1. Consider the systems of congruences
 \[
 \begin{align*}
 & (i) \quad x \equiv 102 \pmod{245} \\
 & (ii) \quad x \equiv 387 \pmod{875}
 \end{align*}
 \]
 Use CRT to write each system of congruences as an equivalent system modulo prime powers. Hence decide if there is a solution or not.

2. \((i) \) Show that \(x^2 - 2 \) and \(x^2 + 3x - 1 \) are both prime in \(\mathbb{Z}_{11}[x] \).
 \((ii) \) Show that \(\mathbb{Z}_{11}[x]_{x^2 - 2} \cong \mathbb{Z}_{11}[y]_{y^2 + 3y - 1} \), by finding \(a, b \in \mathbb{Z}_{11} \) such that \(x \rightarrow a + by \) extends to an isomorphism.

3. Write down the square modulo 23 and use this fact to evaluate the Legendre symbol \(\left(\frac{a}{23} \right) \) for every \(a \in \mathbb{Z}_{23} \). For every square \(a \in \mathbb{Z}_{23} \) write down \(\sqrt{a} \in \mathbb{Z}_{23} \).

4. Show that the sum of two squares modulo a prime \(p \) may or may not be a square. Similarly show that the sum of two non-squares may or may not be a non-square.

5. Apply the method of Gauss’s Lemma to evaluate
 \[
 \left(\frac{-5}{13} \right), \left(\frac{14}{23} \right), \left(\frac{3}{73} \right).
 \]

6. \((i) \) Given that 5 is a generator for \(\mathbb{Z}_{73}^* \) find an element \(h \) such that
 \[h^8 = 1. \]
 \((ii) \) Let \(x = h + h^{-1} \) Prove that \(x^2 = 2 \) without using the fact that you know what \(h \) is. Hence write down \(\sqrt{2} \in \mathbb{Z}_{73} \) in terms of \(h \).
 \((iii) \) Now calculate \(\sqrt{2} \in \mathbb{Z}_{73} \) and also \(\left(\frac{2}{73} \right) \).

7. (A bit harder) Let \(\omega \neq 1 \) be a complex cube root of 1. Show that \(\omega = \frac{-1 \pm \sqrt{-3}}{2} \) and that \(1 + \omega + \omega^2 = 0 \).
 You may suppose that \(\omega = \frac{-1 + \sqrt{-3}}{2} \) and assume that the arithmetic in \(\mathbb{Z}[\omega] \) is exactly similar to arithmetic in \(\mathbb{Z}[i] \), \(\mathbb{Z}_p[x] \) and \(\mathbb{Z} \). Define \(N(a + b\omega) = |a + b\omega|^2 = a^2 - ab + b^2 \).
 \((i) \) Show that \(a + b\omega \) is a unit in \(\mathbb{Z}[\omega] \) if and only if \(N(a + b\omega) = 1 \).
 \((ii) \) Show that there are exactly 6 units in \(\mathbb{Z}[\omega] \), namely \(\pm 1, \pm \omega, \pm \omega^2 = \pm(-1 - \omega) \).
 \((iii) \) Prove that 3 is not a prime in \(\mathbb{Z}[\omega] \) by exhibiting a proper factorization of it.
 \((iv) \) Show that 2 is prime in \(\mathbb{Z}[\omega] \).