CANCELLED DUE TO RAIN

Apologies for any inconvenience

David Easdown

Lecturer

11 am 8/3/2012

The intended lecture notes follow this.
I will be discussed in future lectures.
Carto's Theorem: \mathbb{R} is uncountable.

The power set of a set:

Let X be any set and put

$$\mathcal{P}(X) = \{ \text{subsets of } X \}$$

called the power set of X.

E.g. If $X = \{1, 2, 3\}$ then

$$\mathcal{P}(X) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$$

If $X = \{1, 2, 3\}$ then $\mathcal{P}(X)$ looks like

[Diagram]

If $X = \{1, 2, 3\}$ then $\mathcal{P}(X)$ looks like

[Diagram]
If \(|x| = n < \infty \) then \(|\Theta(x)| = 2^n \). (Why?)

What if \(x \) is infinite?

Claim: \(|\Theta(x)| > |x| \)

where \(|S| \) is called the cardinality of a set (not yet rigorously defined).

The claim is saying there exists an injective mapping \(x \to \Theta(x) \)

but no bijective mapping.

The claim makes precise the idea that the "infinity" of \(\Theta(x) \) is "greater" than the "infinity" of \(x \)
Proof: The map \(x \mapsto \mathcal{P}(x), x \mapsto \mathcal{P}(\mathcal{P}(x)) \) is clearly injective, so \(1 \times 1 \leq (\mathcal{P}(x)) \).

Suppose there exists a bijection \(f: X \rightarrow \mathcal{P}(x) \).

Put \(y = \{ x \in X \mid x \notin f(x) \} \) (variation of Russell's Paradox).

Since \(f \) is onto, \(y = f(y) \) exists.

Either \(y \in y \) or \(y \notin y \) (Law of Excluded Middle).

If \(y \in y \) then \(y \notin f(y) = y \), by definition of \(y \), so \(y \notin y \) and \(y \notin y \).

If \(y \notin y \) then \(y \in f(y) \) so \(y \in y \), by definition of \(y \), so \(y \in y \) and \(y \notin y \).

Hence \(\otimes \) is false, so no bijection exists.
Hence \(|x| < |\mathcal{P}(x)|\)

In particular \(|\mathcal{P}(\mathbb{Z}^+) > |\mathbb{Z}^+|\).

But also \(|\mathcal{R}| > |\mathbb{Z}^+|\) (Cantor).

In fact

Theorem: \(|\mathcal{R}| = |\mathcal{P}(\mathbb{Z}^+)|\)

Post: sequence of difficult exercises.

Continuum Hypothesis rephrased

There is no cardinality strictly between \(|\mathbb{Z}^+|\) and \(|\mathcal{P}(\mathbb{Z}^+)|\).

Generalised Continuum Hypothesis

For any set \(X\), there is no cardinality strictly between \(|X|\) and \(|\mathcal{P}(X)|\).