menuicon

MATH1002 Quizzes

Quiz 6: Reduced row echelon form
Question 1 Questions
Which of the following matrices are in reduced row echelon form? (Zero or more options can be correct)
a)
1350 0 0 1 0 0001 0 0 0 0
b)
1305 0 0 1 0 0001 0 0 0 0
c)
0101 0 0 1 0 0000 0 0 0 1
d)
1305 0 0 1 0 0000 0 0 0 0
e)
1910 0 0 0 0 00 0 0 0 0 0 1

There is at least one mistake.
For example, choice (a) should be False.
The leading 1 in row 2 is not the only non-zero entry in its column (column 3).
There is at least one mistake.
For example, choice (b) should be False.
The leading 1 in row 3 also has a non-zero in its column (column 4).
There is at least one mistake.
For example, choice (c) should be False.
This matrix contains a row of zeros with a non–zero row below it and, in addition, the leading 1 in row 4 has a non–zero entry in its column (column 4).
There is at least one mistake.
For example, choice (d) should be True.
The entries above and below each leading 1 are all zero.
There is at least one mistake.
For example, choice (e) should be False.
This matrix contains a row of zeros with a non–zero row below it.
Correct!
  1. False The leading 1 in row 2 is not the only non-zero entry in its column (column 3).
  2. False The leading 1 in row 3 also has a non-zero in its column (column 4).
  3. False This matrix contains a row of zeros with a non–zero row below it and, in addition, the leading 1 in row 4 has a non–zero entry in its column (column 4).
  4. True The entries above and below each leading 1 are all zero.
  5. False This matrix contains a row of zeros with a non–zero row below it.
Which of the following matrices are in reduced row echelon form? (Zero or more options can be correct)
a)
1405 0 0 1 0 0000 0 0 0 0
b)
1475 0 0 0 0 00 0 0 0 0 0 0
c)
1405 0 0 1 7 0000 0 0 0 0
d)
0000 0 0 0 0 0000 0 0 0 0

There is at least one mistake.
For example, choice (a) should be True.
This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
There is at least one mistake.
For example, choice (b) should be True.
This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
There is at least one mistake.
For example, choice (c) should be True.
This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
There is at least one mistake.
For example, choice (d) should be True.
This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
Correct!
  1. True This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
  2. True This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
  3. True This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
  4. True This is in row echelon form and the entries above and below each leading 1 and in the same column all zero.
Let A = 261 7 1 3 1 3 134 0 Which of the following sequences of elementary row operations transforms A into row echelon form? (More than one answer may be correct.) (Zero or more options can be correct)
a)
R1 := R1 R3, R2 := R2 R1, R3 := R3 R1 and R2 := 1 4R2.
b)
R1 R2, R2 := R2 2R1, R3 := R3 R1, R2 := R2 and R3 = R3 3R2.
c)
R1 := 1 2R1, R2 := R2 R1, R3 = R3 R1, R3 := R3 7R2 and R2 := 2R2.

There is at least one mistake.
For example, choice (a) should be False.
This sequence of operations transforms A into the matrix 1337 0 0 1 1 00 7 7
There is at least one mistake.
For example, choice (b) should be True.
This sequence of operations transforms A into the matrix 1313 0 0 1 1 000 0
There is at least one mistake.
For example, choice (c) should be True.
This sequence of operations transforms A into the matrix 131 27 2 001 1 0 0 0 0 .
Correct!
  1. False This sequence of operations transforms A into the matrix 1337 0 0 1 1 00 7 7
  2. True This sequence of operations transforms A into the matrix 1313 0 0 1 1 000 0
  3. True This sequence of operations transforms A into the matrix 131 27 2 001 1 0 0 0 0 .
What is the reduced row echelon form of the matrix 2468 3 6 7 10 ? Exactly one option must be correct)
a)
1234 127 3 10 3
b)
10 3 4 0 1 2 22
c)
120 29 0 0 1 11
d)
120 37 0 0 1 11
e)
123 4 0 0 1 11

Choice (a) is incorrect
This matrix is not even is row echelon form!
Choice (b) is incorrect
Check your sequence of row operations.
Choice (c) is correct!
The following sequence of elementary row operations: R1 := 1 2R1,R2 := R2 3R1,R2 := 1 2R2andR1 := R2 3R2 applied to the matrix in the question gives this matrix.
Choice (d) is incorrect
Check your sequence of row operations.
Choice (e) is incorrect
This matrix is not even is row echelon form!
The matrix 01 235 70010110 00 000 0 is the augmented matrix of a system of linear equations. How many free parameters are needed for the solution of this system of equations?

Correct!
The augmented matrix is already in echelon form, so the number of free parameters needed for the general solution is equal to the number of columns in the augmented matrix which do not contain a leading 1 for some row (in this case, columns 1, 4 and 5). You can also see this by looking at the corresponding system of equations. Let the variables be x1, x2, x3, x4 and x5 then the corresponding system of equations is: 0x1 + 1x2 2x3 + 3x4 + 5x5 = 7 0x1 + 0x2 + 1x3 + 0x4 + 1x5 = 10 0x1 + 0x2 + 0x3 + 0x4 + 0x5 = 0

Consequently, there are 3 free parameters; namely, x1, x4 and x5. Setting x1 = p, x4 = q, x5 = r, we obtain the complete solution by back substitution:

x3 = 10 x5 = 10 r x2 = 7 + 2x3 3x4 5x5 = 7 + 2(10 r) 3q 5r = 13 3q 7r

That is, (x1,x2,x3,x4,x5) = (p,13 3q 7r,10 r,q,r).

Incorrect. Please try again.
Find the echelon form of the augmented matrix.
Let A be the augmented matrix of the following system of equations.

x + y + z = 2, x + 2y + az = 4, 2x + 3ay + 2z = 6, where a is some real number. Using elementary row operations, the matrix A can be reduced to the following matrix:
11 1 2 0 1a 1 2 00(1 a)(3a 2)6(a 1)
Which of the following statements are correct? (More than one answer may be correct.) (Zero or more options can be correct)
a)
There is exactly one value of a for which the original system of equations has a unique solution.
b)
There are exactly two values of a for which the original system of equations has a unique solution.
c)
There is exactly one value for a for which the original system of equations does not have a unique solution.
d)
There are exactly two values for a for which the original system of equations does not have a unique solution.
e)
There is exactly one value of a for which the original system of equations is inconsistent.
f)
There are exactly two values of a for which the original system of equations is inconsistent.

There is at least one mistake.
For example, choice (a) should be False.
This system of equations has a unique solution for all values of a other than 1 or 23.
There is at least one mistake.
For example, choice (b) should be False.
This system of equations has a unique solution for all values of a other than 1 or 23.
There is at least one mistake.
For example, choice (c) should be False.
When a = 1 the system has an infinite number of solutions and when a = 23 there are no solutions (the system is inconsistent).
There is at least one mistake.
For example, choice (d) should be True.
When a = 1 the system has an infinite number of solutions and when a = 23 there are no solutions (the system is inconsistent). For all other values of a the system has a unique solution.
There is at least one mistake.
For example, choice (e) should be True.
If a = 23 then the reduced augmented matrix becomes
11120 122 0002
So the system of equations is inconsistent. For all other values of a the system is consistent.
There is at least one mistake.
For example, choice (f) should be False.
The system is inconsistent only if a = 23.
Correct!
  1. False This system of equations has a unique solution for all values of a other than 1 or 23.
  2. False This system of equations has a unique solution for all values of a other than 1 or 23.
  3. False When a = 1 the system has an infinite number of solutions and when a = 23 there are no solutions (the system is inconsistent).
  4. True When a = 1 the system has an infinite number of solutions and when a = 23 there are no solutions (the system is inconsistent). For all other values of a the system has a unique solution.
  5. True If a = 23 then the reduced augmented matrix becomes
    11120 122 0002
    So the system of equations is inconsistent. For all other values of a the system is consistent.
  6. False The system is inconsistent only if a = 23.
A matrix is a binary matrix if all of its entries are 0 or 1. For example, these two matrices 000 0 0 0 and 011 0 1 0 are binary matrices, wheres the matrix 011 0 1 1 is not binary. How many binary 2 by 3 row echelon matrices are there ?

Correct!
The 22 binary row echelon matrices are:
000 0 0 0 100 0 0 0 110 0 0 0 101 0 0 0 010 0 0 0 011 0 0 0 001 0 0 0 111 0 0 0 100 0 1 0 100 0 1 1 101 0 1 0 101 0 1 1 110 0 1 0 110 0 1 1 111 0 1 0 111 0 1 1 100 0 0 1 101 0 0 1 110 0 0 1 111 0 0 1 010 0 0 1 011 0 0 1 .

Incorrect. Please try again.
You can list the row echelon binary matrices systematically as they all have one of the following forms:

1 0 0 0 1 0 0 1 1 0 1 01 0 0 0 01 0 0 1 001 0 0 0 000 0 0 0

where the *’s are either 0 or 1.

As in question 7, call a matrix binary if all of its entries are 0 or 1. (See question 7 for some examples.) How many binary 2 by 3 reduced row echelon matrices are there ?

Correct!
The 15 reduced echelon binary matrices are

000 0 0 0 100 0 0 0 110 0 0 0 101 0 0 0 010 0 0 0 011 0 0 0 001 0 0 0 111 0 0 0 100 0 1 0 100 0 1 1 101 0 1 0 101 0 1 1 100 0 0 1 110 0 0 1 010 0 0 1 .

Incorrect. Please try again.
You can list the row echelon binary matrices systematically as they all have one of the following forms:

1 0 0 0 10 0 0 1 10 0 1 01 0 0 0 010 0 0 1 001 0 0 0 000 0 0 0

where the *’s are either 0 or 1.

The (unbalanced) following chemical equation

Cu2S + O2 + CSO2 + Cu + CO.
describes how copper (Cu) can be extracted from chalcocite (Cu2S) by combining it with carbon (C) and oxygen (O2) to produce copper (Cu), sulfur dioxide (SO2) and carbon monoxide (CO).
The chemical equation above is unbalanced because, for example, there are two copper atoms on the left hand side and only one copper atom on the right hand side. Which of the following augmented matrices corresponds to the system of linear equations that you would use in order to balance the equation above? Exactly one option must be correct)
a)
2000100 1 0 0 1 0 0 0 0202010 0 0 1 0 0 1 0
b)
200 0 1 0 0 1 0 0 1 0 0 0 0202 0 10 0 0 1 0 0 1 0
c)
2000001 1 0 0 1 0 0 1 0200001 0 0 1 0 0 0 1
d)
2 0 1 1 0 1 221 1 0 1

Choice (a) is incorrect
We you to find integers n1, n2,,n6 such that
n1Cu2S + n2O2 + n3Cn4SO2 + n5Cu + n6CO.
To balance the equation we need the same number of copper atoms on both sides so 2n1 = n5, etc.
Choice (b) is correct!
We need to find integers n1, n2,,n6 such that
n1Cu2S + n2O2 + n3Cn4SO2 + n5Cu + n6CO
In order to balance each element we need to have the same number of atoms of each type on both the left and right hand side of the equation. That is, the following equations must hold: ElementBalancing constraint ̲ ̲ ̲ ̲ Cu 2n1 =n5 S n1 =n4 O 2n2 =2n4 + n6 C n3 =n6 For the augmented matrix we need the variables on the left and the constants on the right. That is, we have the equations: 2n1 n5 = 0 n1 n4 = 0 2n2 2n4 n6 = 0 n3 n6 = 0 Using the augmented matrix easy to see that one way to balance this equation is
Cu2S + 2O2 + 2CSO2 + 2Cu + 2CO
Choice (c) is incorrect
We you to find integers n1, n2,,n6 such that
n1Cu2S + n2O2 + n3Cn4SO2 + n5Cu + n6CO.
To balance the equation we need the same number of copper atoms on both sides so 2n1 = n5, etc.
Choice (d) is incorrect
We you to find integers n1, n2,,n6 such that
n1Cu2S + n2O2 + n3Cn4SO2 + n5Cu + n6CO.
To balance the equation we need the same number of copper atoms on both sides so 2n1 = n5, etc.
Find the augmented matrices associated with finding the currents I1, I2 and I3 in the circuit below.
PIC
Hints :
  1. The total current flowing into a node equals the total current flowing out.
  2. In each loop the sum of the voltage drops across the circuit elements is zero.
  3. The voltage drop across a resistor with resistance R and with a current I passing through it is V = IR.
Exactly one option must be correct)
a)
1 1 1 0 30 0 41 45 3021 0 80
b)
1 1 1 0 30 0 41 45 3021 0 80
c)
11 1 0 30 0 41 45 3021 0 80
d)
111 0 30 0 21 45 0 214135

Choice (a) is incorrect
Choice (b) is correct!
The current into node A is I3 and the current out is I1 + I2 so
I1 + I2 I3 = 0.
In the top loop the voltage drop is zero so I3 + 40I3 + 30I1 45 = 0 implying
30I1 + 41I3 = 45.
In the bottom loop the voltage drop is also zero implying
80 + I2 + 20I2 30I1 = 0
(be careful with the direction of the current). The voltage drop across the 30Ω resistor is negative since the current is labelled in the opposite direction thus
30I1 21I2 80 = 0.
Hence an augmented matrix is
1 1 1 0 30 0 41 45 3021 0 80
Choice (c) is incorrect
Choice (d) is incorrect