SUBRINGS

Definition. Let R be a ring. A subset S of R is called a subring if it satisfies the following four conditions:

1. The zero element 0 of R lies in S.
2. S is closed under addition, i.e. $a, b \in S \Rightarrow a + b \in S$.
3. S is closed under taking negatives, i.e. $a \in S \Rightarrow -a \in S$.
4. S is closed under multiplication, i.e. $a, b \in S \Rightarrow ab \in S$.

Definition. Let F be a field. A subfield of F is a subring S of F which satisfies the following extra conditions:

5. The identity element 1 of F lies in S.
6. S is closed under taking inverses, i.e. $0 \neq a \in S \Rightarrow a^{-1} \in S$.