1. Write down an algorithm which, given a balanced string of brackets produces a ‘planar diagram’. Then, given the following balanced strings of brackets, use the algorithm to produce the corresponding planar diagrams:

 (i) ()()()
 (ii) ((())()
 (iii) ((()))
 (iv) ((()()(())())).

2. Construct balanced strings of brackets corresponding to the following planar diagrams

 (i)
 (ii)
 (iii)

3. For the planar diagrams you found in question 1

 (i) construct the corresponding balanced strings of brackets, and
 (ii) construct the corresponding standard tableaux.

4. Given $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots \}$.

 Let $A = \{ n \in \mathbb{Z} \mid n \text{ is divisible by } 2 \}$,
 $B = \{ n \in \mathbb{Z} \mid n \text{ is divisible by } 3 \}$ and
 $C = \{ n \in \mathbb{Z} \mid n \leq 20 \}$. Determine the following sets

 (i) $A \cap B$
 (ii) $A \cup B$
 (iii) $A \setminus B$
 (iv) $A \cap B \cap C$
 (v) $C \setminus (A \cup B)$
 (vi) $(C \setminus A) \cap (C \setminus B)$.

5. Let X be the set of planar diagrams on $2n$ points. For $i = 2, 3, \ldots, 2n$ let A_i be the subset of X consisting of diagrams in which the point 1 is joined to i. Let B_j ($j = 1, 3, 4, \ldots, 2n$) be the subset of X in which 2 is joined to j.

 (i) For $n = 3$, write down the sets $A_2, A_3, A_4, A_5, A_6, B_1, B_3, B_4, B_5, B_6$.
 (ii) Find $|A_i|, |B_j|, |A_i \cap B_j|$ for $n = 3$ and all values of i and j.
 (iii) For general n, determine the values of i and j for which $A_i \cap B_j$ is not empty.
 (iv) Show that c_n (the n-th Catalan number) equals $\sum_{i=2}^{2n} |A_i|$.
1. Write down an algorithm which given a standard tableau of two rows of length n produces a balanced string of n pairs of brackets. Given the following tableaux use your algorithm to produce the balanced strings

(i) \[
\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 4 & 6 & 8 \\
\end{array}
\]

(ii) \[
\begin{array}{cccc}
1 & 2 & 4 & 7 & 8 \\
3 & 5 & 6 & 9 & 10 \\
\end{array}
\]

2. If $A = \{2, \{3, 4\}, 3, 4, 5, \{\}\}$ and $B = \{3, \{4\}\}$, write down $A \cap B$, $A \cup B$, $A \setminus B$ and then determine which of the following are true:

(i) $3 \in A$ \hspace{1cm} (ii) $\{3\} \in A$ \hspace{1cm} (iii) $\{3\} \subseteq A$

(iv) $\{3, 4\} \in A$ \hspace{1cm} (v) $\{3, 4\} \subseteq A$ \hspace{1cm} (vi) $A \setminus A \in A$

(vii) $4 \notin A$ \hspace{1cm} (viii) $4 \notin B$ \hspace{1cm} (ix) $4 \not\subseteq B$