = rs1rs2 · · · rsl (s1, · · · , sl ∈ S) is such that l(w) = l, then it is

easy to see that

N1(w) = {α̂sl , rslα̂sl−1
, rslrsl−1

α̂sl−2
, . . . , rslrsl−1

. . . rs2α̂s1}(1.2.4)

and

N2(w) = {β̂sl , rsl β̂sl−1
, rslrsl−1

β̂sl−2
, . . . , rslrsl−1

. . . rs2 β̂s1}.(1.2.5)

If w1 , w2 ∈ W such that l(w1w2) = l(w1) + l(w2), then we call w2 a

right hand segment of w1w2.

Lemma 1.2.13. W is finite if and only if Φ̂1 if finite, and if and only

if Φ̂2 is finite.

Proof. Since |Π1| = |S| = |{ rs | s ∈ S }| ≤ |W |, it follows that

|Π1| <∞ whenever |W | <∞. Then

|Φ1| = |{ ŵx | w ∈ W and x ∈ Π1 }|

≤ |{wx | w ∈ W and x ∈ Π1 }|

≤ |W ||Π1|

<∞.

Conversely, assume that |Φ̂1| <∞. Define an equivalence relation ∼ on

Φ1 as follows: for x1, x2 ∈ Φ1, x1 ∼ x2 if there is a positive λ such that

x1 = λx2. For each x ∈ Φ1, write x̃ for the equivalence class containing

x and set Φ̃1 := { x̃ | x ∈ Φ1 }. Since −x is a root whenever x is a root,

|Φ̃1| = 2|Φ̂1| < ∞. The action of W on Φ1 naturally induces a well-

defined action of W on Φ̃1 satisfying wx̃ := w̃x. Now for each w ∈ W
define a map σw : Φ̃1 → Φ̃1 by σw(x̃) := w̃x for all x̃ ∈ Φ̃1. Then σw

is a permutation of Φ̃1, and furthermore, w 7→ σw is a homomorphism

σ : W → Sym(Φ̃1) (the symmetric group on Φ̃1). Now if w is in the

kernel of σ then wx̃ = x̃ for all x ∈ Φ1, and in particular, wx̃ = x̃ for
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all x ∈ Π1. But by Corollary 1.2.5 this means that l(wrs) > l(w) for

all s ∈ S, and therefore w = 1. Thus σ is injective, and

|W | ≤ | Sym(Φ̃1)| = |Φ̃1| ! <∞

as required.

And as usual, exactly similar arguments yield that W is finite if

and only if Φ̂2 is finite. �

Let K ⊆ S. If we define V1K to be the subspace of V1 spanned

by Π1K = {αs | s ∈ K } and V2K to be the subspace of V2 spanned

by Π2K = { βs | s ∈ K }, and let 〈 , 〉K be the restriction of 〈 , 〉
to V1K × V2K , then clearly (K,V1K , V2K ,Π1K ,Π2K , 〈 , 〉K) is a Coxeter

datum with parameters (mst | s, t ∈ K ). Write WK = 〈 r′s | s ∈ K 〉
for the corresponding abstract Coxeter group, and let η : WK → W

be the homomorphism defined by r′s 7→ rs for all s ∈ K. It follows

immediately from the formulas for the actions of W on V1 and WK

on V1K that r′sv = rsv for all s ∈ K and v ∈ V1K , and therefore

wv = η(w)v for all w ∈ WK and v ∈ V1K . Since the action of W1K

on V1K is faithful, it follows that η is injective. Thus WK can be

identified with the standard parabolic subgroup of W generated by the

set { rs | s ∈ K }.

Definition 1.2.14. Given K ⊆ S, we define Φ1K and Φ2K to be the

root systems of WK in V1K and V2K respectively, and Φ+
1K , Φ+

2K to be

the corresponding sets of positive roots.

In other words,

Φ1K = {wαr | w ∈ WK and r ∈ K }

and

Φ+
1K = Φ1K ∩ PLC(Π1K),

and similarly for Φ2K and Φ+
2K .

Remark 1.2.15. It is a consequence of Lemma 1.2.13 that WK is finite

if and only if Φ̂1K and Φ̂2K are finite.
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It is well known (and in fact follows easily from Corollary 1.2.5

and Lemma 1.2.12) that if WK is finite then there is a unique longest

element wK ∈ WK , satisfying N1(wK) = { α̂ | α ∈ Φ1K }. However, for

our present purposes we require this only in the special case that K

has cardinality 2.

Notation: Let r, s ∈ S be such such mrs <∞. Define w{r,s} ∈ 〈rr, rs〉
to be the element rrrsrr · · · = rsrrrs · · · , where there are mrs factors

on each side, the factors being alternately rr and rs.

Lemma 1.2.16. Let w ∈ W and s ∈ S be such that wαs = ναt for

some positive scalar ν, and suppose that r ∈ S such that l(wrr) < l(w).

Then

(i) 〈rr, rs〉 is finite.

(ii) N1(w{r,s}rs) = Φ̂1{ r,s } \ {α̂s}.
(iii) l(wrsw

−1
{r,s}) = l(w)− l(w{r,s}rs).

Proof. (i) Since l(wrr) < l(w), Corollary 1.2.5 yields that wαr ∈ Φ−1 .

Furthermore, wα̂r 6= α̂t, for otherwise α̂r = α̂s, forcing r = s by

Lemma 1.1.5, contrary to the fact that wαs is positive and wαr is

negative. Now observe that

wrs(αr) = w(αr − 2〈αr, βs〉αs) = w(αr)− 2〈αr, βs〉w(αs)

= w(αr)︸ ︷︷ ︸
∈ Φ−1 \ R{αt}

− 2〈αr, βs〉αt︸ ︷︷ ︸
a scalar multiple of αt

,

and assume, for a contradiction, that wrs(αr) ∈ PLC(Π1). Rearranging

the above equation gives

wrs(αr)− w(αr)︸ ︷︷ ︸
∈ PLC(Π1)

= −2〈αr, βs〉αt︸ ︷︷ ︸
a positive scalar multiple of αt

,

and, since −w(αr) ∈ (Φ+
1 \ R{αt}), the left hand side is not a scalar

multiple of αt. So, moving the αt term from the left side to the right,

this expresses λαt, for some scalar λ, as a positive linear combina-

tion of Π1 \ {αt}. But if λ ≤ 0 this implies that 0 ∈ PLC(Π1),

contradicting condition (C6) of a Coxeter datum, while if λ > 0 it
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implies that αt ∈ PLC(Π1 \ {αt}) contradicting Lemma 1.1.5. There-

fore wrs(αr) ∈ Φ−1 . Since both wrs(αr) and wrs(αs) = −αt are neg-

ative, it follows that wrs(λαr + µαs) is a negative linear combination

of Π1 whenever λ, µ ≥ 0. Hence wrs(λαr + µαs) ∈ Φ−1 whenever

λαr+µαs ∈ Φ+
1{ r, s }. This says precisely that Φ̂1{ r, s } ⊆ N1(wrs). Since

N1(wrs) is a finite set of size l(wrs) by Lemma 1.2.12(ii), it follows

from Remark 1.2.15 above that 〈rr, rs〉 must be finite. Therefore w{r,s}

exists.

(ii) Since w{r,s} is the longest element in W{r,s} it follows that

l(w{r,s}rr) < l(w{r,s}) and l(w{r,s}rs) < l(w{r,s}). So Corollary 1.2.5

yields that w{r,s}αr ∈ Φ−1 and w{r,s}αs ∈ Φ−1 . This then implies that

Φ̂1{r,s} ⊆ N1(w{r,s}). On the other hand w{r,s} = rrrsrr · · ·︸ ︷︷ ︸
mrs factors

= rsrrrs · · ·︸ ︷︷ ︸
mrs factors

,

so it follows from Lemma 1.2.12 (i) and the repeated application of

Lemma 1.2.12 (iii) thatN1(w{r,s}) ⊆ Φ̂1{r,s} whenceN1(w{r,s}) = Φ̂1{r,s}.

Observe that w{r,s}rsαs = −w{r,s}αs ∈ Φ+
1 , and so

Φ̂1{r,s} \ {α̂} ⊆ N1(w{r,s}rs).

Thus to show the desired result, we only need to establish that

|N1(w{r,s}rs)| = |Φ̂1{r,s}| − 1.

Indeed, Lemma 1.2.12 (ii) yields that |N1(w{r,s}rs)| = l(w{r,s}rs), and

we have already checked that l(w{r,s}rs) = l(w{r,s})− 1, thus

|N1(w{r,s}rs)| = l(w{r,s}rs) = l(w{r,s})− 1 = |Φ̂1{r,s}| − 1.

(iii) To show that w{r,s}rs is a right hand segment of w, it is enough

to show that N1(w{r,s}rs) ⊆ N1(w) by Lemma 1.2.12(iv). So let α be

an arbitrary positive root such that α̂ ∈ N1(w{r,s}rs), and observe by

part (ii) that α = λαr + µαs for some λ > 0 and µ ≥ 0. Thus

wα = λwαr + µwαs = λwαr + µναt.
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Suppose for a contradiction that wα ∈ Φ+
1 . Then

wα− λw(αr)︸ ︷︷ ︸
∈ PLC(Π1)

= µναt︸︷︷︸
a positive scalar multiple of αt

,

and, since −w(αr) ∈ (Φ+
1 \ R{αt}), the left hand side is not a scalar

multiple of αt. So, moving the αt term from the left side to the right,

this expresses λ′αt, for some scalar λ′, as a positive linear combination

of Π1\{αt}. But if λ′ ≤ 0 this implies that 0 ∈ PLC(Π1), contradicting

condition (C6) of a Coxeter datum, while if λ′ > 0 it implies that

αt ∈ PLC(Π1 \ {αt}) contradicting Lemma 1.1.5. Therefore wα ∈ Φ−1 ,

and therefore α̂ ∈ N1(w). Hence all elements of N1(w{r,s}rs) lie in

N1(w), as required. �

Now we are ready to prove Proposition 1.2.9:

Proof of Proposition 1.2.9. Since Φ′1 = {wα′s | w ∈ W and s ∈ S },
to prove that the restriction of π1 to Φ′1 is bijective it suffices to show

that if π1(wα′s) = π1(vα′t) for some w, v ∈ W and s, t ∈ S, then

wα′s = vα′t. Since π1 is a W -homomorphism and π1(α′s) = αs for all

s ∈ S we see that π1(wα′s) = wαs and π1(vα′t) = vαt, and deduce

that it suffices to prove the following statement: if wαs = αt for some

w ∈ W and s, t ∈ S, then wα′s = α′t.

We assume that w(αs) = αt, and proceed by an induction on l(w).

The case l(w) = 0 reduces to the statement that if αs = αt for some

s, t ∈ S then α′s = α′t, which is trivially true since Π1 and Π′1 are both

assumed to be in bijective correspondence with S. So we may assume

that l(w) > 0, and choose r ∈ S such that l(wrr) < l(w). Lemma

1.2.16 yields that 〈rr, rs〉 is a finite dihedral group (hence mrs is finite),

and

l(w(w{r,s}rs)
−1) = l(w)− l(w{r,s}rs).

We treat separately the cases mrs even and mrs odd.
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If mrs = 2k is even, then w{r,s} = (rrrs)
k = (rsrr)

k, and then the

formulas in Lemma 1.1.6 yield

(w{r,s}rs)αs = −w{r,s}αs = −(rsrr)
kαs

(1.2.6)

= −sin((mst + 1)π/mst)

sin(π/mst)
αs −

− cos(π/mst)

〈αr, βs〉
sin(π)

sin(π/mst)
αr

= αs,

and by exactly the same calculation in V ′1 ,

(1.2.7) w{r,s}rs(α
′
s) = α′s.

Now since

αt = wαs = w(w{r,s}rs)
−1 (w{r,s}rs)(αs)︸ ︷︷ ︸

= αs by (1.2.6)

= w(w{r,s}rs)
−1(αs)

and l(w(w{r,s}rs)
−1) < l(w), the inductive hypothesis yields that

(1.2.8) α′t = w(w{r,s}rs)
−1(α′s).

It follows that

w(α′s) = w(w{r,s}rs)
−1 (w{r,s}rs)(α

′
s)︸ ︷︷ ︸

= α′s by (1.2.7)

= w(w{r,s}rs)
−1(α′s) = α′t︸︷︷︸

by (1.2.8)

as required.

If mst = 2k+ 1 is odd, then w{r,s}rs = . . . rrrsrr︸ ︷︷ ︸
(mrs − 1) factors

= (rsrr)
k. Now

the formulas in Lemma 1.1.6 yield that

(w{r,s}rs)αs = (rsrr)
kαs

(1.2.9)

=
sin(π)

sin(π/(mst))
αs +

− cos(π/(mst))

〈αr, βs〉
sin(2kπ/(mst))

sin(π/(mst))
αr

=
− cos(π/(mst))

〈αr, βs〉
αr,
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and by exactly the same calculation in V ′1 ,

(1.2.10) (w{r,s}rs)α
′
s =
− cos(π/mrs)

〈αr, βs〉
α′r.

Now since

αt = w(w{r,s}rs)
−1(w{r,s}rs)αs

= w(w{r,s}rs)
−1(
− cos(π/mrs)

〈αr, βs〉
αr) (by (1.2.9))

(1.2.11)

and l(w(w{r,s}rs)
−1) < l(w), the inductive hypothesis yields that

(1.2.12) α′t = w(w{r,s}rs)
−1(
− cos(π/mrs)

〈αr, βs〉
α′r).

It follows that

wα′s = w(w{r,s}rs)
−1(w{r,s}rs)α

′
s

= w(w{r,s}rs)
−1(
− cos(π/mrs)

〈αr, βs〉
α′r) (by (1.2.10))

= α′t (by (1.2.12))

as required.

The other half of the proposition follows by similar arguments ap-

plied in V2 and V ′2 . �

While we are at it, we can also prove the following:

Proposition 1.2.17. Suppose that s, t ∈ S. If w(αs) = ναt for some

w ∈ W and some non-zero ν, then w(βs) = 1
ν
βt.

Proof. If l(w) = 0, then s = t and ν = 1, and there is nothing

to prove. Thus we may assume that l(w) ≥ 1 and proceed by an

induction on l(w). Choose r ∈ S, such that l(wrr) = l(w) − 1. Again

by Lemma 1.2.16 〈rr, rs〉 is finite (and mrs is finite too), and hence

w{r,s} exists. The same rank 2 calculation as used in the proof of

Proposition 1.2.9 above yields that

(1.2.13) (w{r,s}rs)(αs) =


αs if mrs is even,

− cos(π/mrs)
〈αr,βs〉 αr if mrs is odd.
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Similarly

(1.2.14) (w{r,s}rs)(βs) =


βs if mrs is even,

− cos(π/mrs)
〈αs,βr〉 βr if mrs is odd.

First suppose that mrs is even. Since

ναt = wαs = w(w{r,s}rs)
−1(w{r,s}rs)(αs) = w(w{r,s}rs)

−1(αs)︸ ︷︷ ︸
by (1.2.13)

and l(w(w{r,s}rs)
−1) < l(w), the inductive hypothesis yields that

(1.2.15) 1
ν
βt = w(w{r,s}rs)

−1(βs).

It follows that

wβs = w(w{r,s}rs)
−1 (w{r,s}rs)(βs)︸ ︷︷ ︸

= βs by (1.2.14)

= w(w{r,s}rs)
−1(βs) = 1

ν
βt︸ ︷︷ ︸

by (1.2.15)

and hence the desired result follows by induction.

Next suppose that mrs is odd. Since

ναt = wαs = w(w{r,s}rs)
−1(w{r,s}rs)αs

= w(w{r,s}rs)
−1(− cos(π/mrs)

〈αr,βs〉 αr)︸ ︷︷ ︸
by (1.2.14)

,

or, equivalently,

−ν cos(π/mrs)
〈αs,βr〉 αt = w(w{r,s}rs)

−1αr,

and since l(w(w{r,s}rs)
−1) < l(w), the inductive hypothesis yields that

− cos(π/mrs)
ν〈αr,βs〉 βt = w(w{r,s}rs)

−1βr.

That is

(1.2.16) 1
ν
βt = w(w{r,s}rs)

−1(− cos(π/mrs)
〈αs,βr〉 βr),

and it follows that

wβs = w(w{r,s}rs)
−1(w{r,s}rs)βs

= w(w{r,s}rs)
−1− cos(π/mrs)

〈αs,βr〉 βr︸ ︷︷ ︸
by (1.2.14)

= 1
ν
βt︸ ︷︷ ︸

by (1.2.16)
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whence the desired result follows by induction. �

It follows immediately from Proposition 1.2.17 that there is a well-

defined map Φ1 → Φ2 such that wαs 7→ wβs for all s ∈ S and w ∈ W .

This is clearly the unique W -equivariant map Φ1 → Φ2 satisfying

αs 7→ βs for all s ∈ S.

Definition 1.2.18. Let φ : Φ1 → Φ2 be the W -equivariant map satis-

fying φ(αs) = βs for all s ∈ S.

It follows readily from Proposition 1.2.17 and W -equivariance that

φ is a bijection and the following holds:

Corollary 1.2.19. Given t ∈ S and a nonzero scalar ν, then ναt ∈ Φ1

if and only if 1
ν
βt ∈ Φ2. Furthermore, if ναt ∈ Φ1 then φ(ναt) = 1

ν
βt.

�

In fact we can generalize the above, as follows.

Lemma 1.2.20. Suppose that α ∈ Φ1, and ν 6= 0 such that να ∈ Φ1.

Then

φ(να) = 1
ν
φ(α).

Proof. Since α ∈ Φ1, we may write α = wαt for some w ∈ W and

t ∈ S, and since να ∈ Φ1 it follows that ναt = νw−1α = w−1(να) is

in Φ1. Hence by Corollary 1.2.19 and the W -equivariance of φ,

φ(να) = φ(ν(wαt)) = φ(w(ναt))

= wφ(ναt) = w( 1
ν
φ(αt)) = 1

ν
φ(wαt) = 1

ν
φ(α)

as required. �

Equipped with Proposition 1.2.9, we may define the canonical co-

efficient of any simple root of Π1 (respectively, of Π2 ) in a given root

of Φ1 (respectively, of Φ2). Let α ∈ Φ1 and β ∈ Φ2, and let α′ = φ1(α)

and β′ = φ2(β) be the corresponding elements of Φ′1 and Φ′2. Since
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Π′1 and Π′2 are linearly independent, for each t ∈ S there are uniquely

determined real numbers coeffαt(α) and coeffβt(β) satisfying

α′ =
∑
t∈S

coeffαt(α)α′t,

and

β′ =
∑
t∈S

coeffβt(β)β′t.

Then Proposition 1.2.9 yields that

α = π1(α′) = π1(
∑
t∈S

coeffαt(α)α′t) =
∑
t∈S

coeffαt(α)αt

and

β = π2(β′) = π2(
∑
t∈S

coeffβt(β)β′t) =
∑
t∈S

coeffβt(β)βt.

Definition 1.2.21. Suppose that α ∈ Φ1 and β ∈ Φ2. For each t ∈ S,

we call coeffαt(α) the canonical coefficient of αt in the root α and

coeffβt(β) the canonical coefficient of βt in β.

1.3. The canonical coefficients and the depth of roots

In this section we study the canonical coefficients defined in sec-

tion 1.2. It turns out that for each s ∈ S and α ∈ Φ1, the coefficient

coeffαs(α) is closely related to the coefficient coeffβs(φ(β)), where φ is

the W -equivariant map defined in Definition 1.2.18. Also we introduce

the concept of depth of a root following the conventions of [6] and [5],

and we give a characterisation of the depth of a root in terms of the

length of the reflection corresponding to that root.

Definition 1.3.1. Given α ∈ Φ1 and β ∈ Φ2, define the support of α,

written supp(α), and the support of β, written supp(β), to be the sets:

supp(α) = {αs | s ∈ S and coeffαs(α) 6= 0 }

and

supp(β) = { βs | s ∈ S and coeffβs(β) 6= 0 }.
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The following group-theoretic result is purely about Coxeter groups

and is well known (for example, Section 2 of [14]). It is essential

for Proposition 1.3.3 below and it is going to be used repeatedly in

Section 2.3 later. For completeness, a proof is included here.

Lemma 1.3.2. Let I ⊆ S and w ∈ W . Choose w′ ∈ wWI to be

of minimal length. Then l(w′v) = l(w′) + l(v) for all v ∈ WI . In

particular, w′αs ∈ Φ+
1 whenever s ∈ I.

Proof. We prove this result by an induction on l(v), the case l(v) = 0

being trivial. So assume that l(v) > 0, and write v = v′rs for some

v′ ∈ WI and s ∈ I such that l(v′) = l(v) − 1. If we can show that

l(w′v) = l(w′v′)+1 then the desired result will follow by induction. By

Corollary 1.2.5, to prove that l(w′v) = l(w′v′) + 1 it suffices to show

that (w′v′)αs ∈ Φ+
1 .

Observe that, for any t ∈ I, the minimality of l(w′) in wWI together

with Corollary 1.2.5 implies that l(w′rt) = l(w′) + 1, and w′αt ∈ Φ+
1 .

Moreover, since l(v′rs) = l(v) = l(v′) + 1, Corollary 1.2.5 yields that

v′αs ∈ Φ+
1 , and so we may write v′αs =

∑
t∈I
λtαt, where λt ≥ 0 for

all t ∈ I. Since w′αt ∈ Φ+
1 ⊆ PLC(Π1) for all t ∈ I, it follows that

(w′v′)(αs) =
∑
t∈I
λtw

′αt ∈ Φ1 ∩ PLC(Π1) = Φ+
1 , as required. �

Corollary 1.2.19 says that if t ∈ S and λ is any nonzero scalar then

λαt is a root if and only if 1
λ
βt is root. Thus in the case of singleton sup-

port roots α = λαt and φ(α) = 1
λ
βt (t ∈ S), for any s ∈ S we have either

coeffαs(α) coeffβs(φ(α)) = 0 (if s 6= t) or coeffαs(α) coeffβs(φ(α)) = 1

(if s = t). An extension to this fact is given in the next proposition.

Proposition 1.3.3. Let α ∈ Φ+
1 . The for each t ∈ S we have

coeffαt(α) > 0 if and only if coeffβt(φ(α)) > 0

and in this case coeffαt(α) coeffβt(φ(α)) ≥ 1.

Proof. We use induction on the length of w ∈ W to prove that the

statement holds whenever α = wαr for some r ∈ S. Note that α = wαr
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implies that φ(α) = wφ(αr) = wβr. If l(w) = 0 then the assertion is

trivially true.

Suppose then that l(w) > 0, and let s ∈ S and w′ ∈ W be such

that w = w′rs and l(w′) = l(w)− 1. Choose w′′ to be a minimal length

element of w〈rr, rs〉. Then l(w′′) ≤ l(wrs) < l(w), and hence the

inductive hypothesis applies to w′′αr as well as to w′′αs, so that for all

t ∈ S either coeffαt(w
′′αr) coeffβt(w

′′βr) ≥ 1 or else coeffαt(w
′′αr) and

coeffβt(w
′′βr) are both zero, and either coeffαt(w

′′αs) coeffβt(w
′′βs) ≥ 1

or else coeffαt(w
′′αs) and coeffβt(w

′′βs) are both zero.

Since l(w′′rr), l(w
′′rs) ≥ l(w′′) by the minimality of l(w′′) in the

coset w〈rr, rs〉, it follows from Corollary 1.2.5 that w′′αr, w
′′βr, w

′′αs

and wβs are all positive. Thus for all t ∈ S,

(1.3.1) coeffαt(w
′′αr) ≥ 0 and coeffβt(w

′′βr) ≥ 0

and

(1.3.2) coeffαt(w
′′αs) ≥ 0 and coeffβt(w

′′βs) ≥ 0.

Let u ∈ 〈rr, rs〉 such that w = w′′u. Since w′′ is of minimal length in the

coset w〈rr, rs〉, it follows from Lemma 1.3.2 that l(w) = l(w′′) + l(u),

and hence N1(u) ⊆ N1(w) by Lemma 1.2.12. Since wαr ∈ Φ+
1 , it follows

that uαr ∈ Φ+
1 too. Hence Corollary 1.2.5 yields that l(urr) > l(u),

and, in particular, u has no reduced expression ending in rr. This

implies that l(u) < mrs, and so Lemma 1.1.11 yields that

uαr = λ1αr + µ1αs and uβr = λ2βr + µ2βs

for some some nonnegative scalars λ1, λ2, µ1 and µ2. Observe that this

implies

uφ1(αr) = λ1φ1(αr) + µ1φ1(αs) and uφ2(βr) = λ2φ2(βr) + µ2φ2(βs)

Hence

φ1(wαr) = w′′φ1(uαr) = λ1w
′′φ1(αr) + µ1w

′′φ1(αs)

and
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φ2(wβr) = w′′φ2(uβr) = λ2w
′′φ2(βr) + µ2w

′′φ2(βs).

It follows that for all t ∈ S,

coeffαt(wαr) = coeffαt(w
′′(uαr))

= λ1 coeffαt(w
′′αr) + µ1 coeffαt(w

′′αs),(1.3.3)

and likewise coeffβt(wβr) = λ2 coeffβt(w
′′βr) + µ2 coeffβt(w

′′βs).

A direct rank 2 calculation (as in Lemmas 1.1.6 and 1.1.8) yields

explicit formulas for the coefficients λ1, µ1, λ2 and µ2, and we find that

λ1 > 0 if and only if λ2 > 0 and µ1 > 0 if and only if µ2 > 0.(1.3.4)

Moreover, if mrs = m < ∞ then λ1λ2 and µ1µ2 belong to the set

{ ( sin kθ
sin θ

)2 | 1 ≤ k ≤ m − 1} ∪ {0}, where θ = π/m, while if mrs = ∞
then λ1λ2 and µ1µ2 belong to { ( sinh kθ

sinh θ
)2 | k ∈ N } ∪ {0}, where

θ = cosh−1(
√
〈αr, βs〉〈αs, βr〉). It follows in either case that if λ1λ2

or µ1µ2 is nonzero then it is at least 1.

Suppose that coeffαt(wαr) > 0. Then (1.3.3) shows that one of

λ1 coeffαt(w
′′αr) or µ1 coeffαt(w

′′αs) must be strictly positive. Now if

λ1 coeffαt(w
′′αr) > 0 then λ1 > 0 and coeffαt(w

′′αr) > 0, and since

l(w′′) < l(w) the inductive hypothesis yields that coeffβt(w
′′βr) > 0.

Thus in this case (1.3.4) yields that for all t ∈ S,

coeffβt(wβr) = λ2 coeffβt(w
′′βr) + µ2 coeffβt(w

′′βs)

≥ λ2 coeffβt(w
′′βr)

> 0

since µ2 and coeffβt(w
′′βs) are both nonnegative. On the other hand,

if µ1 coeffαt(w
′′αr) > 0 a similar argument yields that

coeffβt(wβr) ≥ µ2 coeffβt(w
′′βs) > 0,

so that coeffαt(wαr) > 0 implies coeffβt(wβr) > 0 in either case.

By symmetry, we can also deduce that coeffβt(wβr) > 0 implies

coeffαt(wαr) > 0, completing the proof of the first part.
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Suppose that t ∈ S and coeffαt(wαr) and coeffβt(wβr) are positive.

Observe from (1.3.3) that either λ1 coeffαt(w
′′αr) or µ1 coeffαt(w

′′αs)

must be positive, and consider first the case λ1 coeffαt(w
′′αr) > 0.

Then λ1 > 0, which implies λ1λ2 ≥ 1 by the rank 2 calculation, and

coeffαt(w
′′αr) > 0, which implies that coeffαt(w

′′αr) coeffβt(w
′′βr) ≥ 1

by the inductive hypothesis. Hence

coeffαt(wαr) coeffβt(wβr) ≥ (λ1 coeffαt(w
′′αr))(λ2 coeffβt(w

′′βr))

= (λ1λ2)(coeffαt(w
′′αr) coeffβt(w

′′βr))

≥ 1.

On the other hand, if µ1 coeffαt(w
′′αs) > 0 the same conclusion follows,

since

coeffαt(wαr) coeffβt(wβr) ≥ (µ1 coeffαt(w
′′αs))(µ2 coeffβt(w

′′βs))

= (µ1µ2)(coeffαt(w
′′αs) coeffβt(w

′′βs))

≥ 1.

by the rank 2 calculation and the inductive hypothesis, and this com-

pletes the proof of the second assertion of the proposition. �

It is readily seen from Proposition 1.3.3 that:

Corollary 1.3.4. Let α ∈ Φ1, then

α ∈ Φ+
1 if and only if φ(α) ∈ Φ+

2 ,

and

α ∈ Φ−1 if and only if φ(α) ∈ Φ−2 .

Furthermore, supp(φ(α)) = φ(supp(α)).

Proof. Observe the following if and only if statements: α ∈ Φ+
1 if and

only if for some t ∈ S, coeffαt(α) > 0, and by Proposition 1.3.3 this

happens if and only coeffβt(φ(α)) > 0 for some t ∈ S, and this in turn

happens if and only if φ(α) ∈ Φ+
2 .
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Replace α by −α, then the above yields that α ∈ Φ−1 if and only if

φ(α) ∈ Φ−2 .

Finally, Proposition 1.3.3 yields that supp(φ(α)) = φ(supp(α)). �

Definition 1.3.5. (i) For each α ∈ Φ+
1 and β ∈ Φ+

2 define the depth

of α (written dp1(α) ) and the depth of β (written dp2(β)) to be

dp1(α) = min{ l(w) | w ∈ W and wα ∈ Φ−1 },

and

dp2(β) = min{ l(w) | w ∈ W and wβ ∈ Φ−2 }.

(ii) For α1, α2 ∈ Φ+
1 (respectively β1, β2 ∈ Φ+

2 ), write α1 �1 α2 (resp.

β1 �2 β2) if and only if there exists w ∈ W (resp. w′ ∈ W ) such that

α2 = wα1, and dp1(α2) = dp1(α1) + l(w) (respectively β2 = w′β1, and

dp2(β2) = dp2(β1) + l(w′)). Further we write α1 ≺1 α2 if α1 �1 α2 but

α1 6= α2, and we write β1 ≺2 β2 if β1 �2 β2 but β1 6= β2.

Lemma 1.3.6. (Lemma 1.6 of [6]) �1 and �2 are partial orderings on

Φ+
1 and Φ+

2 respectively. �

The following result can be easily deduced from Definition 1.3.5.

Lemma 1.3.7. Suppose that α1, α2 ∈ Φ+
1 and β1, β2 ∈ Φ+

2 such that

α1 = wα2 and β1 = w′β2 for some w,w′ ∈ W . Then

| dp1(α1)− dp1(α2)| ≤ l(w) and | dp2(β1)− dp2(β2)| ≤ l(w′).

�

Lemma 1.3.8. Suppose that α1, α2 ∈ Φ+
1 , with α1 ≺1 α2. Let w ∈ W

be of minimal length such that α2 = wα1. Let w = rs1rs2 · · · rsl,
(s1, · · · , sl ∈ S) with l = l(w). Then for all i ∈ {1, 2, · · · , l − 1},

(rsi+1
· · · rsl)α1 ≺1 (rsirsi+1

· · · rsl)α1.

Proof. Given these conditions, dp1(α2) = dp1(α1) + l(w). Observe

that rsi+1
· · · rsl is a right hand segment of rsirsi+1

· · · rsl , which in turn
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is a right hand segment of w, so Lemma 1.2.12 (iv) yields that

N1(rsi+1
· · · rsl) ⊂ N1(rsirsi+1

· · · rsl) ⊆ N1(w),

In particular, (rsirsi+1
· · · rsl)α1 ∈ Φ+

1 for all i ∈ {1, · · · , l} (since

wα1 ∈ Φ+
1 ). We prove this lemma by way of contradiction. suppose

the statement of this lemma is false, and choose i ∈ {1, · · · , l−1} such

that (rsi+1
· · · rsl)α1 ⊀ (rsirsi+1

· · · rsl)α1. Thus

(1.3.5) dp1((rsi · · · rsl)α1) ≤ dp1((rsi+1
· · · rsl)α1).

Since α2 = (rs1 . . . rsi−1
)(rsi . . . rslα1) it follows that

dp1(α1) + l(w) = dp1(α2)

≤ (i− 1) + dp1((rsi · · · rsl)α1) (by Lemma 1.3.7)

≤ (i− 1) + dp1(rsi+1
· · · rslα1) (by (1.3.5))

≤ (i− 1) + (l − i) + dp1(α1) (by Lemma 1.3.7)

= l − 1 + dp1(α1)

which is absurd. Hence for all i ∈ {1, · · · , l − 1},

(rsi+1
· · · rsl)α1 ≺1 (rsi · · · rsl)α1,

as requied. �

Remark 1.3.9. Lemma 1.3.7 has a natural analogue in Φ+
2 .

The following result is a generalisation of Lemma 1.7 of [6]. Essen-

tially the same reasoning as that used in [6] can be used to prove it,

but for completeness, a proof is included here.

Lemma 1.3.10. Let s ∈ S, α ∈ Φ+
1 \ R{αs}, and β ∈ Φ+

2 \ R{βs}.
Then

dp1(rsα) =


dp1(α)− 1 if 〈α, βs〉 > 0,

dp1(α) if 〈α, βs〉 = 0,

dp1(α) + 1 if 〈α, βs〉 < 0;
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and

dp2(rsβ) =


dp2(β)− 1 if 〈αs, β〉 > 0,

dp2(β) if 〈αs, β〉 = 0,

dp2(β) + 1 if 〈αs, β〉 < 0.

Proof. If 〈α, βs〉 = 0 then rsα = α − 2〈α, βs〉αs = α; hence trivially

dp1(rsα) = dp1(α).

Suppose next that 〈α, βs〉 > 0, By Lemma 1.3.7, it suffices to

show that dp1(rsα) < dp1(α). To do so we construct a w ∈ W with

w(rsα) ∈ Φ−1 and l(w) < dp1(α). Choose v ∈ W such that vα ∈ Φ−1

and l(v) = dp1(α). If vαs ∈ Φ−1 we set w = vrs; then l(w) = l(v) − 1

(by Corollary 1.2.5) and w(rsα) = vα ∈ Φ−1 , as required. Hence we

may assume that vαs ∈ φ+
1 . Now

v(rsα) = v(α− 2〈α, βs〉αs) = vα︸︷︷︸
∈ Φ−1

− 2〈α, βs〉vαs︸ ︷︷ ︸
∈ −PLC(Π1)

∈ Φ−1 .

Furthermore, the condition α ∈ Φ+
1 \ R{αs} implies that vα and

−2〈α, βs〉vαs are not scalar multiples of each other, and hence it follows

that there are at least two simple roots in the support of v(rsα). Now

choose r ∈ S, w ∈ W with v = rrw and l(v) = l(w) + 1. Since v(rsα)

has at least two simple roots in its support, it follows that applying rr

will not change the sign of v(rsα) (recall that N1(rr) = {α̂r}). Thus

w(rsα) = rr(vrsα) ∈ Φ−1 and l(w) < l(v) = dp1(α).

Finally, suppose that 〈α, βs〉 < 0. Then 〈rsα, βs〉 = −〈α, βs〉 > 0;

so the preceding paragraph shows that

dp1(α) = dp1(rs(rsα)) = dp1(rsα)− 1.

As usual, the other half of this lemma follows by an exactly similar

argument. �

Lemma 1.3.11. Suppose that α ∈ W . Then dp1(α) = dp2(φ(α)).

Proof. Let w ∈ W be such that wα ∈ Φ−1 and dp1(α) = l(w). Then

φ(wα) ∈ Φ−2 by Corollary 1.3.4. Since φ is W -equivariant, it follows
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that w(φ(α)) ∈ Φ−2 . Hence dp2(φ(α)) ≤ l(w) = dp1(α). By symmetry

we also have dp1(α) ≤ dp2(φ(α)), whence equality. �

Lemma 1.3.12. Suppose that α ∈ Φ1 and s ∈ S. Then

〈α, βs〉 > 0 if and only if 〈αs, φ(α)〉 > 0;

and

〈α, βs〉 = 0 if and only if 〈αs, φ(α)〉 = 0;

and

〈α, βs〉 < 0 if and only if 〈αs, φ(α)〉 < 0.

Proof. This follows from Lemma 1.3.10 and Lemma 1.3.11. �

And we can generalize the above to:

Corollary 1.3.13. Suppose that α1, α2 ∈ Φ1. Then

〈α1, φ(α2)〉 > 0 if and only if 〈α2, φ(α1)〉 > 0;

and

〈α1, φ(α2)〉 = 0 if and only if 〈α2, φ(α1)〉 = 0;

and

〈α1, φ(α2)〉 < 0 if and only if 〈α2, φ(α1)〉 < 0.

Proof. Write α2 = wαs for some w ∈ W and s ∈ S. Since 〈 , 〉 is

W -invariant and φ is W -equivariant, thus

〈α1, φ(α2)〉 = 〈α1, wβs〉 = 〈w−1α1, βs〉.

Observe that Lemma 1.3.12 yields that 〈w−1α1, βs〉 > 0 if and only if

〈αs, φ(w−1α1)〉 > 0 which in turn happens if and only if

〈αs, φ(w−1α1)〉 = 〈wαs, φ(α1)〉 = 〈α2, φ(α1)〉 > 0.

The rest of the desired result follows in a similar way. �

Definition 1.3.14. Suppose that α = wαs, β = φ(α), where w ∈ W
and s ∈ S. Then define rα, rβ ∈ W by rα = rβ : = wrsw

−1, and we call
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rα the reflection corresponding to α and rβ the reflection corresponding

to β.

Remark 1.3.15. It is clear from Definition 1.3.14 and Lemma 1.2.1

that for all x ∈ Φ1 and y ∈ Φ2,

rα(x) = x− 2〈x, φ(α)〉α and rβ(y) = y − 2〈φ−1(β), y〉β.

Observe that rx(x) = −x and ry(y) = −y. Note that rαs = rs, rβt = rt

for all s, t ∈ S. Clearly for all α ∈ Φ1 and β ∈ Φ2, rα = r−α, and

rβ = r−β. Furthermore, suppose that z1, z2 ∈ Φi (i = 1, 2). Then

ẑ1 = ẑ2 if and only if rz1 = rz2 .

Lemma 1.3.16. Suppose that x ∈ Φ1, y ∈ Φ2 and w, v ∈ W . Then

rwx = wrxw
−1 and rvy = vryv

−1.

Proof. Observe that for any v ∈ V1

wrxw
−1(v)

= w(w−1v − 2〈w−1v, φ(x)〉x)

= v − 2〈w−1v, φ(x)〉wx

= v − 2〈v, wφ(x)〉wx (since 〈 , 〉 is W -invariant)

= v − 2〈v, φ(wx)〉wx (since φ is W -equivariant)

= rwxv.

Since v ∈ V1 was arbitrary, it follows that rwx = wrxw
−1. Entirely

similar argument shows that rvy = vryv
−1. �

Set T :=
⋃

w∈W
wRw−1 and call it the set of reflections in W . For

each i ∈ {1, 2} since Φi = WΠi, it follows from Lemma 1.3.16 and the

definition of T that there is a bijection between Φ̂i and T via ẑ ↔ rz.

The following Proposition is a natural extension to Corollary 1.2.5:

Proposition 1.3.17. For each i ∈ {1, 2}, let w ∈ W and x ∈ Φ+
i . If

l(wrx) > l(w) then wx ∈ Φ+
i . If l(wrx) < l(w) then wx ∈ Φ−i .
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Proof. We prove the statement that l(wrx) > l(w) if and only if wx

is positive in the case x ∈ Φ1 here, and again we stress that a similar

argument also shows the desired result holds in Φ2.

Observe that the second statement follows from the first, applied

to wrx in place of w: indeed if l(wrx) < l(w) then l((wrx)rx) > l(wrx)

forcing (wrx)x = w(rxx) = −wx ∈ Φ+
1 , that is, wx ∈ Φ−1 .

Now we prove the first statement in Φ1. Proceed by induction on

l(w), the case l(w) = 0 being trivial. If l(w) > 0, there exists s ∈ S
with l(rsw) = l(w)− 1. Then

l((rsw)rx) = l(rs(wrx)) ≥ l(wrx)− 1 > l(w)− 1 = l(rsw).

Then the inductive hypothesis yields that (rsw)x ∈ Φ+
1 . Suppose for a

contadiction that wx ∈ Φ−1 . Then ŵx ∈ N1(rs) and Lemma 1.2.12 (i)

yields that wx = −λαs for some λ > 0. But then rswx = λαs would

imply (rsw)rx(rsw)−1 = rs by Lemma 1.3.16 and Remark 1.3.15. But

this yields that wrx = rsw contradicting l(wrx) > l(w) > l(rsw). As a

result, wx must be positive. �

It is readily checked that for all w ∈ W and t ∈ T , l(wt) ∼= l(w)

modulo 2. In particular, the length of any such t must be odd, which in

turn shows that l(wt) 6= l(w) Combining this observation with Propo-

sition 1.3.17 we have the following:

Corollary 1.3.18. Let w ∈ W and x ∈ Φ+
i (i ∈ {1, 2}). Thenl(wrx) > l(w) if and only if wx ∈ Φ+

i ,

l(wrx) < l(w) if and only if wx ∈ Φ−i .

�

The next result gives a connection between the depth of a root and

the length of the corresponding reflection.

Lemma 1.3.19. Let α ∈ Φ+
1 such that α = (rs1rs2 · · · rsl)αs, where

s, s1, · · · , sl ∈ S and dp1(α) = l + 1. Then l(rα) = 2l + 1.
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Proof. The proof is based on an induction on l. The case l = 0

(α = αs) is trivial. Thus we may assume that l > 1. Observe that

Lemma 1.3.7 and Lemma 1.3.8 yield that dp1(rs2 . . . rslαs) = l. Then

the inductive hypothesis yields that

(1.3.6) l(rs2 . . . rslrsrsl · · · rs2) = 2l − 1.

That is, (rs2 . . . rsl)αs ≺1 (rs1rs2 . . . rsl)αs, and hence Lemma 1.3.10

gives

(1.3.7) 〈rs2 . . . rslαs, βs1〉 < 0.

Lemma 1.3.12 then yields that 〈αs1 , (rs2 . . . rsl)βs〉 < 0. Observe that

dp1(α) = dp1(rs1rs2 . . . rslαs) = l + 1 implies that l((rs1rs2 . . . rsl) = l,

in particular, rs2 . . . rsl is a right hand segment of rs1rs2 . . . rsl . Since

(rs1rs2 . . . rsl)αs ∈ Φ+
1 , it follows that (rs2 . . . rsl)αs ∈ Φ+

1 too. Thus

(rs2 . . . rslrsrsl . . . rs2)αs1 = r(rs2 ···rslαs)αs1

= αs1 − 2〈αs1 , (rs2 · · · rsl)βs〉︸ ︷︷ ︸
< 0

(rs2 · · · rslαs)︸ ︷︷ ︸
∈ Φ+

1

∈ Φ+
1 .

(1.3.8)

Hence

l(rs1(rs2 · · · rslrsrsl · · · rs2))

= l((rs2 · · · rslrsrsl · · · rs2)rs1)

= l((rs2 · · · rslrsrsl · · · rs2)) + 1 (by Corollary 1.2.5).

Now we claim that

(1.3.9) (rs1rs2 · · · rslrsrsl · · · rs2)αs1 ∈ Φ+
1 .

If (1.3.9) were true, then Corollary 1.2.5 would yield that

l(rs1rs2 · · · rslrsrsl · · · rs2rs1) = l(rs1rs2 · · · rslrsrsl · · · rs2) + 1

= l(rs2 · · · rslrsrsl · · · rs2) + 2,
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this combining with (1.3.6) gives us l(rs1 · · · rslrsrsl · · · rs1) = 2l + 1.

Thus the result follows by induction provided we can prove (1.3.9),

which we shall prove now. Suppose that the opposite to (1.3.9) holds,

then Lemma 1.2.12(i) together with (1.3.8) yields that

(1.3.10) (rs2 · · · rslrsrsl · · · rs2)αs1 = λαs1

for some λ > 0. But this says precisely that

(1.3.11) rsrsl . . . rs2αs1 = λrsl . . . rs2αs1 .

Observe that (1.3.6) forces rsl · · · rs2 to be a right hand segment of

rs2 · · · rslrsrsl · · · rs2 . Thus (1.3.8) above yields that (rsl · · · rs2)αs1 ∈ Φ+
1 .

Hence rs(rsl · · · rs2)αs1 = λ(rsl · · · rs2)αs1 ∈ Φ+
1 too. This yields that

(rsl . . . rs2)αs1 is not a positive scalar multiple of αs by Lemma 1.2.12(i).

Observe now

rs(rsl . . . rs2αs1)

= (rsl . . . rs2)αs1 − 2〈(rsl . . . rs2)αs1 , βs〉αs

= λ(rsl . . . rs2)αs1

forces 〈rsl · · · rs2αs1 , βs〉 = 0. Since 〈 , 〉 is W -invariant, it follows that

〈αs1 , rs2 · · · rslβs〉 = 0. Lemma 1.3.12 then yields 〈rs2 · · · rslαs, βs1〉 = 0,

contradicting (1.3.7). Thus (1.3.9) follows, as required. �



Chapter 2

Special Topics in Non-Orthogonal Setting

2.1. Decompositions of Generic Root Systems

Suppose that U1 and U2 are vector spaces over the real field R and

suppose that there exist a bilinear map 〈 , 〉′ : U1×U2 → R and linearly

independent sets X1 ⊂ U1 and X2 ⊂ U2 indexed by the same set S ′′ via

s 7→ xs ∈ X1 and s 7→ ys ∈ X2 for all s ∈ S ′′. Furthermore, suppose

that the following condition holds:

(D1) 〈xs, ys〉′ = 1 for all s ∈ S ′′.

For each s ∈ S ′′, define ρ1(xs) : U1 → U1 and ρ2(ys) : U2 → U2 by

ρ1(xs)(u) := u− 2〈u, ys〉′xs

ρ2(ys)(v) := v − 2〈xs, v〉′ys

for all u ∈ U1 and v ∈ U2, and for each i ∈ {1, 2}, define

R′′i := {ρi(x) | x ∈ Xi};

W ′′
i := 〈R′′i 〉;

Φ′′i := W ′′
i Xi;

Φ′′i
+

:= Φ′′i ∩ PLC(Xi) and

Φ′′i
−

:= −Φ′′i
+
.

Proposition 2.1.1. For each i ∈ {1, 2}, suppose that Φ′′i = Φ′′i
+]Φ′′i

−.

Then the following conditions must be satisfied for all s, t ∈ S ′′:

(D2) 〈xs, yt〉′ ≤ 0 and 〈xt, ys〉′ ≤ 0 whenever s 6= t;

(D3) 〈xs, yt〉′ = 0 if and only if 〈xt, ys〉′ = 0;

(D4) either 〈xs, yt〉′〈xt, ys〉′ = cos2( π
mst

) for some integer mst ≥ 2, or

else 〈xs, yt〉′〈xt, ys〉′ ≥ 1.

43
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To prove this proposition we shall need a few technical results first.

These results are essentially taken from [1], and for completeness, their

proofs are included here.

Let A be a commutative R-algebra, let q
1
2 and X be units of A ,

and let γ ∈ R. Define A, B to be 2 by 2 matrices over A given by:

A =

(
−1 2γq1/2X

0 q

)
B =

(
q 0

2γq1/2X−1 −1

)
.

It is easily proved by induction on n ∈ N that

B(AB)n =

 qn+1p2n+1 −qn+
1
2p2nX

qn+
1
2p2n+2X

−1 −qnp2n+1

(2.1.1)

A(BA)n =

 −qnp2n+1 qn+
1
2p2n+2X

−qn+
1
2p2nX

−1 qn+1p2n+1

(2.1.2)

(BA)n =

 −qnp2n−1 qn+
1
2p2nX

−qn−
1
2p2nX

−1 qnp2n+1

(2.1.3)

and

(AB)n =

 qnp2n+1 −qn−
1
2p2nX

qn+
1
2p2nX

−1 −qnp2n−1

(2.1.4)

where pn ∈ R (for n ∈ {−1} ∪ N) is defined recursively by

(2.1.5) p−1 = −1, p0 = 0, pn+1 = 2γpn − pn−1 (n ∈ N).

The solution of the recurrence (2.1.5) is

(2.1.6)

pn =



n if γ = 1

(−1)n+1n if γ = −1

1

2
√
γ2−1

[(γ +
√
γ2 − 1)n − (γ −

√
γ2 − 1)n] if |γ| > 1

sinnθ

sin θ
where θ = cos−1 γ if |γ| < 1.
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Note that in the case |γ| ≥ 1 we may alternatively write

pn =
sinhnθ

sinh θ
where θ = cosh−1 γ

(as in Lemma 1.1.8).

Lemma 2.1.2. (Dyer, [1, Lemma 2.2])

(i) Conditions (1′) and (2′) below are equivalent:

(1′) pnpn+1 ≥ 0 for all n ∈ N;

(2′) γ ∈ {cos(π/m) | m ∈ N, m ≥ 2} ∪ [1,∞).

(ii) If γ = cos kπ
m

for some k,m ∈ N with 0 < k < m then the

matrices A and B satisfy the equation ABA · · · = BAB · · · ,
where there are m factors on either side.

(iii) If q = 1 then the matrix AB has order m if γ = cos kπ
m

for some

k,m ∈ N with 0 < k < m and gcd(m, k) = 1, and has infinite

order otherwise.

Proof. (i): Assume that (1′) holds. Observe that (2.1.5) yields that

p1 = 1 and p2 = 2γ; hence γ ≥ 0. Since (2′) obviously holds if γ ≥ 1,

we may assume that 0 ≤ γ < 1. Choose θ so that 0 < θ ≤ π
2

and

cos θ = γ, and let m be the largest integer such that

0 < θ < 2θ < · · · < mθ ≤ π,

noting that m ≥ 2. Now if mθ 6= π then π < (m + 1)θ < 2π, and it

follows that

pm =
sinmθ

sin θ
> 0

whereas

pm+1 =
sin(m+ 1)θ

sin θ
< 0,

contradicting (1′). Hence mθ = π, so that γ = cos π
m

for some m ≥ 2,

whence (2′) holds. Thus (1′) implies (2′).

Conversely, if (2′) holds then it follows from (2.1.6) that (1′) holds.

This completes the proof of (i).
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(ii) Suppose first that m is even, and write m = 2r, so that our

task is to prove that (AB)r = (BA)r. We have that pn = sin(nkπ/2r)
sin(kπ/2r)

,

which gives p2r+1 = sin(kπ+(kπ/2r))
sin(kπ/2r)

= (−1)k and p2r−1 = (−1)k+1 by a

similar calculation, while p2r = 0. Hence the required result follows

immediately from (2.1.3) and (2.1.4).

If m is odd our task is to prove that B(AB)r = A(BA)r, where

m = 2r + 1. In this case we find that p2r+1 = 0 while p2r+2 = (−1)k

and p2r = (−1)k+1, and the required result follows immediately from

(2.1.1) and (2.1.2).

(iii) If γ = cos kπ
m

then it follows immediately from Part (ii) that

(AB)m = 1, since A2 = B2 = 1 when q = 1. Furthermore, if 0 < n < m

then pn = sin(nkπ/m)
sin(kπ/m)

6= 0, and it follows from (2.1.4) that (AB)n 6= 1.

Thus AB has order m. Similarly if |γ| ≥ 1 then it follows from (2.1.6)

that pn is nonzero for all integers n > 0, giving (AB)n 6= 1 for all

such n, so that AB has infinite order. �

Now we are ready to prove Proposition 2.1.1:

Proof of Proposition 2.1.1. We present a proof that Φ′′1 = Φ′′1
+]Φ′′1

−

implies conditions (D2), (D3) and (D4) and we stress that the same

argument applies equally to Φ′′2.

Suppose that Φ′′1 = Φ′′1
+ ] Φ′′1

−. Let s, t ∈ S ′′ be distinct. Consider

the actions of ρ1(xs)ρ1(xt) and ρ1(xt)ρ1(xs) in the 〈{ρ1(xs), ρ1(xt)}〉-
invariant subspace Rxs + Rxt:

(ρ1(xt)ρ1(xs))(xs) = ρ1(xt)( xs − 2〈xs, ys〉′xs ) = ρ1(xt)(−xs)

= −xs + 2〈xs, yt〉′xt.

Since Φ′′1 = Φ′′1
+ ] Φ′′1

− and X1 is linearly independent, it follows from

above that 〈xs, yt〉′ ≤ 0. Similarly, by looking at (ρ1(xs)ρ1(xt))(xt) we

may deduce that 〈xt, ys〉′ ≤ 0, whence (D2) holds.
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Next, suppose that s, t ∈ S ′′ are distinct with 〈xs, yt〉′ = 0. Consider

ρ1(xt)ρ1(xs)(xt) = ρ1(xt)( xt − 2〈xt, ys〉′xs )

= −xt − 2〈xt, ys〉′xs + 4〈xt, ys〉′〈xs, yt〉′xt

= −xt − 2〈xt, ys〉′xs.

Since Φ′′1 = Φ′′1
+ ] Φ′′1

− and X1 is linearly independent, it follows

from above that 〈xt, ys〉′ ≥ 0 and upon combining with (D2), this

in turn yields that 〈xt, ys〉′ = 0. In a similar way, we may deduce that

〈xt, ys〉′ = 0 implies that 〈xs, yt〉′ = 0, thus proving (D3).

Observe that if 〈xs, yt〉′ = 0 and 〈xt, ys〉′ = 0 then

〈xs, yt〉′〈xt, ys〉′ = cos2(π/2),

satisfying (D4). Thus to prove that (D4) holds, we may assume that

〈xs, yt〉′ 6= 0 and 〈xt, ys〉′ 6= 0. Now let A , γ, q,X,A and B be as defined

above. We set

A = R;

q = 1;

γ =
√
〈xs, yt〉′〈xt, ys〉′;

and

X =
−〈xt, ys〉′√
〈xs, yt〉′〈xt, ys〉′

.

Compared with the proofs of Lemma 1.1.6 and Lemma 1.1.8 we see that

A and B are the matrices representing the actions of ρ1(xs) and ρ1(xt)

respectively on the 〈{ρ1(xs), ρ1(xt)}〉-invariant subspace Rxs+Rxt. By

(2.1.1) and (2.1.4) the condition

〈{ρ1(xs), ρ1(xt)}〉xs ∪ 〈{ρ1(xs), ρ1(xt)}〉xt ⊆ Φ′′1
+ ] Φ′′1

−

is equivalent to pnpn+1 ≥ 0 for all n ∈ N. By Lemma 2.1.2 above, the

condition pnpn+1 ≥ 0 for all n ∈ N is, in turn, equivalent to

〈xs, yt〉′〈xt, ys〉′ ∈ {cos2 π

m
| m ∈ N and m ≥ 2} ∪ [1,∞),

whence (D4) holds.
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�

Now we are ready for the main result of this section:

Theorem 2.1.3. The following are equivalent:

(1) for each i ∈ {1, 2}, Φ′′i = Φ′′i
+ ] Φ′′i

−;

(2) (S ′′, spanX1, spanX2, X1, X2, 〈 , 〉′ ) is a Coxeter datum.

Proof. Suppose that (1) holds. It follows from the definition of 〈 , 〉′

and Proposition 2.1.1 above that conditions (C1) to (C5) of the defini-

tion for a Coxeter datum are all satisfied in our present situation. Since

X1 and X2 are linearly independent, it is clear that 0 /∈ PLC(X1) and

0 /∈ PLC(X2), showing that (C6) of the definition of a Coxeter datum

is also satisfied. Thus (1) implies (2).

Suppose that (2) holds. Then (1) simply follows from Lemma 1.2.4

applied to the Coxeter datum (S ′′, spanX1, spanX2, X1, X2, 〈 , 〉′ ). �

Proposition 2.1.4. Suppose that conditions (D2), (D3) and (D4) of

Proposition 2.1.1 are satisfied. Then (W ′′
1 , R

′′
1) and (W ′′

2 , R
′′
2) are iso-

morphic Coxeter systems. Furthermore if s, t ∈ S ′′, s 6= t, then

ord(ρ1(xs)ρ1(xt)) =

m if 〈xs, yt〉′〈xt, ys〉′ = cos2 π
m
,m ∈ N,m ≥ 2

∞ if 〈xs, yt〉′〈xt, ys〉′ ≥ 1.

Proof. Keep all notation as in Chapter 1. We have already observed

that (S ′′, spanX1, spanX2, X1, X2, 〈 , 〉′) is a Coxeter datum; then The-

orems 1.1.4 and 1.1.15 yields that (W ′′
1 , R

′′
1) and (W ′′

2 , R
′′
2) are isomor-

phic Coxeter systems. Furthermore, applying Lemma 1.1.8 (ii) and

Proposition 1.1.9 to this Coxeter datum, we duduce that for distinct

s, t ∈ S ′′,

ord(ρ1(xs)ρ1(xt)) =

m if 〈xs, yt〉′〈xt, ys〉′ = cos2 π
m
,m ∈ N,m ≥ 2

∞ if 〈xs, yt〉′〈xt, ys〉′ ≥ 1.

�
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2.2. Canonical Generators of Reflection Root Subsystems

Keep all notation as in Chapter 1. Recall that T =
⋃

w∈W
wRw−1 is

the set of reflections in W .

Suppose that W ′ is a subgroup of W . We say that W ′ is a reflection

subgroup of W whenever W ′ = 〈W ∩ T 〉. For each i ∈ {1, 2}, if Φ′i is a

subset of Φi such that rxy ∈ Φ′i whenever x, y ∈ Φ′i, then we call Φ′i a

root subsystem of Φi.

If W ′ is a reflection subgroup of W , set

Φi(W
′) := {x ∈ Φi | rx ∈ W ′ }.

Let x, y ∈ Φi(W
′). Then rx, ry ∈ W ′ ∩ T . Since Lemma 1.3.16 yields

that r(rxy) = rxryrx, it follows that r(rxy) ∈ W ′ ∩ T showing that

rxy ∈ Φi(W
′). Therefore Φi(W

′) is a root subsystem of Φi and we

call Φi(W
′) the root subsystem corresponding to W ′. It can be seen

(for example, (1.4.2) of [11]) that the above correspondence gives a

bijection between reflection subgroups W ′ ⊆ W and root subsystem

Φi(W
′) ⊆ Φi. Observe that Φ(W ′) is stable under the action of W ′,

indeed:

Lemma 2.2.1. Let W ′ be a reflection subgroup of W . Then for each

i ∈ {1, 2}

W ′Φi(W
′) = Φi(W

′).

Proof. We prove that W ′Φ1(W ′) = Φ1(W ′) here and we stress that

the other half follows in the same way. Let w ∈ W ′. By definition, we

have w = t1t2 · · · tn where t1, t2, . . . , tn ∈ W ′ ∩ T . The definition of T

yields that, for all i ∈ {1, 2, . . . , n},

ti = wirsiw
−1
i = r(wiαsi )︸ ︷︷ ︸

by Lemma 1.3.16

for some wi ∈ W and si ∈ S. Since r(wiαsi )
∈ W ′, it follows that

wiαsi ∈ Φ1(W ′). Now let x ∈ Φ1(W ′) be arbitrary. It follows from

the definition of a root subsystem that tnx = rwnαsnx ∈ Φ1(W ′).
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This in turn yields that tn−1tnx ∈ Φ1(W ′) and so on. In particu-

lar, wx = t1 · · · tnx ∈ Φ1(W ′). Since x ∈ Φ1(W ′) is arbitrary, it follows

that wΦ1(W ′) ⊆ Φ1(W ′). Finally, replacing w by w−1 we see that

Φ1(W ′) ⊆ wΦ1(W ′). �

Definition 2.2.2. Let W ′ be a reflection subgroup of W . For each

i ∈ {1, 2}, set

∆i(W
′) := {x ∈ Φ+

i | Ni(rx) ∩ Φ̂i(W ′) = {x̂} }.

We call ∆i(W
′) the canonical roots or canonical generators of Φi(W

′).

The key result in this section is a criterion for a set of positive

roots in Φi(W
′), for some reflection subgroup W ′ of W , to be the set

of canonical roots of Φi(W
′). Note that at this stage it is not entirely

obvious that Φi(W
′) is generated by ∆i(W

′), and we shall prove this

fact in (iii) of Lemma 2.2.6 below. We acknowledge that the works

presented here closely follow those in Chapter 3 of [1].

Remark 2.2.3. (1) Note that for each α ∈ Φ1, rα = rφ(α) (where

φ is as in Definition 1.2.18), and it follows that for any reflection

subgroup W ′ of W , φ(Φ1(W ′)) = Φ2(W ′).

(2) For α1, α2 ∈ Φ+
1 , Corollary 1.3.4 yields that rα1α ∈ Φ−1 if and

only if rφ(α1)φ(α2) ∈ Φ−2 . Thus N2(rφ(α1)) = φ(N1(rα1)).

These observations lead to:

Lemma 2.2.4. For any reflection subgroup W ′ of W , φ restricts to a

bijection

∆1(W ′)↔ ∆2(W ′).

�

Immediately from this observation we deduce that, for any reflection

subgroup W ′ of W ,

{ rα ∈ T | α ∈ ∆1(W ′) } = { rβ ∈ T | β ∈ ∆2(W ′) }

and we shall give a set like this a special name:
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Definition 2.2.5. Let W ′ be a reflection subgroup of W . Set

S(W ′) := { rx ∈ T | x ∈ ∆i(W
′)} for any i ∈ {1, 2} .

Observe that the definitions of N1(w), N2(w) (w ∈ W ) and Propo-

sition 1.3.17 yield that

S(W ′) = { t ∈ W ′ ∩ T | if t′ ∈ W ′ ∩ T with l(tt′) < l(t) then t = t′ }.

Thus our S(W ′) here defines the same set of reflections in W ′ as the

set denoted by S(W ′) in [1] (see 1.6 and Theorem 1.8 of [1]). Hence

we may apply Theorem 1.8 of [1] directly:

Lemma 2.2.6. Let W ′ be a reflection subgroup of W .

(i) (Lemma (1.7) (ii) [1]) If t ∈ W ′ ∩ T , then there exist m ∈ N
and t0, · · · , tm ∈ S(W ′) such that t = tm · · · t1t0t1 · · · tm.

(ii) (Thorem (1.8) (i) [1]) (W ′, S(W ′)) is a Coxeter system.

(iii) For each i ∈ {1, 2}, let x ∈ Πi \ Φi(W
′). Then

∆i(rxW
′rx) = rx∆i(W

′).

(iv) For each i ∈ {1, 2}, Φi(W
′) = W ′∆i(W

′).

Proof. Only (iii) and (iv) need to be proved here.

(iii): It is readily checked that rΦi(W
′) = Φi(rW

′r) for all r ∈ T .

Since x ∈ Πi \ Φi(W
′), it follows that rx ∈ R \W ′. Let y ∈ ∆i(W

′) be
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arbitrary. Then

Ni(r(rxy)) ∩ ̂Φi(rxW ′rx)

= Ni(rxryrx) ∩ ̂Φi(rxW ′rx)

(by Lemma 1.3.16)

= (rxNi(rxry)uNi(rx)) ∩ ̂Φi(rxW ′rx)

(by Lemma 1.2.12 (iii))

= (rxryNi(rx)u rxNi(ry)uNi(rx)) ∩ ̂Φi(rxW ′rx)

(again by Lemma 1.2.12 (iii))

= rx((ryNi(rx)uNi(ry)uNi(rx)) ∩ Φ̂i(W ′))

= rx((ry{x̂}uNi(ry)u {x̂}) ∩ Φ̂i(W ′))

(by Lemma 1.2.12 (i))

= rx(Ni(ry) ∩ Φ̂i(W ′))

(since x̂, ryx̂ /∈ Φ̂i(W ′))

= {r̂xy}.

Hence rxy ∈ ∆i(rxW
′rx). This proves that rx∆i(W

′) ⊆ ∆i(rxW
′rx).

But x ∈ Πi\rxΦi(W
′), so the above yields that rx∆i(rxW

′rx) ⊆ ∆i(W
′)

proving the desired result.

(iv): Since ∆i(W
′) ⊆ Φi(W

′) for each i ∈ {1, 2} and Φi(W
′) is a

root subsystem it follows that r∆i(W
′) ⊆ Φi(W

′) for all r ∈ S(W ′).

Then part (ii) above yields that W ′∆i(W
′) ⊆ Φi(W

′).

Conversely if x ∈ Φi(W
′) then rx ∈ W ′ ∩ T . By (i) above there are

x0, x1, · · · , xm ∈ ∆i(W
′) (m ∈ N) such that

rx = rxm · · · rx1rx0rx1 · · · rxm .

Thus Lemma 1.3.16 yields that λx = r(rxm ···rx1 )(x0) ∈ W ′Φi(W
′) for

some (nonzero) scalar λ. Since 1
λ
x0 = (r(rxm ···rx1 ))

−1(x) ∈ Φi, it follows

that 1
λ
x0 ∈ ∆i(W

′) and hence x = r(rxm ···rx1 )(
1
λ
x0) ∈ W ′∆i(W

′) as

required. �
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Definition 2.2.7. Let W ′ be a reflection subgroup of W , and let

l′ : W ′ → N be the length function on (W ′, S(W ′)) defined by

l′(w) = min{n ∈ N | w = r1 · · · rn, where ri ∈ S(W ′) }.

If w = r1 · · · rn ∈ W ′ (ri ∈ S(W ′)) and n = l′(w) then r1 · · · rn is called

a reduced expression for w (with respect to S(W ′)).

Lemma 2.2.8. Let W ′ be a reflection subgroup. For each i ∈ {1, 2},

(i) Ni(rx) ∩ Φ̂i(W ′) = {x̂} for all x ∈ ∆i(W
′);

(ii) for all w1 ∈ W and w2 ∈ W ′

Ni(w1w2) ∩ Φ̂i(W ′) = w−1
2 (Ni(w1) ∩ Φ̂i(W ′))u (Ni(w2) ∩ Φ̂i(W ′)).

Proof. (i) is just the definition of ∆i(W
′).

(ii) Lemma 1.2.12(iii) yields thatNi(w1w2) = w−1
2 Ni(w1)uNi(w2),

and hence

Ni(w1w2) ∩ Φ̂i(W ′) = (w−1
2 Ni(w1) ∩ Φ̂i(W ′))u (Ni(w2) ∩ Φ̂i(W ′)).

Since w2 ∈ W ′ it follows from Lemma 2.2.1 that w−1
2 Φ̂i(W ′) = Φ̂i(W ′).

Thus w−1
2 Ni(w1) ∩ Φ̂i(W ′) = w−1

2 (Ni(w1) ∩ Φ̂i(W ′)) giving us

Ni(w1w2) ∩ Φ̂i(W ′) = w−1
2 (Ni(w1) ∩ Φ̂i(W ′))u (Ni(w2) ∩ Φ̂i(W ′)).

�

Lemma 2.2.9. Let W ′ be a reflection subgroup. For each i ∈ {1, 2}
and all w ∈ W ′, we have

(i) |Ni(w)∩Φ̂i(W ′)| = l′(w). Furthermore, if w = rx1 · · · rxn is reduced

with respect to (W ′, S(W ′)) then

Ni(w) ∩ Φ̂i(W ′) = {ŷ1, · · · ŷn}

where yj = (rxn · · · rxj+1
)xj for all j = 1, · · · , n.

(i) Ni(w) ∩ Φ̂i(W ′) = {x̂ ∈ Φ̂i(W ′) | l′(wrx) < l′(w)}.
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Proof. (i): For each j ∈ {1, · · · , n}, set tj = rxn · · · rxj+1
rxjrxj+1

· · · rxn ,

that is, tj = ryj . If tj = tk where j > k then

w = rx1 · · · rxk−1
rxk+1

· · · rxntk

= rx1 · · · rxk−1
rxk+1

· · · rxntj

= rx1 · · · rxk−1
rxk+1

· · · rxj−1
rxj+1

· · · rxn

contradicting l′(w) = n. Hence the tj’s are all distinct and conse-

quently all the ŷj’s are all distinct. Now by repeated application of

Lemma 2.2.8 (ii), for each i ∈ {1, 2} we have

Ni(w) ∩ Φ̂i(W ′)

= (Ni(rxn ∩ Φ̂i(W ′))u rxn(Ni(rn−1) ∩ Φ̂i(W ′))u · · ·

u rxn · · · rx2(Ni(rx1) ∩ Φ̂i(W ′))

= {ŷn}u {ŷn−1}u · · ·u {ŷ1}

= { ŷ1, · · · , ŷn }

and consequently |Ni(w) ∩ Φ̂i(W ′)| = l′(w).

(ii): Let w = rx1 · · · rxn be a reduced expression for w ∈ W ′ with

respect to S(W ′) (xj ∈ ∆i(W
′)). Then (i) yields that for each i ∈ {1, 2}

Ni(w) ∩ Φ̂i(W ′) = { ŷ1, · · · , ŷn }

where yj = (rxn · · · rxj+1
)xj, for all j ∈ {1, · · · , n}. Now for each such j,

wryj = wrxn · · · rxj+1
rxjrxj+1

· · · rxn = rx1 · · · rxj−1
rxj+1

· · · rxn

and so l′(wryj) ≤ n − 1 < l′(w). Hence if x̂ ∈ Ni(w) ∩ Φ̂i(W ′), then

l′(wrx) < l′(w).

Conversely suppose that x ∈ Φi(W
′) ∩ Φ+

i and x̂ /∈ Ni(w). Then

x̂ /∈ rx(Ni(w) ∩ Φ̂i(W ′)). But x̂ ∈ Ni(rx) ∩ Φ̂i(W ′), so

x̂ ∈ rx(Ni(w) ∩ Φ̂i(W ′))u (Ni(rx) ∩ Φ̂i(W ′)) = Ni(wrx) ∩ Φ̂i(W ′)

and by what has just been proved, this implies that

l′(w) = l′((wrx)rx) < l′(wrx).
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Therefore if x ∈ Φi(W
′) ∩ Φ+

i such that l′(wrx) < l′(w), then we must

have x̂ ∈ Ni(w) ∩ Φ̂i(W ′). �

Lemma 2.2.10. ((Lemma 3.2) of [1]) Let W ′ be a reflection subgroup

of W . For each i ∈ {1, 2}, let x, y ∈ ∆i(W
′) such that rx 6= ry. Let

n = ord(rxry). Then for 0 ≤ m < n

· · · ryrxry︸ ︷︷ ︸
m factors

x ∈ Φ+
i and · · · rxryrx︸ ︷︷ ︸

m factors

y ∈ Φ+
i .

Proof. Since x, y ∈ ∆i(W
′) it follows that

l′((· · · ryrxry︸ ︷︷ ︸
m factors

)rx) = m+ 1 > m = l′(· · · ryrxry︸ ︷︷ ︸
m factors

)

whenever m < n. Then Lemma 2.2.9 (ii) yields that

x̂ /∈ Ni( (· · · ryrxry)︸ ︷︷ ︸
m factors

) ∩ Φ̂i(W ′).

Therefore (· · · ryrxry)︸ ︷︷ ︸
m factors

x ∈ Φ+
i .

By symmetry (· · · rxryrx)︸ ︷︷ ︸
m factors

y ∈ Φ+
i too. �

Lemma 2.2.11. ((Lemma 3.3) of [1]) Let W ′ be a reflection subgroup

of W . For each i ∈ {1, 2}, let x, y ∈ ∆i(W
′) with rx 6= ry. Let

n = ord(rxry) and write

(· · · ryrxry)︸ ︷︷ ︸
m factors

x = cmx+ dmy and (· · · rxryrx)︸ ︷︷ ︸
m factors

y = c′mx+ d′my.

Then cm ≥ 0, dm ≥ 0, c′m ≥ 0 and d′m ≥ 0 whenever m < n.

Proof. By symmetry, it will suffice to prove that dm ≥ 0 and d′m ≥ 0.

The proof of this will be based on an induction on l(rx).

Suppose first that l(rx) = 1. Then λx ∈ Πi for some λ > 0. Write

y =
∑
z∈Πi

λzz where λz ≥ 0 for all z ∈ Πi. In fact, λz0 > 0 for some

z0 ∈ Πi \ {x}, since otherwise we would have y ∈ Rx and so rx = ry.



56 2. Special Topics in Non-Orthogonal Setting

Now for 0 ≤ m < n, Lemma 2.2.10 yields that

(· · · ryrxry︸ ︷︷ ︸
m factors

)x = cmx+
∑
z∈Πi

dmλzz.

Observe that the coefficient of z0 in this is dmλz0 ≥ 0. Since λz0 > 0,

it follows that dm ≥ 0. Similarly d′m ≥ 0.

Suppose inductively now that the result is true for reflection sub-

groups W ′′ of W and x′, y′ ∈ ∆i(W
′′) with rx 6= ry and l(rx′) < l(rx)

where l(rx) ≥ 3. It is well know that there exists rz ∈ R (so z ∈ Πi) that

l(rzrxrz) = l(rx) − 2. Then l(rxrz) < l(rx), and thus ẑ ∈ Ni(rx). But

since x ∈ ∆i(W
′) and x 6= z (since l(rx) ≥ 3), it follows that rz /∈ W ′.

Let W ′′ = rzW
′rz. Lemma 2.2.6 (iii) yields that ∆i(W

′′) = rz∆i(W
′)

and therefore rzx, rzy ∈ ∆i(W
′′). Now

(2.2.1) r(rzx) = rzrxrz and r(rzy) = rzryrz

and hence ord(r(rzx)r(rzy)) = ord(rxry) = n. Since l(r(rzx)) = l(rx)− 2,

the inductive hypothesis gives

(· · · r(rzy)r(rzx)r(rzy)︸ ︷︷ ︸
m factors

)(rzx) = cm(rzx) + dm(rzy)

and

(· · · r(rzx)r(rzy)r(rzx)︸ ︷︷ ︸
m factors

)(rzy) = c′m(rzx) + d′m(rzy)

where dm, d
′
m ≥ 0 for 0 ≤ m < n. By (2.2.1) the result follows on

applying rz to both sides of the last two equations. �

Proposition 2.2.12. Let W ′ be a reflection subgroup of W . Suppose

that x, y ∈ ∆1(W ′) with rx 6= ry. Let n = ord(rxry) ∈ {∞} ∪ N. Then

〈x, φ(y)〉 ≤ 0

and 〈x, φ(y)〉〈y, φ(x)〉 = cos2 π
n

(n ∈ N, n ≥ 2)

〈x, φ(y)〉〈y, φ(x)〉 ∈ [1,∞) (n =∞)
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Proof. Observe that since rφ(x) = rx 6= ry = rφ(y), it follows that

{x, y} and {φ(x), φ(y)} are both linearly independent. Therefore we

may apply last section to the present situation, that is,

X1 = {x, y} X2 = {φ(x), φ(y)} ψ = φ 〈 , 〉′ = 〈 , 〉

and

R′′1 = R′′2 = {rx, ry} W ′′
1 = W ′′

2 = 〈{rx, ry}〉

Consequently Φ′′1 = W ′′
1X1 = 〈{rx, ry}〉{x, y}. Observe that the ele-

ments of Ψ are ±(· · · ryrxry︸ ︷︷ ︸
m factors

)x and ±(· · · rxryrx︸ ︷︷ ︸
m factors

)y (0 ≤ m < ord(rxry)).

Lemma 2.2.11 then yields that

Ψ = Ψ+ ]Ψ−.

Therefore Proposition 2.1.1 yields that〈x, φ(y)〉〈y, φ(x)〉 = cos2 π
n

(n ∈ N, n ≥ 2)

〈x, φ(y)〉〈y, φ(x)〉 ∈ [1,∞) (n =∞).

�

Let ∆1 be a subset of Φ+
1 satisfying the following conditions:

(1) rx 6= ry for all x, y ∈ ∆1, x 6= y.

(2) 〈x, φ(y)〉 ≤ 0 for all x, y ∈ ∆1, x 6= y.

(3) 〈x, φ(y)〉〈y, φ(x)〉 ∈ { cos2 π
m
| m ∈ N,m ≥ 2 } ∪ [1,∞), for all

x, y ∈ ∆1.

Let W ′ = 〈rx | x ∈ ∆1〉. The rest of this section is devoted to

showing that

{λx ∈ Φ+
1 | λ > 0, x ∈ ∆1 } = ∆1(W ′).

Most of the arguments to be used in proving this are adapted from [1].

Let ∆′1 be a subset of ∆1.

Let U be a vector space over R on a basis Π := { ex | x ∈ ∆′1 }. Let

U ′ be a vector space over R on a basis Π′ := { fφ(x) | x ∈ ∆′1 }.
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Define a bilinear map 〈 , 〉 : U × U ′ → R by requiring

〈ex, fφ(y)〉 = 〈x, φ(y)〉 for all x, y ∈ ∆′1.

For each x ∈ ∆′1, define a linear transformation ρx : U → U by

ρx(u) := u− 2〈u, fφ(x)〉ex for all u ∈ U .

Let

R′′ = { ρx | x ∈ ∆′1 };

W ′′ = 〈R′′〉;

Ψ = W ′′Π;

Ψ+ = Ψ ∩ PLC(π);

Ψ− = −Ψ+.

Observe that (∆′1, U, U
′,Π,Π′, 〈 , 〉) is a Coxeter datum, and it follows

by Theorem 1.1.4 (as well as Proposition 2.1.4 above) that (W ′′, R′′) is

a Coxeter system. Let l′′ : W ′′ → N be the length function on (W ′′, R′′).

Corollary 1.2.5 applied to this Coxeter datum yields that:

Proposition 2.2.13. Suppose that w′′ ∈ W ′′ and x ∈ ∆′1. Then

l′′(w′′ρx) =

l′′(w′′)− 1 if w′′ex ∈ Ψ−

l′′(w′′) + 1 if w′′ex ∈ Ψ+. �

Note that by Proposition 2.1.4, for x, y ∈ ∆1 with x 6= y we have:

ord(ρx, ρy)

=

m 〈ex, fφ(y)〉〈ey, fφ(x)〉 = cos2 π
m
,m ∈ N,m ≥ 2

∞ 〈ex, fφ(y)〉〈ey, fφ(x)〉 ≥ 1

=

m 〈x, φ(y)〉〈y, φ(x)〉 = cos2 π
m
,m ∈ N,m ≥ 2

∞ 〈x, φ(y)〉〈y, φ(x)〉 ≥ 1

= ord(rxry) (by Lemma 1.1.8 (ii) and Proposition 1.1.9 )
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Since W ′′ = 〈R′′ 〉 the above yield that there exists a homomor-

phism

θ : W ′′ → W ′ such that θ(ρx) = rx, x ∈ ∆′1.

Next let L : U → V1 be the R-linear map such that L(ex) = x, for

all x ∈ ∆′1. We claim that

(2.2.2) L(w′′u) = θ(w′′)L(u) w′′ ∈ W ′′, u ∈ U .

To prove (2.2.2) first observe that if x, y ∈ ∆′1, then

L(ρx(ey))

= L(ey − 2〈ey, fφ(x)〉ex)

= y − 2〈ey, fφ(x)〉x

= y − 2〈y, φ(x)〉x

= rxy

= θ(ρx)L(ey).

By linearity, this gives that for all x ∈ ∆′1,

L(ρx(u)) = θ(ρx)L(U) for all u ∈ U .

Since W ′′ = 〈 ρx | x ∈ ∆′1 〉 and θ is a homomorphism, the claim (2.2.2)

therefore follows by an induction on the length of w′′ in (W ′′, R′′).

The following is an adaptation of Lemma 3.6 of [1] into our present

situation.

Proposition 2.2.14. With the above notation,

∆1(W ′) ⊆ {λz ∈ Φ+
1 | λ > 0, z ∈ ∆1 }.

Proof. Take ∆′1 = ∆1. Since

θ(R′′) = { rx | x ∈ ∆i } and W ′ = 〈 rx | x ∈ ∆i 〉

it follows that θ is surjective.

Let x ∈ ∆1(W ′). Choose w ∈ W ′′ with θ(w) = rx ∈ W ′. Now let

ρx1 · · · ρxn (xi ∈ ∆′1) be a reduced expression for w in (W ′′, R′′). Note
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that n ≥ 1. Now l′′(wρxn) < l′′(w), so by Proposition 2.2.13 we have

wexn ∈ Ψ−, say

wexn = −
∑
y∈∆′1

cyey where cy ≥ 0 for all y ∈ ∆′1.

Hence

rx(xn) = θ(w)L(exn) = L(wexn) = L(−
∑
y∈∆′1

cyey) = −
∑
y∈∆′1

cyy.

Clearly rx(xn) ∈ Φ1 and because each y ∈ ∆1 can be expressed as a

nonnegative linear combination of elements of Π1, so it follows that

rx(xn) ∈ Φ−1 . Since xn ∈ ∆1 ⊆ Φ1(W ′) ⊆ Φ+
1 so it follows that

(2.2.3) x̂n ∈ N1(rx) ∩ Φ̂1(W ′).

But x ∈ ∆1(W ′) and so (2.2.3) above yields that x = λxn for some

positive scalar λ. Since x ∈ ∆1(W ′) was arbitrary it follows that

∆1(W ′) ⊆ {λz ∈ Φ+
1 | λ > 0, z ∈ ∆1 }.

�

The following is a generalization of Proposition 3.7 of [1].

Proposition 2.2.15. With the above notation

∆1(W ′) = {λz ∈ Φ+
1 | λ > 0, z ∈ ∆1 }.

Proof. Take ∆′1 = ∆1(W ′); this is possible by Proposition 2.2.14 and

Proposition 2.2.12.

Since (W ′, S(W ′)) is a Coxeter system we know that

θ : (W ′′, R′′)→ (W ′, S(W ′))

is a Coxeter system isomorphism. In particular

(2.2.4) l′(θ(w′′)) = l′′(w′′) for all w′′ ∈ W ′′

where l′ is the length function on (W ′, S(W ′)).
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Let x ∈ ∆1. Then rx ∈ W ′ ∩ T . By Lemma 2.2.6 (i), there exist

x0, · · · , xn ∈ ∆1(W ′) = ∆′1 such that

rx = rxn · · · rx1rx0rx1 · · · rxn .

Since rxn · · · rx1rx0rx0rx0rx1 · · · rxn = rxn · · · rx1rx0rx1 · · · rxn , there is no

loss of generality in assuming that l′(rxn · · · rx1rx0) > l′(rxn · · · rx1).
Then (2.2.4) yields that

l′′(ρxn · · · ρx1ρx0) > l′′(ρxn · · · ρx1),

and thus by Proposition 2.2.13 y := ρxn · · · ρx1(ex0) ∈ Ψ+, say

y =
∑
z∈∆′1

czez where cz ≥ 0 for all z ∈ ∆′1.

Now we have L(y) = rxn · · · rx1(x0) =
∑
z∈∆′1

czz ∈ Φ+
1 . Write y′ = L(y).

Then

ry′ = rxn · · · rx1rx0rx1 · · · rxn = rx.

Since x, y′ ∈ Φ+
1 the above yields that x = µy′ =

∑
z∈∆′1

(µcz)z for some

positive scalar µ.

Now suppose that x /∈ ∆′1(W ′) = ∆′1. Then by the definition of ∆1,

〈x, φ(z)〉 ≤ 0 for all z ∈ ∆′1, since x 6= z.

By Corollay 1.3.13 this imples that 〈z, φ(x)〉 ≤ 0. But now

1 = 〈x, φ(x)〉 = 〈
∑
z∈∆′1

(µcz)z, φ(x)〉 =
∑
z∈∆′1

(µcz)〈z, φ(x)〉 ≤ 0.

This contradiction shows that the assumption x /∈ ∆′1(W ′) is false.

Since x ∈ ∆1 was arbitrary it follows that ∆1 ⊆ ∆1(W ′). Observe that

if α ∈ ∆1(W ′) then λα ∈ ∆1(W ′) whenever λα ∈ Φ+
1 . Thus

(2.2.5) {λx ∈ Φ+
1 | λ > 0, x ∈ ∆1 } ⊆ ∆1(W ′).

Finally, (2.2.5) and Proposition 2.2.14 together yield that

{λx ∈ Φ+
1 | λ > 0, x ∈ ∆1 } ⊆ ∆1(W ′).

�
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2.3. Comparison with the Standard Geometric Realisation

of Coxeter Groups

In this section we study the connections between the non-orthogonal

geometric realization studied in Chapter 1 with the classical Tits rep-

resention (the standard orthogonal geometric realisation, in the sense

of [10] and [12]) of Coxeter groups. We pay special attention to a

comparisons between the canonical coefficients defined in section 1.2

and their natural counterparts in the classical theory.

Definition 2.3.1. Let V be a vector space over the real field R, and let

( , ) : V × V → R be a symmetric bilinear form. let Π := { γs | s ∈ S }
be a set of linearly independent vectors satisfying the the following

conditions:

(C1’) (γs, γs) = 1, for all s ∈ S;

(C2’) (γs, γt) ≤ 0, for all s, t ∈ S, s 6= t;

(C3’) (γs, γt)
2 = 〈αs, βt〉〈αt, βs〉, for all s, t ∈ S.

Let ρ : S → GL(V ) be defined by

ρ(s)(v) : v − 2(v, γs)γs

for all v ∈ V .

Again it is readily checked that C ′′ = (S, V, V,Π,Π, ( , )) is a Cox-

eter datum with Coxeter parameters mst, s, t ∈ S. Let W be the

associated abstract Coxeter group. Then by Theorem 1.1.4, there is an

isomorphism

f : W → 〈 ρ(s) | s ∈ S 〉 satisfying f(rs) = ρ(s) for all s ∈ S.

We refer to such V as the associated (to the non-orthogonal geometric

realization) Standard geometric realisation (Tits representation) of W .

Definition 2.3.2. For all w ∈ W and v ∈ V , we write wv in place of

f(w)v, and let the root system of W in V be denoted by

Φ := WΠ = {wγs | w ∈ W, s ∈ S },
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and we call the elements of Φ the set of roots of W in V . Given γ ∈ Φ,

and s ∈ S, define coeffγs ∈ R by requiring that γ =
∑
s∈S

coeffγs(γ)γs.

Define Φ+ := Φ ∩ PLC(Π), and call elements of Φ+ the set of positive

roots in V ; define Φ− = −Φ+, and call the elements of Φ− the set of

negative roots in V .

For γ ∈ Φ+, define the depth of γ (denoted by dp(γ)) to be

dp(γ) = min{m ∈ N | w ∈ W such that wγ ∈ Φ− and l(w) = m }.

For γ1, γ2 ∈ Φ+, write γ1 � γ2 if there exists some w ∈ W such that

γ2 = wγ1, and dp(γ2) = dp(γ1) + l(w). Write γ1 ≺ γ2 if γ1 � γ2 and

γ1 6= γ2. If γ1 � γ2, we say that γ1 precedes γ2.

For each γ ∈ Φ, define the reflection corresponding to γ, rγ : V → V

to be the linear transformation given by

rγ(v) = v − 2(v, γ)γ, for all v ∈ V .

Observe that the above defintions give a Standard Tits represen-

tation of W in the sense of [12] and [10]. It can be readily checked

that ( , ) is W -invariant, that is, (x, y) = (wx,wy) for all x, y ∈ V and

w ∈ W . Suppose that x ∈ Φ and λx ∈ Φ for some scalar λ. Then

x = wγs for some w ∈ W and s ∈ S, and it follows from what we have

just noted that

(x, x) = (wγs, wγs) = (γs, γs) = 1.

Then λ2 = λ2(x, x) = (λx, λx) = (wγs, wγs) = (γs, γs) = 1 that is,

λ = ±1. Thus we conclude that in Φ the only non trivial scalar multiple

of a root is its negative.

Adapting the results obtained in Section 1.1 and Section 1.3 into

the associated standard realization, we have:

Lemma 2.3.3. (i) (Lemma 1.2.4) Φ = Φ+ ] Φ−.

(ii) (Lemma 1.2.13) W is finite if and only if Φ is finite.

(iii) (Lemma 1.2.1) The symmetric bilinear form (, ) is W -invariant,

that is, for all u, v ∈ V and for all w ∈ W , (u, v) = (wu,wv).
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(iv) (Lemma 1.2.5) If w ∈ W and s ∈ S, then

l(wrs) =

l(w) + 1 if wγs ∈ Φ+,

l(w)− 1 if wγs ∈ Φ−.

(v) (Lemma 1.7 of [6]) Let s ∈ S and γ ∈ Φ+ \ γs. Then

dp(rsγ) =


dp(γ)− 1 if (γ, γs) > 0,

dp(γ) if (γ, γs) = 0,

dp(γ) + 1 if (γ, γs) < 0.

(vi) (Proposition 2.1 [5]) Let γ ∈ Φ, and r ∈ S. Then coeffγr(γ) > 0

implies that coeffγr(γ) ≥ 1. Furthermore, if 0 < coeffγr(γ) < 2,

then either coeffγr(γ) = 1 or coeffγr(γ) = 2 cos( π
mr1r2

), where

r1, r2 ∈ S with 4 ≤ mr1r2 <∞.

�

By Lemma 2.3.3(i), for any given γ ∈ Φ, coeffγs(γ) are of the same

sign for all s ∈ S (either all non-negative or all non-positive). The

support supp(γ) of γ is the set of all γs ∈ Π with coeffγs(γ) 6= 0.

The following result establishes the connection between the non-

orthogonal geometric realisation of W and the Tits representation de-

fined above.

Proposition 2.3.4. There are W -equivariant maps f1 : Φ1 → Φ, and

f2 : Φ2 → Φ, satisfying

f1(αs) = γs = f2(βs)

for all s ∈ S.

Proof. This result follows from similar arguments to those used to

prove Proposition 1.2.9 and Proposition 1.2.17. �

Remark 2.3.5. Unlike in Proposition 1.2.9, we stress that these W -

equivariant maps f1 and f2 are not injective in general.
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Lemma 2.3.6. Suppose that α ∈ Φ1. Then α ∈ Φ+
1 implies that

f1(α) ∈ Φ+, and α ∈ Φ−1 implies that f1(α) ∈ Φ−.

Proof. Let α ∈ Φ1. Then α = wαr, for some w ∈ W , and r ∈ S. If

α ∈ Φ+
1 , then Corollary 1.2.5 yields that l(wrr) = l(w) + 1, in which

case Lemma 2.3.3 (iv) and Proposition 2.3.4 yield that

f1(α) = f1(wαr) = wf1(αr) = wγr ∈ Φ+.

Likewise we see that α ∈ Φ−1 implies that f1(α) ∈ Φ−. �

Lemma 2.3.7. Suppose that α ∈ Φ+
1 . Then dp1(α) = dp(f1(α)), that

is, depth is W -invariant.

Proof. Let w ∈ W be such that wα ∈ Φ−1 , and dp1(α) = l(w). Then

Lemma 2.3.6 and Proposition 2.3.4 yield f1(wα) = wf1(α) ∈ Φ−, and

so dp(f1(α)) ≤ l(w) = dp1(α). By symmetry dp1(α) ≤ dp(f1(α)) as

well, whence equality. �

Corollary 2.3.8. Suppose that α ∈ Φ1, and s ∈ S. Then

(f1(α), γs) > 0 if and only if 〈α, βs〉 > 0,

and

(f1(α), γs) = 0 if and only if 〈α, βs〉 = 0,

and

(f1(α), γs) < 0 if and only if 〈α, βs〉 < 0.

Proof. Follows from Lemma 2.3.7 and Lemma 2.3.3 (v). �

The above can be immediately generalized to the following:

Corollary 2.3.9. Suppose that α1, α2 ∈ Φ1. Then

(f1(α1), f1(α2)) > 0 if and only if 〈α1, φ(α2)〉 > 0,

and

(f1(α1), f1(α2)) = 0 if and only if 〈α1, φ(α2)〉 = 0,

and
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(f1(α1), f1(α2)) < 0 if and only if 〈α1, φ(α2)〉 < 0.

Proof. Apply the same argument used in the proof of Corollary 1.3.13

to Corollary 2.3.8 and the desired result follows.

�

Proposition 2.3.10. For each α ∈ Φ1, and for each r ∈ S,

coeffαr(α) coeffβr(φ(α)) ≥ (coeffγr(f1(α)))2.

Proof. Replace α by −α if necessary, we may assume that α ∈ Φ+
1 and

furthermore, we may write α = wαs, where w ∈ W and s ∈ S. The

proof is based on an induction on l(w). If l(w) = 0, then the result

clearly holds. Thus we may assume that l(w) ≥ 1, and choose t ∈ S
such that l(wrt) = l(w)−1. Then we may write w = w1w2, where w2 is

an alternating product of rs and rt, ending in rt, and w1 is of minimal

length in the coset w〈rs, rt〉. Thus Lemma 1.3.2 yields that

l(w) = l(w1) + l(w2), l(w1rs) > (w1), and l(w1rt) > l(w1).

Consequently Corollary 1.2.5 yields that w1αs ∈ Φ+
1 and w1αt ∈ Φ+

1 .

Now a rank 2 calculation yields that w2αs = pαs + λqαt, where λ is a

positive constant and pq ≥ 0. If p, q < 0 then

α = wαs = w1w2αs = w1(pαs + λqαt) = pw1αs + λqw1αt ∈ Φ−1

contradicting the assumption that α ∈ Φ+
1 . Therefore p, q ≥ 0. Now a

direct rank 2 calculation shows that

w2γs = pγs + qγt, w2αs = pαs + λqαt, and w2βs = pβs + q
λ
βt.

Recall the W -equivariant maps φ1 and φ2 from Proposition 1.2.9 and

we see that the above yields

w2α
′
s = φ1(w2αs) = pα′s + λqα′t and w1β

′
s = φ2(w2βs) = pβ′s + q

λ
β′t.

Now we set

x := coeffαr(α) , x′ := coeffβr(φ(α)) , x′′ := coeffγr(f1(α));

and
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y := coeffαr(w1αs) , y′ := coeffβr(w1βs) , y′′ := coeffγr(w1γs);

and

z := coeffαr(w1αt) , z′ := coeffβr(w1βt) , z′′ := coeffγr(w1γt).

Since l(w1) < l(w), it follows from the inductive hypotheis that

yy′ ≥ (y′′)2 and zz′ ≥ (z′′)2.

Now

xx′ − (x′′)2 = (py + λqz)(py′ + 1
λ
qz′)− (py′′ + qz′′)2

= p2(yy′ − y′′2) + q2(zz′ − z′′2) + pq( 1
λ
yz′ + λzy′ − 2y′′z′′).

From the inductive hypotheis the first two summands are nonnegative.

It follows from the inductive hypotheis and the geometric mean and

arithmetic mean inequality applied to the terms 1
λ
yz′ and λy′z (indeed

1
λ
yz′ + λy′z ≥ 2

√
yy′zz′ ≥ 2y′′z′′︸ ︷︷ ︸

by the inductive hypothesis

) that the third summand

pq( 1
λ
yz′ + λy′z − 2y′′z′′) is also nonnegative, whence xx′ − x′′2 ≥ 0 and

the desired result follows by induction. �

Proposition 2.3.11. Suppose that α1, α2 ∈ Φ1. Then

(2.3.1) 〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ (f1(α1), f1(α2))2.

Proof. Since both 〈 , 〉 and ( , ) are W -invariant, and φ, f1 are W -

equivariant, we may replace α1, and α2 by uα1 and uα2 for a suitable

u ∈ W such that α2 = αs for some s ∈ S. Furthermore, replace α1

by −α1 if needs be, we may assume that α1 ∈ Φ+
1 . We proceed by an

induction on the depth of α1.

If dp1(α1) = 1, then α1 = λαr, where r ∈ S and λ is a positive

constant. Then Corollay 1.2.19 yields that φ(α1) = 1
λ
βr, and hence

〈α1, φ(α2)〉〈α2, φ(α1)〉 = λ〈αr, βs〉 1
λ
〈αs, βr〉 = 〈αr, βs〉〈αs, βr〉

= (γr, γs)
2 (by the definition of ( , ))

= (f1(α1), f1(α2)).
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Thus we may assume that dp1(α1) > 1. Next if 〈α1, βs〉 > 0, then

Lemma 1.3.10 yields that rsα1 ≺1 α1, and hence

〈α1, βs〉〈αs, φ(α1)〉

= 〈rsα1, rsβs〉〈rsαs, φ(rsα1)〉 = (−〈rsα1, βs〉)(−〈αs, φ(rsα1)〉)

≥ (f1(rsα1), γs)
2 (by the inductive hypothesis)

= (f1(α1),−γs)2

= (f1(α1), γs)
2

as required. Thus we may further assume that 〈α1, βs〉 ≤ 0.

Next choose t ∈ S such that rtα1 ≺1 α1. Then Lemma 1.3.10

yields that 〈α1, βt〉 > 0 and, in particular, s 6= t. Let w ∈ W be a

maximal length alternating product of rs and rt ending in rt such that

dp1(wα1) = dp1(α1) − l(w). If w = rs1 · · · rsl is a reduced expression

for w, then Lemma 1.3.8 yields that rslα1 ≺1 α1, that is, 〈α1, βsl〉 > 0.

Therefore s 6= sl, and w has no reduced expression ending in rs. Fur-

thermore, we observe that dp1(wα1) � dp1(α1), and so the inductive

hypotheis yields that

〈wα1, βs〉〈αs, φ(wα1)〉 ≥ (γs, f1(wα1))2(2.3.2)

and

〈wα1, βt〉〈αt, φ(wα1)〉 ≥ (γt, f1(wα1))2.(2.3.3)

Since w has no reduced expression ending in rs, it follows that w

is a product of rs and rt with strictly fewer than mst factors. Thus

by Lemma 1.1.11 (or equally a direct rank 2 calculation) there are

nonnegative constants p, q and positive constant λ such that

wγs = pγs + qγt and wαs = pαs + λqαt and wβs = pβs + 1
λ
qβt.
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Thus

〈α1, βs〉〈αs, φ(α1)〉 − (γs, f1(α1))2

= 〈wα1, wβs〉〈wαs, φ(wα1)〉 − (wγs, f1(wα1))2

( since 〈 , 〉 and ( , ) are W -invariant)

= 〈wα1, pβs + q
λ
βt〉〈pαs + λqαt, φ(wα1)〉 − (f1(wα1), pγs + qγt)

2

= p2(〈wα1, βs〉〈αs, φ(wα1)〉 − (f1(wα1), γs)
2)︸ ︷︷ ︸

A

+ q2(〈wα1, βt〉〈αt, φ(wα1)〉 − (f1(wα1), γs)
2)︸ ︷︷ ︸

B

+ C.

where

C = pq( 1
λ
〈wα1, βt〉〈αs, φ(wα1)〉+ λ〈wα1, βs〉〈αt, φ(wα1)〉

− 2(f1(wα1), γs)(f1(wα1), γt) ).

It follows from (2.3.2) and (2.3.3) that A and B are both nonnegative.

It follows from the geometric mean and arithmetic mean ineqaulity

that

1
λ
〈wα1, βt〉〈αs, φ(wα1)〉+ λ〈wα1, βs〉〈αt, φ(wα1)〉

≥ 2
√
〈wα1, βs〉〈αs, φ(wα1)〉〈wα1, βt〉〈αt, φ(wα1)〉

≥ 2(f1(wα1), γs)(f1(wα1), γt) (by (2.3.2) and (2.3.3)),

that is, C ≥ 0 as well. Therefore 〈α1, βs〉〈αs, φ(α1)〉 ≥ (γs, f1(α1))2,

and the desired result follows by induction. �

Lemma 2.3.12. Suppose that α ∈ Φ1, and t ∈ S. Then coeffαt(α) = 0

if and only if coeffγt(f1(α)) = 0.

Proof. By Proposition 2.3.10 we only need to show that the condition

coeffγt(f1(α)) = 0 implies that coeffαt(α) = 0. Replacing α by −α if

needs be, we may assume that α ∈ Φ+
1 . We may write α = wαr for some

w ∈ W and r ∈ S. If l(w) = 0 then there is nothing to prove. Thus

we may assume that l(w) ≥ 1 and proceed by an induction on l(w).

Choose s ∈ S such that l(wrs) = l(w)− 1, and write w = w1w2 where
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w1 ∈ w〈rr, rs〉 is of minimal length, and w2 is an alternating product

of rr and rs ending in rs. By Lemma 1.3.2, l(w) = l(w1) + l(w2). Since

w2 is a right segment of w, and since α(= wαr) is positive, it follows

that w2αr ∈ Φ+
1 . Again a rank 2 calculation shows that

w2γr = pγr + qγs, w2αr = pαr + λqαs and w2βr = pβr + q
λ
βs

for some non-negative constants p, q and positive constant λ. Again

Proposition 1.2.9 yields that

w2α
′
r = φ1(w2αr) = pα′r + λqα′s and w2β

′
r = φ2(w2βr) = pβ′r + q

λ
α′s.

Then

0 = coeffγt(f1(α)) = coeffγt(wγr) = coeffγt(w1(pγr + qγs))

= p coeffγt(w1γr) + q coeffγt(w1γs).

By Lemma 1.3.2 and Lemma 2.3.3 (iv), w1γr and w1γs are both positive,

and hence

p coeffγt(w1γr) = q coeffγt(w1γs) = 0.

Then the inductive hypothesis yields that

p coeffαt(w1αr) = q coeffαt(w1αs) = 0

and therefore

coeffαt(α) = coeffαt(wαr) = p coeffαt(w1αr) + λq coeffαt(w1αs) = 0

as required. �

Combining the above with Lemma 2.3.6 we immediately have:

Corollary 2.3.13. Suppose that α ∈ Φ1, and t ∈ S. Then

coeffαt(α) = 0 if and only if coeffγt(f1(α)) = 0,

and

coeffαt(α) > 0 if and only if coeffγt(f1(α)) > 0,

and

coeffαt(α) < 0 if and only if coeffγt(f1(α)) < 0. �
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Proposition 2.3.14. Suppose that α ∈ Φ+
1 and r ∈ S. Then

coeffαr(α) coeffβr(φ(α)) = 1 if and only if coeffγr(f1(α)) = 1.

Proof. Suppose that coeffαr(α) coeffβr(φ(α)) = 1. Proposition 2.3.10

and Lemma 2.3.3(vi) combined yield that either coeffγr(f1(α)) = 1

or coeffγr(f1(α)) = 0. Observe that we can rule out the latter for it

contradicts Corollary 2.3.13.

Next for the converse implication, suppose that coeffγr(f1(α)) = 1.

As usual we write α = wαs, w ∈ W and s ∈ S. If l(w) = 0, then there

is nothing to prove. Thus we may assume that l(w) > 0 and proceed

by induction. Again we choose t ∈ S such that l(wrt) = l(w)− 1, and

write w = w1w2, where w1 ∈ w〈rs, rt〉 is of minimal length, and w2 is an

alternating product of rs and rt ending in rt. Lemma 1.3.2 then yields

that, l(w) = l(w1) + l(w2). Since w2 is a right hand segment of w, then

the condition wαs ∈ Φ+
1 yields that w2αs ∈ Φ+

1 , which in turn yields

that w2γs ∈ Φ+ by Corollary 2.3.13. Hence, direct rank 2 calculations

yield that there are nonnegative constants p, q and positive constant λ

such that

w2γs = pγs + qγt ; w2αs = pαs + λqαt ; w2βs = pβs + 1
λ
qβt.

Again Proposition 1.2.9 yields that

w2α
′
s = φ1(w2αs) = pα′s + λqα′t and w2β

′
s = φ2(w2βs) = pβ′s + q

λ
β′t.

And consequently

f1(α) = wγs = w1(pγs + qγt) = pw1γs + qw1γt.

Hence

(2.3.4) 1 = p coeffγr(w1γs) + q coeffγr(w1γt).
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It follows from Lemma 1.3.2 and Lemma 2.3.3 (iv) combined that

w1γs ∈ Φ+ and w1γt ∈ Φ+
1 . Thus Lemma 2.3.3(vi) yields that pre-

cisely one of the following is the case:

coeffγr(w1γs) = p = 1, and q coeffγr(w1γt) = 0

or

coeffγr(w1γt) = q = 1, and p coeffγr(w1γs) = 0.

Since l(w1) < l(w), the inductive hypothesis and Corollary 2.3.13 above

imply either

p2 coeffαr(w1αs) coeffβr(w1βs) = 1, and q coeffαr(w1αt) = 0

or

q2 coeffαr(w1αt) coeffβr(w1βt) = 1, and p coeffαr(w1αs) = 0.

Therefore

coeff αr(α) coeffβr(φ(α))

= coeffαr(pw1αs + λqw1αt) coeffβr(pw1βs + 1
λ
qw1βt)

= (p coeffαr(w1αs) + λq coeffαr(w1αt))·
(p coeffβr(w1βs) + q

λ
coeffβr(w1βt))

= p2 coeffαr(w1αs) coeffβr(w1βs) + 1
λ
pq coeffαr(w1αs) coeffβr(w1βt)

+ λpq coeffαr(w1αt) coeffβr(w1βs) + q2 coeffαr(w1αt) coeffβr(w1βt)

= 1

because precisely one summand is nonzero and is equal to 1. �

Proposition 2.3.15. Suppose that α ∈ Φ+
1 and r ∈ S, such that

1 ≤ coeffαr(α) coeffβr(φ(α)) < 4.

Then either

coeffαr(α) coeffβr(φ(α)) = 1

or

coeffαr(α) coeffβr(φ(α)) = 4 cos2(
π

m
),

where m = mr1r2, for some r1, r2 ∈ S and 4 ≤ m <∞.
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Proof. First we write α = wαs for some w ∈ W and s ∈ S. If l(w) = 0,

then there is nothing to prove. Thus we may assume that l(w) > 0

and proceed by induction again. Similarly as in Propostion 2.3.14, we

choose t ∈ S such that l(wrt) = l(w) − 1, and let w1 ∈ w〈rs, rt〉 be of

minimal length, and w2 ∈ 〈rs, rt〉 such that w = w1w2. Again as in the

proof of Proposition 2.3.14, there are nonnegative constants p, q and

positive constant λ such that

w2γs = pγs + qγt ; w2αs = pαs + λqαt ; w2βs = pβs + 1
λ
qβt.

Again Proposition 1.2.9 yields that

w2α
′
s = φ1(w2αs) = pα′s + λqα′t and w2β

′
s = φ2(w2βs) = pβ′s + q

λ
β′t.

And consequently

coeffαr(α) coeffβr(φ(α))

= coeffαr(w1(pαs + λqαt)) coeffβr(w1(pβs + q
λ
βt))

= (p coeffαr(w1αs) + λq coeffαr(w1αt))

(p coeffβr(w1βs) + q
λ

coeffβr(w1βt))

= p2 coeffαr(w1αs) coeffβr(w1βs) + 1
λ
pq coeffαr(w1αs) coeffβr(w1βt)

+ λpq coeffαr(w1αt) coeffβr(w1βs) + q2 coeffαr(w1αt) coeffβr(w1βt).

Suppose that p, q > 0, coeffαr(w1αs) > 0 and coeffαr(w1αt) > 0. Since

p = coeffγs(w2γs) and q = coeffγt(w2γs), it follows from Lemma 2.3.3(vi)

and Proposition 1.3.3 combined that

p2 coeffαr(w1αs) coeffβr(w1βs) ≥ 1(2.3.5)

and

q2 coeffαr(w1αt) coeffβr(w1βt) ≥ 1(2.3.6)

From these a geometric mean and arithmetic mean inequality argument

yields that

(2.3.7)
1
λ
pq coeffαr(w1αs) coeffβr(w1βt) + λpq coeffαr(w1αt) coeffβr(w1βs) ≥ 2.



74 2. Special Topics in Non-Orthogonal Setting

But (2.3.5), (2.3.6) and (2.3.7) together will give that

coeffαr(α) coeffβr(φ(α)) ≥ 4.

contradicting our assumption. Therefore at least one of the terms p,

q, coeffαr(w1αs) or coeffαr(w1αt) must be zero. Then Proposition 1.3.3

yields that either

(2.3.8)

1 ≤ coeffαr(α) coeffβr(φ(α)) = p2 coeffαr(w1αs) coeffβr(w1βs) < 4,

or

(2.3.9)

1 ≤ coeffαr(α) coeffβr(φ(α)) = q2 coeffαr(w1αt) coeffβr(w1βt) < 4.

If (2.3.8) is the case, then Proposition 2.3.10 yields that

(2.3.10) 1 ≤ p coeffγr(w1γs) < 2;

whereas if (2.3.9) is the case, then Proposition 2.3.10 yields that

(2.3.11) 1 ≤ q coeffγr(w1γt) < 2.

Suppose that (2.3.8) is the case. Then Lemma 2.3.3(vi) yields that at

least one of p or coeffγr(w1γs) must be 1. If p = 1, since l(w1) < l(w),

it follows from the inductive hypotheis that

coeffαr(α) coeffβr(φ(α)) = coeffαr(w1aαs) coeffβr(w1βs)

=


1

or

4 cos2( π
m

),

where m is an integer of the required form. On the other hand if

coeffγr(w1γs) = 1, then by the last Proposition

coeffαr(w1αs) coeffβr(w1βs) = 1.

Hence coeffαr(α) coeffβr(φ(α)) = p2. By Lemma 2.3.3(vi), p2 is either

1 or 4 cos2( π
m′

), where m′ is an integer of the required form.
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Similarly, if (2.3.9) is the case, then

coeffαr(α) coeffβr(φ(α)) =


1

or

4 cos2( π
m′′

),

where m′′ is an integer of the required form, and this completes our

proof. �

The following is a well known result due to Dyer. A proof of this

result can be found in [6] (Propositon 1.4) and [13](Proposition 4.5.4).

Proposition 2.3.16. Let γ1, γ2 ∈ Φ+. Then the (dihedral) subgroup

of W generated by rγ1 and rγ2 is finite if and only if |(γ1, γ2)| < 1. �

Combining Proposition 2.3.11 and the above, we can immediately

deduce the following:

Corollary 2.3.17. Let α1, α2 ∈ Φ1 with rα1 6= rα2. The subgroup of

W generated by rα1 and rα2 is finite if 〈α1, φ(α2)〉〈α2, φ(α1)〉 < 1. �

We prove the converse to Corollary 2.3.17 at the end of Chapter 3

Section 3.5.

Lemma 2.3.18. (Lemma 2.4 (i) of [1]) Suppose that γ1, γ2 ∈ Φ+ are

distinct. Then

〈{rγ1 , rγ2}〉{γ1, γ2} ⊆ PLC({γ1, γ2}) ] −PLC({γ1, γ2})

if and only if

(γ1, γ2) ∈ (−∞,−1] ∪ {− cos
π

m
| m ∈ N and m ≥ 2 }.

�

Proof. We apply the results obtained in Section 2.2 here. We set

{γ1, γ2} = X1 = X2 and let ψ to be the identity map on {γ1, γ2}.
Consequently ( , ) = 〈 , 〉′ and hence Proposition 2.1.1 yields that

〈{rγ1 , rγ2}〉{γ1, γ2} ⊆ PLC({γ1, γ2}) ] −PLC({γ1, γ2})

if and only if
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(γ1, γ2) ∈ (−∞,−1] ∪ {− cos
π

m
| m ∈ N and m ≥ 2 },

as required. �

Proposition 2.3.19. Suppose that α1, α2 ∈ Φ+
1 such that rα1 6= rα2.

Then〈α1, φ(α2)〉 ≤ 0 and

〈α1, φ(α2)〉〈α2, φ(α1)〉 ∈ { cos2 π
m
| m ∈ N and m ≥ 2 } ∪ [1,∞)

if and only if

(f1(α1), f1(α2)) ∈ (−∞,−1] ∪ {− cos
π

m
| m ∈ N and m ≥ 2 }.

Proof. Since rf1(α1) = rα1 6= rα2 = rf1(α2), it follows that both {α1, α2}
and {f1(α1), f1(α2)} are linearly independent. Now set

X1 = {α1, α2}, W ′′
1 = 〈{rα1 , rα2}〉, Φ′′1 = W ′′

1X1

and let ψ be the restriction of φ on Φ′′1. Recall that by Lemma 2.3.6 we

have f1(Φ+
1 ) = Φ+ and f−1

1 (Φ+) = Φ+
1 . Thus Proposition 2.1.1 yields

that〈α1, φ(α2)〉 ≤ 0 and

〈α1, φ(α2)〉〈α2, φ(α1)〉 ∈ { cos2 π
m
| m ∈ N and m ≥ 2 } ∪ [1,∞)

if and only if Φ′′1 = Φ′′1
+ ] Φ′′1

−, and this happens if and only if

〈{rf1(α1), rf1(α2)}〉{f1(α1), f1(α2)} ⊆ PLC({f1(α1), f1(α2)})

] −PLC({f1(α1), f1(α2)})

and by Lemma 2.3.18 above this happens if and only if

(f1(α1), f1(α2)) ∈ (−∞,−1] ∪ {− cos
π

m
| m ∈ N and m ≥ 2 }.

�
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2.4. Dual Spaces of V1, V2 and the Tits cone

Throughout this section we assume that S is finite.

For any real vector space Y , we define Y ∗ = Hom(Y,R), and call

it the algebric dual space of Y . For each i ∈ {1, 2}, let Ci be a convex

cone in Vi and we define

C∗i = { f ∈ V ∗i | f(v) ≥ 0 for all v ∈ Ci }.

Similarly for each convex cone Fi in V ∗i we define

F ∗I = { v ∈ Vi | g(v) ≥ 0 for all g ∈ Fi }.

It is readily checked that such C∗i and F ∗i are themselves convex cones.

Lemma 2.4.1. (i) For each i ∈ {1, 2} the condition 0 /∈ PLC(Πi)

implies the existence of an fi ∈ V ∗i such that fi(x) > 0 for all x ∈ Πi.

(ii) For each i ∈ {1, 2}, (C∗i )∗ = Ci for each convex cone Ci in Vi

(where Ci is the topological closure of Ci with respect to the standard

topology on Vi ∼= Rdi with di = dim(span(Vi))).

Proof. (i) For each i ∈ {1, 2}, set

Xi = {
∑
x∈Πi

λxx | λx ≥ 0 for all x and
∑
x∈Πi

λx = 1 }.

Let ( , )i be a positive definite inner product on Vi and let ‖ ‖i be the

associated norm. Since Xi is topologically closed it follows that there

exists a vi ∈ Xi with ‖vi‖i = (vi, vi)i being minimal. Now let xi be an

arbitrary element of Xi and consider the function

gi(t) : = ‖(1− t)vi + txi‖2
i (t ∈ [0, 1]).

Since Xi is convex, the choice of vi yields that gi attains a mini-

mum at t = 0. Hence g′i(0) ≥ 0. But g′i(0) = 2(vi, xi − vi)i; hence

(vi, xi)i ≥ (vi, vi)i > 0. It then follows that the linear functional fi de-

fined by fi(x) = (x, vi)i takes strictly positive values on Πi completing

the proof of (i).

(ii) Clearly for each convex cone Ci ⊂ Vi, Ci ⊆ (C∗i )∗, furthermore,

since (C∗i )∗ is topologically closed it follows that Ci ⊆ (C∗i )∗. Thus it
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only remains to prove that (C∗i )∗ ⊆ Ci. Suppose for a contradiction

that there exists vi ∈ (C∗i )∗ \ Ci. Let ( , )i be a positive definite inner

product on Vi and let ‖ ‖i be the associated norm. Let ui ∈ Ci be

chosen so that ‖ui − vi‖i is minimal. As in the proof of the (i) above,

let xi ∈ Ci be arbitrary, and consider the function

hi(t) : = ‖(1− t)ui + txi − vi‖2
i (t ∈ [0, 1]).

Since Ci is a convex cone it is clear that Ci is also a convex cone. Then

it follows that hi attains a minimum at t = 0. Thus

(2.4.1) 0 ≤ h′i(0) = 2(xi − ui, ui − vi)i.

By specializing xi to, say, 2ui and 1
2
ui we see from (2.4.1) that

(2.4.2) 0 = (ui, ui − vi)i.

Consequently (2.4.1) yields that

(2.4.3) 0 ≤ (xi, ui − vi)i.

Hence the linear functional fi defined by fi(x) = (x, ui − vi)i is in C∗i .

Now since vi ∈ (C∗i )∗ it follows that 0 ≤ fi(vi) = (vi, ui − vi)i and

observe that this and (2.4.2) together yield that (ui − vi, ui − vi)i ≤ 0.

Since ( , ) is positive definite we have vi = ui contradicting that vi /∈ Ci.
�

There is a natural action of W on V ∗i (i = 1, 2) as follows: if w ∈ W
and fi ∈ V ∗i then wfi ∈ V ∗i is defined by

(wfi)(vi) = fi(w
−1vi), for all vi ∈ Vi.

For each i ∈ {1, 2}, set Pi := PLC(Πi) ∪ {0}. Then

P ∗i = {f ∈ V ∗i | f(x) ≥ 0 for all x ∈ Πi}.

Generalizing the concept of a Tits cone as defined in [18] and in section

5.13 of [12], we define the Tits cone in this non-orthogonal setting to

be

Ui :=
⋃
w∈W

wP ∗i .
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Observe that from these definitions we immediately have

U∗i = { v ∈ Vi | (wf)v ≥ 0 for all f ∈ P ∗i and w ∈ W }

= { v ∈ Vi | f(w−1v) ≥ 0 for all f ∈ P ∗i and w ∈ W }

=
⋂
w∈W

{ v ∈ Vi | f(w−1v) ≥ 0 for all f ∈ P ∗i }

=
⋂
w∈W

{wv ∈ Vi | f(v) ≥ 0 for all f ∈ P ∗i }

=
⋂
w∈W

{wv ∈ Vi | v ∈ (P ∗i )∗ }

=
⋂
w∈W

wPi (by Lemma 2.4.1(ii), since Pi is a convex cone)

=
⋂
w∈W

wPi (since Pi is closed).

(2.4.4)

Observe that then Lemma 2.4.1(i) yields that there are f1 ∈ V ∗i

and f2 ∈ V ∗2 such that f1(x) ≥ 1 for all x ∈ Π1 and f2(y) ≥ 1 for all

y ∈ Π2. For the next result we fix one such pair of linear functionals

{f1, f2}.

Proposition 2.4.2. Let v1 ∈ U∗1 and v2 ∈ U∗2 . Then 〈v1, v2〉 ≤ 0.

Proof. Suppose for a contradiction that there exists v1 ∈ U∗1 and

v2 ∈ U∗2 such that 〈v1, v2〉 > 0. Replace v2 by a positive scalar multiple

of itself if needed, we may assume that 〈v1, v2〉 = 1. Let

B = {x ∈ U∗2 | f2(x) ≤ f2(v2) and 〈z, x〉 ≥ 1

for some z ∈ U∗1 with f1(z) ≤ f1(v1) }.

Observe that v2 ∈ B, so B 6= ∅.
Put ε = 2

nf1(v1)
where n = |S|. We shall show that for any given

x ∈ B there exists y ∈ B such that f2(y) ≤ f2(x)− ε.
Given x ∈ B, let z =

∑
a∈Π1

λaa ∈ U∗1 (λa ≥ 0 for all a ∈ Π1)

be such that 〈z, x〉 ≥ 1 and f1(z) ≤ f1(v1). Observe that since
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〈z, x〉 =
∑
a∈Π1

λa〈a, x〉 ≥ 1 it follows that there exists some a0 ∈ Π1

such that λa0〈a0, x〉 ≥ 1
n
, that is,

〈a0, x〉 ≥
1

λa0n
≥ 1

nf1(v1)
=
ε

2

because λa0 ≤ f1(z) ≤ f1(v1). Now let y = rφ(a0)x. It is clear from

(2.4.4) that U∗2 is W -invariant. Now since x ∈ U∗2 , it follows that y ∈ U∗2
too. Thus

f2(y) = f2(x− 2〈a0, x〉φ(a0))

= f2(x)− 2〈a0, x〉f2(φ(a0))

≤ f2(x)− εf2(φ(a0))

≤ f2(x)− ε

< f2(v2).

We claim that y ∈ B. To prove this we need to find some t ∈ U∗1 such

that 〈t, y〉 ≥ 1 and f1(t) ≤ f1(v1).

First consider the case that 〈z, φ(a0)〉 ≥ 0. Put t = ra0z. Then

t ∈ U∗1 (since z is and U∗1 is W -invariant) and

〈t, y〉 = 〈ra0z, rφ(a0)x〉 = 〈z, x〉 ≥ 1

furthermore,

f1(t) = f1(z)− 2〈z, φ(a0)f1(a0) ≤ f1(z) ≤ f1(v1)

as required. Hence y ∈ B when 〈z, φ(a0)〉 ≥ 0.

Next if 〈z, φ(a0)〉 < 0 then t = z will do; indeed

〈z, y〉 = 〈z, x− 2〈a0, x〉φ(a0)〉

= 〈z, x〉 − 2 〈a0, x〉︸ ︷︷ ︸
(≥ 1

λa0n
> 0)

〈z, φ(a0)〉

≥ 〈z, x〉

≥ 1.
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Furthermore, by our construction z ∈ U∗1 and f1(z) ≤ f1(v1). Hence

when 〈z, φ(a0)〉 < 0, y ∈ B as well and this establishes the claim.

Starting with x = v2, a finite number of iterations of the above

process will produce a y ∈ B with f2(y) being negative, contradicting

the fact that U∗2 ⊆ P2 and f2(P2) ⊆ (0,∞). �

The following is a well-known result:

Lemma 2.4.3. ([13] 4.5.3) Let H be a finite subgroup of W . Then

there exists w ∈ W and J ⊆ S such that WJ is a finite parabolic

subgroup and wHw−1 ⊆ WJ . �

Lemma 2.4.4. The set

{ 〈α1, φ(α2)〉〈α2, φ(α2)〉 | α1, α2 ∈ Φ1 and 〈α1, φ(α2)〉〈α2, φ(α2)〉 < 1 }

is finite.

Proof. Let α1, α2 ∈ Φ1 such that 〈α1, φ(α2)〉〈α2, φ(α2)〉 < 1. By Corol-

lary 2.3.17 we know that H := 〈 { rα1 , rα2 } 〉 is a finite dihedral sub-

group of W . Thus Lemma 2.4.3 yields that there are w ∈ W and

J ⊆ S such that WJ is finite and wHw−1 ⊆ WJ . In particular, there

are x, y ∈ Φ1(WJ) such that α1 = wx and α2 = wy. Now

〈α1, φ(α2)〉〈α2, φ(α2)〉

= 〈wx,wφ(y)〉〈wy,wφ(x)〉

= 〈x, φ(y)〉〈y, φ(x)〉

∈ { 〈a, φ(b)〉〈b, φ(a)〉 | a, b ∈ Φ1 and ra, rb ∈
⋃

I⊆S,WIfinite

WI}.

Since S is a finite set it follows that the last set on the right is finite

proving the desired result. �

Immediately from the above we have:

Corollary 2.4.5. There is a positive number θ such that

θ < 〈α1, φ(α2)〉〈α2, φ(α2)〉 for all α1, α2 ∈ Φ1 with 0 6= 〈α1, φ(α2)〉.

�



Chapter 3

The Dominance Hierarchy of Root Systems of

Coxeter Groups

3.1. Introduction

If x and y are roots in the root system with respect to the stan-

dard (Tits) geometric realization of a Coxeter group W , we say that

x dominates y (written x domW y) if wy is a negative root whenever

wx is a negative root. We call a positive root x elementary if it does

not dominate any positive root other than x itself. The set of all el-

ementary roots is denoted by E . It has been proven by B. Brink and

R. B. Howlett [Math. Ann. 296 (1993), 179–190] that E is finite if

(and only) if W is a finite rank Coxeter group. Amongst other things,

this finiteness property enabled Brink and Howlett to establish the au-

tomaticity of all finite rank Coxeter groups. Later Brink has also given

a complete description of the set E for arbitrary finite rank Coxeter

groups in [J. Algebra 206 (1998), 371–412]. But until the present, a

systematic study of the dominance behaviour among non-elementary

positive roots still remains to be completed. In this chapter we an-

swer a collection of questions concerning dominance between such non-

elementary positive roots. In particular, we show that for any finite

rank Coxeter group and for any non-negative integer n, the set of roots

dominating precisely n other positive roots is finite. We then give both

upper and lower bounds to the sizes of all such sets as well as an induc-

tive algorithm to compute all such sets. In this chapter, for any given

positive root x, we obtain explicitly the set of positive roots dominated

by x, if there are any.

82
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In Section 3.4, we study some cones closely related to the Tits cone

and their connection with the dominance concept.

We stress that all notations used in this chapter are exactly the

same as those used in previous chapters.

Let N : W → Φ+ be the function defined by

N(w) = {x ∈ Φ+ | wx ∈ Φ−}.

It is a well-known fact that

N(w) = {x ∈ Φ+ | l(wrx) < l(w) } and l(w) = |N(w)|

(for example, Proposition 5.7 of [12] or Proposition 4.4.6 of [13]). If Φ′

is a subset of Φ such that whenever x, y ∈ Φ′, rxy ∈ Φ′, then we call Φ′

a root subsystem of Φ. Now if W ′ is a reflection subgroup of W , then

we set

Φ(W ′) = { a ∈ Φ | ra ∈ W ′ }.

Observe that Φ(W ′) is a root subsystem of Φ. We call Φ(W ′) the root

subsystem corresponding to W ′.

Recall that Lemma 2.2.4 yields f1(∆1(W ′)) = f2(∆2(W ′)) for all

reflection subgroups W ′ of W . This observation enables us to define

the canonical roots of W ′ in Φ.

Definition 3.1.1. For any reflection subgroup W ′ of W , let

∆(W ′) = f1(∆1(W ′)) = f2(∆2(W ′)).

Remark 3.1.2. Recall that T :=
⋃

w∈W
wRw−1 denotes the set of re-

flections in W . Since for all α ∈ Φ1 we have rα = rf1(α), it follows

that

S(W ′) = { rx ∈ T | x ∈ ∆(W ′) }.

With this justification, we call ∆(W ′) the canonical roots for Φ(W ′).

Proposition 3.1.3. (i) Suppose that W ′ is a reflection subgroup

of W . Suppose that a and b ∈ 4(W ′) with a 6= b. Then

(a, b) ∈ {− cos(π/n) | n ∈ N, n ≥ 2 } ∪ (−∞,−1].
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(ii) Let X ⊆ Φ+ be a set such that whenever a, b ∈ X a 6= b the

condition

(a, b) ∈ {− cos(π/n) | n ∈ N, n ≥ 2 } ∪ (−∞,−1]

is satisfied. If we set W ′ = 〈 rx | x ∈ X 〉, then X = ∆(W ′).

Proof. (i) Follows from Proposition 2.2.12 and Proposition 2.3.19.

(ii) Follows from Proposition 2.2.15 and Proposition 2.3.19. �

3.2. Rank 2 Root Subsystems

Suppose that Φ(〈ra, rb〉) is an infinite rank 2 root system with

canonical roots a and b. In this section we classify the root subsys-

tems of Φ(〈ra, rb〉).
Since Φ(〈ra, rb〉) is infinite, it follows from Lemma 2.3.3 (ii) that

〈ra, rb〉 (the dihedral subgroup generated by ra and rb) must be infinite.

Thus it follows from Proposition 4.5.4 of [13] that (a, b) ≤ −1. Let

θ = cosh−1(−(a, b)), and for each integer i, set ci := sinh(iθ)
sinh θ

. Then

raa = −a, rbb = −b,

(rarb)a =
sinh(3θ)

sinh θ
a+

sinh(2θ)

sinh θ
b = c3a+ c2b

and

(rbra)b =
sinh(2θ)

sinh θ
a+

sinh(3θ)

sinh θ
b = c2a+ c3b.

An induction shows that for all integer i,

(3.2.1)


(rarb)

ia = c2i+1a+ c2ib;

rb(rarb)
ia = c2i+1a+ c2i+2b;

(rbra)
ib = c2ia+ c2i+1b;

ra(rbra)
ib = c2i+2a+ c2i+1b.

These calculations lead to the following well known result:

Lemma 3.2.1.

Φ(〈ra, rb〉) = { cia+ ci±1b | i ∈ Z }.

�
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Observe from Lemma 3.2.1 and (3.2.1) above that w(cna+cn±1b) = a

for some w ∈ 〈ra, rb〉 if and only if n is odd whereas w′(cmb+cm±1a) = b

for some w′ ∈ 〈ra, rb〉 if and only if m is odd. Furthermore, if i, j are

integers such that w(cia + ci±1b) = cja + cj±1b for some w ∈ 〈ra, rb〉,
then i ≡ j (mod 2).

Proposition 3.2.2. Suppose that Φ′ is a root subsystem of Φ(〈ra, rb〉).

Then Φ′ is at most a rank 2 root subsystem.

Proof. Suppose for a contradiction that there are at least three canon-

ical generators x, y and z for the subsystem Φ′. By Lemma 3.2.1, there

are three integers m, n and p such that

x = cma+ cm±1b;

y = cna+ cn±1b;

and

z = cpa+ cp±1b.

If either x = cma + cm+1b and y = cna + cn+1b or x = cma + cm−1b

and y = cna + cn−1b, then (x, y) = cosh((m − n)θ) ≥ 1, contradicting

Proposition 3.1.3 (i). Without loss of generality, we may assume that

x = cma + cm+1b, and y = cna + cn−1b. Now if z = cpa + cp+1b, then

(x, z) = cosh((m − p)θ) ≥ 1, contradicting Proposition 3.1.3 (i); on

the other hand if z = cpa + cp−1b, then (z, y) = cosh((n − p)θ) ≥ 1,

again contradicting Proposition 3.1.3 (i). Therefore Φ′ has at most two

canonical generators, that is, Φ′ is at most rank 2.

�

Suppose that x = cma + cm±1b and y = cna + cn±1b (m,n ∈ Z),

are roots in Φ(〈ra, rb〉). To classify the rank 2 root subsystems of the

form Φ(〈rx, ry〉), it suffices to compute explicitly the canonical roots of

Φ(〈rx, ry〉).

Lemma 3.2.3. Suppose that x = cma + cm+1b and y = cna + cn−1b

are positive roots in Φ(〈ra, rb〉) (that is, m is a non-negative integer
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and n is a positive integer). Then x and y are the canonical roots for

Φ(〈rx, ry〉). In particular, Φ(〈rx, ry〉) is infinite in size.

Proof. By Proposition 3.1.3 (i), to show that x and y are the canon-

ical roots for Φ〈rx,ry〉, it is enough to show that (x, y) ≤ −1. Indeed,

(x, y) = − cosh((n + m)θ) ≤ −1. Thus Proposition 4.5.4 of [13]

yields that the dihedral subgroup 〈 rx, ry 〉 is infinite, and consequently

Lemma 2.3.3 (ii) yields that Φ(〈rx, ry〉) is infinite in size.

�

Next we compute the canonical roots of Φ(〈rx, ry〉), where x is of

the form cma+ cm+1b and y is of the form cna+ cn+1b, m 6= n.

Proposition 3.2.4. Suppose that x = cma+ cm+1b and y = cna+ cn+1

(m,n ∈ Z, m 6= n), are roots in Φ(〈rx, ry〉).

(i) Φ(〈rx, ry〉) = {±(ck(m−n)−ma+ ck(m−n)−m−1b) | k ∈ Z }. In partic-

ular this root subsystem is infinite in size.

(ii) The canonical roots of Φ(〈rx, ry〉) are of the form cia + ci−1b and

cja+ cj+1b, where

i = min{ k(m− n)−m | k ∈ Z and k(m− n)−m > 0 }

and

j = min{ k(m− n) +m | k ∈ Z and k(m− n) +m ≥ 0 }.

Proof. (i) Clearly Φ(〈rx, ry〉) consists of all the roots of the form

(rxry)
lx, ry(rxry)

lx, (ryrx)
ly and rx(ryrx)

ly,

where l ranges over Z. Depending on the choice of m and n, we have

the following three cases to consider:

(1) Both m and n are even.

(2) Exactly one of m and n is even.

(3) Both m and n are odd.

First suppose that (1) is the case. Then equation (3.2.1) yields that

x = (rbra)
m/2b, and y = (rbra)

n/2b. Consequently

rx = rb(rarb)
m = (rbra)

mrb and ry = rb(rarb)
n = (rbra)

nrb.
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Thus rxry = (rbra)
m−n and ryrx = (rbra)

n−m. Hence (3.2.1) yields that

for any integer l,

(rxry)
lx = (rbra)

l(m−n)(rbra)
m/2b

= c2l(m−n)+ma+ c2l(m−n)+m+1b

and

ry(rxry)
lx = rb(rarb)

n(rbra)
l(m−n)(rbra)

m/2b

= rb(rbra)
l(m−n)−n+m/2b

= ra(rbra)
l(m−n)−n+m/2−1b

= c2l(m−n)+m−2na+ c2l(m−n)+m−2n−1b.

By symmetry, we duduce that (ryrx)
ly = c2l(n−m)+na + c2l(n−m)+n+1b

and rx(ryrx)
ly = c2l(n−m)+n−2ma+ c2l(n−m)+n−2m−1b.

Next suppose that (2) is the case. We may assume, without loss of

generality, thatm is even. Then x = (rbra)
m/2b and y = rb(rarb)

(n−1)/2a.

Similar rank 2 calculations as in (1) above yield that for any integer l,

(rxry)
lx = c2l(m−n)+ma+ c2l(m−n)+m+1b,

ry(rxry)
lx = c2l(m−n)+m−2na+ c2l(m−n)+m−2n−1b,

(ryrx)
ly = c2l(n−m)+na+ c2l(n−m)+n+1b,

rx(ryrx)
ly = c2l(n−m)+n−2ma+ c2l(n−m)+n−2m−1b.

Now suppose that (3) is the case. Then x = rb(rarb)
(m−1)/2a and

y = rb(rarb)
(n−1)/2a. Again, a rank 2 calculation yields that for every

integer l,

(rxry)
lx = c2l(m−n)+ma+ c2l(m−n)+m+1b,

ry(rxry)
lx = c2l(m−n)+m−2na+ c2l(m−n)+m−2n−1b,

(ryrx)
ly = c2l(n−m)+na+ c2l(n−m)+n+1b,

rx(ryrx)
ly = c2l(n−m)+n−2ma+ c2l(n−m)+n−2m−1b.
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Thus we see that Φ(〈rxry〉) consists of all roots of the form

c2l(m−n)+ma+ c2l(m−n)+m+1b,(3.2.2)

c2l(n−m)+na+ c2l(n−m)+n+1b(3.2.3)

and

c2l(m−n)+m−2na+ c2l(m−n)+m−2n−1b,(3.2.4)

c2l(n−m)+n−2ma+ c2l(n−m)+n−2m−1b,(3.2.5)

where l ranges over Z.

Now let us consider all roots of the form (3.2.4) and (3.2.5). Ob-

serve that 2l(m − n) + m − 2n = 2(l + 1)(m − n) −m is of the form

of an even multiple of (m − n) minus m, whereas on the other hand

2l(n−m)+n−2m = −(2l+1)(m−n)−m is of the form of an odd mul-

tiple of (m−n) minus m. Thus we conclude that the set of roots of the

form (3.2.4) and (3.2.5) is exactly { ck(m−n)−ma+ck(m−n)−m−1b | k ∈ Z }.
Similarly we could also see that the set of roots of the form (3.2.2) and

(3.2.3) is exactly { ck(m−n)+ma + ck(m−n)+m+1b | k ∈ Z }. Finally we

observe that for each integer l, c−l = sinh(−lθ)
sinh θ

= −cl. Thus

ck(m−n)−ma+ ck(m−n)−m−1b = −(c−k(m−n)+ma+ c−k(m−n)+m+1b).

Therefore

Φ(〈rx, ry〉) = {±(ck(m−n)−ma+ ck(m−n)−m−1b) | k ∈ Z }.

Observe that, in particular, the root subsystem Φ(〈rx, ry〉) is infinite in

size. This completes the proof of (i).

(ii) Let α and β be the canonical roots for Φ(〈rx, ry〉). Then

α = cia+ci−1b and β = cja+cj+1b for some positive integer i and some

nonnegative integer j. Indeed, by Lemma 3.2.1, the only other possib-

lities are either α = cia + ci+1b and β = cja + cj+1b or α = cia + ci−1b

and β = cia+cj−1b. But then (α, β) = cosh((i−j)θ) ≥ 1, contradicting
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Proposition 3.1.3 (i). Now by (i) above

Φ(〈rx, ry〉)

= { ck(m−n)−ma+ ck(m−n)−m−1b, ck(m−n)+ma+ ck(m−n)+m+1b | k ∈ Z }.

Thus i must be of the form

k(m− n)−m, k ∈ Z,

and j must be of the form

k′(m− n) +m, k′ ∈ Z.

Since α and β are the canonical roots for Φ(〈rx, ry〉), it follows that i

and j must be as small as possible subject to the requirement that both

α and β are positive roots. Therefore we conclude that i must be the

least positive integer of the form k(m− n)−m, where k is an integer;

and j must be the least nonnegative integer of the form k′(m−n) +m,

where k′ is an integer.

�

Finally we look at the root subsystem generated by x = cm+1a+cmb

and y = cn+1a+ cnb.

Proposition 3.2.5. Suppose that x = cm+1a+cmb and y = cn+1a+cnb

are roots in Φ(〈rx, ry〉).

(i) Φ(〈rx, ry〉) = {±(ck(m−n)−m−1a + ck(m−n)−mb) | k ∈ Z }. In

particular, this root subsystem is infinite in size.

(ii) The canonical roots for Φ〈rx,ry〉 are cia + ci−1b and cja + cj+1b,

where

i = min{ k(m− n) +m | k ∈ Z and k(m− n) +m > 0 }

and

j = min{ k(m− n)−m | k ∈ Z and k(m− n)−m ≥ 0 }.

Proof. Follows from Proposition 3.2.4 with the roles of a and b inter-

changed. �
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Combining Lemma 3.2.2, Lemma 3.2.3, Proposition 3.2.4 and Propo-

sition 3.2.5, we immediately deduce that:

Corollary 3.2.6. Suppose that Φ′ is a root subsystem of Φ(〈ra, rb〉).

Then either |Φ′| = 2 or Φ′ is an infinite rank 2 subsystem. �

3.3. The Dominance Hierarchy

Definition 3.3.1. (i) For x and y ∈ Φ, we say that x dominates y,

written x domW y if

{w ∈ W | w · x ∈ Φ− } ⊆ {w ∈ W | w · y ∈ Φ− }.

(ii) For each x ∈ Φ+, set

D(x) = { y ∈ Φ+ | y 6= x and x domW y },

and for each n ∈ N, define

Dn = {x ∈ Φ+
∣∣ |D(x)| = n }

(the set of positive roots x that dominate exactly n other positive

roots).

In [6] and [5] dominance is only defined on Φ+, and it is found

in [6] that it is a partial order on Φ+. Here we have generalized the

notion of dominance to the whole of Φ. It can be readily seen that

this generalized dominance is a partial order on Φ. It also turns out

that the geometric characterization of dominance remains the same as

we extend the definition to cover all of Φ. It is clear from the above

definition that

Φ+ =
⊎
n∈N

Dn.

In this chapter we study the above decomposition. We already knew

a good deal about D0 from [6] and [5]: if W is finite then D0 = Φ+,

whereas if W is an infinite Coxeter group of finite rank, then |D0| <∞.

Observe that in the latter case
⊎

n∈N,n≥1

Dn will be an infinite set. One

major result of this chapter (Theorem 3.3.9 and Corollary 3.3.10 below)
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is that if S is finite then Dn is finite for all natural numbers n. We

also give an upper bound for |Dn|. But first we need a few elementary

results.

Lemma 3.3.2. (i) If x and y ∈ Φ+, then x domW y if and only if

(x, y) ≥ 1 and dp(x) ≥ dp(y).

(ii) Dominance is W -invariant: if x domW y then for any w ∈ W ,

wx domW wy.

(iii) Suppose that x, y ∈ Φ, and x domW y. Then −y domW −x.

(iv) Suppose that x ∈ Φ+ and y ∈ Φ−. Then x domW y if and only if

(x, y) ≥ 1.

(v) Let x, y ∈ Φ. Then there is dominance between x and y if and

only if (x, y) ≥ 1.

Proof. (i) See [6, Lemma 2.3].

(ii) Clear from the definition of dominance.

(iii) Suppose for a contradiction that there exists w ∈ W such that

w(−y) ∈ Φ− and w(−x) ∈ Φ+. Then w(y) ∈ Φ+ yet w(x) ∈ Φ−,

contradicting the assumption that x domW y.

(iv) Suppose that x domW y. Since dominance is W -invariant, it fol-

lows that ryx domW ryy. Because ryy = −y ∈ Φ+, so ryx ∈ Φ+. Thus

part (i) yields that (ryx, ryy) ≥ 1. Since ( , ) is W -invariant, it follows

that (x, y) ≥ 1.

Conversely, suppose that x ∈ Φ+, y ∈ Φ− with (x, y) ≥ 1. Then

clearly ryx = x − 2(x, y)y ∈ Φ+. Thus ryx and ryy = −y are both

positive. Then it follows from part (i) that there is dominance between

ryx and ryy. Since dominance is W -invariant, it follows that there is

dominance between x and y. Finally, since x ∈ Φ+ and y ∈ Φ−, it is

clear that x domW y.

(v) Suppose that x, y ∈ Φ−. Then part (i) yields that there is domi-

nance between −x and −y if and only if (−x,−y) = (x, y) ≥ 1. This

combined with part (i) and part (iv) above yields the desired result.

�
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Lemma 3.3.3. Suppose that x, y ∈ Φ with x 6= y, x domW y and

y ∈ D0. Then ryx ∈ Φ+.

Proof. Suppose for a contradiction that ryx ∈ Φ−. Lemma 3.3.2 (ii)

then yields that ryx domW ryy = −y. Now Lemma 3.3.2 (iii) yields that

y domW −ryx ∈ Φ+. Since y ∈ D0, this forces −ryx = y, contradicting

x 6= y. �

Proposition 3.3.4. Suppose that x, y ∈ Φ are distinct with x domW y.

(i) Let a, b be the canonical roots for the root subsystem Φ(〈rx, ry〉).

Then there is a w ∈ 〈rx, ry〉 such that either

wx = a and wy = −b or wx = b and wy = −a.

In particular, (a, b) = −(x, y).

(ii) x domW y if and only if x dom〈rx,ry〉 y.

(iii) (ryx, x) ≤ −1 and (ryx, y) ≤ −1, and in particular, ryx cannot

dominate either x or y.

Proof. (i) Since |(x, y)| ≥ 1 it follows from Proposition 2.3.16 that

〈ra, rb〉 = 〈rx, ry〉 is infinite, and hence (a, b) ≤ −1 by Proposition 3.1.3.

Thus (a,−b) ≥ 1, and a domW −b, and similarly b domW −a. Using

the W -invariance of dominance it follows readily that there are two

dominance chains in the root subsystem Φ(〈ra, rb〉), as follows:

(3.3.1) · · · domW rarbra(b) domW rarb(a) domW ra(b) domW a

domW (−b) domW rb(−a) domW rbra(−b) domW · · ·

and

(3.3.2) · · · domW rbrarb(a) domW rbra(b) domW rb(a) domW b

domW (−a) domW ra(−b) domW rarb(−a) domW · · · .

Observe that each element of Φ(〈ra, rb〉) lies in exactly one of the above

chains, and the negative of any element of one of these chains lies in

the other. Thus x′, y′ ∈ Φ(〈ra, rb〉) are in the same chain if and only if

(x′, y′) ≥ 1 and in different chains if and only if (x′, y′) ≤ −1.
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From (3.3.1) we see that the roots dominated by a are all negative,

and from (3.3.2) we see that the roots dominated by b are all negative.

Since we may choose w ∈ 〈ra, rb〉 such that wx = a or wx = b, and

since wx domW wy, it follows that either

wx = a and wy ∈ Φ(〈ra, rb〉) ∩ Φ−(3.3.3)

or

wx = b and wy ∈ Φ(〈ra, rb〉) ∩ Φ−.(3.3.4)

Suppose that wx = a. Then (a,−wy) = (wx,−wy) = −(x, y) ≤ −1

and −wy ∈ Φ(〈rx, ry〉)∩Φ+. Hence it follows from Proposition 3.1.3 (ii)

that {a,−wy} is the set of canonical roots for Φ(〈rx, ry〉), forcing

−wy = b. Similarly, in the case wx = b we may conclude that wy = −a.

Finally, observe that in either case, (a, b) = −(wx,wy) = −(x, y).

(ii) First suppose that x domW y. Then

{w ∈ W | wx ∈ Φ− } ⊆ {w ∈ W | wy ∈ Φ− },

and taking the intersection with 〈rx, ry〉 gives

{w ∈ 〈rx, ry〉 | wx ∈ Φ− } ⊆ {w ∈ 〈rx, ry〉 | wy ∈ Φ− },

which shows that x dom〈rx,ry〉 y.

Conversely, suppose that x dom〈rx,ry〉 y. By Lemma 3.3.2 (v) ap-

plied with W replaced by 〈rx, ry〉 we see that (x, y)′ ≥ 1 where ( , )′

is the restriction of ( , ) to the subspace spanned by x and y. Thus

(x, y) ≥ 1,applying Lemma 3.3.2 (v) again yields that either x domW y

or y domW x. But the latter alternative would imply that y dom〈rx,ry〉 x,

by the first part of this proof, contrary to the fact that x dom〈rx,ry〉 y

and x 6= y.

(iii) Since x domW y, Lemma 3.3.2 (v) yields that (x, y) ≥ 1. Then

(ryx, y) = (x,−y) ≤ −1 and hence there is no dominance between ryx

and y. Also (ryx, x) = (x, x)− 2(x, y)2 ≤ −1 and consequently there is

no dominance between x and ryx, proving (iii).

�
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Remark 3.3.5. Observe from the proof of Proposition 3.3.4 (ii), that

if x, y ∈ Φ+ are distinct, and x domW y, then the depth of x relative

to (W ′, S(W ′)) is greater than the depth of y relative to (W ′, S(W ′)).

Lemma 3.3.6. Suppose that x, y ∈ Φ are distinct with x domW y. Let

a and b be the canonical roots for Φ(〈rx, ry〉). Then either

x = cma+ cm+1b and y = cm−1a+ cmb

or

x = cma+ cm−1b and y = cm−1a+ cm−2b

for some integer m.

Proof. Since x, y ∈ Φ(〈ra, rb〉), Lemma 3.2.1 yields that

x = cma+ cm±1b and y = cna+ cn±1b

for some integers m and n. If either x = cma+cm+1b and y = cna+cn−1b

or x = cma+ cm−1b and y = cna+ cn+1b, then

(x, y) = − cosh((n+m)θ) ≤ −1

contradicting x domW y. Therefore there are only two possibilities

(3.3.5)

{
x = cma+ cm+1b

y = cna+ cn+1b

or

(3.3.6)

{
x = cm+1a+ cmb

y = cn+1a+ cnb.

First suppose that (3.3.5) is the case. Since a and b are the canonical

roots for Φ(〈ra, rb〉) = Φ(〈rx, ry〉), it follows from Proposition 3.2.4 (ii)

that there are integers k1 and k2 such that

1 = k1(m− n)−m and 0 = k2(m− n) +m.

But then k1 +k2 = 1+m
m−n + −m

m−n = 1
m−n ∈ Z. Clearly this is only possible

when m − n = ±1. On the other hand, since x domW y, it is readily
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seen that m > n, giving us

x = cma+ cm+1b and y = cm−1a+ cmb.

If (3.3.6) is the case then similar reasoning as above yields that

x = cma+ cm−1b and y = cm−1a+ cm−2b.

�

Remark 3.3.7. Let x, y, a and b be as in Proposition 3.3.4 (i) and

Lemma 3.3.6 above. Then in fact x and y are consecutive terms in

precisely one of the dominance chains (3.3.1) or (3.3.2).

Theorem 3.3.8. D1 ⊆ { rab | a, b ∈ D0 }. Furthermore, if |S| < ∞
then |D1| ≤ |D0|2 − |D0|.

Proof. Suppose that x ∈ D1 and {y} = D(x). Clearly y ∈ D0. By

Lemma 3.3.3, we know that ryx ∈ Φ+. Thus to prove Theorem 3.3.8,

we only need to show that ryx ∈ D0.

Suppose for a contradiction that ryx ∈ Φ+ \D0. Then there exists

z ∈ Φ+ \ {ryx} with ryx domW z. Since dominance is W -invariant, it

follows that x domW ryz. Because z ∈ Φ+, so clearly ryz 6= y. Hence

ryz ∈ Φ−, because D(x) = {y}. Thus (z, y) > 0. Then

1 ≤ (ryx, z) = (x− 2(x, y)y, z)

= (x, z)− 2(x, y)(y, z).

Since we know that (x, y) ≥ 1 (x domW y) and (z, y) > 0, it follows that

1 ≤ (x, z). Therefore Lemma 3.3.2 (v) yields that either x domW z or

z domW x. Suppose that z domW x. Then ryx domW z domW x, con-

tradicting Proposition 3.3.4 (iii). On the other hand, if x dom z, then

our construction forces z = y. But then ryx dom y, again contradicting

Proposition 3.3.4 (iii)

Thus ryx ∈ D0, as required. Since x ∈ D1 was arbitrary, it follows

that

D1 ⊆ { rab | a, b ∈ D0 }.
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Finally, since D1 does not contain elements of the form raa, a ∈ D0, it

follows that

D1 ⊆ { rab | a, b ∈ D0 } \ −D0.

In the case that |S| <∞, we have |D0| <∞ (by [6, Theorem 2.8]), so

it follows from the above that |D1| ≤ |D0|2 − |D0|. �

The above treatment of D1 can be generalised to Dn for arbitrary

n ∈ N. Indeed we have:

Theorem 3.3.9. For n ∈ N,

Dn ⊆ { rab | a ∈ D0, b ∈
⋃

m≤n−1

Dm }.

Proof. The case n = 1 has been covered by Theorem 3.3.8, so we may

assume that n > 1.

Let x ∈ Dn, and suppose that D(x) = { y1, y2, . . . , yn }, with yn

being minimal with respect to dominance. Observe that yn ∈ D0.

Then Lemma 3.3.3 yields that rynx ∈ Φ+. Hence either rynx ∈ D0 or

rynx ∈ Φ+ \D0.

If rynx ∈ Φ+ \D0, let z ∈ D(rynx). We will show that there are at

most (n− 1) possible values for z. Observe that this establishes

rynx ∈
⊎

m≤n−1

Dm.

Since rynx dom z, Lemma 3.3.2 (ii) yields that x domW rynz. Hence

either rynz = yi, for 1 ≤ i ≤ n − 1 or rynz ∈ Φ−. If rynz ∈ Φ−, then

(yn, z) > 0, yielding

1 ≤ (rynx, z) = (x− 2(x, yn)yn, z)

= (x, z)− 2(x, yn)(yn, z).

Now (yn, z) > 0 and (x, yn) ≥ 1 (since x domW yn), therefore we must

have (x, z) ≥ 1. Similar to the proof of Theorem 3.3.8, we can con-

clude that x domW z. Hence z ∈ {y1, · · · , yn}. By Proposition3.3.4(iii)



3.3. The Dominance Hierarchy 97

we know that z 6= yn. Thus if rynz ∈ Φ−, then z ∈ {y1, · · · , yn−1}.
Summing up, if z ∈ D(rynx), then

z ∈{ ryn(yi) | ryn(yi) ∈ Φ+, i ∈ { 1, . . . , n− 1 } }

∪ { yi | ryn(yi) ∈ Φ−, i ∈ { 1, . . . , n− 1 } }

and this is clearly a disjoint union of size n− 1. Thus ryn(x) ∈ Dm, for

some m ≤ n− 1, and hence

Dn ⊆ { rab | a ∈ D0, b ∈
⊎

m≤n−1

Dm }.

�

It turns out that we can obtain reasonably nice upper bonds for

|Dn|, indeed we can deduce immediately:

Corollary 3.3.10. Suppose that |S| <∞. Then for n ∈ N, |Dn| <∞.

Indeed

|Dn| ≤ |D0|n+1 − |D0|n.

Proof. Induction on n. The case n = 1 has been shown in Theo-

rem 3.3.8 and thus we may assume that n > 1. Since Di ∩ Dj = ∅ if

i 6= j, it follows from Theorem 3.3.9 that

Dn ⊆ { rab | a ∈ E , b ∈
⊎

m≤n−1

Dm } \ (
⊎
m<n

Dm).

Hence in the case |S| <∞,

|Dn| ≤ |D0|(|D0|+ |D1|+ · · ·+ |Dn−1|)− (|D0|+ |D1|+ · · ·+ |Dn−1|)

= (|D0| − 1)(|D0|+ |D1|+ · · ·+ |Dn−1|).

(3.3.7)

Now the inductive hypothesis yields that

|D0|+ |D1|+ |D2|+ · · ·+ |Dn−1|

≤ |D0|+ |D0|2 − |D0|+ |D0|3 − |D0|2 + · · ·

+ |D0|n−1 − |D0|n−2 + |D0|n − |D0|n−1

= |D0|n.
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Thus (3.3.7) yields that |Dn| ≤ |D0|n+1 − |D0|n, as required.

�

Remark 3.3.11. (i) It is seen in the proof of Theorem 3.3.9 that

if x, y ∈ Φ+ with x dom y and x ∈ Dn, then ryx ∈ Dm, for

some m < n. It turns out that we can say a bit more on this

and we shall do so in Proposition 3.3.16 and Proposition 3.3.24

below.

(ii) Having shown that for all n ∈ N, |Dn| < ∞ if |S| < ∞, it is

not immediately clear, at this stage, that for all n ∈ N, Dn 6= ∅.
Lemma 3.3.12 to Corollary 3.3.23 below will, amongest other

things, establish that Dn 6= ∅ for all n ∈ N if W is a finite-rank

infinite Coxeter group.

Lemma 3.3.12. For n ∈ N,

{wa | a ∈ D0, w ∈ W with l(w) < n } ∩Dn = ∅.

Proof. Suppose not. Then there exists some n ∈ N and x = wa ∈ Dn,

with a ∈ D0, w ∈ W and l(w) < n. Let D(x) = { y1, . . . , yn }. Since

dominance is W -invariant, it follows that

w−1x = a domw−1y1, . . . , w
−1yn.

Note that a /∈ {w−1y1, · · · , w−1yn }, for otherwise x ∈ { y1, y2 . . . , yn }
which is absurd. Then w−1y1, · · · , w−1yn ∈ Φ− (since a ∈ D0). Hence

y1, · · · , yn ∈ N(w−1), but this gives a contradiction to the fact that

|N(w−1)| = l(w−1) = l(w) < n. �

Lemma 3.3.13.

RD0 ⊆ −D0 ]D0 ]D1.

Proof. Let r ∈ R and x ∈ D0 be arbitrary. If rx ∈ Φ+, then Lemma

3.3.12 above yields that rx ∈ D0 ]D1. On the other hand, if rx ∈ Φ−,

then x ∈ Π and r = rx. Thus rx = −x ∈ −Π. Since r and x were

chosen arbitrarily, it follows that RD0 ⊆ −Π ]D0 ]D1. �

Generalising Lemma 3.3.13, we have:
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Lemma 3.3.14. For all n ≥ 1

RDn ⊆ Dn−1 ]Dn ]Dn+1.

Proof. Suppose that n ≥ 1, and let x ∈ Dn, and z ∈ Π be arbitrary.

Since x 6= z it follows that rzx ∈ Φ+.

Suppose for a contradiction that rzx ∈ Dm for some m ≥ n+2. Let

D(rzx) = { y1, . . . , ym }. Then x domW rzy1, · · · , rzym, for dominance

is W -invariant. Since x ∈ Dn, and m ≥ n+ 2, it follows that there are

1 ≤ i < j ≤ m such that rzyi ∈ Φ− and rzyj ∈ Φ−. But this is impos-

sible since rz could only make one positive root negative. Therefore we

may conclude that rzx /∈ Dm where m ≥ m + 2. A similar argument

also shows that rzx /∈ Dm′ where m′ ≤ n− 2, and we are done. �

Lemma 3.3.15. Suppose that x, y are in Φ+ with y � x. Let w ∈ W
be such that x = wy and dp(x) = dp(y) + l(w). Then y ∈ Dm implies

that x ∈ Dn for some n ≥ m. Furthermore, wD(y) ⊆ D(x).

Proof. It is enough to show that the desired result holds in the case

that w = ra for some a ∈ Π. The more general proof then follows from

an induction on l(w).

Since x = ray and y ≺ x it follows from Lemma 2.3.3 (v) that

(a, y) < 0. Let D(y) = { z1, z2, . . . , zm }. Then Lemma 3.3.2 (v) yields

that a /∈ D(y). Since a ∈ Π, this in turn implies that raD(y) ⊂ Φ+.

Since dominance is W -invariant, it follows that x domW razi for all

i ∈ { 1, 2 . . . ,m }. Hence { raz1, raz2, . . . , razm } ⊆ D(x), and thus

x ∈ Dn for some n ≥ m. �

The next proposition, somewhat an analogy to Lemma 2.3.3 (v)

above, has many applications, among which, we can deduce for arbi-

trary positive root x, the integer n for which x ∈ Dn. Furthermore, it

enables us to compute D(x) explicitly as well as to obtain an algorithm

to compute all the Dn’s systematically.

Proposition 3.3.16. Suppose that x ∈ Dn, n ≥ 1, and a ∈ Π. Then

(i) rax ∈ Dn−1 if and only if (x, a) ≥ 1;
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(ii) rax ∈ Dn+1 if and only if (x, a) ≤ −1;

(iii) rax ∈ Dn if and only if (x, a) ∈ (−1, 1).

Proof. (i) Suppose that x ∈ Dn, a ∈ Π such that rax ∈ Dn−1. Let

D(x) = { z1, z2, . . . , zn }. Then rax domW razi for all i ∈ { 1, 2, . . . , n }
since dominance is W -invairant. Thus at least one of raz1, . . . , razn

must be negative. Without loss of generality, we may assume that

raz1 ∈ Φ−. Since a ∈ Π, it follows that a = z1. Then (z, a) ≥ 1 by

Lemma 3.3.2 (v) since x domW a.

Conversely, suppose that x ∈ Dn and a ∈ Π such that (x, a) ≥ 1.

Then by Lemma 3.3.2 (v) x domW a; furthermore, Lemma 2.3.3 (v)

yields that rax ≺ x. Hence Lemma 3.3.15 yields that

(3.3.8) raD(rax) ⊆ D(x).

Now suppose for a contradiction that rax /∈ Dn−1. Then Lemma 3.3.14

yields that rax ∈ Dn ]Dn+1. From (3.3.8) it is clear that rax /∈ Dn+1.

But if rax ∈ Dn, then (3.3.8) yields that raD(rax) = D(x). Observe

that a ∈ D(x) and a /∈ raD(rax), producing a contradiction as desired.

This completes the proof of (i).

(ii) Replace x by rax in (i) above then we may obtain the desired

result.

(iii) Follows from (i), (ii) and Lemma 3.3.14.

�

Definition 3.3.17. For each x ∈ Φ+, define

S(x) = {w ∈ W | l(w) = dp(x)− 1 and w−1x ∈ Π },

T (x) = {w ∈ W | l(w) = dp(x) and w−1x ∈ Φ− }.

In other words, for x ∈ Φ+, S(x) (respectively, T (x)) consists

of all w ∈ W of minimal length such that w−1x ∈ Π (repectively,

w−1x ∈ Φ−).

Proposition 3.3.18. Suppose that x ∈ Φ+. Then x ∈ Dn where

n = | { b ∈ N(w−1) | x domW b } | for all w ∈ S(x). In particular,

D(x) = { b ∈ N(w−1) | (x, b) ≥ 1 }
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for all w ∈ S(x).

Proof. Let x ∈ Φ+ and write x = wa where w ∈ S(x) and a ∈ Π. Let

w = ra1 · · · ral with l = l(w). For all i ∈ { 2, . . . , l },

w−1(ra1ra2 · · · rai−2
)ai−1

= ral · · · ra1ra1 · · · rai−2
ai−1

= ral · · · rairai−1
ai−1

= −ral · · · raiai−1.

Since l(rlrl−1 · · · ri) = l(rl · · · riri−1)−1, it follows from Lemma 2.3.3 (iv)

that ral · · · raiai−1 ∈ Φ+. Thus

(3.3.9) w−1(ra1ra2 · · · rai−2
)ai−1 = −ral · · · raiai−1 ∈ Φ−.

Now by Proposition 3.3.16, we can immediately deduce that x ∈ Dn

where

n = | { i : (ai−1 , rairai+1
· · · rala) ≤ −1 } |

= | { i : (ra1 · · · rai−1
(ai−1) , ra1 · · · ral(a)) ≤ −1 } |

= | { i : (ra1 · · · rai−1
(ai−1) , x) ≤ −1 } |

= | { i : (−ra1 · · · rai−2
(ai−1) , x) ≤ −1 } |

= | { b ∈ N(w−1) : (−b, x) ≤ −1 } |

= | { b ∈ N(w−1) : (−b, x) ≥ 1 } |.

Lemma 3.3.2 (v) yields that either x domW b or b domW x. Since all

such b are in N(w−1) where w ∈ S(x), it follows that w−1x ∈ Π and

w−1b ∈ Φ−. Thus b cannot dominate x. So we may conclude that

x ∈ Dn, where

(3.3.10) n = | { b ∈ N(w−1) | x domW b } |

for all w ∈ S(x). But (3.3.10) says precisely that D(x) ⊆ N(w−1) and

D(x) = { b ∈ N(w−1) | x domW b }

= { b ∈ N(w−1) | (x, b) ≥ 1 }.

�
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Immediately from Proposition 3.3.18, we have:

Corollary 3.3.19. Let x ∈ Φ+. Then D(x) ⊆
⋂

w∈S(x)

N(w−1). And

D(x) = { b ∈ N(w−1) | (x, b) ≥ 1 } is independent of the particular

choice of w ∈ S(x).

It turns out that we can also say something about the roots in⋂
w∈S(x)

N(w−1) \D(x). Indeed in the next two lemmas we deduce that

if b ∈
⋂
w∈S(x) N(w−1), then (x, b) > 0.

Lemma 3.3.20. Suppose that x ∈ Φ+, w ∈ T (x) and b ∈ N(w−1).

Then (b, x) > 0.

Proof. If dp(x) = 1, then x ∈ Π. Hence T (x) = { rx } and x = b, and

so (b, x) = 1 as required.

Thus we may assume that dp(x) > 1 and proceed by an induction

on dp(x). Let a ∈ Π ∩N(w−1). Then

l(raw) = l(w−1ra) = l(w−1)− 1 = l(w)− 1.

Now since (raw)−1(rax) = w−1x ∈ Φ−, it follows that

dp(rax) ≤ l(raw) < l(w) = dp(x).

Thus Lemma 2.3.3 (v) yields that (a, x) > 0. If b = a then we

are done. So we may assume that b 6= a and let w′ = raw. Ob-

serve that then w′ ∈ T (rax). Since b ∈ N(w−1), it follows that

w′−1rab = w−1rarab = w−1b ∈ Φ−. Thus rab ∈ N(w′−1). And so

the inductive hypothesis yields that (rab, rax) > 0. Since ( , ) is W -

invariant, it follows that (b, x) > 0 as required. �

Lemma 3.3.21. Suppose that x ∈ Φ+, w ∈ S(x) and b ∈ N(w−1).

Then (b, x) > 0.

Proof. Follows from Lemma 3.3.20 and the fact that for each w ∈ S(x)

there is a w′ ∈ T (x) such that N(w−1) ⊂ N(w′−1). �
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Lemma 3.3.22. For n ∈ N, if Dn = ∅, then Dm = ∅ for all m ∈ N
such that m > n.

Proof. Suppose for a contradiction that there exists n ∈ N such that

Dn = ∅ and yet Dn+1 6= ∅. Let x ∈ Dn+1. Then Lemma 3.3.14 yields

that rax /∈ Dn for all a ∈ Π. Hence if a ∈ Π such that rax ≺ x then

rax ∈ Dn+1 still. Write x = wb, where b ∈ Π, and w ∈ S(x). Let

w = ra1 · · · ral (ai ∈ Π, for i = 1, · · · , l) be a reduced expression for

w. Then for all i ∈ { 1, . . . , l }, we have that rai · · · ra2ra1x ∈ Dn+1.

In particular, b = ral · · · ra1x ∈ Dn+1, contradicting the fact that

b ∈ Π ⊂ D0. �

Corollary 3.3.23. Suppose that W is a finite rank infinite Coxeter

group. Then for all nonnegative integers n, Dn 6= ∅.

Proof. It is clear from the definition of the Dn’s that Φ+ =
⊎
n≥0

Dn.

Since W is an infinite Coxeter group, it follows that |Φ+| = ∞. On

the other hand, since W is of finite rank, Theorem 3.3.9 yields that

|Dn| <∞. Thus Lemma 3.3.22 implies that Dn 6= ∅ for all nonnegative

integers n. �

The following is a generalization of Proposition 3.3.16:

Proposition 3.3.24. Let x ∈ Dn with n > 0, and let a ∈ Φ+. Then

(i) |D(rax)| < n if (x, a) ≥ 1;

(ii) |D(rax)| > n if (x, a) ≤ −1.

Proof. (i) If dp(a) = 1 then this is just Propostion 3.3.16. Suppose

now that dp(a) > 1, and proceed by induction.

Write a = rbc, where b ∈ Π, c ∈ Φ+ such that

(3.3.11) dp(a) = dp(c) + 1

Now since (x, a) = (x, rbc) = (rbx, c) ≥ 1, it follows from the inductive

hypothesis that

(3.3.12) |D(rc(rbx))| < |D(rbx)|.
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Now we have three possibilities:

1) (b, x) ≥ 1;

2) (b, x) ≤ −1;

3) (b, x) ∈ (−1, 1).

If 1) is the case, then Proposition 3.3.16 yields that rbx ∈ Dn−1.

And thus we have in this case

|D(rax)| = |D(rb(rcrbx))|

≤ |D(rc(rbx))|+ 1 (follows from Proposition 3.3.16 )

≤ |D(rbx)| (follows from (3.3.12))

= n− 1

as required.

If 2) is the case, then Proposition 3.3.16 yields that rbx ∈ Dn+1,

and (b, rc(rbx)) = (b, rbx − 2(rbx, c )c ) = (b, rbx)︸ ︷︷ ︸
≥ 1

−2(x, a)(b, c). By

Lemma 2.3.3 (v), equation(3.3.11) above yields that (b, c) < 0. Hence

(3.3.13) (b, rc(rbx)) > (b, rbx) ≥ 1.

Then Proposition 3.3.16 yields that

|D(rax)| = |D(rb(rcrbx)|

= |D(rcrbx)| − 1 (by (3.3.13) above)

≤ |D(rbx)| − 2 (by (3.3.12))

≤ n− 1 (since rbx ∈ Dn+1 in case 2))

as required.
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If 3) is the case, then we are done unless |D(rc(rbx))| = n− 1, and

(b, rcrbx) ≤ −1. But this is impossible, since

(b, rcrbx)

= (b, rbx)− 2(rbx, c)(b, c)

= (b, rbx)− 2(a, x)(b, c)

> (b, rbx) ( since (a, x) ≥ 1, and (b, c) < 0 )

> −1.

Thus |D(rax)| = |D(rbrcrbx)| < n in this case too. This completes the

proof of (i).

(ii) Replace x by rax, then apply (i) above.

�

Next we give an algorithm to systematically compute all the Dn’s

for an arbitrary finite-rank Coxeter group W .

Lemma 3.3.25. Suppose that x ∈ Dn with n ≥ 1. Then there exists

y ∈ Dn−1 such that y ≺ x.

Proof. Suppose that the contrary is true. Let x ∈ Dn be such that

there is no root in Dn−1 preceding x. Write x = wa, where a ∈ Π, and

w ∈ S(x). Let w = ra1 · · · ral (ai ∈ Π, i = 1, . . . , l) be a reduced ex-

pression for w. Then a = ral · · · ra1x. Observe that in such case, for all

i ∈ { 1, . . . , l − 1 }, rai · · · ra1x ≺ rai−1
· · · ra1x. Thus Lemma 2.3.3 (v)

yields that (rai−1
· · · ra1x, ai) > 0 for i ∈ {2, · · · , l}. So by Proposition

3.3.16, our assumption that x is not preceded by any root in Dn−1

is equivalent to the condition that (rai−1
· · · ra1x, ai) ∈ (0, 1) for all

i ∈ { 2, · · · , l }. Proposition 3.3.16 (iii) then yields that

rairai−1
· · · ra1x ∈ Dn

for all i ∈ { 1, · · · , l }. In particular, a = ral · · · ra1x ∈ Dn where n ≥ 1,

contradicting that a ∈ Π ⊂ D0. �
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Proposition 3.3.26. Suppose that W is a finite-rank Coxeter group.

For n ≥ 1, there is an algorithm to compute Dn provided that Dn−1 is

known.

Proof. We outline such an algorithm:

1) Set D = ∅.
2) Enumerate all the elements of Dn−1 in some order, that is, write

Dn−1 = {x1, · · · , xm}, where m = |Dn−1|.
3) Starting with x1, apply all simple reflections ra (a ∈ Π), to x1,

one at a time. If (a, x1) ≤ −1, then add rax1 to D.

4) Repeat 3) to x2, · · · , xm.

5) Enumerate all the elements of the modified set D in some order,

that is, write D = {x′1, x′2, · · · , x′|D|}.
6) Starting with x′1, apply all simple reflections ra (a ∈ Π) to x′1,

one at a time. If (a, x′1) ∈ (−1, 0) and rax
′
1 /∈ D, then add rax

′
1

to D.

7) Repeat 6) to x′2, · · · , x′|D|.
8) Repeat steps 5) to 7) above.

9) Repeat 8) until no new elements can be added to D.

10) Set Dn = D.

Next we show that the above algorithm will be able to produce all

elements of Dn within a finite number of iterations.

Let x ∈ Dn (n ≥ 1) be arbitrary. Lemma 3.3.25 yields that there

exists a y ∈ Dn−1 with y ≺ x. Write x = wy for some w ∈ W with

l(w) = dp(x) − dp(y). Let w = ra1ra2 · · · ral (a1, . . . , al ∈ Π) be a

reduced expression for w. Then

y ≺ raly ≺ ral−1
raly ≺ · · · ≺ ra1ra2 · · · raly = x.

Since x ∈ Dn and y ∈ Dn−1, it follows from Lemma 3.3.15 that

raly, ral−1
raly, . . . , ra2ra3 · · · raly ∈ Dn−1 ]Dn
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furthermore, there exists i ∈ { 1, 2, . . . , l } such that

y ∈ Dn−1

raly ∈ Dn−1

...

rai+1
rai+2

· · · raly ∈ Dn−1

and

rai(rai+1
rai+2

· · · raly) ∈ Dn

rai−1
rai(rai+1

rai+2
· · · raly) ∈ Dn

...

ra1ra2 · · · raly = x ∈ Dn.

Since rai+1
rai+2

· · · raly ∈ Dn−1, it follows that rairai+1
rai+2

· · · raly is an

element of Dn obtainable by going through steps 3) and 4) above. This

in turn implies that rai−1
rai · · · raly is an element obtainable by going

through steps 5) to 7). It then follows that rai−2
rai−1

rai · · · raly and so

on are all obtainable by (repeated) application of step 8). In particular

x = ra1 · · · raly can be obtained after (i− 2) iterations of step 8). Thus

x can be obtained by going through setps 1) to 8), with step 8) repeated

finitely many times. Since x ∈ Dn was arbitrary, it follows that every

element of Dn can be obtained from the above algorithm in this manner

with step 8) repeated finitely many times.

Finally W is of finite rank, so |Dn| < ∞. Therefore step 9) will

only be repeated a finite number of times and hence the algorithm will

terminate completing the proof. �

Corollary 3.3.27. If |S| < ∞, then we may compute Dn, for all

n ∈ N.

Proof. [5] gives a complete description of D0 when |S| < ∞. Now

combine [5] and Proposition 3.3.26, the result follows immediately. �
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Now a question worth asking is whether, given an arbitrary (finite

rank) Coxeter group W , the successive Dn’s expand or contract in size?

At this stage, unfortunately, a full answer has not yet been found.

However we do know that for a family of special subsets Dn,1’s of the

Dn’s to be defined below, the successive Dn,1’s tend to increase in size.

For I ⊆ Π, the Coxeter group generated by { ra | a ∈ I } is denoted

by WI , and the root system of WI on the subspace of V spanned by I

is denoted by ΦI . As usual, write Φ+
I for ΦI ∩PLC(I) and write Φ−I for

−Φ+
I . The Coxeter graph Γ(I) of WI has vertex set I, and two vertices

ar and as are adjoined by an edge of weight mrs, where r, s ∈ S and

mrs 6= 2.

Each root x can be written uniquely as
∑

a∈Π λaa, and we say λa

is the coefficient (witten coeffa(x)) of a in x. The support (written

supp(x)) of x is the set of all a ∈ Π with coeffa(x) 6= 0, and Γ(x)

defined by Γ(supp(x)) is the corresponding graph. It is readily seen

that Γ(supp(x)) is finite and connected.

Definition 3.3.28. For n ∈ N, set

Dn,1 = Dn ∩ { β ∈ Φ+ | coeffx(β) = 1 , for some x ∈ Π }.

In Proposition 3.3.30 below we shall prove that, amongest other

things, |Dn,1| ≥ |Dm,1|, if n > m.

Lemma 3.3.29. ( (4.4) Lemma of [5]) Let β be a positive root and

x ∈ Π with coeffx(β) = 1. Then x � β; that is, there exists a

w ∈ Wsupp(β)\{x} such that β = wx and dp(β) = l(w) + 1. �

Proposition 3.3.30. Let I ⊆ Π, x ∈ I and I1, I2 ⊆ I be such that

Γ(I1 \ {x}) and Γ(I2 \ {x}) are unions of connected components of

Γ(I \ {x}) with I = I1 ∪ I2, and I1 ∩ I2 = {x}. Then
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(i)

φ : { (β1, β2) ∈ Φ+
I1
× Φ+

I2
| coeffx(β1) = coeffx(β2) = 1 }

→ {α ∈ Φ+
I | coeffx(α) = 1 }

(β1, β2) 7→ β1 + β2 − x

defines a bijection. Moreover, dp(φ(β1, β2)) = dp(β1) + dp(β2)− 1 and

β1, β2 � φ(β1, β2) for βi ∈ Φ+
I1

, with coeffx(βi) = 1 (i = 1, 2).

(ii) φ restricts to a bijection

{ (β1, β2) ∈ (Φ+
I1
∩Di)× (Φ+

I2
∩Dj) | coeffx(β1) = coeffx(β2) = 1 }

↔ { β ∈ Φ+
I ∩Di+j | coeffx(β) = 1 }.

Proof. (i) Lemma 4.2 of [5].

(ii) Let β ∈ Φ+
I with coeff(β) = 1. Then Lemma 3.3.29 above

yields that β = wx, for some w ∈ WI\{x}. We may write w = w1w2

where w1 ∈ WI1\{x} and w2 ∈ WI2\{x} with l(w) = l(w1) + l(w2).

Observe that under this construction, WI1\{x} commutes with WI2\{x}

and WI1\{x} fixes Φ+
I2\{x} pointwise and vice versa. Set β1 = w1x and

β2 = w2x.

We first show that β1 ∈ Di, β2 ∈ Dj implies that β ∈ Di+j.

Suppose for a contradiction that β ∈ Dn for some n ∈ N and

n 6= i + j. Let { z1, . . . , zi } = D(β1) and { zi+1, . . . , zi+j } = D(β2).

Since

β1 = w1x domW z1, . . . , zi,

it follows from the W -invariance of dominance that

x domW w−1
1 z1, . . . w

−1
1 zi.

Since x ∈ Π it follows that w−1
1 z1, . . . , w

−1
1 zi ∈ Φ−. Consequently

z1, . . . , zi ∈ N(w−1
1 ) ⊆ Φ+

I1\{x}. Similar reasoning also yields that

zi+1, . . . , zi+j ∈ N(w−1
2 ) ⊆ Φ+

I2\{x}. Observe that in particular, we have
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D(β1) ∩D(β2) = ∅. By Lemma 3.3.15,

w2D(β1) = w2D(w1x)

⊆ D(w2w1x) (since w1x ≺ w2w1x)

= D(wx)

= D(β).

Similarly w1D(β2) ⊆ D(β). Since w2 fixes z1, . . . , zi pointwise and w1

fixes zi+1, . . . , zj+j pointwise, it follows that

(3.3.14) { z1, . . . , zi, zi+1, · · · , zi+j } ⊆ D(β).

Observe that (3.3.14) implies that, in particular, β ∈ Dn for some

n > i+ j. Thus there exists z ∈ Φ+ such that z ∈ D(β) and

(3.3.15) z 6= z1, . . . , zi, zi+1, . . . , zi+j.

β = wx domW z implies that x domW w−1z. Because x ∈ Π, this forces

that w−1z ∈ Φ−. Thus z ∈ N(w−1) ⊆ Φ+
I\{x}. Now the connectedness

of Γ(z) implies that either z ∈ Φ+
I1\{x} or z ∈ Φ+

I2\{x}. Suppose that

z ∈ Φ+
I1\{x}. Then wx domW z implies that

w1x = w−1
2 (wx) domW w−1

2 z = z.

Then z ∈ { z1, . . . , zi }, contradicting (3.3.15). Next suppose that

z ∈ Φ+
I2\{x}. Then β = wx domW z implies that

w2x = w−1
1 (wx) domW w−1

1 z = z.

Then z ∈ { zi+1, . . . , zi+j }, again contradicting (3.3.15). Therefore if

β1 ∈ Di and β2 ∈ Dj then β ∈ Di+j, as required.

The converse can be shown by a similar argument. �

3.4. The Imaginary Cone and Standard Dominance

The section is devoted to a preliminary study of the so called imag-

inary cone (introduced by Dyer in [3] and [4]) of a Coxeter group and

a stronger form of dominance. In particular, we will show that if x and
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y are roots with x domW y, then x − y is in this imaginary cone. We

stress that throughout this section S is assumed to be finite.

Definition 3.4.1. Let V ∗ be the dual space of V (recall that W

acts on V ∗ via the folowing: for all w ∈ W , x ∈ V , and f ∈ V ∗,

(wf)(x) := f(w−1x)). For any convex cone C in V , define the dual of

C to be

C∗ = {φ ∈ V ∗ | φ(v) ≥ 0, for all v ∈ C },

and similarly for a convex cone F in V ∗, we define its dual to be

F ∗ = { v ∈ V | f(v) ≥ 0, for all f ∈ F }.

Let P = PLC(Π) ∪ {0}, and we set U =
⋃

w∈W
wP ∗.

Remark 3.4.2. Given the finite dimensinality of V (and hence V ∗),

it is well known that if C (respectively, F ) is a convex cone in V

(respectively, V ∗), then then (C∗)∗ (respectively, (F ∗)∗) is the topolog-

ical closure of C (respectively, F ) in V with respect to the standard

topology on V ∼= R|S| (respectively, V ∗ with respect to the standard

topology). Furthermore C∗ (repectively, F ∗) is always a convex cone

in V (respectively, V ∗), even if C (respectively, F ) is neither convex

nor a cone in V (respectively, V ∗).

Lemma 3.4.3. Let w ∈ W be arbitrary and suppose that f ∈ wP ∗.

Then f(a) ≥ 0 for all but finitely many positive roots a.

Proof.

wP ∗ = {wφ ∈ V ∗ | φ(a) ≥ 0 for all a ∈ Φ+ }

= { f ∈ V ∗ | (w−1f)(a) ≥ 0 for all a ∈ Φ+ }

= { f ∈ V ∗ | f(wa) ≥ 0 for all a ∈ Φ+ }

= { f ∈ V ∗ | f(b) ≥ 0 for all b ∈ wΦ+ }

= { f ∈ V ∗ | if c ∈ Φ+ then f(c) < 0 only if c ∈ N(w−1) }

Since N(w−1) is a finite set, the desired result follows. �
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Lemma 3.4.4. U consists of all φ ∈ V ∗ such that φ(a) ≥ 0 for all but

finitely many positive roots a.

Proof. Let

X := {ψ ∈ V ∗ | ψ(a) ≥ 0 for all but finitely many b ∈ Φ+ }.

The previous lemma yields that U ⊆ X. Now let ψ ∈ X be arbitrary.

We shall show that ψ ∈ U by an induction on the size of the set

Neg(ψ) := { b ∈ Φ+ | ψ(b) < 0 }. If | Neg(ψ) | = 0, then ψ ∈ P ∗ ⊂ U ,

so we may assume that Neg(ψ) 6= ∅. Then there must exist b ∈ Π such

that ψ(b) < 0. It is readily observed that the size of Neg(rbψ) is one less

than the size of Neg(ψ). Indeed Neg(rbψ) = rb(Neg(ψ) \ {b}). Hence

the inductive hypothesis yields that rbψ ∈ U . Since U is W -invariant,

if follows that ψ ∈ U since U . Since ψ ∈ X was arbitrary, it follows

that X ⊆ U . �

Remark 3.4.5. By the lemma above, we see that U is a convex cone,

and we call it the Tits Cone.

Lemma 3.4.6.

U∗ =
⋂
w∈W

wP.

Proof.

U∗ = { v ∈ V | f(v) ≥ 0, for all f ∈ U }

= { v ∈ V | (wφ)(v) ≥ 0 , for all φ ∈ P ∗, and for all w ∈ W }

= { v ∈ V | φ(w−1v) ≥ 0 , for all φ ∈ P ∗, and for all w ∈ W }

=
⋂
w∈W

{ v ∈ V | φ(w−1v) ≥ 0 , for all φ ∈ P ∗ }

=
⋂
w∈W

{wv ∈ V | φ(v) ≥ 0, , for all φ ∈ P ∗ }

=
⋂
w∈W

{wv ∈ V | v ∈ (P ∗)∗ }

=
⋂
w∈W

wP ( (P ∗)∗ = P , since P is topologically closed).
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�

Adpoting the concept introduced in [3] and [4], we make the fol-

lowing definition.

Definition 3.4.7. We define the imaginary cone Q of W to be

Q = { v ∈ U∗ | (v, a) ≤ 0 for all but finitely many a ∈ Φ+ }.

Observe that Q is indeed a convex cone.

Lemma 3.4.8. Suppose that v ∈ V has the property that (a, v) ≤ 0 for

all a ∈ Π. Then wv − v ∈ P for all w ∈ W . Moreover, if v ∈ P , then

v ∈ U∗.

Proof. Use induction on l(w). Noting that if l(w) = 0 then there

is nothing to prove. If l(w) ≥ 1, then we may write w = w′ra with

w′ ∈ W , a ∈ Π and l(w) = l(w′) + 1. Then

wv − v = w′ra(v)− v = w′(v − 2(v, a)a)− v

= (w′v − v) + 2|(a, v)|w′a.

Observe that w′a ∈ P , and w′v − v ∈ P by the inductive hypothesis.

Since P is a cone it follows that wv − v ∈ P as required.

If v ∈ P , then wv = (wv − v) + v ∈ P for all w ∈ W , and so

v ∈
⋂

w∈W
w−1P = U∗.

�

Now we are ready to give an alternative characterization of Q:

Proposition 3.4.9.

Q = {wv | w ∈ W, v ∈ P such that (v, a) ≤ 0 for all a ∈ Φ+ }.

Proof. First set

X = {wv | w ∈ W, v ∈ PLC(Π) such that (v, a) ≤ 0 for all a ∈ Φ+ }.

Suppose that u ∈ Q. Lemma 3.4.6 yields that u can indeed be

expressed as wv for some w ∈ W and v ∈ P . In particular, u ∈ P . For
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each b ∈ P set Pos(b) := { c ∈ Φ+ | (b, c) > 0 }. If Pos(u) = ∅, then

trivially u ∈ Q (taking w = 1). Thus we may assume that Pos(u) 6= ∅
and proceed by an induction on |Pos(v)|. Choose a ∈ Π such that

(u, a) > 0. Now it is readily checked that Pos(rau) = ra(Pos(u) \ {a}).
Thus the inductive hypothesis yields that rau ∈ X. Thus u ∈ X since

X is clearly W -invariant. Since u ∈ Q was arbitrary, it follows that

Q ⊆ X.

Conversely, if x ∈ X, then x = wv for some w ∈ W and v ∈ P

such that (v, a) ≤ 0 for all a ∈ Π. By the previous lemma, x ∈ U∗.

Now let y ∈ Φ+. Then (x, y) = (wv, y) = (v, w−1y) and (x, y) > 0 only

for those roots b ∈ N(w−1). Clearly there are finitely (indeed, at most

l(w)) many such roots. Thus x ∈ Q. Since x ∈ X was arbitrary, it

follows that X ⊆ Q. �

Proposition 3.4.10. Suppose that x, y ∈ Φ are distinct with x domW y.

Then for all w ∈ W , w(x− y) ∈ PLC(Π), that is, x− y ∈ U∗.

Proof. LetW ′ be the (infinite) dihedral subgroup ofW generated by rx

and ry. Let S(W ′) = {s, t} and4(W ′) = {αs, αt}. Proposition 3.3.4 (i)

and Proposition 4.5.4 (i) of [13] combined yield that αs, αt ∈ Φ+

with (αs, αt) = −(x, y) ≤ −1. Since x and y ∈ Φ(W ′) = W ′∆(W ′),

Lemma 3.2.1 yields that there are integers m and n such that

x =
sinh(n± 1)θ

sinh(θ)
αs +

sinh(nθ)

sinh(θ)
αt

and

y =
sinh(m± 1)θ

sinh(θ)
αs +

sinh(mθ)

sinh(θ)
αt

where θ = ln(−(αs, αt) +
√

(αs, αt)2 − 1 ) = cosh−1(−(αs, αt)).

Keeping all notation as in Section 3.2, we write ci for sinh(iθ)
sinh(θ)

, for all

i ∈ N. Now let us consider the possible values of (x, y):
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(a) If x = cn+1αs + cnαt and y = cm+1αs + cmαt, then

(x, y) = cosh((n−m)θ) ≥ 1.

(b) If x = cn+1αs + cnαt and y = cm−1αs + cmαt, then

(x, y) = − cosh((n+m)θ) ≤ −1.

(c) If x = cn−1αs + cnαt and y = cm+1αs + cmαt, then

(x, y) = − cosh((n+m)θ) ≤ −1.

(d) If x = cn−1αs + cnαt and y = cm−1αs + cmαt, then

(x, y) = cosh((n−m)θ) ≥ 1.

Since x domW y, Lemma 3.3.2 (v) yields that (x, y) ≥ 1. Therefore we

can rule out cases (b) and (c) above and conclude that either

x =
sinh(n+ 1)θ

sinh(θ)
αs +

sinh(nθ)

sinh(θ)
αt, y =

sinh(m+ 1)θ

sinh(θ)
αs +

sinh(mθ)

sinh(θ)
αt;

or

x =
sinh(n− 1)θ

sinh(θ)
αs +

sinh(nθ)

sinh(θ)
αt, y =

sinh(m− 1)θ

sinh(θ)
αt +

sinh(mθ)

sinh(θ)
αt.

Next we shall show that n > m. Suppose for a contradiction that

m ≥ n. Then either x = y (when n = m), or there will be a w ∈ W ′

such that wx ∈ Φ(W ′)∩Φ− and yet wy ∈ Φ(W ′)∩Φ+ (when n < m), all

contradicting the fact that x domW y. Since cn > cm if n > m, it follows

that x − y ∈ PLC(Π). Finally because dominance is W -invariant, so

for any w ∈ W , repeat the above argument with x replaced by wx and

y replaced by wy, we may conclude that w(x− y) ∈ PLC(Π). �

Theorem 3.4.11. Suppose that x, y ∈ Φ are distinct with x domW y.

Then there exists w ∈ W such that (w(x − y), z) ≤ 0, for all z ∈ Φ+,

that is, x− y ∈ Q.

Proof. By the previous proposition, we know that x − y ∈ U∗. Thus

if we can prove that there exists w ∈ W with (w(x− y), z) ≤ 0 for all

z ∈ Φ+, then x−y ∈ Q by Proposition 3.4.9 (since U∗ is W−invariant).
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Clearly it is enough to prove that (w(x − y), z) ≤ 0 for all z ∈ Π and

we give an algorithm to find such a w below.

Let W ′ be the (infinite) dihedral subgroup of W generated by rx

and ry, and let 4(W ′) = {a0, b0}. By Propostion 3.3.4 (i), a0, b0 ∈ Φ+,

and (a0, b0) = −(x, y) ≤ −1, and there is some u ∈ 〈rx, ry〉 such that

either

(3.4.1)

u(x) = a0 and u(y) = −b0 or u(x) = b0 and u(y) = −a0.

At any rate, u(x − y) = a0 + b0. Obviously (a0 + b0, a0) ≤ 0 and

(a0+b0, b0) ≤ 0. However there may be c1 ∈ Π such that (a0+b0, c1) > 0.

If this is the case, set

a1 = rc1a0

and

b1 = rc1b0.

Observe that (d, c1) ≤ 0 for all d ∈ Π \ {c1}, so

(3.4.2) c1 ∈ supp(a0) ∪ supp(b0)

Note that a0 6= c1 and b0 6= c1, since (a0 + b0, c1) > 0 whereas

(a0 + b0, a0) ≤ 0 and (a0 + b0, b0) ≤ 0. Thus a1, b1 ∈ Φ+, and

(a1, b1) = (a0, b0) ≤ −1. Consequently Proposition 3.1.3 (ii) yields

that a1, b1 are the canonical roots for the root subsystem Φ(〈ra1 , rb1〉).
Observe that applying rc1 to a0 and b0 will only change the coefficient

of c1, therefore (3.4.2) yields that

supp(a1) ∪ supp(b1) ⊆ supp(a0) ∪ supp(b0).

Furthermore,∑
a∈Π

coeffa(a1) +
∑
a∈Π

coeffa(b1) <
∑
a∈Π

coeffa(a0) +
∑
a∈Π

coeffa(b0)

since the coefficient for c1 has been stricly decreased as (a0 +b0, c1) > 0.

Moreover, since (a0 + b0, c1) > 0, it follows that at least one of (a0, c1)
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or (b0, c1) must be strictly positive. Hence Lemma 2.3.3 (v) yields that

dp(a1) + dp(b1) ≤ dp(a0) + dp(b0).

Repeat this process and we can obtain new pairs of positive roots

{ a2, b2 }, . . . , { am−1, bm−1 }, { am, bm } with

supp(am) ∪ supp(bm) ⊆ supp(am−1) ∪ supp(bm−1) ⊆ · · ·

⊆ supp(a0) ∪ supp(b0)

so long as we can find a cm ∈ Π such that (am−1 + bm−1, cm) > 0.

And this process only terminates at { an, bn } for some n, if for all

z ∈ Π, (an + bn, z) ≤ 0. Thus if we could show that this process

terminates at {an, bn} for some finite n, then we have in fact found a

w = rcnrcn−1 · · · rc1u ∈ W such that

(w(x− y), z) = (rcn · · · rc1(a0 + b0), z) ≤ 0

for all z ∈ Π, which in turn will establish that x− y ∈ Q.

Since the set of positive roots having depth less than a specific

bound and support in a fixed finite subset of Π is finite, it then follows

that the possible pairs of positive roots {ai, bi} obtained in this process

must be finite too. Finally since∑
a∈Π

coeffa(aj) +
∑
a∈Π

coeffa(bj) <
∑
a∈Π

coeffa(ai) +
∑
a∈Π

coeffa(bi)

for all j > i, therefore the sequence {a0, b0}, {a1, b1}, · · · must terminate

at {an, bn}.
Incidentally, observe that for all i ∈ {1, · · · , n}, where n is as

above, rciai−1 ∈ Φ+ and rcibi−1 ∈ Φ+. So we can easily deduce that

rci · · · rc1(a0) ∈ Φ+, and rci · · · rc1(b0) ∈ Φ+, for all i ∈ {1, · · · , n}.
Hence, let w ∈ W be as above, (3.4.2) yields that either

wx = rcn · · · rc1ua0 ∈ Φ+ and wy = rcn · · · rc1u(−b0) ∈ Φ−

or

wx = rcn · · · rc1ub0 ∈ Φ+ and wy = rcn · · · rc1u(−a0)Φ−.
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�

The observation made at the end of the proof of Theorem 3.4.11

yields that:

Corollary 3.4.12. Let x, y ∈ Φ be distinct with x domW y. Then there

exists w ∈ W such that wx ∈ Φ+, wy ∈ Φ−, and (w(x− y), z) ≤ 0 for

all z ∈ Φ+. �

Corollary 3.4.13. Suppose that x, y ∈ Φ are distinct with x domW y.

Then the following are equivalent:

(i) whenever x domW z domW y for some z ∈ Φ, then either z = x

or z = y;

(ii) there exists a w ∈ W such that w(x) ∈ D0 and w(y) ∈ −D0.

Proof. (i) implies (ii): Let w be as in the previous corollary. First

we show that then wx ∈ D0. Suppose for a contradiction that wx /∈ D0.

Let z ∈ D(wx). Then the last corollary yields (wy, z) ≥ 1 too, for

(wy, z) ≥ (wx, z) ≥ 1. Since the last Corollary yields that wy ∈ Φ−,

it follows that z domW wy. But this gives us x domW w−1z domW y

with x 6= w−1z 6= y, contradicting (i). Therefore wx ∈ D0, as required.

Similarly we may also deduce that wy ∈ −D0.

(ii) implies (i): Clear.

�

Definition 3.4.14. Suppose that x, y ∈ Φ, x domW y satisfy both (i)

and (ii) of Corollary 3.4.13, then we say that the dominance between

x and y is minimal.

Proposition 3.4.15. Suppose that x, y ∈ Φ are distinct, and x domW y.

Then the dominance between x and y with respect to the subgroup

〈rx, ry〉 is minimal.

Proof. Let a and b be the canonical roots for Φ(〈rx, ry〉). Again as in

the proof of Proposition 3.3.4 (i) we see that every root in Φ(〈rx, ry〉)
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must be in exactly one of the following two dominace chains:

(3.4.3) · · · domW rarbra(b) domW rarb(a) domW ra(b) domW a

domW (−b) domW rb(−a) domW rbra(−b) domW · · ·

and

(3.4.4) · · · domW rbrarb(a) domW rbra(b) domW rb(a) domW b

domW (−a) domW ra(−b) domW rarb(−a) domW · · · .

Upon inspecting (3.4.3) and (3.4.4), we can readily see that the only

elementary roots in this root subsystem with respect to dom〈rx,ry〉 are a

and b. By Proposition 3.3.4 (i), we know that there is some w ∈ 〈rx, ry〉
such that either

wx = a and wy = −b

or

wx = b and wy = −a,

therefore Corollary 3.4.13 yields that the dominance between x and y

with respect to 〈rx, ry〉 is minimal. �

3.5. Dominance in Φ1

In this section we generalize the results obtained in Section 3.3

into the non-orthogonal geometric realization studied in Chapter 1 and

Chapter 2. In particular, we prove an analogue of Theorem 3.3.9 and

Corollary 3.3.10 adapted to the non-orthogonal setting, namely, for

a suitable definition of roots, the set of roots dominating precisely n

other positive roots is finite in size, for any positive integer n. The

conclusion drawn towards the end of this section is that the dominance

concept, especially those results analogous to Theorem 3.3.9 and Corol-

lary 3.3.10 are in fact dependent only on the underlying Coxeter group

and not on the particular geometric realization used.

Keeping all notation as in Chapter 1, in this section we adapt the

notion of dominance to the roots in Φ1. We stress that all the results
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obtained throughout this section equally apply to the roots in Φ2. We

begin by define what is meant by saying that a root in Φ1 dominates

another root in Φ1.

Definition 3.5.1. For α1, α2 ∈ Φ1, we say that α1 dominates α2 with

respect to W (written α1 domW α2) if

{w ∈ W | wα1 ∈ Φ−1 } ⊆ {w ∈ W wα2 ∈ Φ−1 }.

Lemma 3.5.2. Suppose that α1, α2 ∈ Φ1. Then α1 domW α2 if and

only if f1(α1) domW f1(α2).

Proof. By definition, α1 domW α2 if and only if whenever w ∈ W and

wα1 ∈ Φ−1 then wα2 ∈ Φ−1 . Since f1 is W -equivariant, if follows from

Lemma 2.3.6 that

wα1 ∈ Φ−1 if and only if f1(wα1) = wf1(α1) ∈ Φ−

and

wα2 ∈ Φ−1 if and only if f1(wα2) = wf1(α2) ∈ Φ−.

Thus α1 domW α2 if and only if f1(α1) domW f1(α2), as required.

�

Lemma 3.5.2 combined with results obtained in Section 3.3 enables

us to deduce the following facts concerning dominance in Φ1.

Lemma 3.5.3. Let α1, α2 ∈ Φ+
1 such that α1 is not a scalar multiple

of α2 and α1 domW α2. Then

(i) 〈α1, φ(α2)〉 > 0;

(ii) (wα1) domW (wα2) for all w ∈ W , that is, dominance is W -

invariant;

(iii) dp1(α1) > dp1(α2);

(iv) −α2 domW −α1.

Proof. (i) Lemma 3.3.2 (i), Corollary 2.3.9 and Lemma 3.5.2 com-

bined yield the desired result.

(ii) Follows from Lemma 3.3.2 (ii) and Lemma 3.5.2.
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(iii) Follows from Lemma 3.3.2 (i), Lemma 2.3.7 and Lemma 3.5.2.

(iv) Follows from Lemma 3.3.2 (iii) and Lemma 3.5.2. �

Lemma 3.5.4. Suppose that W is a finite Coxeter group. Then the

only domincance in Φ1 is of the form α domλα for some λ > 0.

Proof. If W is finite, then there is a unique w0 ∈ W of maximal length.

So l(wrs) < l(w) for all s ∈ S, and this implies that wαs ∈ Φ−1 for all

s ∈ S. Thus w0(Φ+
1 ) = Φ−1 . Hence N1(w0) = Φ̂1 and consequently

w ∈ W , l(w0w) = l(w0)− l(w). Furthermore, w0 = w−1
0 . Now suppose

that α ∈ Φ+
1 . Then −w0α ∈ Φ+

1 , and

dp1(−w0α) = 1
2
(l(r−(w0α)) + 1) (by Lemma 1.3.19 of Chapter 1)

= 1
2
(l(w0rαw0) + 1)

= 1
2
(l(w0)− l(rαw0) + 1)

= 1
2
(l(w0)− l(w0rα) + 1)

= 1
2
(l(w0)− l(w0) + l(rα) + 1)

= 1
2
(l(rα) + 1)

= dp1(α) (agaim by Lemma 1.3.19 of Chapter 1).

Therefore the map sending each positive root α to −w0α is a depth

preserving permutation.

Now suppose for a contradiction that α1, α2 ∈ Φ1 which are not

scalar multiples of each other and α1 domW α2. Without loss of gener-

ality we may assume that α1, α2 ∈ Φ+
1 . Then Lemma 3.5.3 (v) yields

that −w0α2 domW −w0α1, and by Lemma 3.5.3 (iv) this in turn implies

that

dp1(α2) = dp1(−w0α2) > dp1(−w0α1) = dp1(α1),

contradicting Lemma 3.5.3 (iv). �

Now we give a geometric characterization of dominance in Φ1:

Lemma 3.5.5. Let α1 and α2 be arbitrary roots in Φ+
1 which are not

scalar multiples of each other. Then α1 domW α2 if and only if the
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following three conditions are satisfied:

〈α2, φ(α1)〉 > 0, 〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ 1 and dp1(α1) > dp1(α2).

Proof. Suppose that α1 domW α2. By Lemma 3.5.3 (i) and (iv) we

only need to prove that 〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ 1.

If 〈α1, φ(α2)〉〈α2, φ(α1)〉 < 1, then by Corollary 2.3.17, it follows

that D the subgroup of W generated by rα1 and rα2 is finite. By

Lemma 3.5.4 there is no non-trivial dominance in D, hence there exists

w ∈ D such that wα1 ∈ Φ−1 and wα2 ∈ Φ+
1 . Since D ⊆ W , this contra-

dicts our hypothesis that α1 domW α2. Thus 〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ 1

as required.

Conversely, assume that 〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ 1, 〈α1, φ(α2)〉 > 0

and dp1(α1) > dp(α2). First consider the case that α2 = αr for some

r ∈ S. Clearly rrα1 ∈ Φ+
1 , for α1 is not a positive scalar multiple of α2

(because dp1(α1) > dp1(α2) ), and

〈α1, φ(rrα1)〉〈rrα1, φ(α1)〉

= 〈α1, φ(α1)− 2〈αr, φ(α1)〉βr〉〈α1 − 2〈α1, βr〉αr, φ(α1)〉

= (〈α1, φ(α1)〉 − 2〈α1, βr〉〈αr, φ(α1)〉)2

≥ 1.

Now direct calculations similar to those in Lemma 1.1.8 of Chap-

ter 1 yield that there are infinitely many elements in Φ̂1 of the form

̂λα1 + µrrα1, where λ, µ > 0. Suppose for a contradiction that α1

does not dominate αr, and choose w ∈ W such that wα1 ∈ Φ−1 and

wαr ∈ Φ+
1 . Then

w(rrα1) = w(α1 − 2〈α1, βr〉αr) = wα1 + 2〈α1, βr〉(−wαr).

By Corollary 2.3.13, 〈α1, βr〉 > 0 (since 〈αr, φ(α1)〉 > 0), so we see that

w(rrα1) is negative. So N1(w) contains both α1 and rrα1, and hence

all the roots of the form ̂λα1 + µrrα1 where λ, µ > 0, contradicting the

finiteness of N1(w).
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Proceeding by induction on dp1(α2), suppose that now dp1(α2) > 1,

and choose s ∈ S such that rsα2 ≺1 α2. Since dp1(α1) > dp1(α2) > 1,

it follows that rsα2 ∈ Φ+
1 . Now

〈rsα1, rsφ(α2)〉〈rsα2, rsφ(α1)〉 = 〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ 1

and 〈rsα2, rsφ(α1)〉 = 〈α2, φ(α1)〉 > 0, and furthermore,

dp(rsα1) ≥ dp1(α1)− 1 > dp1(α2)− 1 = dp1(rsα2).

Hence the inductive hypothesis yields that rsα1 domW rsα2, and by

Lemma 3.5.3 (ii), this implies that α1 domW α2. �

Using similar arguments as those used in the proofs of Lemma 3.3.2

part (iv) and part (v), we may extend the last lemma to the following:

Proposition 3.5.6. Let α1, α2 ∈ Φ1. Then there is dominance between

α1 and α2 if and only if

〈α1, φ(α2)〉 > 0 and 〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ 1.

�

Now we are able to prove the converse of Corollary 2.3.17:

Lemma 3.5.7. Suppose α1, α2 ∈ Φ1 with rα1 6= rα2. If the subgroup of

W generated by rα1 and rα2 is finite then 〈α1, φ(α2)〉〈α2, φ(α1)〉 < 1.

Proof. Suppose for a contradiction that 〈rα1 , rα2〉 is finite and yet

〈α1, φ(α2)〉〈α2, φ(α1)〉 ≥ 1. Since rα1 = r−α1 , we may replace α1 by

−α1 if needed and assume that 〈α1, φ(α2)〉 ≥ 0. Then Proposition 3.5.6

yields that there is dominance with respect to W between α1 and α2.

Proposition 3.3.4 (ii) and Lemma 3.5.2 combined yield that there is

dominance with respect to 〈rα1 , rα2〉 between α1 and α2, contradicting

Lemma 3.5.4. �

Recall the equivalence relation and the set of equivalence classes

Φ̃1 defined in the proof of Lemma 1.2.13.
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Proposition 3.5.8. There is a W -equivariant bijection f̃1 : Φ̃1 → Φ

satisfying

f̃1(α̃) = f(α),

for all α ∈ Φ1.

Proof. Since f is W -equivariant, it follows that if such a map f̃1 exists,

then it must be W -equivariant. Furthermore, it can be readily checked

that if such f̃1 exists, then it must be bijective. Thus all that remains

is to prove that such f̂1 is well-defined, that is, we need to show that if

α and λα are in Φ1 with λ > 0 and λ 6= 1, then f1(α) = f1(λα). Our

proof will be based on an induction on the depth of α (which is equal

to the depth of λα).

If dp1(α) = 1, then α = µαs for some s ∈ S and µ > 0. Then Corol-

lary 1.2.19 yields that φ(α) = 1
µ
βs. Now Corollary 2.3.13 yields that

coeffγt(f1(α)) = 0 for all t ∈ S\{s}. Since coeffαs(α) coeffβs(φ(α)) = 1,

it follows from Proposition 2.3.14 that f1(α) = γs. Similarly if λα ∈ Φ+
1 ,

then f1(λα) = γs. Hence f1(α) = f1(λα) when dp(α) = 1.

Next we may assume that dp1(α) > 1, and choose t ∈ S such that

rtα ≺1 α. By Lemma 1.3.10 this means 〈α, βt〉 > 0. Then 〈λα, βt〉 > 0

too, and so rt(λα) ≺1 (λα) as well. Now by the inductive hypothesis

f1(rtα) = f1(rt(λα)) = γ

for some γ ∈ Φ. Then

f1(α) = rtf1(rt(α)) = rtγ = rt(f1(rt(λα))) = f1(λα)

as required. �

Definition 3.5.9. Let α̃1, α̃2 ∈ Φ̃1, we say that α̃1 dominates α̃2 with

respect to W (written α̃1 d̃omW α̃2), if α1 domW α2. For each nonneg-

ative integer n, define

D̃1,n = { α̃ ∈ Φ̃+
1 | α̃ dominates exactly n elements in Φ̃+

1 \ {α̃} }.

Proposition 3.5.10. For each nonnegative integer n, f̃1(D̃1,n) = Dn.
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Proof. Follows readily from Proposition 3.5.8 and Lemma 3.5.2. �

Now we are ready to prove the following main result of this section:

Theorem 3.5.11. Suppose that S is finite. Then D̂1,0 is finite in size.

Furthermore, for each n ∈ N, |D̂1,n| <∞ and |D̂1,n| ≤ |D0|n+1−|D0|n.

Proof. Follows from Theorem 3.3.8, Theorem 3.3.9, Proposition 3.5.10

and Corollary 3.3.10. �
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