Tutorial 10 — Week 11

Tutorial questions are starred. Advanced questions are marked A.

1. Let \(u(\tilde{x}) = x'\tilde{a} \) and \(v(\tilde{x}) = \frac{1}{2} x' A \tilde{x} \) where \(\tilde{a} \) is a constant \(n \times 1 \) vector and \(A \) is a constant symmetric \(n \times n \) matrix. Prove that

\[
\frac{\partial u}{\partial \tilde{x}} = \tilde{a} \quad \text{and} \quad \frac{\partial v}{\partial \tilde{x}} = A \tilde{x}.
\]

2. Let \(\tilde{x}_1 \) and \(\tilde{x}_2 \) be the allocation vectors of any two feasible \(n \)-asset portfolios. Show that the covariance of their random returns \(R_1 \) and \(R_2 \) is given by

\[
cov\{R_1, R_2\} = \tilde{x}_1' S \tilde{x}_2.
\]

3. Let \(IC(t) \) denote the indifference curve for an investor with risk-aversion parameter \(t \). Prove that the efficient frontier for unrestricted portfolios given parametrically by \(\mu = \mu(t); \sigma = \sigma(t) \) is everywhere tangential to \(IC(t) \).

4. Obtain the efficient frontier for the 3-asset portfolio with parameters:

\[
\tilde{r} = \begin{pmatrix} 0.4 \\ 0.8 \\ 0.8 \end{pmatrix}; \quad S = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}
\]

Derive the corresponding optimal allocation vector \(\tilde{x} \) as a function of the risk aversion parameter \(t \). Find the allocation to the minimum risk portfolio. Sketch the critical line in the \(x_1 x_2 \)-plane.

5. Use the result of Q2. above to prove that if \(P_1 \) is a feasible unrestricted portfolio with return \(R_1 \) and \(P_2 \) is an efficient unrestricted portfolio with return \(R_2 \), then (in the standard notation),

\[
cov\{R_1, R_2\} = \frac{\tilde{a}}{2}(r_1 - \frac{b}{\tilde{a}})(r_2 - \frac{b}{\tilde{a}}) + \frac{1}{\tilde{a}}.
\]

6. Let \(P \) be an efficient unrestricted portfolio. Portfolio \(Q \) is obtained from \(P \) by extending the tangent to the efficient frontier at \(P \) in the \(\mu \sigma \)-plane to the point \(P_0 \) on the \(\mu \)-axis and then finding \(Q \) on the MVF such that \(Q \) has the same expected return as \(P_0 \). Prove, using the result of Question 5 above, that

\[
cov\{R_P, R_Q\} = 0.
\]
7. *(a) For a certain 3-asset unrestricted portfolio, investor-\(A\) with \(t_A = 1\) selects an optimal portfolio \(\bar{x}_A = (\frac{1}{2}, \frac{1}{2}, 0)\); investor-\(B\) with \(t_B = 2\) selects an optimal portfolio \(\bar{x}_B = (\frac{1}{2}, 0, \frac{1}{2})\). Find the allocation vector \(\bar{x}_C\) for Ms Chicken with \(t_C = 0\).

(b) Which investor will select an efficient portfolio with \(\bar{x} = (\frac{1}{2}, -\frac{1}{2}, 1)\)?

(c) Show that there is no efficient portfolio with \(\bar{x} = (\frac{1}{3}, \frac{1}{3}, 1)\).

8. *A An investor seeks an efficient \(n\)-asset portfolio with a fixed return equal to \(\rho\). Otherwise the only other constraint is the budget condition. Show by solving a QP-problem with two equality constraints, that (in the usual notation) the optimal allocation vector is the solution of:

\[S\bar{x} = \left(\frac{c-b\rho}{d} \right) \bar{c} + \left(\frac{a\rho-b}{d} \right) \bar{r} . \]

Show that the same result is obtained from the optimal portfolio equations derived in lectures in terms of the investor’s risk aversion parameter.