More difficult questions are marked with either * or **. Those marked * are at the level which MATH2069 students will have to solve in order to be sure of getting a Credit, or to have a chance of a Distinction or High Distinction. Those marked ** are mainly intended for MATH2969 students. Some answers are at the end of the sheet.

1. Prove by induction that, for all \(n \geq 0 \),
 (a) \(n^3 + 5n \) is a multiple of 3 (i.e. \(n^3 + 5n = 3\ell \) for some integer \(\ell \)).
 (b) \(5^n - 4n - 1 \) is a multiple of 16.

2. Use the characteristic polynomial to solve the following recurrence relations:
 (a) \(a_n = 5a_{n-1} - 6a_{n-2} \) for \(n \geq 2 \), where \(a_0 = 2 \), \(a_1 = 5 \).
 (b) \(a_n = 4a_{n-1} - 3a_{n-2} \) for \(n \geq 2 \), where \(a_0 = -1 \), \(a_1 = 2 \).
 (c) \(a_n = 4a_{n-1} - 4a_{n-2} \) for \(n \geq 2 \), where \(a_0 = 3 \), \(a_1 = 8 \).
 (d) \(a_n = 6a_{n-1} - 9a_{n-2} \) for \(n \geq 2 \), where \(a_0 = 2 \), \(a_1 = -3 \).
 *(e) \(a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3} \) for \(n \geq 3 \), where \(a_0 = 3 \), \(a_1 = 5 \), \(a_2 = 11 \).
 *(f) \(a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3} \) for \(n \geq 3 \), where \(a_0 = 2 \), \(a_1 = 4 \), \(a_2 = 16 \).

3. Companies A and B control the market for a certain product. From one year to the next, A retains 70% of its custom and loses to B the remaining 30%, while B retains 60% of its custom and loses to A the remaining 40%. Let \(a_n \) denote the market share of company A after \(n \) years (thus, that of company B is \(1 - a_n \)).
 (a) Write down a recurrence relation expressing \(a_n \) in terms of \(a_{n-1} \), for \(n \geq 1 \).
 (b) Solve the recurrence relation, in the sense of giving a closed formula for \(a_n \), in terms of \(a_0 \).
 (c) Hence prove that the market share of company A in the long run (i.e. the limit of \(a_n \) as \(n \to \infty \)) is independent of its initial market share \(a_0 \).

4. Let \(b_n \) be the number of ways of forming a line of \(n \) people distinguished only by whether they are male (M) or female (F), such that no two males are next to each other. For example, the possibilities with 3 people are FFF, FFM, FMF, MFF, and MFM, so \(b_3 = 5 \). Write down a recurrence relation for \(b_n \). Do you recognize the sequence?

5. Define a sequence recursively by \(a_0 = 1 \), \(a_1 = 2 \), and \(a_n = a_{n-1}a_{n-2} \) for \(n \geq 2 \).
 (a) Find \(a_2 \), \(a_3 \), \(a_4 \), \(a_5 \) and \(a_6 \).
 (b) Prove that \(a_n = 2^{F_n} \), where \(F_0, F_1, F_2, \ldots \) is the Fibonacci sequence.
6. Imagine a $2^n \times 2^n$ array of equal-sized squares, where n is some positive integer. We want to cover this array with non-overlapping L-shaped tiles, each of which exactly covers three squares (one square and two of the adjacent squares, not opposite to each other). Since the number of squares is not a multiple of 3, we need to remove one square before we start. Prove by induction that no matter which square we remove, the remaining squares can be covered by these L-shaped tiles.

7. The following argument ‘proves’ that whenever a group of people is in the same room, they all have the same height. There must be an invalid step; find it.

We argue by induction on the number n of people in the room. The $n = 1$ case is obviously true. Suppose that $n \geq 2$ and that the claim holds for rooms with $n - 1$ people. Let P_1, P_2, \ldots, P_n be the n people in this room. If P_n were to leave the room we would have a room with $n - 1$ people, so by the inductive hypothesis, $P_1, P_2, \ldots, P_{n-1}$ all have the same height. We can apply the same reasoning with P_1 leaving the room, so $P_2, \ldots, P_{n-1}, P_n$ all have the same height. But P_2 is in both these collections, so all of P_1, P_2, \ldots, P_n have the same height. This establishes the inductive step, and so the claim holds for all n by induction.

8. For which n is the Fibonacci number F_n even, and for which n is F_n odd? Prove your answer by induction.

9. Suppose we want to solve a recurrence relation which is almost a kth-order homogeneous linear recurrence relation, but with an extra constant term C:

$$a_n = r_1a_{n-1} + r_2a_{n-2} + \cdots + r_ka_{n-k} + C,$$

for all $n \geq k$.

Let $p(x) = x^k - r_1x^{k-1} - \cdots - r_k$ be the characteristic polynomial of the homogeneous recurrence relation obtained by omitting C.

(a) Show that any solution a_n also satisfies the $(k + 1)$th-order linear homogeneous recurrence relation with characteristic polynomial $(x - 1)p(x)$.

(b) Hence describe the general solution a_n in terms of the roots of $p(x)$. (The answer will depend on whether 1 is a root of $p(x)$ or not.)

Selected answers:

2. $2^n + 3^n$, $\frac{3^{n+1} - 5}{2}$, $(n + 3)2^n$, $3^n(2 - 3n)$, $3^n + 2$, $2^n(2 - n + n^2)$.