1. (i) Given languages \(A = \{0, 11\} \) and \(B = \{1, 10, 110\} \) over the alphabet \(\{0, 1\} \), write down \(AB \) and \(BA \).

(ii) Give an example of languages \(A \) and \(B \) over \(\{0, 1\} \) such that \(|AB| \neq |A||B|\).

Solution

(i) \(AB = \{01, 010, 0110, 1110, 11110\} \) and \(BA = \{10, 111, 100, 1011, 1100, 11011\} \).

(ii) If \(A = B = \{\varepsilon, 1\} \), then \(AB = \{\varepsilon, 1, 11\} \).

2. Given the alphabet \(\Sigma = \{a, b, c\} \), describe the formal languages designated by the following regular expressions:

(i) \(a + bc \)

(ii) \(a + bc^* \)

(iii) \(a + (bc)^* \)

(iv) \((ab)^*c^* \)

(v) \((ab)^*(cb)^* \)

(vi) \((abca)^* \)

Solution

(i) \(\{a, bc\} \).

(ii) \(\{a, b, bc, bcc, bccc, \ldots \} \).

(iii) \(\{\varepsilon, a, bc, bcbc, bcbcbc, \ldots \} \).

(iv) Strings of the form \(abab \ldots abcccc \ldots \).

(v) Strings of the form \(abab \ldots abcabcabcabc \ldots \).

(vi) Strings of the form \(abcaabcaabca \ldots \).

3. Write down a regular expression which designates the following languages

(i) \(\{\varepsilon, b, a, a^2, a^3, a^4, \ldots \} \).

(ii) \(\{\varepsilon, a, b, c, bc, bcbc, bcbcbc, \ldots \} \)

(iii) All words containing \(bca \) over the alphabet \(\{a, b, c\} \).

Solution

(i) \(b + a^* \).

(ii) \(a + b + c + (bc)^* \).

(iii) \((a + b + c)^*bca(a + b + c)^* \).
4. Let $\Sigma = \{a, b, c\}$ and let A be the smallest subset of Σ^* such that (a) $\varepsilon \in A$ and (b) if $x \in A$, then $xa \in A$, $xab \in A$ and $xbc \in A$.

(i) Write out the strings of length 2 and 3 in A.

(ii) Which of $abaabca$, $bcaababa$, $abbaabca$ is in A?

(iii) Let x_n be the number of strings in A of length n and show that $x_n = x_{n-1} + 2x_{n-2}$.

(iv) Find x_{100}.

Solution

(i) Length 2 strings are ab, aa, bc and the length 3 strings are aab, abc, aba, aaa, bca.

(ii) $abaabca \in A$, $bcaababa \in A$, $abbaabca \notin A$.

(iii) Given a string of length n it is either derived from a string of length $n-1$ by adding a or from a string of length $n-2$ by adding ab or bc. Thus $x_n = x_{n-1} + 2x_{n-2}$.

(iv) The characteristic equation is $\lambda^2 - \lambda - 2 = 0$ and so λ is -1 or 2. Thus $x_n = A(-1)^n + B2^n$ for some A and B. From the initial conditions $x_0 = x_1 = 1$ we see that $A = 1/3$ and $B = 2/3$. Thus $x_n = ((-1)^n + 2^{n+1})/3$ and $x_{100} = (1 + 2^{101})/3 = 845100400152152934331135470251$.

5. Prove the following relations in the algebra of regular expressions:

(i) $(r+s)^* = (r^*s)^*r^*$

(ii) $(rs)^* = \varepsilon + r(sr)^*s$

Solution

(i) The regular expression $(r+s)^*$ designates all strings formed by r and s. On the other hand, every string formed by r and s has the form $r^{k_1}sr^{k_2}sr^{k_3}s \cdots sr^{k_n}$ where k_1, \ldots, k_n are non-negative integers, and so it is contained in the set of strings designated by the regular expression $(r^*s)^*r^*$.

(ii) The regular expression $(rs)^*$ designates the set of strings formed by ε and $(rs)^k$ with $k \geq 1$. The string $(rs)^k$ can be written as $r(sr)^{k-1}s$ and so, the set $\{(rs)^k \mid k \geq 1\}$ can be designated by the regular expression $r(sr)^*s$.
1. Let $A = \{00, 11\}$ and $B = \{01, 0\}$. Find the following sets

(i) AB
(ii) BA
(iii) A^3
(iv) B^2
(v) A^*
(vi) AB^*

Solution

(i) $AB = \{000, 000, 1101, 110\}$.

(ii) $BA = \{0100, 0111, 000, 01\}$.

(iii) $A^3 = \{000000, 000011, 001100, 001111, 110000, 110011, 111100, 111111\}$.

(iv) $B^2 = \{0101, 010, 001, 0\}$.

(v) All strings, including the empty string, built up from 00 and 11 in all possible combinations.

(vi) All strings beginning with 00 or 11 followed by a string made of 0’s and 1’s in which each 1 is preceded by a 0.

2. Determine whether the string 11101 is in the language defined by the following regular expressions.

(i) $(0 + 1)^*$
(ii) $1^*0^*1^*$
(iii) 111^*01
(iv) $(11)^*(01)^*$

(v) $(111)^*0^*1$
(vi) $(111 + 000)(00 + 11)$

Solution

(i) Yes
(ii) Yes
(iii) Yes
(iv) No

(v) Yes
(vi) No