1. Let \(y = 4x^2 - 4x + 3 \).

Find \(y' = \) \[\Box \] .

For which \(x \) is \(y' = 0 \) ?

Answer: \(x = \) \[\Box \]

Draw a sign diagram for \(y' \):

\[
\begin{array}{c|c}
 x & y' \\
 \hline
 & 1 \\
\end{array}
\]

The minimum value for \(y \) is

Sketch the parabola \(y = 4x^2 - 4x + 3 \):

\[
\begin{array}{c}
| y \\
2 \\
4 \\
6 \\
\hline
| x \\
1 \\
2 \\
\end{array}
\]
2. Approach the quadratic from the previous exercise by completing the square:

\[y = 4x^2 - 4x + 3 \]
\[= (4x^2 - 4x + 1) + 2 \]
\[= (2x-1)^2 + 2 \] \((*)\)

Put \(u = 2x - 1 \), so \(y = u^2 + 2 \).

Then \(\frac{du}{dx} \) and \(\frac{dy}{du} \).

By the Chain Rule,

\[\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \]

as before.

Use (*) to explain why the minimum value of \(y \) must be 2 when \(x = \frac{1}{2} \), without using the derivative:
3. Let \[y = 2x^3 - 9x^2 + 12x - 3 \].

Find \[y' = \]

and \[y'' = \]

Then \[y' = 0 \] when \[x = \square \] and \[x = \square \]

and \[y'' = 0 \] when \[x = \square \].

Draw sign diagrams for \[y' \] and \[y'' \]:

\[x \]
\[\downarrow \]
\[y' \]
\[- \]
\[+ \]
\[+ \]

\[x \]
\[\downarrow \]
\[y'' \]
\[- \]
3. (continued)
The local maximum occurs when \(x = \) \[\square \]
and \(y = \) \[\square \]

The local minimum occurs when \(x = \) \[\square \]
and \(y = \) \[\square \]

The inflection occurs when \(x = \) \[\square \]
and \(y = \) \[\square \]

Add the curve \(y = 2x^3 - 9x^2 + 12x - 3 \) to the diagram:
4. Consider the curve

\[y = \tan x = \frac{\sin x}{\cos x} \quad \text{for} \quad -\frac{\pi}{2} < x < \frac{\pi}{2} : \]

(i) Is the function increasing or decreasing?

Answer:

(ii) Where is the curve concave up?

Answer:

(iii) Where is the curve concave down?

Answer:

(iv) The inflection point is \((x, y) = \)

(v) Complete the following:

\[\lim_{x \to -\frac{\pi}{2}^{-}} \tan x = \quad \lim_{x \to -\frac{\pi}{2}^{+}} \tan x = \]
5. Let \(y = \tan x = \frac{u}{v} \)

where \(u = \sin x \) and \(v = \cos x \).

Then \(\frac{du}{dx} = \), \(\frac{dv}{dx} = \)

so \(y' = \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} = \)

Use the Chain Rule to find

\(y'' = \)

Complete the sign diagram for \(y'' \) near \(x = 0 \)

\(\begin{array}{c|c|c} x & 0 & 1 \\ \hline y'' & & \\ \end{array} \)

(Confirming that \((0,0)\) is the inflection point of the curve \(y = \tan x \)).
6. Add the curve \(y = \tan^{-1} x \) below:

![Graph of \(y = \tan^{-1} x \)]

(i) Is the function increasing or decreasing?
Answer:

(ii) Where is the curve concave up?
Answer:

(iii) Where is the curve concave down?
Answer:

(iv) The inflection point is \((x, y) = \)

(v) Complete the following:
\[\lim_{x \to \infty} \tan^{-1} x = \phantom{\text{□}} \], \[\lim_{x \to -\infty} \tan^{-1} x = \phantom{\text{□}} \]
7. Let \(y = \tan^{-1} x \), so \(x = \tan y \).

Then \(\frac{dx}{dy} = \) \[\Box\] (in terms of \(y \)).

Hence \(\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \) \[\Box\] (still in terms of \(y \)).

Consider the following right-angled triangle:

\[\begin{array}{c}
\text{h} \\
\text{y} \\
\text{x}
\end{array}\]

Express the following in terms of \(x \):

\(\tan y = \) \[\Box\], \(h = \) \[\Box\]

\(\sin y = \) \[\Box\], \(\cos y = \) \[\Box\]

Now find \(\frac{dy}{dx} \) in terms of \(x \):

\(\frac{dy}{dx} = \) \[\Box\]

(and you obtain the witch of Maria Agnesi!!)