Notes on Integral Calculus and Modelling 2nd Instalment

Contents page
Logs and exponentials 2.1
conceptualizing exponentiation 2.2
monotone convergence theorem 2.4
limits of sequences with rational exponents 2.7
approaching exponentiation from a different direction 2.8
definition of natural logarithm in terms of integrals 2.10
logs turn products into sums 2.13
exponential function as inverse of natural log 2.14
domain and range of the exponential function 2.19
exponential law 2.20
derivative of the exponential function 2.22
definition of the number e 2.25
definition of a^{x} and properties 2.27
Further techniques of integration 2.29
integration by parts 2.29
expressing an integral in terms of itself 2.35
reduction formulae 2.38
partial fractions and rational functions 2.42
fundamental theorem of algebra 2.43
method of partial fractions 2.45
Improper integrals 2.53
Power Series and Taylor polynomials 2.63
convergence and divergence of series 2.64
geometric series 2.65
harmonic series 2.68
ratio test for convergence 2.69
power series 2.75
functions as power series 2.80
Maclaurin series 2.83
sin, sinh, cos and cosh form a quartet 2.88
Taylor series about $x=a$ 2.89
Taylor polynomials 2.95

Logs and exponential
Let $a, b>0$.
Easy to understand:

- addition

translation along the real line
-multiplication

area of a rectangle
2.3

Easy fact: For all $q_{1}, q_{2} \in \mathbb{Q}^{+}$,

$$
q_{1}<q_{2} \quad \Rightarrow \quad a^{q_{1}}<a^{q_{2}} .
$$

Let

$$
q_{1}<q_{2}<\ldots<q_{n}<\cdots<\pi<4
$$

where each $q_{i} \in \mathbb{Q}^{+}$and

$$
\pi=\lim _{n \rightarrow \infty} q_{n}
$$

(e.g. use the decimal expansion of π).

Then

$$
a^{q_{1}}<a^{q_{2}}<\cdots<a^{q_{n}}<\ldots<a^{4}
$$

\uparrow monotonic sequence
so

$$
\lim _{n \rightarrow \infty} a^{q_{n}} \text { exists !! }
$$

But how does one define or conceptualize exponentiation?! Example: What is a^{π} ?

$$
a^{n}=\underbrace{a \times a \times \cdots \times a}_{n \text { times }} \text { if } n \in \mathbb{Z}^{+}
$$

$a^{1 / m}=c \quad$ where

$$
\underbrace{c \times c \times \cdots \times c}_{m \text { times }}=a \text { if } m \in \mathbb{Z}^{+}
$$

$$
a^{n / m}=\left(a^{1 / m}\right)^{n}=c^{n}
$$

so we have
a^{q} for any $q \in Q^{+}$
2.4

Reason:
Monotone Convergence Theorem:
Let

$$
x_{1} \leq x_{2} \leq x_{3} \leq \ldots \leq x_{n} \leq \ldots \leq M
$$

be an infinite nondecreasing
sequence of real numbers bounded above by M.

Them

$$
\lim _{n \rightarrow \infty} x_{n} \text { exists. }
$$

idea: eventually the numbers "bunch up"

Proof: Put $X=\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$.
Then x is bounded above by M, so by completeness of \mathbb{R}
X has a least upper bound L

Completeness of \mathbb{R} says:
any aracupty set of reals which is bounded above has a least upper bound.

Claim: $\lim _{n \rightarrow \infty} x_{n}=L$

We have to prove

$$
\begin{array}{r}
(\forall \varepsilon>0)\left(\exists N \in \mathbb{Z}^{+}\right)(\forall n \geq N) \\
\left|x_{n}-L\right|<\varepsilon .
\end{array}
$$

2.7

Returning to our quest for a^{π} : we have

$$
q_{1}<q_{2}<\cdots<q_{n}<\cdots<\pi<4
$$

where

$$
\lim _{n \rightarrow \infty} q_{n}=\pi
$$

and

$$
a^{q_{1}}<a^{q_{2}}<\ldots<a^{q_{n}}<\ldots<a^{4}
$$

so

$$
\lim _{n \rightarrow \infty} a^{q_{n}} \text { exists. }
$$

Define

$$
a^{\pi}=\lim _{n \rightarrow \infty} a^{q_{n}}
$$

This method allows us to define a^{b} for any $b \in \mathbb{R}$ by using limits of sequences using rational exponents !.1.

Let $\varepsilon>0$.
If $x_{n} \leq L-\varepsilon$ for all n thew $L-\varepsilon$ is an upper bound for X smaller than L, contradicting that L is the least upper bound.

Hence $L-\varepsilon<x_{N} \leq L$ for. some N.

Thew

$$
L-\varepsilon<x_{N} \leqslant x_{N+1} \leqslant x_{N+2} \leqslant \ldots \leqslant L
$$

se

$$
\left|x_{n}-L\right|<\varepsilon \quad \forall n \geqslant N .
$$

This proves

$$
\lim _{n \rightarrow \infty} x_{n}=L .
$$

2.8

Completely different approach!!!

We will define

$$
a^{b}=e^{b \ln a}
$$

provided we can make sense of

- In a "the natural logarithm..
- the read number e
- arbitrary powers of
e

Advantage of this method: "constructive" rather them "existential"

Gap in following table?!

powers of x	an antiderivative
x^{3}	$x^{4} / 4$
x^{2}	$x^{3} / 3$
x	$x^{2} / 2$
$1=x^{0}$	$x=x^{1} / 1$
$1 / x=x^{-1}$	$-\frac{1}{x}=x^{-1}-1$
$1 / x^{2}=x^{-2}$	$-\frac{1}{2 x^{2}}=x^{-2}-2$
$1 / x^{3}=x^{-3}$	$\frac{x^{n+1}}{n+1}$
x^{n}	if $n \neq-1$

By the Fundamental Theorem of Calculus (part 1)

$$
\frac{d}{d x} \int_{1}^{x} \frac{1}{t} d t=\frac{1}{x}
$$

Define the natural logarithmic function \ln by, for $x>0$,

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

Properties:

$$
\ln 1=\int_{1}^{1} \frac{1}{t} d t=0
$$

If $x>1$ then

$$
\begin{aligned}
\ln x= & \int_{1}^{x} \frac{1}{t} d t>0 \\
& \text { (positive area) }
\end{aligned}
$$

If $0<x<1$ then

$$
\begin{aligned}
\ln x & =\int_{1}^{x} \frac{1}{t} d t \\
& =-\int_{x}^{1} \frac{1}{t} d t<0
\end{aligned}
$$

The derivative:
If $x>0$ then $\frac{d}{d x} \ln x=\frac{1}{x}$.

If $x<0$ then $-x>0$
and $\frac{d}{d x} \ln (-x)=\frac{d}{d u} \ln (u) \frac{d u}{d x}$
where $u=-x$

$$
\begin{align*}
& =\frac{1}{u}(-1) \\
& =-\frac{1}{-x}=\frac{1}{x} \tag{**}
\end{align*}
$$

If $x<0$ then $\frac{d}{d x} \ln (-x)=\frac{1}{x}$.
Combining (*) and (**) :
If $x \neq 0$ then $\frac{d}{d x} \ln |x|=\frac{1}{x}$.

Logarithms "tarn products
into sums":

For $a, b>0$

$$
\ln (a b)=\ln a+\ln b
$$

Proof: Fix $a>0$ and define

$$
g(x)=\ln (a x) \text { for } x>0 .
$$

Then $g^{\prime}(x)=\frac{d}{d x} \ln (a x)$

$$
=\left(\frac{d}{d u} \ln u\right)\left(\frac{d u}{d x}\right)
$$

where $u=a x$

$$
\begin{aligned}
& =\frac{1}{u} \cdot a \\
& =\frac{a}{a x}=\frac{1}{x}
\end{aligned}
$$

2.15

The exponential function

$$
\frac{d}{d x} \ln x=\frac{1}{x}>0 \text { for } x>0
$$

so In is an increasing function.

Facts (tricky, proofs below)

$$
\lim _{x \rightarrow \infty} \ln x=\infty, \lim _{x \rightarrow 0^{+}} \ln x=-\infty
$$

Hence

$$
g(x)=\ln x+C
$$

for some constant C.
But $g(1)=\ln (a .1)=\ln a$

$$
=\ln \mid+c
$$

$$
=0+c=c
$$

so $\quad c=\ln a$.
Hence $g(x)=\ln x+\ln a$.
In particular

$$
\begin{aligned}
\ln (a b) & =g(b)=\ln b+\ln a \\
& =\ln a+\ln b
\end{aligned}
$$

as required.

Using a lower Riemann sum we get

$$
\begin{aligned}
\int_{1}^{2^{n}} \frac{d t}{t} \geqslant & \underbrace{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}} \\
& +\cdots+\underbrace{\frac{1}{2^{n-1}+1}+\frac{1}{4}}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\
& +\frac{1}{2^{n}} \\
\geqslant & +\underbrace{\frac{1}{2}+\frac{1}{4}}+\underbrace{\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}} \\
& +\cdots+\frac{1}{2^{n}}+\cdots+\frac{1}{2^{n}}
\end{aligned}
$$

so

$$
\begin{aligned}
\int_{1}^{2^{n}} \frac{d t}{t} & \geqslant \frac{\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}}{n \text { copies }} \\
& =\frac{n}{2}
\end{aligned}
$$

Thus

$$
\ln \left(2^{n}\right) \geqslant \frac{n}{2}
$$

But

$$
\lim _{n \rightarrow \infty} \frac{n}{2}=\infty
$$

so

$$
\lim _{n \rightarrow \infty} \ln \left(2^{n}\right)=\infty
$$

(Squeeze Law)
so

$$
\lim _{m \rightarrow \infty} \ln (m)=\infty \quad\left(m \in \mathbb{Z}^{+}\right)
$$

So

$$
\lim _{x \rightarrow \infty} \ln x=\infty \cdot \quad\left(x \in \mathbb{R}^{+}\right)
$$

2.19

$$
\begin{aligned}
& \text { range of } \ln =\mathbb{R} \\
& \text { domain of } \ln =(0, \infty)
\end{aligned}
$$

The inverse function of \ln is called the exponential function, denoted by exp.

Thus

$$
\begin{array}{r}
\begin{array}{l}
\text { domain of exp } \\
\text { range of exp }
\end{array}=(0, \infty) \\
y+y=\exp x \\
\end{array}
$$

Corollary: $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$.

Proof:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln x & =\lim _{y \rightarrow \infty} \ln \left(\frac{1}{y}\right) \\
& =\lim _{x \rightarrow \infty} \ln \left(\frac{1}{x}\right) \\
& =\lim _{x \rightarrow \infty}(-\ln x)
\end{aligned}
$$

(why?)

$$
=-\lim _{x \rightarrow \infty} \ln x
$$

$$
=-\infty
$$

$$
2.20
$$

Thus

$$
\begin{array}{ll}
\exp (\ln x)=x & \text { for } x>0 \\
\ln (\exp x)=x & \text { for } x \in \mathbb{R}
\end{array}
$$

exp and In "undo each other".

Properties of exp:

$$
\begin{aligned}
& \exp (0)=1 \quad(\text { since } \ln 1=0) \\
& \exp (x)>0 \quad \text { for all } x \in \mathbb{R} \\
& \exp (a+b)=[\exp (a)][\exp (b)]
\end{aligned}
$$

- called the exponential law.

Proof of the exponential law:
Let $a, b \in \mathbb{R}$ and put $x=\exp (a), y=\exp (b)$.

Then $a=\ln (x), b=\ln (y)$ and

$$
\begin{gathered}
\exp (a+b)=\exp (\ln (x)+\ln (y)) \\
=\exp (\ln (x y))
\end{gathered}
$$

by a property of \ln

$$
=x y
$$

since exp "undoes" In

$$
=\exp (a) \exp (b)
$$

as required.

Recapping, we have the
natural logarithm

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

for $x>0$

Most important property:

$$
\frac{d}{d x} \exp (x)=\exp (x)
$$

Proof: $\quad x=\ln (\exp (x))$
so

$$
\begin{aligned}
1 & =\frac{d x}{d x}=\frac{d}{d x}(\ln (\exp (x))) \\
& =\frac{d}{d u}(\ln (u)) \frac{d u}{d x}
\end{aligned}
$$

where $u=\exp (x)$

$$
=\frac{1}{u} \frac{d u}{d x},
$$

whence

$$
\frac{d}{d x} \exp (x)=\frac{d u}{d x}=u=\exp (x)
$$

as required.

Recall the exponential function exp is the inverse of In, so, for $a>0, b \in \mathbb{R}$

$$
b=\ln (a) \Longleftrightarrow \exp (b)=a
$$

Important properties:
(1) $\quad \ln (a \cdot b)=\ln a+\ln b$
(2) $\exp (a+b)=\exp (a) \cdot \exp (b)$
(3) $\frac{d}{d x} \ln |x|=\frac{1}{x}$
(4) $\frac{d}{d x} \exp (x)=\exp (x)$

Put $e=\exp (1)$, so $\ln e=1$

We want

$$
\exp (x)=e^{x}
$$

yet to be defined
so that the variable x is an exponent.
Observe, for n positive integer,

$$
\begin{aligned}
\ln \left(a^{n}\right) & =\ln (\underbrace{a \cdot a \ldots a}_{n \text { times }}) \\
& =\underbrace{\ln a+\ln a+\cdots+\ln a}_{n \text { times }} \\
& =n \ln (a) .
\end{aligned}
$$

2.28

Properties:
(1) $(a b)^{c}=a^{c} b^{c}$
(2) $a^{c} a^{d}=a^{c+d}$
(3) $\left(a^{c}\right)^{d}=a^{c d}$
(4) $\quad a^{0}=1$
(s) $a^{n}=\frac{a \times a \times \cdots \times a}{{ }_{n} \text { times }}$

$$
\text { if } n \in \mathbb{Z}^{+}
$$

(b) $\quad \ln \left(a^{x}\right)=x \ln (a)$
(7) $\cdot \frac{d}{d x} x^{a}=a x^{a-1}$

Proofs: left as exercises.

Further techniques of integration
Integration by parts:
Recall the product rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+\frac{d u}{d x} v
$$

where u, v functions of x.
Antidifferentiate both sides with respect to x :

$$
u v=\int\left[\frac{d(u v)}{d x}\right] d x
$$

$$
\begin{aligned}
& =\int\left[u \frac{d v}{d x}+\frac{d u}{d x} v\right] d x \\
& =\int\left[u \frac{d v}{d x}\right] d x+\int\left[\frac{d u}{d x} v\right] d x
\end{aligned}
$$

$$
=\int u \frac{d v}{d x} d x+\int v \frac{d u}{d x} d x
$$

$$
=\int u d v+\int v d u
$$

Rearranging yields the integration by parts formula:

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

or, more simply,

$$
\int u d v=u v-\int v d u
$$

Example:

$$
\begin{aligned}
\int x e^{x} d x & =x e^{x}-\iint_{u} e^{x} 1 d x \\
\uparrow \prod_{v}^{d x} & \prod_{v} \\
& =x e^{x}-\int e^{x} d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

Trying $u=e^{x}, \frac{d v}{d x}=x$ would make things more complicated!

Example:

$$
\begin{aligned}
& \int x_{u}^{2} e^{x} d x=x^{2} e^{x}-\iint_{u}^{d x} \\
& e^{x}(2 x) d x \\
&=x_{v}^{2} e^{x}-2 \int x e^{x} d x \\
&=x^{2} e^{x}-2\left(x e^{x}-e^{x}\right)+C \\
&=e^{x}\left(x^{2}-2 x+2\right)+C
\end{aligned}
$$

Handy trick: Sometimes

$$
\frac{d v}{d x}=1 \text { helps. }
$$

Example:

Another trick: use parts to express an integral in terms of itself and rearrange.

Example:

$$
\int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x
$$

$$
\begin{aligned}
& =e^{x} \sin x-\left(e^{x} \cos x-\int e^{x}(-\sin x) d x\right) \\
& \uparrow \prod_{v} \prod_{v} \frac{d u}{d x} \\
& =e^{x}(\sin x-\cos x)-\int e^{x} \sin x d x .
\end{aligned}
$$

Put $I=\int e^{x} \sin x d x$
Theme

$$
\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
\frac{d v}{d x} & u
\end{array}
$$

$$
I=e^{x}(\sin x-\cos x)-I
$$

so $\quad 2 I=e^{x}(\sin x-\cos x)+C^{\prime}$
so $I=\frac{e^{x}}{2}(\sin x-\cos x)+C$

$$
\begin{aligned}
& \int \ln x d x=\int 1 \cdot \ln x d x \\
& \begin{array}{cc}
\frac{d v}{d x} & \uparrow
\end{array} \\
& =x \ln x-\int x\left(\frac{1}{x}\right) d x \\
& \begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
v & v \\
u & \frac{d u}{d x}
\end{array} \\
& =x \ln x-\int 1 d x \\
& =x \ln x-x+C \text {. }
\end{aligned}
$$

For definite integrals, use

$$
\int_{a}^{b} u \frac{d v}{d x} d x=[u v]_{a}^{b}-\int_{a}^{b} v \frac{d u}{d x} d x
$$

Example:

$$
\begin{aligned}
& \frac{\text { Example : }}{\int_{1}^{e} x \ln x d x} \begin{aligned}
&\left.\int_{\uparrow} \uparrow \frac{x^{2}}{2} \ln x\right]_{1}^{e}-\int_{1}^{e} \frac{x^{2}}{2} \frac{1}{x} d x \\
& \uparrow \uparrow u \\
&=\frac{e^{2}}{2}-0-\frac{1}{2} \int_{1}^{e} x d x \\
&=\frac{e^{2}}{2}-\frac{1}{2}\left[\frac{x^{2}}{2}\right]_{1}^{e} \\
&=\frac{e^{2}}{2}-\frac{1}{2}\left(\frac{e^{2}}{2}-\frac{1}{2}\right) \\
&=\frac{e^{2}}{4}+\frac{1}{4} .
\end{aligned}
\end{aligned}
$$

$$
2.39
$$

Example: Develop a formula for

$$
\int \sin ^{n} x d x
$$

Solution:

$$
\begin{aligned}
& \int \sin ^{n} x d x=\int \sin ^{n-1} x \sin x d x \\
& \prod_{u} \frac{\uparrow}{d x} \\
& =\begin{array}{c}
\sin ^{n-1} x(-\cos x) \\
\uparrow \prod_{u}-\int \\
v
\end{array} \\
& =-\sin ^{n-1} x \cos x+(n-1) \int \cos ^{2} x \sin ^{n-2} x d x
\end{aligned}
$$

Reduction formulae:
These are recursive formulae, allowing calculation in several steps

- typically by reducing powers in an integrand

Commonly, reduction formulae are derived using integration by parts.
3.40

$$
\begin{aligned}
= & -\sin ^{n-1} x \cos x \\
& +(n-1) \int\left(1-\sin ^{2} x\right) \sin ^{n-2} x d x
\end{aligned}
$$

$$
\begin{aligned}
= & -\sin ^{n-1} x \cos x \\
& +(n-1) \int \sin ^{n-2} x-\sin ^{n} x d x \\
= & -\sin ^{n-1} x \cos x \\
& +(n-1)\left[\int \sin ^{n-2} x d x-\int \sin ^{n} x d x\right]
\end{aligned}
$$

Put $I_{n}=\int \sin ^{n} x d x$

Then

$$
\begin{aligned}
I_{n}= & -\sin ^{n-1} x \cos x \\
& +(n-1)\left[I_{n-2}-I_{n}\right] \\
= & -\sin ^{n-1} x \cos x \\
& +(n-1) I_{n-2}-(n-1) I_{n}
\end{aligned}
$$

Hence

$$
\begin{aligned}
n I_{n} & =I_{n}+(n-1) I_{n} \\
& =-\sin ^{n-1} x \cos x+(n-1) I_{n-2}
\end{aligned}
$$

whence

$$
I_{n}=\frac{-\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} I_{n-2}
$$

$$
2.43
$$

Otherwise, we use the method of partial fractions to "decompose" the rational function into pieces which are of this form.

Fundamental Theorem of Algebra:
Every polynomial $p(x)$ with coefficients from

$$
\mathbb{C}=\{\text { complex numbers }\}
$$

can be factorized into linear factors

$$
p(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)
$$

for some $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$.
called roots

Partial fractions and rational functions

A rational function is a quotient (ratio)
of polynomials :

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x), Q(x)$ are polynomials.
If $\left\{\begin{array}{l}P(x) \text { is } \cos 5 \operatorname{tant} \\ Q(x)=(a x+b)^{n}\end{array}\right.$
or $\left\{\begin{array}{l}P(x) \text { is linear } \\ Q(x)=\left(a x^{2}+b x+c\right)^{n}\end{array}\right.$
them it is possible to antidifferentiate using techniques so for discussed.

If the coefficients of $p(x)$ come from \mathbb{R} them the roots come in complex conjugate pairs

$$
\lambda_{1}=a+i b, \quad \lambda_{2}=a-i b, \cdots
$$

If $b \neq 0$ thew we get an irreducible quadratic factor:

$$
\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)=x^{2}-2 a x+a^{2}+b^{2}
$$

Consequence: all real polynomials factorize into linear and irreducible quadratic foetors.

This leads to the following method:

Method for decomposing $\frac{P(x)}{Q(x)}$:
(1) Divide through by $Q(x)$
if
degree of $P(x)$
\geqslant degree of $Q(x)$.
(2) Factorize $Q(x)$ into linear and irreducible quadratic factors.
(3) If $(x-a)$ is a factor, include a term $\frac{A}{x-a}$.

To find all constants that arise in (3), (4), (5), (6), put everything over a common denominator and equate numerators.

Either
(i) comparing coefficients of powers of x
or
(ii) using convenient substitutions for x enables constants to be found.
(4) If $(x-a)^{n}$ is a repeated factor, include terms

$$
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\cdots+\frac{A_{n}}{(x-a)^{n_{n}}}
$$

(5) If $x^{2}+b x+c$ is an irreducible quadratic factor, include a term

$$
\frac{A x+B}{x^{2}+b x+c}
$$

(6) analogous to (4) if $\left(x^{2}+b x+c\right)^{n}$ is a repeated factor.
\qquad

$$
2.48
$$

Example: Find

$$
\int \frac{d x}{(x-1)(x-2)(x-3)}
$$

Solution: We find A, B, C such
that

$$
\frac{1}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}
$$

giving

$$
\begin{aligned}
1=A(x-2)(x-3) & +B(x-1)(x-3) \\
& +C(x-1)(x-2)
\end{aligned}
$$

This must hold for all x, by continuity of polynomials !!!

Judicious choices of x yield A, B, C quickly.

Put $x=1: 1=A(-1)(-2)$, so $A=\frac{1}{2}$
$x=2: 1=B(1)(-1)$, so $B=-1$
$x=3: \quad 1=c(2)(1)$, so $\quad c=\frac{1}{2}$
Thus

$$
\frac{1}{(x-1)(x-2)(x-3)}=\frac{\frac{1}{2}}{x-1}+\frac{-1}{x-2}+\frac{\frac{1}{2}}{x-3}
$$

Example: Find $\int \frac{d x}{x(x-1)^{2}}$
Solution: Put

$$
\frac{1}{x(x-1)^{2}}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}
$$

$$
\text { so } \quad 1=A(x-1)^{2}+B x(x-1)+C x
$$

$$
\text { se } \quad \int \frac{d x}{(x-1)(x-2)(x-3)}
$$

$$
\text { Put } x=0: \quad 1=A(-1)^{2} \text {, so } A=1 \text {. }
$$

$$
x=1: 1=c(1) \text {, so } c=1 \text {. }
$$

$$
=\frac{1}{2} \int \frac{d x}{x-1}-\int \frac{d x}{x-2}+\frac{1}{2} \int \frac{d x}{x-3}
$$

$$
x=2: \quad 1=A+2 B+2 C \text {, so } B=-1 \text {. }
$$

$$
=\frac{1}{2} \ln |x-1|-\ln |x-2|+\frac{1}{2} \ln |x-3|+C
$$

Hence $\int \frac{d x}{x(x-1)^{2}}$

$$
=\ln \frac{\sqrt{(x-1)(x-3)}}{|x-2|}+C .
$$

$$
\begin{aligned}
& =\int \frac{d x}{x}-\int \frac{d x}{x-1}+\int \frac{d x}{(x-1)^{2}} \\
& =\ln |x|-\ln |x-1|-\frac{1}{x-1}+C \\
& =\ln \left|\frac{x}{x-1}\right|-\frac{1}{x-1}+C .
\end{aligned}
$$

Example: Find $\int \frac{x^{4}+x-1}{x^{3}+x} d x$
Solution:

$$
x^{3}+x \sqrt{\frac{x}{x^{4}+x-1}} \begin{aligned}
& \frac{x^{4}+x^{2}}{-x^{2}+x-1}
\end{aligned}
$$

so

$$
\frac{x^{4}+x-1}{x^{3}+x}=x+\frac{-x^{2}+x-1}{x^{3}+x}
$$

Put $\frac{-x^{2}+x-1}{x^{3}+x}=\frac{-x^{2}+x-1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
So $-x^{2}+x-1=A\left(x^{2}+1\right)+(B x+C) x$.
Put $x=0:-1=A(1)$, so $A=-1$
giving $\quad-x^{2}+x-1=-x^{2}-1+B x^{2}+C x$
so $\quad x=B x^{2}+C x$.
2.52

Equating coefficients gives

$$
B=0, \quad c=1 .
$$

Hence

$$
\begin{aligned}
& \int \frac{x^{4}+x-1}{x^{3}+x} d x \\
& \quad=\int x d x-\int \frac{d x}{x}+\int \frac{d x}{x^{2}+1} \\
& \quad=\frac{x^{2}}{2}-\ln |x|+\tan ^{-1} x+C
\end{aligned}
$$

Improper integrals
The definite integral

$$
\int_{a}^{b} f(x) d x
$$

was developed assuming

- the interval $[a, b]$ is finite
- the values of $f(x)$ are bounded.

We may be interested in areas over infinite intervals:

\qquad
2.55

Below we define the area to be

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

If the limit exists and is finite we say the improper integral converges.

If the limit does not exist or is infinite we say the improper integral diverges.
or areas in regions where the function becomes unbounded:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{a}^{b} f(x) d x
$$

Improper integrals are defined to be limits of certain definite integrals, provided these lints exist.
2.56

Example:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x^{2}} & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x^{2}} \\
& =\lim _{b \rightarrow \infty}\left[-\frac{1}{x}\right]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}\left(-\frac{1}{b}-\left(-\frac{1}{1}\right)\right) \\
& =\lim _{b \rightarrow \infty}-\frac{1}{b}+1 \\
& =0+1=1 .
\end{aligned}
$$

so this improper integral converges.

Example:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x} & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x} \\
& =\lim _{b \rightarrow \infty}[\ln x]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}(\ln b-\ln 1) \\
& =\lim _{b \rightarrow \infty} \ln b \\
& =\infty
\end{aligned}
$$

so this improper integral diverges.
2.59

Example:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}} & =\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{d x}{1+x^{2}} \\
& =\lim _{b \rightarrow \infty}\left[\tan ^{-1} x\right]_{-b}^{b} \\
& =\lim _{b \rightarrow \infty} \tan ^{-1} b-\tan ^{-1}(-b) \\
& =2 \lim _{b \rightarrow \infty} \tan ^{-1} b \\
& =2 \pi / 2=\pi
\end{aligned}
$$

Example:

$$
\begin{aligned}
\int_{-\infty}^{0} e^{x} d x & =\lim _{a \rightarrow-\infty} \int_{a}^{0} e^{x} d x \\
& =\lim _{a \rightarrow-\infty}\left[e^{x}\right]_{a}^{0} \\
& =\lim _{a \rightarrow-\infty}\left(e^{0}-e^{a}\right) \\
& =1-\lim _{a \rightarrow-\infty} e^{a} \\
& =1-0=1
\end{aligned}
$$

so the shaded area below is 1 :

\qquad

Other types of improper integrals occur when the integrand becomes unbounded :

In this illustration we define

$$
\int_{a}^{b} f(x) d x=\sum_{l \rightarrow b^{-}}^{\lim _{a}^{l} f(x) d x} \int_{\text {let this is }}^{l}
$$

note that this is a one-sided limit

Example:

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{\sqrt{1-x}} & =\lim _{l \rightarrow 1^{-}} \int_{0}^{l} \frac{d x}{\sqrt{1-x}} \\
& =\lim _{l \rightarrow 1^{-}}[-2 \sqrt{1-x}]_{0}^{l} \\
& =\lim _{l \rightarrow 1^{-}}(-2 \sqrt{1-l}+2) \\
& =0+2=2 \\
\int_{1}^{2} \frac{d x}{1-x} & =\lim _{l \rightarrow 1^{+}} \int_{l}^{2} \frac{d x}{1-x} \\
& =\lim _{l \rightarrow 1^{+}}[-\ln |1-x|]_{2}^{2} \\
& =\lim _{l \rightarrow 1^{+}}-\ln |-1|+\ln |1-l| \\
& =\lim _{l \rightarrow 1^{+}} \ln |1-l| \\
& =-\infty \quad \text { so diverges. }
\end{aligned}
$$

Series and Taylor Polynomials
An infinite series (or just series) is an expression of the form

$$
a_{0}+a_{1}+a_{2}+\cdots+a_{k}+\cdots
$$

which may be abbreviated to

$$
\sum_{k=0}^{\infty} a_{k} \quad \text { or } \sum a_{k},
$$

and it represents

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} \\
= & \lim _{n \rightarrow \infty}\left(a_{0}+a_{1}+\ldots+a_{n}\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \int_{1}^{4} \frac{d x}{(x-2)^{2 / 3}}=\int_{1}^{2} \frac{d x}{(x-2)^{2 / 3}}+\int_{2}^{4} \frac{d x}{(x-2)^{1 / 3}} \\
& =\lim _{l \rightarrow 2^{-}} \int_{1}^{l} \frac{d x}{(x-2)^{l / 3}}+\lim _{l \rightarrow 2^{+}} \int_{l}^{4} \frac{d x}{(x-2)^{2 / 3}} \\
& =\lim _{l \rightarrow 2^{-}}\left[3(x-2)^{1 / 3}\right]_{1}^{l}+\lim _{l \rightarrow 2^{+}}\left[3(x-2)^{1 / 3}\right]_{l}^{4} \\
& =\lim _{l \rightarrow 2^{-}}\left(3(l-2)^{1 / 3}+3\right) \\
& +\lim _{l \rightarrow 2^{+}}\left(3 \sqrt[3]{2}-3(l-2)^{1 / 3}\right) \\
& =3+3 \sqrt[3]{2} .
\end{aligned}
$$

$$
2.64
$$

Thus the series $\sum_{k=0}^{\infty} a_{k}$ is the limit of the sequence whose $(n+1)$ th term is the partial sum

$$
\sum_{k=0}^{n} a_{k}=a_{0}+a_{1}+\cdots+a_{n}
$$

If $\sum_{k=0}^{\infty} a_{k}$ exists and is finite, thew we say the series converges.

If $\sum_{k=0}^{\infty} a_{k}$ does not exist, or is ∞ or $-\infty$. then we say the series diverges.

Geometric series:

$$
\begin{array}{r}
\sum_{k=0}^{\infty} a r^{k}=a+a r+a r^{2}+\cdots \\
\ldots+a r^{k}+\cdots
\end{array}
$$

where a, r are constants (r for "common ratio").

Put

$$
\frac{r S_{n}=a r+\cdots+a r^{n}+a r^{n+1}}{S_{n}-r S_{n}=a-a r^{n+1}}
$$

80

80

$$
(1-r) S_{n}=a\left(1-r^{n+1}\right)
$$

$$
S_{n}=a+a r+\cdots+a r^{n}
$$

$$
\text { so } S_{n}=\frac{a\left(1-r^{n+1}\right)}{1-r}
$$

If $|r| \geqslant 1$ then the geometric series diverges.
egg. $0.3333 \ldots$

$$
\begin{aligned}
& =\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\frac{3}{10^{4}}+\cdots \\
& =\frac{a}{1-r} \quad \text { where } a=3 / 10, r=\frac{1}{10} \\
& =\frac{3 / 10}{1-1 / 10}=\frac{3 / 10}{9 / 10}=1 / 3
\end{aligned}
$$

as expected!!
egg- $\quad 1-1+1-1+1-1+\cdots$
is a geometric series where $a=1$, $r=-1$ and diverges
(the partial sums are 1 and 0).

Hence

$$
\begin{aligned}
\sum a r^{k} & =\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a r^{k} \\
& =\lim _{n \rightarrow \infty} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n+1}\right)}{1-r}
\end{aligned}
$$

But

$$
r^{n+1} \rightarrow\left\{\begin{array}{lll}
0 & \text { if } & |r|<1 \\
\infty & \text { if } r>1 \\
\text { undefined } & \text { if } r<-1
\end{array}\right.
$$

Hence

$$
\sum a r^{k}=\frac{a}{1-r} \text { if }|r|<1 \text {. }
$$

The harmonic series is

$$
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

which diverges:

$$
\sum \frac{1}{k}=\infty
$$

Reason:

$$
\begin{gathered}
1+\frac{1}{2}+\underbrace{\frac{1}{3}+\frac{1}{4}}+\frac{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}}{}+\cdots \\
\cdots+\frac{1}{2^{2^{-1}+1}+\cdots+\frac{1}{2^{n}}}
\end{gathered}
$$

$$
\geqslant 1+\frac{\frac{1}{2}}{L^{\frac{1}{4}}+\frac{1}{4}}+\underbrace{\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}+\cdots
$$

$$
\cdots+\frac{1}{2^{n}}+\cdots+\frac{1}{2^{n}}
$$

$=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}$

$$
=1+\frac{n}{2} \longrightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Ratio Test for convergence:
Let $L=\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|$.
Thew

$$
\sum_{k=0}^{\infty} a_{k}
$$

a) converges if $L<1$;
(b) diverges if $L>1$.

Note: if $L=1$ then the
Ratio Test tells us nothing.

$$
2.71
$$

Example:

$$
\sum_{k=0}^{\infty} \frac{1}{k!}
$$

$$
=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{k!}+\cdots
$$

converges since

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}}=\lim _{k \rightarrow \infty} \frac{k!}{(k+1)!} \\
& =\lim _{k \rightarrow \infty} \frac{1}{k+1}=0<1 .
\end{aligned}
$$

[In fact, the series converges to e, see below.]

Example: Consider the familiar geometric series:

$$
\begin{aligned}
a+a r & +a r^{2}+\cdots+a r^{k}+\cdots \\
& =\sum_{k=0}^{\infty} a_{k}
\end{aligned}
$$

where $a_{k}=a r^{k-1}$ for each k.

Thew $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|$

$$
=\lim _{k \rightarrow \infty}\left|\frac{a r^{k}}{a r^{k-1}}\right|=\lim _{k \rightarrow \infty}|r|=|r|
$$

so the Ratio Toast tells us (as we already knows!) that \sim geometric series $\left\{\begin{array}{lll}\text { converges } & \text { if } & |r|<1 \\ \text { diverges } & \text { if } & |r|>1 .\end{array}\right.$

$$
2.72
$$

Reason for the Ratio Test:
We just, consider (a) and suppose each term $a_{k}>0$.

Suppose

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=L<1
$$

Choose M half-way between L and 1 .

For large enough k, say $k \geqslant K$

$$
\frac{a_{k+1}}{a_{k}} \leqslant M
$$

2.73

Hence, for $k \geqslant k$

$$
a_{k+1} \leq M a_{k},
$$

So

$$
\begin{aligned}
& a_{k+1} \leq M a_{k}, \\
& a_{k+2} \leq M a_{k+1} \leq M^{2} a_{k}, \\
& a_{k+3} \leq M a_{k+2} \leqslant M^{3} a_{k},
\end{aligned}
$$

and so on, so our series is

$$
\leqslant \quad " j u n k "+a_{k}+M a_{k}+m^{2} a_{k}+\cdots
$$

$$
=" j u n k "+a_{k}\left(1+M+M^{2}+\cdots\right)
$$

Bit $M<1$, so

$$
1+M+m^{2}+\cdots=\frac{1}{1-m}
$$

(convergent geometric series)
so our series is

$$
\sum_{k=0}^{\infty} a_{k} \leq "_{j u n k}+a_{k} \frac{1}{1-M}
$$

$$
<\infty \quad 11
$$

Hence the partial sums $\sum_{k=0}^{n} a_{k}$ form ar increasing bounded sequence.

By the Monotone Convergence Theorem, the partial sums form a convergent sequence, so
$\sum_{k=0}^{\infty} a_{k}$ converges.
2.75

Power series
Given a real, number x
a power series in x has the form

$$
\begin{array}{r}
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
\cdots+a_{n} x^{n}+\cdots
\end{array}
$$

where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ are constants, and

$$
x \text { is a "variable". }
$$

(the word "power" comes from the use of powers of x in the terms of the series).
2.76

Think of a power series as an "infinite polynomial".

Convergence or divergence may vary according to choice of the real number x
e.g. the power series

$$
\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots+x^{k}+\cdots
$$

is a geometric series which

$$
\begin{cases}\text { converges } & \text { if } \quad|x|<1 \\ \text { diverges } & \text { if } \quad|x| \geqslant 1 .\end{cases}
$$

If we are very lucky, a given power series may converge for all x !!

Example: Let

$$
\begin{aligned}
& P(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{k}}{k!}+\cdots ?
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left|\frac{x^{k+1} /(k+1)!}{x^{k} / k!}\right|=\lim _{k \rightarrow \infty}|x| \frac{k!}{(k+1)!} \\
& =\lim _{k \rightarrow \infty} \frac{|x|}{k+1}=0<1
\end{aligned}
$$

\qquad
2.79

Recall $\frac{d}{d x} e^{x}=e^{x}$.

In fact (in a sense to be made precise shortly)

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

$$
\text { (for all } x
$$

called a power series
expansion of e^{x}.

Hence, by the Ratio Test, $P(x)$ converges for all $x!!$

Nice fact: Power series may be "differentiated" like ordinary polynomials.

Here

$$
\begin{aligned}
& P^{\prime}(x)= 0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+ \\
& \cdots+\frac{k x^{k-1}}{k!}+\frac{(k+1) x^{k}}{(k+1)!}+\cdots \\
&=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{k-1}}{(k-1)!}+\frac{x^{k}}{k!}+\cdots \\
&=-p(x) \quad!!
\end{aligned}
$$

Representing functions by power series.

A function $y=f(x)$ is represented by a power series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

if

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

2 whenever the R.H.S. converges, and the R.H.S. is called a power series expawion of $f(x)$.

- an "infinite polynomial" version of $f(x)$.

How do the constants a_{k} relate to the rule for f ?

Suppose everything is well-behaved, and we can differentiate as much as we like:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{\swarrow} x^{n}+\cdots
$$

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}+\cdots
$$

$$
f^{\prime \prime}(x)=2 a_{2}+(3)(2) a_{3} x+\cdots+n^{n(n-1) a_{n} x^{n-2}+\cdots .}
$$

$$
f^{\prime \prime \prime}(x)=(3)(2) a_{3}+\cdots+n(n-1)(n-2) a_{n} x^{n-3}+\cdots
$$

$$
\underbrace{\substack{n(n-1)(n-2) \cdots(2) a_{n}}}_{\substack{n+1 \\ \text { derivative } \\ f_{i}^{(n)}(x)}}+\underset{\uparrow}{\substack{\text { constant } \\ \text { term }}}
$$

Thus we get the
Maclaurin series for $f(x)$:

$$
\begin{array}{r}
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2} \\
+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
\end{array}
$$

Example: $\quad f(x)=e^{x}$.
Observe $\quad f^{(n)}(x)=e^{x}$ for all n, so

$$
a_{n}=\frac{e^{0}}{n!}=\frac{1}{n!}
$$

and we get

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

Evaluating at $x=0$ gives

$$
\begin{aligned}
& f(0)=a_{0} \\
& f^{\prime}(0)=a_{1} \\
& f^{\prime \prime}(0)=2 a_{2} \\
& f^{\prime \prime \prime}(0)=(3)(2) a_{3}
\end{aligned}
$$

$$
f^{(n)}(0)=n(n-1) \ldots(3)(2) a_{n} .
$$

Thus

$$
\begin{aligned}
& a_{0}=f(0) \\
& a_{1}=f^{\prime}(0) \\
& a_{2}=\frac{f^{\prime \prime}(0)}{2!} \\
& : \\
& a_{n}=\frac{f^{(n)}(0)}{n!} .
\end{aligned}
$$

2.84

Thus, for example,

$$
\begin{aligned}
& e=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+\cdots \\
& e^{2}=1+2+\frac{2^{2}}{2!}+\cdots+\frac{2^{n}}{n!}+\cdots \\
& e^{-1}=1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n}}{n!}+\cdots
\end{aligned}
$$

Example: $f(x)=\sin x$.

$$
f(x)=\sin x, \quad f(0)=0
$$

$$
f^{\prime}(x)=\cos x, \quad f^{\prime}(0)=1
$$

$$
f^{\prime \prime}(x)=-\sin x, \quad f^{\prime \prime}(0)=0
$$

$$
f^{\prime \prime \prime}(x)=-\cos x, \quad f^{\prime \prime \prime}(0)=-1
$$

$$
f^{(4)}(x)=\sin x, \quad f^{(4)}(0)=0
$$

then pattern reproduces forever...

Thus the Maclaurin series for $\sin x$ is

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

Differentiating gives the Maclanrin series for $\cos x$:

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

What would happen if we made all the - into + in the series for $\sin x$ and $\cos x$?!

Let

$$
\begin{aligned}
& P(x)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots \\
& Q(x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

Add these together:

$$
\begin{aligned}
P(x)+Q(x) & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& =e^{x}!!
\end{aligned}
$$

Subtract $P(x)$ from $Q(x)$:

$$
\begin{aligned}
Q(x)-P(x) & =1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\cdots \\
& =1-x+\frac{(-x)^{2}}{2!}+\frac{(-x)^{3}}{3!}+\frac{(-x)^{4}}{4!}+\cdots \\
& =e^{-x}!!!
\end{aligned}
$$

In summary,

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \\
& \sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
& \cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

What about a power series representation of

$$
f(x)=\ln x ?
$$

- no Maclanrin series because $f(0), f^{\prime}(0), \ldots$ are undefined!!

More generally,
the Taylor series expansion or representation of

$$
y=f(x)
$$

about $x=a$ is

$$
\begin{aligned}
f(x)=f(a) & +f^{\prime}(a)(x-a) \\
& +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots \\
= & \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
\end{aligned}
$$

The Taylor series about $x=1$ is

$$
\begin{aligned}
\ln x= & (x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3} \\
& +\cdots+(-1)^{n-1} \frac{(x-1)^{n}}{n}+\cdots \\
= & \sum_{k=1}^{\infty}(-1)^{k-1} \frac{(x-1)^{k}}{k}
\end{aligned}
$$

When does this converge?
Applying the ratio test:

$$
\begin{aligned}
\lim _{k \rightarrow \infty} & \left(\frac{|x-1|^{k+1}}{k+1} \frac{k}{|x-1|^{k}}\right) \\
& =\lim _{k \rightarrow \infty}\left(|x-1| \frac{k}{k+1}\right)=|x-1|
\end{aligned}
$$

The Maclaurin series

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
$$

is the Taylor series about $x=0$

Example: Taylor series about

$$
\begin{gathered}
x=1 \quad \text { for } \quad f(x)=\ln x: \\
f(x)=\ln x, \quad f(1)=0 \\
f^{\prime}(x)=\frac{1}{x}, \quad f^{\prime}(1)=1 \\
f^{\prime \prime}(x)=-\frac{1}{x^{2}}, \quad f^{\prime \prime}(1)=-1 \\
f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}, \quad f^{"^{\prime \prime}(1)}=2 \\
\vdots \\
f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{x^{n}}, \quad f^{(n)}(1)=(-1)^{n-1}(n-1)!
\end{gathered}
$$

2.92.

Thus the Taylor series

$$
\begin{cases}\text { converges } & \text { if } 0<x<2 \\ \text { diverges } & \text { if } x<0 \text { or } x>2\end{cases}
$$

If $x=0$ then the series becomes

$$
-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\cdots-\frac{1}{n}-\cdots,
$$

the negative harmonic series, which diverges.

If $x=2$ it becomes

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{n-1} \frac{1}{n}+\cdots
$$

which converges, by a tricky application of the Monotone Convergence Theorem (fun exercise, try it !1!).

Another way to get the series for $\operatorname{la} x$:

Exploit the fact that $\ln ^{\prime}(x)=\frac{1}{x}$.

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{1-(1-x)} \\
& =1+(1-x)+(1-x)^{2}+(1-x)^{3}+\cdots
\end{aligned}
$$

(geometric series, $r=1-x$)
so, antidifferentiating:

$$
\begin{array}{r}
\ln x=x+\frac{(1-x)^{2}}{2}(-1)+\frac{(1-x)^{3}}{3}(-1) \\
+\frac{(1-x)^{4}}{4}(-1)+\cdots
\end{array}
$$

constant of integration
2.95

Taylor polynomials

A Taylor series expansion is a limit of a sequence of polynomial approximations.

Define the Taylor polynomial
of degree n for a function $y=f(x)$ about $x=a$ to be

$$
\begin{aligned}
T_{n}(x)=f(a) & +f^{\prime}(a)(x-a) \\
& +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
& +\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{aligned}
$$

This gives

$$
\begin{gathered}
\ln x=x-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4} \\
+\cdots+C
\end{gathered}
$$

But

$$
0=\ln 1=1-(0+0-0+\cdots)+C
$$

So

$$
c=-1
$$

yielding

$$
\begin{aligned}
\ln x=(x-1) & -\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3} \\
& -\frac{(x-1)^{4}}{4}+\cdots
\end{aligned}
$$

as before.

Thus the Taylor polynomial is obtained from the Taylor series by "chopping off" everything after the term involving

$$
(x-a)^{n} .
$$

Whew $a=0$ the Taylor polynomial is also called the Maclaurin polynomial.

Example: The Taylor series about $x=0$ for e^{x} is

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

Hence the Taylor (Maclansin) polynomials of degree $0,1,2,3$ are

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=1+x \\
& T_{2}(x)=1+x+\frac{x^{2}}{2} \\
& T_{3}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}
\end{aligned}
$$

As n increases, $y=T_{n}(x)$ "hugs" more of the graph of $y=f(x)$.
2.99

The first few Taylor polynomials are

$$
\begin{gathered}
T_{0}(x)=0, \\
T_{1}(x)=x=T_{2}(x), \\
T_{3}(x)=x-\frac{x^{3}}{6}=T_{4}(x), \\
T_{5}(x)=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}=T_{6}(x) \\
T_{7}(x)=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040} .
\end{gathered}
$$

Example: The Taylor series about $x=0$ for $\sin x$ is

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

$2: 100$
$y=\sin x$ can never equal
a polynomial in x
because its graph has infinitely many local extrema
$\cdots \sim_{\uparrow}^{\cdots}$
whereas a polynomial has orly finitely many critical points.

However as $n \rightarrow \infty$, the graph of $y=T_{n}(x)$ captures more and more of the sine's "wriggles".

