1. For the following sets \(X, Y \) and function \(X \rightarrow Y \), determine whether the function is injective or surjective

(i) \(X = \mathbb{N}, Y = \mathbb{N}, f(x) = x + 1 \).

(ii) \(X = \mathbb{Z}, Y = \mathbb{Z}, g(x) = x + 1 \).

(iii) \(X = \mathbb{Z}, Y = \mathbb{Z}, h(x) = x^2 + 5 \).

(iv) \(X = \mathbb{Z}, Y = \mathbb{Z}, p(x) = x^3 + 1 \).

(v) \(X = \text{any set}, Y = \mathcal{P}(X), h(x) = \{x\} \).

2. Compute expressions for the compositions of the following functions from Question 1.

(i) \(g \circ h \) and \(h \circ g \).

Are they injective? Surjective?

3. An \((n, n)\) standard tableau is a \(2 \times n\) array of boxes into which the integers \(1, 2, \ldots, 2n\) are inserted so that the rows increase rightwards and the columns downwards (e.g.,

\[
\begin{array}{ccc}
1 & 2 & 4 \\
3 & 5 & 6 \\
\end{array}
\]

is permitted, but

\[
\begin{array}{ccc}
1 & 4 & 5 \\
2 & 3 & 6 \\
\end{array}
\]

is not permitted.)

Let \(\mathcal{T}_n \) be the set of all \((n, n)\) standard tableaux and let \(\mathcal{P}_n \) be the set of planar diagrams on \(2n\) points.

(i) Show that there is a map \(f : \mathcal{P}_n \rightarrow \mathcal{T}_n \) where, for \(D \in \mathcal{P}_n \), \(f(D) \) has second row equal to the set of right ends in \(D \).

(ii) Describe how to assign a planar diagram on \(2n\) points to an \((n, n)\) standard tableau. Hence find a function \(g : \mathcal{T}_n \rightarrow \mathcal{P}_n \) such that \(f \circ g = \text{Id}_{\mathcal{T}_n} \) and \(g \circ f = \text{Id}_{\mathcal{P}_n} \).

4. Suppose \(f : A \rightarrow B \) and \(g : B \rightarrow A \) are functions which satisfy \(g \circ f = \text{Id}_A \). Show carefully that \(g \) is surjective and \(f \) is injective.

5. Let \(f : \{1, 2, 3, 4, 5, 6\} \rightarrow \{1, 2, 3, 4, 5, 6\} \) be the permutation defined by \(f(1) = 5 \), \(f(2) = 1 \), \(f(3) = 6 \), \(f(4) = 2 \), \(f(5) = 4 \) and \(f(6) = 3 \).

(i) What is the parity of \(f \)?

(ii) Define \(f^2 = f \circ f \), \(f^3 = f \circ f \circ f \), and so on. What is the smallest integer \(k > 0 \) such that \(f^k \) is the identity?

(iii) Given any permutation \(f \) of a finite set, explain why there is always an integer \(k > 0 \) such that \(f^k \) is the identity function.
1. Let $f : X \to Y$ and $g : Y \to Z$ be functions.
 (i) Show that if f and g are surjective then so is $g \circ f$.
 (ii) Show that if f and g are injective then so is $g \circ f$.
 (iii) Deduce that $h(x) = (1 + x)^n : \mathbb{Z} \to \mathbb{Z}$ is injective if n is odd, by defining h as a composition of two injective functions $f, g : \mathbb{Z} \to \mathbb{Z}$.

2. Let $C_n = \{\pm 1, \pm 2, \cdots, \pm n\}$.
 (i) How many permutations (i.e., bijective maps) $f : C_n \to C_n$ are there such that $f(-x) = -f(x)$ for all $x \in C_n$?
 (ii) How many of the permutations of (i) satisfy the additional restriction that the product $f(1)f(2)\cdots f(n)$ is positive?
 (iii) Show that the set of permutations of (i) is closed under composition (i.e., if the permutations f and g of C_n satisfy the condition given in (i), then so does $f \circ g$).