Contents

1. Entry Requirements 1
2. Course Administration 1
3. Structure of Applied Mathematics 2
4. Course Summaries 3
5. Assessment Procedures 7
6. The Essay/Project 8
 6.1 Assessment 9
 6.2 Important Dates 9
 6.3 Essay/Project Guidelines 10
 6.4 Suggested Topics for the Essay/Project 11
7. Rights and Responsibilities 24
8. Scholarships, Prizes and Awards 25
9. Life After Fourth Year 26
1 Entry Requirements

Entry to the Honours Programme in Applied Mathematics is usually based on satisfying the following (and subject to approval by the Head of the School of Mathematics & Statistics):

1. **Faculty requirement**: The candidate must have qualified for the Pass Degree with a AAM (Average Annual Mark for second and third year units) of at least 65 %.

2. **Mathematics requirement**: The candidate must have completed 24 credit points of senior (third-year) mathematics with a Pass Degree average of at least 65 % for advanced level units and a Pass Degree average of at least 75 % for normal level units.

3. **Essay / Project supervision**: The candidate is expected to find a prospective supervisor from among the Applied Mathematics staff, who is agreeable to supervise the candidate’s essay or project in the candidate’s chosen topic.

Students from institutions other than the University of Sydney must possess qualifications which are deemed equivalent to the above. There is some flexibility in these conditions; students not quite meeting them, but keen to pursue Honours in Applied Mathematics are invited to contact the Course Coordinator for advice. Students are expected to meet with prospective supervisors to discuss the potential for essays or projects before submitting the honours application.

Applications must be submitted to the Faculty of Science.

Application and enrolment information should also be obtained from the Faculty of Science, either in person or from their website. The Faculty will also provide AAM computations once the final third-year results are in.

Graduate Diploma in Science and MSc(Qualifying) applicants should see the Director of Postgraduate Studies before enrolling.

2 Course Administration

The Course Coordinator for Applied Mathematics 4 in 2011 is:

Dr. Martin Wechselberger
Room 628, Carslaw Building
Phone: (02) 9351 3860
Email: wm@maths.usyd.edu.au
3 Structure of Applied Mathematics 4

Full-time students normally attend three lecture courses each Semester, for a total of six
courses. All six courses will count towards the student’s final assessment. If a students
takes more than six courses in total then the top six results will count towards the student’s
final assessment.

In addition to the courses, each student is also required to write an essay or project on
an Applied Mathematics topic, under the supervision of a member of staff of the School
of Mathematics and Statistics. This is considered to be the major aspect of the Honours
Programme, and is detailed in Section 6.

The primary choice for the six courses come from the Applied Mathematics courses we
offer each year. Each such course runs for the first 12 weeks of each semester, at 2 lectures
per week. There are usually no formal tutorials, but lecturers are happy to help students
with their questions by arrangement.

The following Applied Mathematics 4 courses are expected to be offered this year:

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Mechanics</td>
<td>A/Prof H. Dullin</td>
</tr>
<tr>
<td>Advanced Option Pricing</td>
<td>A/Prof C.-O. Ewald</td>
</tr>
<tr>
<td>Multiscale Methods with Applications</td>
<td>A/Prof G. Gottwald</td>
</tr>
<tr>
<td>Populations and Disease</td>
<td>A/Prof M. Myerscough</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetohydrodynamics and Dynamo Theory</td>
<td>Dr D. Ivers</td>
</tr>
<tr>
<td>Course TBA</td>
<td>Prof N. Joshi, Dr M. Wechselberger</td>
</tr>
<tr>
<td>Interest Rate Models</td>
<td>Prof M. Rutkowski</td>
</tr>
</tbody>
</table>

Students are also welcome to choose any number of courses from Pure Mathematics 4 or
Mathematical Statistics 4 subject to approval by the student’s supervisor. The choice of
course work has to ensure that the student covers the proper material required for the
student’s project or essay. (Details of the available courses, and any entry requirements,
should be obtained from the Fourth-Year Course Coordinators in Pure Mathematics and
Statistics.)

Students also have the option of choosing a few courses from the following, *for which
approval from the Essay / Project Supervisor and the Course Coordinator needs to be
obtained prior to enrolling*:

- Fourth-Year Courses from related disciplines (e.g., Physics) or other universities
 (e.g., UNSW).
- Third-Year Courses at the Advanced level offered by the School of Mathematics &
 Statistics;
- Access Grid Room (AGR) Courses offered from other Australian Universities; see
4 Course Summaries

Geometric Mechanics (Sem-1)
A/Prof H. Dullin

Assessment: 60% from take-home exam, 40% from assignments

Classical mechanics still holds some of the most challenging unsolved problems in dynamical systems, like the questions of the stability of the solar system, or even the stability of the idealised three body problem. Geometric Mechanics is the natural continuation of Classical Mechanics. The geometric point of view brings new insights into old problems. In this course we will not only study this geometric viewpoint, but also adapt the toolbox of general dynamical system to mechanics. Particular topics to be studied include integrable systems and their momentum maps, geometric (symplectic) integrators, Poisson systems and Birkhoff normal form. Examples that will be used throughout the course include the n-body problem, the rigid-body with (and without) a fixed point, and geodesic flows.

The only background needed is the basic theory of Lagrangian and Hamiltonian systems.

Advanced Option Pricing (Sem-1)
A/Prof C.-O. Ewald

Assessment: 40% from exam, 30% midterm exam, 30% from one assignment

Financial institutions all around the world employ mathematicians who have had training in the subject of Financial Mathematics. They need to do this because of the large numbers of options and financial derivatives which are traded in modern financial markets. It is by no means an easy task to price these products and that is why most of the institutions have set up quantitative analysis departments that are largely staffed by mathematicians.

We explore in this course all the main theoretical pricing methods which are at the forefront of option and derivative security modelling. Financial asset prices are driven by stochastic models called Wiener processes. The prices of options and derivatives on these assets are obtained through the assumption of arbitrage-free markets. Taken together with Ito's Lemma, this leads to a second-order parabolic partial differential equation for the price of any option or derivative. Solutions of this equation are explored in detail for many types of financial securities including: calls and puts, forward and futures, barrier options, look-back options, bonds and other interest-rate securities, and various selections of exotic options. The modern theory of option pricing is also covered in the course and includes the concepts of: self-financing, replicating portfolios and martingale measures, which ultimately lead to the celebrated Black-Scholes formula.

A good understanding of stochastic processes is an essential requirement of mastering the technical aspects of the course. Thus a sizable part of the course
is devoted to this subject and includes topics such as: stochastic differential equations and the Ito stochastic calculus, conditional expectation and martingale representations, transition pdf’s and Kolmogorov’s diffusion equations, change of measure through the Radon-Nykodym and Girsanov theorems, and the Feynman-Kac formula.

The Fourth Year Honours course is an extension of the Second and Third Year Financial Mathematics units.

Multiscale Methods with Applications (Sem-1) A/Prof G. Gottwald

Assessment: 50% from exam, 25% from each of two assignments

Most physical and biological systems are too complex to allow for an analytical treatment and very often even for a numerical treatment. This is due to the high dimensionality of the underlying systems and the occurrence of wide ranges of spatial and temporal scales. However, often one is not interested in the description of the full system but rather in some ‘interesting’ subspace. For example, in numerical weather forecasting one is interested in large scale phenomena such as high and low pressure fields but not in all the small-scale effects such as turbulent wind gusts in your back garden. In the case of time-scale separation and weak coupling, one can try to find the dynamics on a reduced subspace which describes only the dynamics of the ‘interesting’ dynamics. But we need to know how to model the accumulative effect of all these ‘uninteresting’ scales.

We will discover very general mathematical tools which allow us to describe the reduced dynamics on some approximate manifold. In this course we will explore how certain stochastic systems and high-dimensional deterministic systems can be effectively reduced to low-dimensional stochastic dynamical systems. We will investigate how to treat so-called unresolved scaled and how to introduce coarse-graining. We first learn standard deterministic methods such as centre-manifold theory and variational asymptotics before we start stochastic model reduction.

Populations and Disease (Sem-1) A/Prof M. Myerscough

Assessment: 50% Open book section of exam (2 hours); 10% Closed book section of exam (30 minutes); 20% Reading assignment; 10% Short written assignments; 10% Satisfactory completion of computer work and class participation.

This course presents a more complex approach to the mathematics of populations and diseases than that of MATH3963. Topics that will be covered include age-structured populations, matrix models for populations and life-history graphs, the original Kermack-McKendrick model for infectious diseases, spatial spread of epidemics, travelling waves, epidemics in structured populations, stochastic models for diseases and anything else that roughly fits the theme, is interesting and that we can fit in.
The course focuses on both modelling and mathematical analysis and is designed to encourage students to think creatively and critically about mathematics and modelling. Assessment work will be evenly distributed throughout the semester rather than in the form of one or two big assignments and will include a reading assignment in the current research literature which will be presented as a talk to the class.

Here is a list of possible reference books for this course:

Magnetohydrodynamics and Dynamo Theory (Sem-2) Dr D. Ivers

Assessment: 50% from assignment; 50% from exam

Magnetohydrodynamics (mhd) is a union of the hydrodynamics of electrically-conducting fluids and pre-Maxwell electrodynamics (i.e. there is no displacement current, so no electromagnetic waves). Interesting new phenomena arise such as Alfvén waves. Applications are drawn from: ideal and resistive mhd, in particular equilibrium & stability in the magnetic confinement problem; rotating mhd. Laboratory, geophysical and astrophysical applications are considered.

The most important application is Dynamo Theory: the self-exciting regeneration of a magnetic field by the motion of an electrically-conducting fluid. The main magnetic fields of the Earth and the planets, Mercury, Jupiter, Saturn, Uranus, Neptune, and possibly the satellite Ganymede, the Sun and other magnetic stars, and perhaps even galaxies, are generated in this way. The emphasis is on the geodynamo and the solar dynamo, which are the best observed and most studied. The ocean and ionospheric disturbance dynamos are also briefly treated.

Interest Rate Modelling (Sem-2) Prof M. Rutkowski

Assessment: 70% from exam, 30% from three assignments

The fixed-income market is an important sector of the global financial market on which various interest-rate-sensitive instruments, such as: bonds, swaps, swaptions, caps, etc. are traded. The management of interest rate risk, by which we mean the pricing and hedging of interest rate derivatives, is an important and complex issue. The course provides an overview of various
concepts related to interest rates, and deals with the most important interest rate-sensitive contracts, such as: interest rate swaps, bond options and swaptions. The crucial part of the syllabus is stochastic modelling of various kinds of interest rates and the valuation of interest rate derivatives within alternative frameworks. We deal with classical examples of short-term rate models, the Heath-Jarrow-Morton methodology, and recently developed market models, such as, the BGM model of LIBORs and Jamshidian’s model of forward swap rates.

Relation to other mathematics courses: This course belongs to the field of Financial Mathematics and builds on the material from Probability and Stochastic Processes. Students are expected to have basic knowledge of Itô’s stochastic calculus and principles of arbitrage pricing of financial derivatives. The course AMH4 Advanced Option Pricing (or equivalent) should be seen as a prerequisite.

Geometric Singular Perturbation Theory and Physiological Dynamics (Sem-2)
Dr M. Wechselberger
Assessment: 50 % from exam/project, 50 % from four assignments

Physiological rhythms are central for life. Prominent examples are the beating of the heart, the activity of neurons, or the release of hormones regulating growth and metabolism. All these rhythms have in common, that they evolve on at least two different time scales, i.e. there exist a quasi steady state of the system on a slow time scale (e.g. the resting state of the heart) interspersed by a dramatic change of the system on a fast time scale (e.g. the heartbeat itself). Mathematical models of such systems are called slow/fast systems or multiple scales problems.

In this unit we introduce a mathematical technique suitable for analysing such multiple scales problems called geometric singular perturbation theory. This perturbation theory is based on the fact that the system under study has a singular perturbation parameter and classical asymptotic analysis breaks down. The method is very powerful and is based on dynamical systems techniques like bifurcation theory and invariant manifold theory. We will develop the basic mathematical tools to analyse physiological problems including biochemical reactions and electrical signaling in excitable cells.

The only background needed is the basic theory of differential equations and bifurcation analysis (introduced in e.g. MATH3963).
5 Assessment Procedures

The Honours mark for each student is computed based on the following:

- 40% for the Project/Essay assessment;
- 60% for 6 courses (10% for each).

Students are required to attend at least 6 courses during the academic year. Only the best 6 results will be included in the overall assessment. The assessment procedure for the Project/Essay is outlined in Section 6.

The marking scale for Honours is significantly different from the undergraduate marking scale at the University of Sydney. The Essay/Project, in addition to all the fourth-year courses, will be marked with this scale in mind. This scale appears below.

<table>
<thead>
<tr>
<th>Grade of Honours</th>
<th>Faculty-Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class, with Medal</td>
<td>95–100</td>
</tr>
<tr>
<td>First Class (possibly with Medal)</td>
<td>90–94</td>
</tr>
<tr>
<td>First Class</td>
<td>80–89</td>
</tr>
<tr>
<td>Second Class, First Division</td>
<td>75–79</td>
</tr>
<tr>
<td>Second Class, Second Division</td>
<td>70–74</td>
</tr>
<tr>
<td>Third Class</td>
<td>65–69</td>
</tr>
<tr>
<td>Fail</td>
<td>00–64</td>
</tr>
</tbody>
</table>

Note: All assessable student work (such as assignments, Honours essays and projects) should be completed and submitted by the advertised date. If this is not possible, approval for an extension should be sought in advance from the lecturer concerned or (in the case of Honours essays and projects) from the Course Coordinator. Unless there are compelling circumstances, and approval for an extension has been obtained in advance, late submissions will attract penalties as determined by the Board of Examiners (taking into account any applications for special consideration).

Appeals against the assessment of any component of the course, or against the class of Honours awarded, should be directed to the Head of School.
6 The Essay/Project

A significant part of the Honours year is the completion of an Honours Essay or Project by each student. There is a distinction between an essay and a project. A project involves intensive research, analysis or computation and normally requires a greater level of supervision than an essay. An essay may cover a classical problem of acknowledged importance and mathematical depth with the student providing his/her own critical evaluation.

Each student must choose an Essay/Project supervisor who is willing to supervise the student’s chosen topic for the Essay or Project. The supervisor must be a member of the Applied Mathematics staff of the School of Mathematics and Statistics. A list of available topics appears in Section 6.4. However, student are welcome to choose different topics, provided that they are able to obtain a supervisor for that topic from within the School. Essay/project topics and supervisors should be finalised by the beginning of the First Semester, so that students can commence work immediately on their Essays/Projects.

The following list shows the main applied mathematics research areas:

- Astrophysical and Geophysical Modelling
- Financial Mathematics
- Industrial Modelling
- Mathematical Biosciences
- Nonlinear Systems

For detailed information about these areas and the corresponding staff, please have a look at the webpage
6.1 Assessment

The Essay or Project will be marked according to the following.

- **90 % for the final written report**

 This will be marked by 3 different markers, one of whom is the supervisor, and each marking will therefore constitute 30 % of the final Essay/Project mark. Note that the assessment also includes a one page report submitted at the end of the first semester (see section 6.3).

- **10 % for a seminar presentation on the Essay/Project**

Three typed and bound copies of the final Essay/Project should be submitted to the Applied Mathematics Honours Course Coordinator, who will then distribute these copies to three markers (one of which is the supervisor) for marking. Due dates for submission appear in Section 6.2.

The seminar is an opportunity for each student to present the material of his or her Essay or Project to a mathematically literate audience. The seminar talk will usually be of 25 minutes duration, with an additional 5 minutes set aside for questions. The Course Coordinator will provide additional information and help Honours students in their preparation for the seminar. The presenter of the best AM4 seminar will be awarded the Chris Cannon Prize.

6.2 Important Dates

The following are important dates for all students intending to complete their essay/projects by the end of second semester of 2011. These deadlines are therefore applicable to most students.

- **Seminar**: Week of 12-16th September, 2011 (week 8)

- **Essay Submission**: 10.00 a.m. on Friday, 21st October 2011 (week 12)

 Three typed and bound copies of the Essay/Project are to be handed in to the Applied Mathematics Honours Course Coordinator by this date and time.
6.3 Essay/Project Guidelines

- The student should consult the supervisor on a regular basis, preferably at least once a week. This is the student’s responsibility.

- A realistic schedule for work on the essay or project should be drawn up at an early stage, and adhered to as closely as possible. If it proves necessary to modify the original plans, a revised schedule should be drawn up after discussion with the supervisor.

- At the end of Semester 1, a one page report has to be submitted to the Honours coordinator. This report includes a half page description about the students aim/scope of the project/essay and a half page description about what the student has achieved in semester 1 and what the student wants to achieve in semester 2. This report has to be approved by the supervisor before submission.

- The essay/project should be both a discursive and a critical account of the selected topic. It should be written at a level that an expert Applied Mathematician can be expected to understand, though he/she need not be an expert in the field covered. The work must contain substantial mathematical content.

- The essay/project should be based on some four to six original primary source articles, which themselves represent a substantial contribution to the topic. Secondary sources, such as books, review papers, etc., should also be consulted and cited.

- Original research is not essential.

- The length of the essay/project should be between 40 to 60 typed A4 pages. Only in exceptional circumstances, and after consultation with the supervisor, should the essay exceed 60 pages. This number includes all figures, contents pages, tables, appendices, etc. Computer programs essential to the work should be included (with adequate commentary) as additional material.

- Students should be careful to provide full and correct referencing to all material used in the preparation of essays and projects. Be explicit in stating what is your contribution and what is someone else’s contribution. Avoid quoting verbatim unless reinforcing an important point.

- Three examiners will be appointed to assess each essay/project. One of these examiners will be the student’s supervisor. Although marking schemes may differ, marks will generally awarded for:

 (i) selection and synthesis of source material;
 (ii) evidence of understanding;
 (iii) evidence of critical ability;
 (iv) clarity, style and presentation;
 (v) mathematical and/or modelling expertise.
• Students are advised to read the pamphlet entitled "Guide to Essay Writing for Science Students" available from the Science Faculty Office.

• The preferred method of typesetting mathematical documents these days is using \LaTeX. This is available from the computers at the School. Students are recommended to use \LaTeX in typesetting their Essays/Projects. Additional information on \LaTeX is available from the Course Coordinator.

• Students who have worked on their essays or project topics as Vacation Scholars are required to make a declaration to that effect in the preface of their essay/project.

6.4 Suggested Topics for the Essay/Project

The following is a list of possible essay/project topics for Applied Mathematics 4 students in 2011. Prospective students interested in any of these topics are encouraged to discuss them with the named supervisors as early as possible.

However, this list is not exhaustive. Students may wish to suggest their own topics for essays or projects. Before commencing work, however, each student must find a member of staff who will agree to supervise the essay/project. For topics other than those listed below, the student and supervisor must submit a brief written outline of the proposed project or essay for approval by the Course Coordinator.

The Kerr metric in general relativity (Essay)
Supervisor: Dr C.M. Cosgrove (Carslaw room 716; phone 9351-3357)

The Kerr metric is an exact solution of Einstein's gravitational field equations describing a stationary rotating black hole. Found by Roy Kerr in 1963, it is one of the most celebrated of the exact solutions of Einstein's equations. An essay on this subject would involve deriving the Kerr solution, and discussing its interpretation as a rotating black hole, its horizons, ergosphere, particle and light ray orbits, and analytic extensions.

Gravitational collapse (Essay)
Supervisor: Dr C.M. Cosgrove (Carslaw room 716; phone 9351-3357)

An essay on this subject would begin with a survey of stellar evolution, especially the history of massive stars, showing how white dwarfs, neutron stars and black holes may be formed, and observational evidence for these objects. The mathematical component of the essay would come from a derivation of the Schwarzschild black hole solution of Einstein's equations and some of its consequences, and a discussion of the Oppenheimer-Snyder collapsing dust solution.
Studies in integrable differential equations (Essay or Project)
Supervisor: Dr C.M. Cosgrove (Carslaw room 716; phone 9351-3357)

An essay or project on this topic would focus on some aspect of the theory of integrable ordinary or partial differential equations. Essay topics include group-invariant reductions and nonclassical reductions of partial differential equations. Project topics include Painlevé classification problems (see Ince, “Ordinary Differential Equations,” Chapter 14), equivalence problems, inverse scattering and isomonodromy problems.

The Back Drop in Trampolining (Project)
Supervisor: A/Prof H. Dullin (Carslaw room 714; phone 9351 4083)

The back drop is a figure in trampolining in which the athlete takes off straight into the air (with zero angular momentum) and lands rotated by 90 degrees on the back. A simple model of the athlete consists of n planar coupled rigid bodies. The shape of the system is specified by all $n - 1$ relative angles. The configuration space is the shape space plus one additional angle describing the overall orientation of the athlete in space. The goal of the project is to describe the shape changes at zero angular momentum that maximise the resulting change in overall orientation.

Simulating a Closed Chain of Planar Rigid Bodies (Project)
Supervisor: A/Prof H. Dullin (Carslaw room 714; phone 9351 4083)

A chain of planar rigid bodies is a simple mechanical system with n segments connected by joints that allow free rotation. Connecting the first segment to the last by another joint gives a closed chain. Since the distance between the joints is fixed the closed chain has n degrees of freedom. Reduction by translations and rotations leaves $n - 3$ degrees of freedom specifying the shape. For certain parameters the dynamics of this system is chaotic in the sense of Anosov. The goal of the project is the numerical solution of the equations of motion for the case of the five-gon, with the ultimate goal of finding many periodic orbits.

Rotation number near the 1:3 resonance (Project)
Supervisor: A/Prof H. Dullin (Carslaw room 714; phone 9351 4083)

Consider a Hamiltonian system with two degrees of freedom near an equilibrium point with frequencies (of the harmonic oscillator approximation) in 1:3 resonance. Every such system can be approximated by the so called resonant Birkhoff normal form. This resonant Birkhoff normal form is an integrable system, and the goal of the project is to compute the rotation number (i.e. the ratio of frequencies) of the motion for general initial condition near the equilibrium point. These are given by complete elliptic integrals, which need to be analysed.

Vanishing twist in the planar circular restricted 3 body problem (Project)
Supervisor: A/Prof H. Dullin (Carslaw room 714; phone 9351 4083)

The restricted three body problem describes the motion of a test particle in the field of two heavy masses rotating around each other in circular orbits. The essential parameter
is the mass ratio of the heavy bodies. Changing this parameter bifurcations occur, in particular near the so called Lagrange equilibrium point L4, L5, associated to the Trojan asteroids in the Sun-Jupiter system. The goal of this project is to numerically integrate the equations of motion and reduce the dynamics to a 2-dimensional Poincare map. Changing the mass parameter a particular bifurcation related to the vanishing of the derivative of a rotation number is expected to occur, and discovering its existence would proof the existence of a spectacular type of motion in this classical problem.

Weather Derivatives (Project)
Supervisor: A/Prof C.-O. Ewald (Carslaw room 622; phone 9351 5778)

Weather risks are the uncertainty in cash flows and earnings caused by non-catastrophic weather events. Examples of weather risks are temperature, humidity, rainfall, snowfall and wind which affect revenues of farmers, energy suppliers, winter-sport resorts etc. To mitigate against weather risks Weather Derivatives, i.e. financial instruments based on a weather related index (like stock index derivatives use stock indexes like the S&P 500 to mitigate against general economic risks), have been introduced to Financial Markets. Example weather indexes are Heating Degree Days (HDDs) and Cooling Degree Days (CDDs) for temperature risks. These indexes are determined as follows:

- use 65°F as baseline. HDD and CDD are obtained by subtracting the days average temperature from 65°F for HDD and subtracting 65°F from the days average temperature for CDD values
- if temperature > $65^\circ F$ in the winter, HDD is 0 (since no need to heat); $HDD = \max(65 - temp, 0)$
- if the temperature < $65^\circ F$ in the summer the CDD is 0 (since no need to cool); $CDD = \max(temp-65,0)$

Weather derivatives are traded on major exchanges: Intercontinental Exchange, Swiss Re, SELRiX, CME (the Chicago Mercantile Exchange) and LIFFE (the London International Financial Futures and Options Exchange). The purpose of the project is to study pricing models for weather derivatives, implement them numerically, address problems such as the calibration of the models and the aspect of hedging. Students will depend on a good knowledge of stochastic calculus, probability theory and arbitrage pricing theory, on the level taught in the honours module Advanced Option Pricing.

Parameter study of ABC dynamos (Project)
Supervisor: Dr D.J. Galloway (Carslaw room 712; phone 9351-2968)

The family of periodic chaotic flows with velocity fields which are given by $U = (A\sin z + C\cos y, B\sin x + A\cos z, C\sin y + B\cos x)$ is known to be very effective in producing dynamos which generate magnetic fields in electrically conducting fluids. These flows are chaotic, and most studies have concentrated on the case where $A = B = C = 1$ (this has the most symmetries). Given that too much symmetry is often bad for dynamo action, this project proposes the study of a range of other values, using existing linear and nonlinear computational codes which will be supplied.
Chaos in the solar system (Essay or Project)
Supervisor: Dr D.J. Galloway (Carslaw room 712; phone 9351-2968)

The long term stability of the solar system is a problem which has recently been rediscovered because of the growth in the study of chaotic nonlinear dynamical systems. This project could either take the form of a survey of the whole field, in which case it would be an essay, or it could select a particular set of numerical calculations and attempt to reproduce and extend them, giving rise to a project.

Solar prominences (Essay)
Supervisor: Dr D.J. Galloway (Carslaw room 712; phone 9351-2968)

Solar prominences consist of magnetically levitated dense material held aloft in the solar atmosphere by a cradle of magnetic field lines. The study of the existence and stability of these features is an intriguing mathematical problem given additional interest because of the beautiful and detailed images now available from modern space observations. This essay will review existing theories and discuss how well they fare when confronted with observations.

Dispersive regularisation of fluid systems (Project)
Supervisor: A/Prof G. Gottwald (Carslaw room 625; phone 9351-5784)

It is the aim of this project to develop innovative numerical methods to integrate evolution equations which support shock solutions. Shock solutions arise as generic solutions in incompressible fluid dynamics and rarefied gas dynamics. We will develop models and techniques which approximate the essential dynamics on a coarse grid in such a way that the price is not paid by sacrificing the preservation of conservation laws of the underlying equations. The project will do this for the so called shallow-water equations. Prior knowledge of Matlab and a symbolic software package such as mathematica or Maple is desirable.

Core surface motions (Project)
Supervisor: Dr D.J. Ivers (Carslaw room 623; phone 9351-3561)

Motions at the surface of the Earth’s liquid core can be (partially) determined using the magnetic field measured at the Earth’s surface. Various assumptions have been used to uniquely determine the motion including steady flow and tangentially geostrophic flow. This project would involve reviewing the theory underlying core-surface motions and these assumptions and the determination of the flow using one assumption and a particular model of the magnetic field.

Thermal and magnetoconvection (Project)
Supervisor: Dr D.J. Ivers (Carslaw room 623; phone 9351-3561)

Thermal convection and magneto-convection are important processes in the cores of the Earth, planets and their satellites. This project would involve numerically solving eigenproblems or the steady problem for some particular spherical model using existing codes.
Planetary and galactic dynamo theory (Project)
Supervisor: Dr D.J. Ivers (Carslaw room 623; phone 9351-3561)

Mercury, Earth, Jupiter and two of its moons, Saturn, Neptune and Uranus have magnetic fields generated by the motions of electrically conducting cores. Stars and galaxies may also possess magnetic dynamos. This computational project would involve an aspect of dynamo theory and the use of existing time-stepping or eigen-/critical- value codes.

P and HP finite element methods (Project)
Supervisor: Dr D.J. Ivers (Carslaw room 623; phone 9351-3561)

Pseudo-spectral methods offer high accuracy in the numerical solution of partial differential equations but do not offer adaptive refinement, dynamic gridding or simple application to domains of irregular shape. Standard (h-) finite-element methods offer adaptive refinement, dynamic gridding and simple application to domains of irregular shape but low accuracy. P- and hp-finite element methods use higher-order elements and offer significant improvements for singular perturbation problems. This project will implement one-dimensional methods and briefly look at the two-dimensional case.

Protein folding (Essay)
Supervisor: Dr D.J. Ivers (Carslaw room 623; phone 9351-3561)

The genetic code mapping base pairs in DNA to amino acids is known. However, this only gives the linear sequencing of the amino acids in a protein. The three-dimensional structure of the protein must be determined in some other way. An essay would look at some aspect of the protein folding problem such as a quantum-mechanical calculation of molecules using a variant of the Hartree-Fock approximation, density functional methods, molecular dynamics and optimisation methods. A possible related topic is protein signalling.

Biological or quantum computing (Essay or Project)
Supervisor: Dr D.J. Ivers (Carslaw room 623; phone 9351-3561)

There has been recent progress in exotic forms of computing. Biological computing uses the properties of DNA (or possibly RNA) to perform massively parallel computations in a test-tube. The first computation experiment attempted in the laboratory was the travelling salesman problem. An essay would review the theory, algorithms and practical implementation issues of biological computing. A related topic is the theory, algorithms and a computer language which have been developed for quantum computing using the principles of quantum mechanics.
Analysis and modelling of the ionospheric dynamo, and the solar and lunar regular magnetic daily variations (Sq and L) (Project)
Supervisor: Dr D.J. Ivers (Carslaw room 623; phone 9351-3561)

The ionosphere is a thin conducting layer formed daily at about 106km altitude by ionisation due to solar radiation. Motion of the ionosphere caused primarily by solar heating of the atmosphere, but also by lunar (and solar) tides, in the main magnetic field of the Earth acts as a disturbance dynamo to produce variations in the total magnetic field. These variations in magnetic data from recent and current magnetic satellites - Oersted, SAC-C and CHAMP - and from magnetic observatories around the Earth via INTERMAGNET may be analysed to model the ionosphere, the solar and lunar regular magnetic daily variations. This project involves analysis and modelling using some of the available data.

Nonlinear integrable difference equations (Essay or Project)
Supervisor: Prof N. Joshi (Carslaw room 522; phone 9351-4533)

The field of integrable difference equations is only about 10 years old, but has already caused great interest amongst physicists (in the theory of random matrices, string theory, or quantum gravity) and mathematicians (in the theory of orthogonal polynomials and soliton theory). For each integrable differential equation there are, in principle, an infinite number of discrete versions. An essay in this area would provide a critical survey of the many known difference versions of the classical Painlevé equations, comparisons between them, and analyse differing evidence for their integrability. Project topics would include the derivation of new evidence for integrability. The field is so new that many achievable calculations remain to be done: including derivations of exact solutions and transformations for the discrete Painlevé equations.

Exponential asymptotics (Project)
Supervisor: Prof N. Joshi (Carslaw room 522; phone 9351-4533)

Near an irregular singular point of a differential equation, the solutions usually have divergent series expansions. Although these can be “summed” in some way to make sense as approximations to the solutions, they do not provide a unique way of identifying a solution. There is a hidden free parameter which has an effect like the butterfly in chaos theory. This problem has been well studied for many classes of nonlinear ODEs but almost nothing is known for PDEs and not much more is known for difference equations. This project would include studies of a model PDE, like the famous Korteweg-de Vries equation near infinity, or a difference equation like the string equation that arises in 2D quantum gravity.
Mathematical Immunology (Essay or Project)
Supervisor: Prof N. Joshi (Carslaw room 522; phone 9351-4533)

After almost three decades of knowledge about HIV/AIDS, it was only recently discovered that a cellular automata model is capable of replicating the long three-phase cycle in clinical data on T-cell populations. However, agreement with reality is still lacking. Asymptotics of cellular automata appear to be crucial to understanding this cycle. However, currently no such theory is known. This project can go in many directions. One direction is to consider different cellular-automata models for disease transmission. A second direction is to develop mathematical methods to work out limiting behaviours of cellular automata.

Vortex blob methods for vortex dynamics (Project)
Supervisor: A/Prof C. Macaskill (Carslaw room 627; phone 9351-4163)

There is a long history of the use of point vortices to model fluids problems going back almost a hundred years. Early applications of such methods suffered from the chaotic motions of four or more point vortices interacting; later this problem was alleviated somewhat by ‘desingularization’, or smoothing that replaces point vortices with ‘vortex blobs’ with a smeared-out distribution of vorticity. Despite this, however, the methods still suffer from inefficiency and and inability to follow filamentation, a characteristic of vortex interactions. This project will explore a new approach, using a criterion for blob-splitting based on the distortion of a circular blob to follow such features.

(An alternative essay, as opposed to project, could look at the use of such models to study the generation of a curvature singularity in finite time in the Kelvin-Helmholtz instability of vortex sheets.)

Tracking combustion waves using the CASL method from vortex dynamics (Essay or Project)
Supervisor: A/Prof C. Macaskill (Carslaw room 627; phone 9351-4163)

The CASL method (Contour Advective Semi-Lagrangian) is the technique of choice for the solution of many problems in vortex dynamics, with its main strength the ability to efficiently follow details of vorticity contours as they distort, elongate and wind around due to highly nonlinear fluid interactions. This project will investigate the use of such methods in a rather different area, the propagation of combustion waves, and compare and contrast with existing analytical and numerical techniques for such problems.

Jet instability in the ocean: the role of boundaries and/or topography (Essay or Project)
Supervisor: A/Prof C. Macaskill (Carslaw room 627; phone 9351-4163)

There has recently been much interest in the way in which ocean currents shed vortices when interacting with coastal and topographic features, with much emphasis on the way in which jets or other vorticity jumps become unstable and break-up. This essay and/or project will explore the existing literature and may also apply the most up-to-date version of the CASL method (Contour Advective Semi-Lagrangian) to study such problems in detail.
Modelling atherosclerosis with realistic boundary conditions (Project)
Supervisor: A/Prof M.R. Myerscough (Carslaw room 626; phone 9351-3724)

Atherosclerotic plaques are caused by low density lipids entering the wall of the artery where they cause an immune reaction which may lead to ongoing inflammation and the accumulation of lipids which eventually, after many years, leads to a plaque which is capped with collagen and smooth muscle cells. We have recently written down and numerically solved a series of PDE models for the growth of atherosclerotic plaque in artery walls. At the moment, the models have fixed fluxes into the artery wall, but we know that these fluxes actually depend on the behaviour of the immune cells in the artery wall.

The project will require the inflammation-dependent flux to be modelled and the current numerical scheme either adapted (if possible) or rewritten (if simple adaptation is not possible) so that numerical solutions can be obtained.

If this goes well, the project could be extended to start to look at a free boundary formulation of the model that represents the growth of the plaque into the blood vessel as lipids accumulate.

Models for honeybee decision making with stop signals (Project)
Supervisor: A/Prof M.R. Myerscough (Carslaw room 626; phone 9351-3724)

When a bee swarm leaves the hive, it settles on a branch nearby while scouts go out to seek a new nest site. When a scout finds a suitable nest site, she returns to the swarm and performs a waggle dance to indicate its location and quality. Using this dance, she recruits other bees who visit the nest site and, in turn, recruit others. At any one time dances for several potential nest sites may be being presented on the swarm. The pattern of dancing is such that the bees are able to choose the best site available as dances for the other sites decline and fade away. A number of different types of models have been constructed for this process. Recently Tom Seeley, from Cornell University, has observed a stop signal that scouts use to discourage other scouts from dancing for competing sites. This has not been included yet in any published model.

The project entails writing and solving ODE, stochastic and discrete deterministic models for nest site selection with stop signals. There is room for comparing models and it may be possible to integrate the stochastic models and formally show that the ODE model represents the average of may discrete processes.

Phylogenetic algorithms in molecular biology (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

Phylogenetic inference is the construction of the evolutionary history of a set of species (or taxa) by analysing the distances between their nucleotide sequences, protein structures or morphological characteristics. This problem is of fundamental practical importance in many areas of evolution and molecular biology. The methods that yield the best estimates of phylogenies are almost all based upon optimization problems that are NP-hard (cannot be solved in polynomial time). Thus many algorithms are heuristic methods that are not guaranteed to solve the problems exactly. Generally, a phylogenetic analysis may return hundreds of candidate evolutionary trees (if not thousands),
determining the probable characteristics of the "actual" tree is thus a difficult prob-
lem. This essay should begin with a summary of well established "text-book" algorithms
for inferring phylogenies that are mostly deterministic and then move on to a survey
of current literature on non-deterministic algorithms such as genetic algorithms and vi-
sualisation algorithms for coping with the complexity of the solution space. (see also

Artificial embryology in optimisation algorithms (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

Many modern algorithms for optimising or modelling complex systems mimic naturally
 occurring phenomena such as evolution, neural networks, insect colonies and immune sys-
 tems. Genetic algorithms and other evolutionary algorithms solve optimisation problems
by describing a population of candidate solutions by sets of genes, and then applying
mutation, recombination and selection operators to evolve the population and gradually
obtaining superior solutions to the problem at hand. Until recently, most of these sys-
tems use the genes to parameterise or “describe” the solution: a “blueprint” approach.
Real genes in biology do not describe the organism directly but instead determine a
set of processes that interactively participate to build the organism: a “developmental”
approach. Many practitioners in this field are calling this developmental approach “arti-
ficial embryology”. An essay on this topic would explore recent developments in the use
of evolutionary-developmental models for the optimisation of complex systems. (see also

Level set theory for topological optimization (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

Many interesting problems in physics and engineering require determining a shape or
geometry that optimizes some physical process: for example, the size, shape and locations
of holes in a special purpose microstructured optical fibre. There may be in addition geo-
metric constraints: how close two surfaces can come, the maximum or minimum curvature
allowed etc. A simple approach is to choose in advance some basic geometric building
blocks: circles, wedges, ellipses and then optimize the numerical parameters of these
objects. A much more interesting approach allows even the topology or connectedness
(number of holes) to be varied. The geometry is chosen from the contours (or level sets)
of some characteristic function. As this function is varied, the contours move around, and
peaks, ridges and valleys can appear, merge or vanish is a smooth way. These ideas have
already been successfully applied in other fields such as architecture.

Optimization of structural topology requires a combination of techniques to vary the
level sets but also to recompute the solutions to the relevant differential equations (or other
equations) using perturbation theory. Depending on the skill and interests of the student
this project can go in a number of directions from a more computer science algorithms
approach, to a computational science approach, or to studying perturbation theory of the
differential equations themselves.
(see also http://www.maths.usyd.edu.au/u/leonp/NewStudentProjects.html)
Algebraic varieties in phylogenetics (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

Phylogenetics is the reconstruction of the evolutionary tree relating species from the degree of similarity of their genetic sequences. Many different algorithms existing for inferring, approximating and searching for the correct tree topology and the correct lengths of the branches of the evolutionary tree.

Algebraic varieties are a branch of pure mathematics related to simultaneous polynomial equations. It turns out that certain algebraic varieties are invariant with respect to changes in the branch lengths but can be used as a test of the correct tree topology. This project will survey the field and also explore how these invariants can be used to enhance other algorithms used to search for the "best" evolutionary tree. A rare combination of pure and applied mathematics with important benefits in the emerging field of bioinformatics. (see also http://www.maths.usyd.edu.au/u/leonp/NewStudentProjects.html)

Representation in genetic algorithms (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

Genetic algorithms are a popular technique used to search highly multidimensional spaces for the maxima or minima of complicated functions. The ability of a genetic algorithm to efficiently search the so called "fitness landscape" for both global and local optima can depend crucially on the representation of the search space itself. This project will look at optimization problems that can be simultaneously represented by different structures (trees, arrays, permutations, etc.) to explore how the choice of representation interacts with the genetic algorithm. This field is vast and this project could suit someone who wants to do an essay based project, but is also suitable for some original research. (see also http://www.maths.usyd.edu.au/u/leonp/NewStudentProjects.html)

Adaptive recombination in genetic algorithms (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

The recombination operator is an essential ingredient of any genetic algorithm allowing useful building blocks in the parent solutions to be combined into larger building blocks in the child solutions. The choice and design of the recombination operator is often the hardest part to get right, and an operator that is useful in the early stages of evolution may be detrimental in later stages (the same operator that puts building blocks together, will also pull them apart...). In this project we look at changing the recombination operator with each generation. This involves developing a measure for the effectiveness of particular different recombination operators and also deciding how to change it. (see also http://www.maths.usyd.edu.au/u/leonp/NewStudentProjects.html)
Rugged Fitness Landscapes (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

Kauffman developed a simple model for describing fitness functions that resemble rugged mountain ranges with multiple peaks, variation on different scales. This model, the NK model, consists of a total of N interacting parts which depend on at most K other parts of the system. Thus by varying the ratio of N and K different "levels" of complexity can be emulated. $K=0$ corresponds to models where independent causes produce independent effects, and $K=N-1$ corresponds to the absence of any correlations.

The NK model is a powerful tool to use as a test of the effectiveness of any particular proposed genetic algorithm. In this project I would like to explore how some basic genetic algorithms cope with NK fitness functions and which attributes of the genetic algorithm need to be changed as the value of K increases.

Deceptive Imprinting in Immune Response (Essay or Project)
Supervisor: A/Prof L. Poladian (Room 713; phone 9351 2049)

Our immune systems have evolved a powerful memory mechanism. A naive immune system has to combinatorially search through many antibodies to find one that will bind with an invading virus. However, when presented with the same virus again the immune system can rapidly produce the original antibody. This response evolved as a powerful defense mechanism against viruses that do not change. Unfortunately, rapidly mutating viruses can fool such an immune system. A virus which is only slightly different will trigger the memory response rather than a new response and thus the body will incorrectly produce the older antibodies rather than search for newer and better ones. This type of deceptive imprinting is important in vaccine design and certain models of HIV infection. The project would suit a student who is comfortable with both Matlab and Mathematica, (or better still someone who can program in Python or C++). The essay/project can in several directions depending on the skill/interest of the student include coupled nonlinear ODEs, optimisation, or cellular automata.

Hedging of counterparty credit risk (Essay or Project)
Supervisor: Prof M. Rutkowski (Carslaw room 814; phone 9351-1923)

The risk that a counterparty cannot meet its contractual obligations has become the hot subject since the last financial crisis. Intertwined studies were recently conducted in different directions: the systemic risk (the risk of a domino effect following the bankruptcy of a major financial institution, the systemic impact of centralized clearing, the effects of an asymmetric information in regard of securitised products and exposure of banks to these products), the liquidity effects (the risk of fire sales, the impact of collateral policies of central banks) and, last but not least, the counterparty risk due to the possibility of default of a counterparty (in particular, the computations of the credit value adjustment). The goal of the project is to examine hedging strategies for unilateral and bilateral counterparty risks within the set-up of intensity-based models of defaults.
Modeling of risky interest curves (Essay or Project)
Supervisor: Prof M. Rutkowski (Carslaw room 814; phone 9351-1923)
The recent credit-crunch has changed the markets perceptions and banks are nowadays more conservative about the possibility of default of other banks and their own future funding costs, that is, the rate at which they can borrow. These risk are being priced into money market lending rates (e.g. LIBOR) as well as derivatives written on these rates. The project aims at understanding apparent anomalies that appeared recently in the interest rate curves. Mathematical goal is to develop a model reflecting the fact that the LIBORs embed options on the creditworthiness of the counterparty and to show how this model can be used to explain the basis swaps patterns during the financial crisis by taking as inputs the level of counterparty risk and credit volatility.

Robustness of credit risk models (Essay or Project)
Supervisor: Prof M. Rutkowski (Carslaw room 814; phone 9351-1923)
The concept of robustness of a financial model hinges on the postulate that the knowledge of a ‘perfect’ model for the real-world dynamics is not available to traders, who instead need to use some ‘imperfect’ method in order to to value financial assets and hedge the risk exposure. The issue of robustness was examined in detail for the case of the classic Black-Scholes model for equities/currencies and some of its extensions. In the context of credit risk, it is natural to compare a fully dynamical model of defaults to the industry-standard static one-factor Gaussian copula with periodic recalibration to the market data. The goal of the project is to examine the efficiency of hedging strategies derived using practitioner’s method under the assumption that the market prices are computed using the perfect model.

Nonlinear Acoustics (Essay or Project)
Supervisors: Dr R. Thompson (Carslaw room 634; phone 9351-5782) and A/Prof C. Macaskill (Carslaw room 627; phone 9351-4163)
Acoustics relies heavily on linear or first order approximations. The linear theory works remarkably well for understanding a very wide range of phenomena - from musical sounds to noise control; from underwater scanning over kilometres to sub-millimetre measurements with biomedical ultrasound; from the behaviour of buildings and large man-made structures to communication and sensing in animals. This topic would begin with an overview of the nonlinear governing equations for finite amplitude disturbances in a fluid. Shock waves are formed when waves of finite amplitude are allowed to propagate over a sufficient distance in a lossless medium; dissipation tends to counteract the formation of shocks. Both these effects are captured in Burgers equation, and several related PDEs have been proposed to account for the finite size of sources and directional properties of beams. This topic could suit an essay or a project. A project would require some numerical skills.
Projects in my area of research are concerned with the study of oscillatory patterns of so called 'slow/fast systems'. These systems are ubiquitous in nature and control most of our physiological rhythms. E.g. one cycle of a heart beat consists of a long interval of quasi steady state interspersed by a very fast change of state, the beat itself. This very fast relaxation of energy leads to the notion of a relaxation oscillator and shows the appearance of multiple time-scales (slow/fast) in the system. To study periodic solutions in such systems one can analyse an associated return map. It is well known that already 1D maps can have a rich variety of dynamics, like periodic, quasiperiodic and chaotic solutions, the most famous example is the 1D circle map. Plotting the winding number versus a control parameter in this case yields the famous 'devil’s staircase'.

Topics could range from a theoretical study of possible dynamics of return maps associated with relaxation oscillators to the analysis of a concrete physiological rhythm. For more information on possible topics, please see the research link on my webpage http://www.maths.usyd.edu.au/u/wm/
7 Rights and Responsibilities

Applied Mathematics 4 students will have access to the following.

- Office space and a desk in the Carslaw building.
- A computer account with access to e-mail and the World-Wide Web, as well as \TeX\ and laser printing facilities for the preparation of essays and projects.
- A photocopying account paid by the School for assembling essay/project source material.
- After-hours access key to the Carslaw building. (A deposit is payable.)
- A pigeon-hole in room 728 — please inspect it regularly as lecturers often use it to hand out relevant material.
- Participation in the School’s social events.
- Class representative at School meetings.

Applied Mathematics 4 students have the following obligations.

- Regular attendance at the regular weekly seminars in applied mathematics.
- Have regular meetings with project/essay supervisors, and meet all deadlines.
- Utilise all School resources in an ethical manner.
- Contribute towards the academic life in Applied Mathematics at the School of Mathematics and Statistics.
8 Scholarships, Prizes and Awards

The following prizes may be awarded to Applied Mathematics 4 students of sufficient merit. Students do not need to apply for these prizes, which are awarded automatically.

Joye Prize in Mathematics
Value: $5000, with medal and shield
Awarded to the most outstanding student completing Honours in the School of Mathematics and Statistics.

University Medal
Awarded to Honours students who perform outstandingly. The award is subject to Faculty rules, which require a Faculty mark of 90 or more in Applied Mathematics 4 and a Third Year WAM of 80 or higher. A medal is always awarded when the Faculty mark is 95 or higher. More than one medal may be awarded in any year.

K.E. Bullen Memorial Prize
Value: $725
Awarded annually on the recommendation of the Head of the School of Mathematics and Statistics in consultation with the professors of Applied Mathematics to the most proficient student in Applied Mathematics 4, provided that the student’s work is of sufficient merit.

Barker Prize
Value: $375
Awarded at the Fourth (Honours) Year examination for proficiency in Pure Mathematics, Applied Mathematics or Mathematical Statistics.

M.J. and M. Ashby Prize
Value: $360
Offered annually for the best essay, submitted by a student in the Faculty of Science, that forms part of the requirements of Pure Mathematics 4, Applied Mathematics 4 or Mathematical Statistics 4.

Norbert Quirk Prize No IV
Value: $250
Awarded annually for the best essay on a given mathematical subject by a student enrolled in a Fourth Year course in mathematics (Pure Mathematics, Applied Mathematics or Mathematical Statistics) provided that the essay is of sufficient merit.

Australian Federation of Graduate Women Prize in Mathematics.
Value: $175
Awarded annually, on the recommendation of the Head of the School of Mathematics and Statistics, to the most distinguished woman candidate for the degree of BA or BSc who graduates with first class Honours in Applied Mathematics, Pure Mathematics or Mathematical Statistics.

Chris Cannon Prize
Value: $100
For the best adjudged essay/project seminar presentation of an Applied Mathematics 4 student.
9 Life After Fourth Year

Postgraduate Studies:
Many students completing the Honours programme have in the past gone on to pursue postgraduate studies at the University of Sydney, at other Australian universities, and at overseas universities. Please see the Director of Postgraduate Studies if interested in enrolling for a MSc or PhD at the School of Mathematics & Statistics. Students who do well in Applied Mathematics 4 may be eligible for postgraduate scholarships, which provide financial support during subsequent study for higher degrees at Australian universities. The honours coordinator is available to discuss options and provide advice to students interested in pursuing studies at other universities.

Careers:
Students seeking assistance with post-grad opportunities and job applications should feel free to ask lecturers most familiar with their work for advice and written references. The Director of the Applied Mathematics Teaching Programme, the Course Coordinator and the course lecturers may also provide advice and personal references for interested students.