Notes on Integral Calculus and Modelling 2nd Instalment

Contents			
Logs and exponentials			
conceptualizing exponentiation	2.2		
monotone convergence theorem	2.4		
limits of sequences with rational exponents	2.7		
approaching exponentiation from a different direction	2.8		
definition of natural logarithm in terms of integrals	2.10		
logs turn products into sums	2.13		
exponential function as inverse of natural log	2.14		
domain and range of the exponential function	2.19		
exponential law	2.20		
derivative of the exponential function	2.22		
definition of the number e	2.25		
definition of a^x and properties	2.27		
Further techniques of integration	2.29		
integration by parts	2.29		
expressing an integral in terms of itself	2.35		
reduction formulae	2.38		
partial fractions and rational functions	2.42		
fundamental theorem of algebra	2.43		
method of partial fractions	2.45		
Improper integrals	2.53		
Power Series and Taylor polynomials	2.63		
convergence and divergence of series	2.64		
geometric series	2.65		
harmonic series	2.68		
ratio test for convergence	2.69		
power series	2.75		
functions as power series	2.80		
Maclaurin series	2.83		
sin, sinh, cos and cosh form a quartet	2.88		
Taylor series about $x = a$	2.89		
Taylor polynomials	2.95		

David Easdown, 17 July 2017

Logs and exponentials
Let
$$a, b > 0$$
.
Easy to understand:
 $addition$
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition
 $addition$
 $addition
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition
 $addition
 $addition$
 $addition
 $addition
 $addition
 $addition
 $addition$
 $addition
 $addition
 $addition
 $addition$
 $addition
 $addition
 $addition$
 $addition
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition$
 $addition
 $addition
 $addition
 $addition$
 $addition
 $addition
 $addition$
 $addition
 $addition
 $addition$
 $addition$
 $addition
 $addition$$

2.5
Proof: Put
$$X = \xi x_n | n \in \mathbb{Z}^+ \hat{f}$$
.
Then X is bounded above by M,
so by completeness of R
(X has a least upper bound L)
Completeness of R says:
any nonempty set of reals which
is bounded above has a least
upper bound.
(Laim: lim $x_n = L$
 $n \rightarrow \infty$
We have to prove
($\forall \in Yo$)($\exists N \in \mathbb{Z}^+$) ($\forall n \ge N$)
 $| x_n - L| < \xi$.

we have

where

and

۶۵

Returning to our quest for a :

 $\lim_{n\to\infty} q_n = T$

lim a n->0

9, < 92 < ... < 9n < ... < T < 4

at < at < ... < at < ... < a

exists

then
$$L-E$$
 is an upper bound
for X smaller than L ,
controdicting that L is the
least upper bound.
Hence $L-E < X_N \leq L$
for. some N.
Then
 $L-E < X_N \leq X_{N+1} \leq X_{N+2} \leq ... \leq L$
so $|X_n-L| < E \quad \forall n \geq N$.
This proves

2.6

for all n

Let E>0.

 $| \text{ If } x_n \leq L - \varepsilon$

$$\lim_{n\to\infty} x_n = L$$

2.8
Completely different approach ///
We will define

$$a = e$$

provided we can make sense of
In a "the natural logarithm
of a"
- the real number e
- arbitrary powers of e
Advantage of this method :
"constructive" rather than

"existential"

"constructive"

Define T a lim ~~> This method allows us to define a for any ber by using limits of sequences using rational exponents ...

2.9

Gap in following table ?!

powers of x	an antiderivative
× ³	×4/4
x	× ³ / ₃
x	x ² /2
$1 = x^{\circ}$	$x = \frac{x^4}{1}$
$\sqrt{x = x^{-1}}$? ?
y = x-2	$-\frac{1}{2} = \frac{2}{2}$
$V_{\chi^3} = \chi^{-3}$	$-\frac{1}{2x^{2}} = \frac{x^{-2}}{-2}$
×	$\frac{2^{n+1}}{n+1} \text{if } n \neq -1$

2.10

$$J = \int_{1}^{x} \frac{1}{t} dt$$

$$J = \frac{1}{x}$$
By the Fundamental Theorem of Calculus
(part 1)

$$\frac{d}{dx} \int_{1}^{x} \frac{1}{t} dt = \frac{1}{x}$$
Define the natural logarithmic
function In by, for x70,

$$\left[\ln x = \int_{1}^{x} \frac{1}{t} dt \right].$$

2.11

1

Properties :

$$\begin{bmatrix}
 In & I &= \int_{1}^{1} \frac{1}{t} dt &= 0
 \end{bmatrix}$$

$$\begin{bmatrix}
 If & x &> 1 & then
 \\
 In & x &= \int_{1}^{\infty} \frac{1}{t} dt &> 0
 \\
 (posifive area)
 \end{bmatrix}$$

$$\begin{bmatrix}
 If & o < x < 1 & then
 \\
 In & x &= \int_{1}^{\infty} \frac{1}{t} dt
 \\
 & = -\int_{x}^{1} \frac{1}{t} dt &< 0
 \end{bmatrix}$$

The derivative :
If x>0 then
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
. (*)
If x<0 then $-x = 0$
and $\frac{d}{dx} \ln(-x) = \frac{d}{du} \ln(u) \frac{du}{dx}$
where $u = -x$
 $= \frac{1}{u} (-1)$
 $= -\frac{1}{-x} = \frac{1}{x}$.
If x<0 then $\frac{d}{dx} \ln(-x) = \frac{1}{x}$.
(**)
Combining (*) and (**) :
If x = 0 then $\frac{d}{dx} \ln|x| = \frac{1}{x}$.

Logarithms "turn products into sums": For a, b > 0 In (ab) = ln a + ln b. Proof: Fix a>0 and define g(x) = ln(ax) for x>0. Then $g'(x) = \frac{d}{dx} ln(ax)$ $= (\frac{d}{du} ln u) (\frac{du}{dx})$ where u = ax

 $= \frac{1}{u} \cdot \alpha$ $= \frac{\alpha}{\alpha x} = \frac{1}{x} \cdot \alpha$

2.15 The exponential function $\frac{d}{dx} \ln x = \frac{1}{x} > 0$ for x70 so \ln is an increasing function. graph of inverse of inverse of $\frac{1}{y} = \frac{1}{x}$ y = x $y = \ln x$

Facts (tricky, proofs below) $\begin{bmatrix} \lim_{x \to \infty} \ln x = \infty \end{bmatrix}, \begin{bmatrix} \lim_{x \to 0^+} \ln x = -\infty \end{bmatrix}.$ Hence

 $g(x) = \ln x + C$ for some constant C. But $g(1) = \ln (a \cdot 1) = \ln a$ $= \ln 1 + C$ = 0 + C = C, so $C = \ln a$. Hence $g(x) = \ln x + \ln a$. In particular $\ln (ab) = g(b) = \ln b + \ln a$ $= \ln a + \ln b$, as required.

Using a lower Riemann sum we get $\int_{1}^{2^{n}} \frac{dt}{t} \ge \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^{n}}$ $= \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{9}$ $+ \dots + \frac{1}{2^{n+1}+1} + \dots + \frac{1}{2^{n}}$ $\geqslant \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$ $+ \dots + \frac{1}{2^{n}+1} + \dots + \frac{1}{2^{n}}$

$$\int_{1}^{2^{n}} \frac{dt}{t} \geq \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}$$

$$= \frac{n}{2}$$
Thus
$$\left[\ln (2^{n}) \geqslant \frac{n}{2} \right]$$

2

But

So

$$\lim_{n \to \infty} \frac{n}{2} = \infty$$

so
$$\lim_{m \to \infty} \ln(m) \ge \infty$$
 $(m \in \mathbb{Z}^+)$

$$\lim_{x \to \infty} \ln x = \infty \quad (x \in \mathbb{R}^+)$$

Corollary:
$$\lim_{x \to 0^+} \ln x = -\infty$$

Proof:
 $\lim_{x \to 0^+} \ln x = \lim_{x \to \infty} \ln(\frac{1}{y})$
 $= \lim_{x \to \infty} \ln(\frac{1}{x})$
 $= \lim_{x \to \infty} \ln(-\ln x)$
 $(Why?)$
 $= -\lim_{x \to \infty} \ln x$
 $= -\infty$

Thus

$$exp(ln x) = x \quad \text{for } x \neq 0$$

$$ln(exp x) = x \quad \text{for } x \notin R$$

$$exp \quad \text{and} \quad ln \quad "undo each other".$$

$$Properties \quad of \quad exp:$$

$$exp(o) = 1 \quad (since \ ln 1 = o)$$

$$exp(x) \neq 0 \quad \text{for all } x \notin R$$

$$exp(a+b) = [exp(a)][exp(b)]$$

$$= called \quad \text{the exponential laws}.$$

range of
$$\ln = R$$

domain of $\ln = (0, 0)$

2.19

The inverse function of In is called the exponential function, denoted by exp.

Thus

Proof of the exponential law:
Let
$$a, b \in IR$$
 and
put $x = exp(a), y = exp(b)$.
Then $a = \ln(x), b = \ln(y)$
and
 $exp(a+b) = exp(\ln(x) + \ln(y))$
 $= exp(\ln(xy))$
by a property of In
 $= xy$
since exp "undoes" In
 $= exp(a) exp(b)$,
 $as required$.

Most important property:

$$\frac{d}{dx} \exp(x) = \exp(x)$$
Proof: $x = \ln(\exp(x))$
so
$$l = \frac{dx}{dx} = \frac{d}{dx} \left(\ln(\exp(x)) \right)$$

$$= \frac{d}{du} (\ln(u)) \frac{du}{dx}$$
where $u = exp(x)$

$$= \frac{1}{u} \frac{du}{dx}$$

whenee

$$\frac{d}{dx} \exp(x) = \frac{du}{dx} = u = \exp(x),$$

as required.

Recapping, we have the natural logarithm

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$
for x>0

Recall the exponential function exp is the inverse of In, so, for a>o, b F IR

$$b = ln(a) \iff exp(b) = a$$

$$\lim_{n \to \infty} \frac{1}{1} \ln (a \cdot b) = \ln a + \ln b$$
(i) $\ln (a \cdot b) = \ln a + \ln b$
(ii) $\ln (a \cdot b) = \ln a + \ln b$
(i) $\exp (a + b) = \exp (a) \cdot \exp (b)$
(ii) $\exp (a + b) = \exp (a) \cdot \exp (b)$
(ii) $\frac{1}{2} \ln |x| = \frac{1}{x}$
(ii) $\frac{1}{2} \ln |x| =$

 $\frac{2\cdot29}{Further techniques of integration}$ $uv = \int \left[\frac{d(uv)}{dx}\right] dx$ $\frac{1}{dxeric} \frac{by}{dx} \frac{parts}{rule}$ $= \int \left[u\frac{dv}{dx} + \frac{du}{dx}v\right] dx$ $= \int \left[u\frac{dv}{dx} + \frac{du}{dx}v\right] dx$ $= \int \left[u\frac{dv}{dx}\right] dx + \int \left[\frac{du}{dx}v\right] dx$ $= \int u\frac{dv}{dx} dx + \int v\frac{du}{dx} dx$ $= \int u\frac{dv}{dx} dx + \int v\frac{du}{dx} dx$ $= \int u\frac{dv}{dx} dx + \int v\frac{du}{dx} dx$

5

2.31

Rearranging yields the integration by parts

formula:

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

or, more simply,

Example:

$$\int x e^{x} dx = x e^{x} - \int e^{x} 1 dx$$

$$\int \frac{1}{u} \frac{1}{dx} = \frac{1}{u} \frac{1}{v} \int \frac{1}{v} \frac{1}{dx}$$

$$= x e^{x} - \int e^{x} dx$$

$$= x e^{x} - e^{x} + C$$

Trying
$$u = e^{\pi}$$
, $\frac{dv}{d\pi} = \pi$
would make things more
complicated !

Example:

$$\int x^{k} e^{x} dx = x^{k} e^{x} - \int e^{x} (2x) dx$$

$$\int \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow f$$

$$= x^{k} e^{x} - 2 \int x e^{x} dx$$

$$= x^{k} e^{x} - 2 \int x e^{x} dx$$

$$= x^{k} e^{x} - 2 \int x e^{x} dx$$

$$= x^{k} e^{x} - 2 \int x e^{x} dx$$

$$= x^{k} e^{x} - 2 \int x e^{x} dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - \int x (\frac{1}{x}) dx$$

$$= x \ln x - x + C$$

$$\int f$$

$$= e^{x} (x^{k} - x + 2) + C$$

$$= e^{x} (x - x + 2)$$

$$= e^{x} (x - x + 2)$$

$$= e^{x} (x - x + 2)$$

$$\int \frac{1}{x} e^{x} (x - x) + C$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

$$= e^{x} (x - x) - \int e^{x} (x - x) dx$$

Example	•	Develop a	formula
for)	sin r dr	

Solution :

These are recursive formulae, allowing calculation in several steps typically by reducing powers in an integrand

Commonly, reduction formulae are derived using integration by parts.

$$= -\sin^{n-1} x \cos x$$

$$+ (n-1) \int (1-\sin^{2} x) \sin^{n-1} x dx$$

$$= -\sin^{n-1} x \cos x$$

$$+ (n-1) \int \sin^{n-2} x - \sin^{n} x dx$$

$$= -\sin^{n-1} x \cos x$$

$$+ (n-1) \int \sin^{n-2} x dx - \int \sin^{n} x dx$$

$$Put \quad I_{n} = \int \sin^{n} x dx$$

Partial fractions and rational functions

Then

$$I_{n} = -\sin^{n-1}x \cos x + (n-1) \left[I_{n-2} - I_{n} \right]$$

= $-\sin^{n-1}x \cos x + (n-1) I_{n-2} - (n-1) I_{n}$

Hence

$$nI_n = I_n + (n-1)I_n$$

= $-\sin^{n-1}x \cos x + (n-1)I_{n-2}$

whenee

T	- sin 2 cos 2	n-1	I
$\perp_n =$	n	n	-n-2

2-43

Otherwise, we use the method

of partial fractions to "decompose

the rational function into pieces

Fundamental Theorem of Algebra :

C = { complex numbers }

can be factorized into linear factors

 $p(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n)$

for some $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$

called roots

Every polynomial p(x) with

coefficients from

which are of this form.

A rational function is a quotient (ratio) of polynomials: $f(x) = \frac{P(x)}{Q(x)}$ where P(x), Q(x) are polynomials. If $\frac{p(x)}{Q(x)} = (ax + b)$ or $\int P(x)$ is linear $\int Q(x) = (ax^2 + bx + c)^n$ then it is possible to antidifferentiate using techniques so for discussed.

If the coefficients of
$$p(x)$$
 come
from IR then the roots come in
complex conjugate pairs
 $\lambda_1 = a + ib$, $\lambda_2 = a - ib$, ...

2.44

If $b \neq c$ then we get an irreducible quadratic factor : $(x - \lambda_1)(x - \lambda_2) = x^2 - 2ax + a^2 + b^2$

Consequence : all real polynomials factorize into linear and irreducible quadratic factors.

This leads to the following method :

Method for decomposing $\frac{P(x)}{Q(x)}$: (1) Divide through by Q(x)if degree of P(x) \geq degree of Q(x)(2) Factorize Q(x) into linear and irreducible quadratic factors. (3) If (x-a) is a factor, include a term $\frac{A}{x-a}$

(4) If $(x-a)^n$ is a repeated factor, include terms $\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_n}{(x-a)^n}$ (5) If $x^2 + bx + c$ is an irreducible quadratic factor, include a term $\frac{Ax + B}{x^2 + bx + c}$

2.46

(b) analogous to (4) if $(x^2+bx+c)^n$ is a repeated factor.

2.47

To find all constants that arise in (3), (4), (5), (6),

put everything over a common denominator and equate numerators.

E:ther (i) comparing coefficients of powers of x or (ii) using convenient substitutions for x enables constants to be found. 2.48 $E_{xample}: Find$ $\int \frac{dx}{(x-i)(x-2)(x-3)}$ Jolution: We find A, B, C such that $\frac{1}{(x-i)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$ giving 1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)This must hold for all x, by
continuity of polynomials !!!
Judicious choices of x yield A, B, C
quickly.

Put
$$x=1$$
: $1 = A(-1)(-2)$, so $A = \frac{1}{2}$
 $x=2$: $1 = B(1)(-1)$, so $B = -1$
 $x=3$: $1 = C(2)(1)$, so $C = \frac{1}{2}$.

Thus

50

 $\frac{1}{(x-1)(x-2)(x-3)} = \frac{\frac{1}{2}}{x-1} + \frac{-1}{x-2} + \frac{\frac{1}{2}}{x-3}$

Se (dx (x-1) (x-2) (x-3) $= \frac{1}{2} \int \frac{dx}{x-1} - \int \frac{dx}{x-2} + \frac{1}{2} \int \frac{dx}{x-3}$ = 2 ln |x-1 - ln |x-2 | + 2 ln |x-3 | + C $= |_{n} \frac{\sqrt{(n-1)(n-3)}}{(n-2)} + C$

$$\sum_{x \in x} \sum_{x \in y} \sum_{x$$

$$= \int \frac{dx}{2} - \int \frac{dx}{2-1} + \int \frac{dx}{(2-1)^{2}}$$

$$= \ln |x| - \ln |x-1| - \frac{1}{2-1} + C$$

$$= \ln \left| \frac{2}{2-1} \right| - \frac{1}{2-1} + C$$

2.51 Example: Find $\int \frac{x^4 + x - 1}{x^3 + x} dx$ E Solution : He $\frac{x}{x^{3}+x} \int x^{4}+x-1$ $\frac{x^{4}+x^{2}}{-x^{2}+x-1}$

$$\frac{x^{4}+x-1}{x^{3}+x} = x + \frac{-x^{2}+x-1}{x^{3}+x}$$

Put
$$-\frac{x^{2}+x-1}{x^{3}+x} = \frac{-x^{2}+x-1}{x(x^{2}+1)} = \frac{A}{x} + \frac{Bx+C}{x^{2}+1}$$

$$s_{n-x^{2}+x-1} = A(x^{2}+1) + (Bx+C) \times$$

$$P_{n} + x = 0 : -1 = A(1), \text{ so } A = -1$$

$$g_{iving} = x^{2}+x-1 = -x^{2}-1 + Bx^{2}+Cx$$

$$s_{n-x^{2}+x-1} = -x^{2}-1 + Bx^{2}+Cx$$

quating coefficients gives

$$B = 0, \quad C = 1$$
mee

$$\int \frac{x^{4} + x - 1}{x^{3} + x} \, dx$$

$$= \int x \, dx - \int \frac{dx}{x} + \int \frac{dx}{x^{4} + 1}$$

$$= \frac{x^{4}}{2} - |u|x| + \tan^{-1}x + C$$

١

$$= \frac{1}{2} - \ln|x| + \tan x$$

Example:

$$\int_{1}^{ab} \frac{dx}{x} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x}$$

$$= \lim_{b \to \infty} \left[\ln x \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left(\ln b - \ln 1 \right)$$

$$= \lim_{b \to \infty} \ln b$$

$$= \lim_{b \to \infty} \ln b$$

$$E_{xample}:$$

$$\int_{-\infty}^{0} e^{x} dx = \lim_{a \to -\infty} \int_{a}^{0} e^{x} dx$$

$$= \lim_{a \to -\infty} \left[e^{x} \right]_{a}^{0}$$

$$= \lim_{a \to -\infty} \left(e^{0} - e^{a} \right)$$

$$= 1 - \lim_{a \to -\infty} e^{a}$$

$$= 1 - \lim_{a \to -\infty} e^{a}$$

$$= 1 - 0 = 1,$$
so the shaded area below is 1:

$$\int_{a}^{0} y = e^{x}$$

2-60

In this illustration we define

$$E_{xample}:$$

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x}} = \lim_{\substack{l \to 1^{-} \\ l \to 1^{+} \\ l \to 1^{$$

$$\frac{E_{xample}}{\int_{1}^{4} \frac{dx}{(x-2)^{2}Y_{3}} = \int_{1}^{2} \frac{dx}{(x-2)^{2}Y_{3}} + \int_{2}^{4} \frac{dx}{(x-2)^{2}Y_{3}}$$

$$= \lim_{\substack{l \to 2^{-} \\ l \to 2^{+} \\ l$$

5

Thus the series
$$\sum_{k=0}^{\infty} a_k$$

is the limit of the sequence
whose $(n+1)$ th term is
the partial sum
 $\sum_{k=0}^{n} a_k = a_0 + a_1 + \dots + a_n$
If $\sum_{k=0}^{\infty} a_k$ exists and is finite,
then we say the series converges.
If $\sum_{k=0}^{\infty} a_k$ does not exist, or
is as or $-\infty$, then we say
the series diverges.

Series and Taylor Polynomials An infinite series (or just series) is an expression of the form $a_0 + a_1 + a_2 + \dots + a_k + \dots$

2.63

which may be abbreviated to

$$\sum_{k=0}^{\infty} a_k$$
 or $\sum a_k$,

and it represents

$$\lim_{n\to\infty} \sum_{k=0}^{n} k$$

 $= \lim_{n \to \infty} (a_0 + a_1 + \dots + a_n)$

2-62

2.66

Hence

$$\Xi \alpha r^{k} = \lim_{n \to \infty} \sum_{k=0}^{n} \alpha r^{k}$$

 $= \lim_{n \to \infty} \sum_{r=0}^{n} \sum_{r=0}^{n} \sum_{r=0}^{n-1} \frac{\alpha(1-r^{n+1})}{1-r}$
But
 $r^{n+1} \rightarrow \begin{cases} 0 & \text{if } |r| < 1 \\ \infty & \text{if } r > 1 \\ \text{undefined } \text{if } r < -1 \end{cases}$

Hence
$$\sum z ar^k = \frac{a}{1-r}$$
 if $|r| < 1$.

If Irl≥1 then the geometric series diverges.

$$e_{7} = \frac{3}{10} + \frac{3}{10^{2}} + \frac{3}{10^{2}} + \frac{3}{10^{2}} + \frac{3}{10^{2}} + \cdots$$

$$= \frac{a}{1-r} \qquad \text{where} \qquad a = \frac{3}{10}, \ r = \frac{1}{10}$$

$$= \frac{3}{10} + \frac{3}{10} = \frac{3}{10} + \frac{3}{10} = \frac{3}{10}, \ r = \frac{1}{10}$$

$$= \frac{3}{10} + \frac{3}{10} = \frac{3}{10} + \frac{3}{10} = \frac{3}{10} + \frac{3}{10}$$
as expected !!

is a geometric series where
$$a=1$$
,
 $r=-1$ and diverges
(the partial sums are 1 and 0).

The harmonic series is

$$z = \frac{1}{k} = (+\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ...)$$

which diverges:
 $z = \frac{1}{k} = \infty$

$$\frac{(extor :}{1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots}{\dots + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n}}}$$

$$\begin{array}{c} \geqslant 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \cdots \\ & \cdots + \frac{1}{2^{n} + \cdots + \frac{1}{2^{n}}} \\ = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots + \frac{1}{2} \\ = 1 + \frac{n}{2} \longrightarrow \\ & \otimes \quad \text{as} \quad n \to \\ \end{array}$$

 Ratio	Test for con	vergei	nce:		Ì
Let	L= lim k->	~	ak+1 ak		
Thew	~ 2 a k=0	k			
(c-)	converges	;†	L <	1) _
(۴)	diverges	; {	L >	(

Note: if L = 1 then the Ratio Test tells us nothing. Example: Consider the familiar geometric series: $a + ar + ar^2 + \dots + ar^k + \dots$ $= \sum_{k=0}^{\infty} a_k$ where $a_k = ar^{k-1}$ for each k. Then $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$ $= \lim_{k \to \infty} \left| \frac{ar^k}{ar^{k-1}} \right| = \lim_{k \to \infty} |r| = |r|$ so the fatio Test tells us (as we alreedy knows!) that $\lim_{k \to \infty} \left| \frac{ar^{k-1}}{ar^{k-1}} \right| = \lim_{k \to \infty} |ar| < 1$

2.71 Example: $\sum_{k=0}^{\infty} \frac{1}{k!}$ = $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{k!} + \dots$

converges since $\lim_{\substack{k \to \infty}} \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} = \lim_{\substack{k \to \infty}} \frac{k!}{(k+1)!}$ $= \lim_{\substack{k \to \infty}} \frac{1}{k+1} = 0 < 1.$

[In fact, the series converges to e, see below.] 2.72

Reason for the Ratio Test: We just consider (a) and suppose each term $a_k > 0$. Suppose $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = L < I$. Choose M helf-way between L and I.

For large enough k, say $k \ge K$ $\frac{a_{k+1}}{a_k} \le M$.

$$\begin{array}{c} 2.73 \\ \\ Hence, for $k \geq K \\ a_{km} \leq M a_{k}, \\ a_{k} \leq M a_{k},$$$

;

$$\frac{E_{xample}}{P(x)} = \frac{x^{k}}{k} \frac{x^{k}}{k!}$$

= 1 + x + $\frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{k}}{k!} + \dots$

Observe that

$$\lim_{k \to \infty} \left| \frac{\frac{x^{k+1}}{x^k} \frac{k!}{k!}}{\frac{x^k}{k!}} \right| = \lim_{k \to \infty} \frac{|x|}{(k+1)!}$$
$$= \lim_{k \to \infty} \frac{|x|}{k+1} = 0 < 1.$$

$$2.79$$

Recall $\frac{d}{dx}e^{x} = e^{x}$.

In fact (in a sense to be made
precise shortly)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

for all x.
called a power series
expansion of e^{x} .

Hence, by the Ratio Test,

{

$$p'(x) = 0 + 1 + \frac{2x}{2!} + \frac{3x^{-1}}{3!} + \dots + \frac{k \cdot x^{k-1}}{k!} + \frac{(k+1)x^{k}}{(k+1)!} + \dots$$
$$= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{k-1}}{(k-1)!} + \frac{x^{k}}{k!} + \dots$$
$$= -p(x) \qquad ||||$$

2.80 Representing functions by power series. A function y = f(x) is represented by a power series $\stackrel{\infty}{\underset{k=0}{\overset{\infty}{\underset{k=0}{\overset{\infty}{\atop}}}} a_k x^k$ if $f(x) = \stackrel{\infty}{\underset{k=0}{\overset{\infty}{\underset{k=0}{\atop}}} a_k x^k$ whenever the R.H.S. converges, and the R.H.S. is called a power series expansion of f(x). - an "infinite polynomial" vertion of f(x).

Suppose everything is well-behaved, and we can differentiate as much as we like:

$$f(x) = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \dots + a_{n}x + \dots$$

$$f'(x) = a_{1} + 2a_{2}x + 3a_{3}x^{2} + \dots + na_{n}x^{n-1} + \dots$$

$$f''(x) = 2a_{2} + (3)(2)a_{3}x + \dots + n(n-1)a_{n}x^{n-2} + \dots$$

$$f'''(x) = (3)(2)a_{3} + \dots + n(n-1)(n-2)a_{n}x^{n-3} + \dots$$

$$f^{(n)}(x) = n(n-1)(n-2)\dots(2)a_{n} + \dots$$

2.82

Evaluating at
$$x = 0$$
 gives
 $f(0) = a_0$
 $f'(0) = a_1$
 $f''(0) = 2a_2$
 $f'''(0) = (3)(2) a_3$
 \vdots
 $f^{(n)}(0) = n(n-1)...(3)(2) a_n$

Thus

۲

$$a_{0} = f(0)$$

$$a_{1} = f'(0)$$

$$a_{2} = \frac{f''(0)}{2!}$$

$$\vdots$$

$$a_{n} = \frac{f^{(n)}(0)}{n!}$$

2.83

2.84

Thus we get the

$$\frac{\text{Maclanrin series for } f(x) :}{f(x) = f(0) + f'(0) + \frac{f''(0)}{2!} + \frac{f''(0)}{2!} + \dots + \frac{f^{(n)}(0)}{n!} + \dots$$

Example:
$$f(x) = e^{x}$$

Observe $f^{(n)}(x) = e^{x}$ for all n
so
 $a_n = \frac{e^n}{n!} = \frac{1}{n!}$

and we get

 $e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$

Thus, for example,

$$e = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$$

 $e^{2} = 1 + 2 + \frac{2^{2}}{2!} + \dots + \frac{2^{n}}{n!} + \dots$
 $e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n}}{n!} + \dots$

$$Example : f(x) = \sin x$$

$$f(x) = \sin x$$
, $f(0) = 0$,

$$f'(x) = \cos x$$
, $f'(0) = 1$,

$$f''(x) = -\sin x$$
, $f''(0) = 0$,

$$f'''(x) = -\cos x$$
, $f'''(0) = -1$,

$$f^{(4)}(x) = \sin x$$
, $f^{(4)}(0) = 0$,
then pattern reproduces forever...

Thus the Meclaurin series for sin x Let
is
$$p(x) = x - \frac{x^3}{3!} + \frac{x^2}{5!} - \frac{x^3}{7!} + \dots$$

$$p(x) = \frac{x^{(x)}}{2!} + \frac{x^2}{5!} - \frac{x^3}{7!} + \dots$$

$$p(x) = \frac{x^{(x)}}{2!} + \frac{x^4}{5!} - \frac{x^4}{6!} + \dots$$

$$p(x) + Q(x)$$

$$p(x) + Q(x) + Q(x)$$

$$p(x) = \frac{x^{(x)}}{2!} + \frac{x^{(x)}}{5!} - \frac{x^{(x)}}{2!} + \frac{x^{(x)}}{5!} + \frac{x^{(x)}}{$$

 $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$ $1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{5}}{6!} + \cdots$

$$fdd these together :
P(x) + Q(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^{x} ||_{x}$$

Subtract
$$P(x)$$
 from $Q(x)$:
 $Q(x) - P(x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \dots$
 $= 1 - x + \frac{(-x)^2}{2!} + \frac{(-x)^3}{3!} + \frac{(-x)^4}{4!} + \dots$
 $= e^{-x}$ []]

2.88

JI $+ x_{+} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$ $\kappa - \frac{\kappa^3}{3!} + \frac{\kappa^5}{5!} - \cdots$ $1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots$ $= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$ $= 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$

What about a power series representation
of
$$f(x) = \ln x$$
?

More generally,
Here Taylor series expansion
or representation of

$$y = f(x)$$

about $x = a$ is
 $f(x) = f(a) + f'(a) (x-a)$
 $+ \frac{f'(a)}{x!} (x-a)^{+} + \cdots$
 $+ \frac{f'(a)}{x!} (x-a)^{+} + \cdots$
 $+ \frac{f^{(n)}(a)}{x!} (x-a)^{+} + \cdots$
 $+ \frac{f^{(n)}(a)}{x!} (x-a)^{+} + \cdots$
 $+ \frac{f^{(n)}(a)}{x!} (x-a)^{+} + \cdots$
 $= \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$
 $f^{(n)} = -1$
 $f^{(n)} = -1$

C = -1

+ ··· + C ,

 $-\frac{(n-1)^{4}}{4}+\cdots$

as before.

Define the Taylor polynomial of degree n for a function y=f(x) about x=a to be

 $T_{n}(x) = f(a) + f'(a)(x-a)$ + $\frac{f'(a)}{2!}(x-a)^2$ $+ \cdots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}.$ 2.96

Thus the Taylor polynomial is obtained from the Taylor series by "chopping off" everything after the term involving (x-a)ⁿ

When a = o the Taylor polynomial is also called the Maclaurin polynomial.

$$\frac{E \times ample}{about} \times = 0 \quad \text{for} \quad e^{\infty} \quad \text{is}$$

$$e^{\infty} = 1 + \infty + \frac{\infty^{2}}{2!} + \dots + \frac{\infty^{n}}{n!} + \dots$$
Hence the Taylor (Maclanrin)
polynomials of degree 0, 1, 2, 3
are
$$T_{0}(\infty) = 1$$

$$T_{1}(\infty) = 1 + \infty$$

$$T_{2}(\infty) = 1 + \infty + \frac{\infty^{2}}{2}$$

$$T_{3}(\infty) = 1 + \infty + \frac{\infty^{2}}{2}$$

$$T_{3}(\infty) = 1 + \infty + \frac{\infty^{2}}{2} + \frac{\infty^{2}}{6}$$
As n increases, $y = T_{n}(\infty)$ "hugs"
more of the graph of $y = f(\infty)$.

x = 0 for sin x is $sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

2:100 y = sin x can never equal a polynomial in x because its graph has infinitely many local extrema ... f f f f f f ... whereas a polynomial has only finitely many critical points. However as $n \rightarrow \infty$, the graph of $y = T_n(n)$ captures more and more of the sine's "wriggles".

$$T_{1}(x) = x = T_{2}(x),$$

$$T_{3}(x) = x - \frac{x^{3}}{6} = T_{4}(x),$$

$$T_{5}(x) = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} = T_{6}(x),$$

$$T_{7}(x) = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \frac{x^{7}}{5040}.$$

$$T_{7}(x) = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \frac{x^{7}}{5040}.$$

$$T_{7}(x) = T_{7}(x) = T_{7}(x),$$

$$T_{7}(x) =$$

299

The first few Taylor polynomials are