A Metatheorem about Propositional Calculus

The Propositional Calculus has 10 rules of derivation:

\[\text{A, MP, MT, DN, CP, } \land I, \land E, \lor I, \lor E, \text{ RAA} \]

and some extra bells and whistles:

\[\text{Det, TI, SI, TI(S), SI(S)} \]

(Note TI is a special case of SI.)

There is another sophisticated derived rule that enables huge flexibility and possible abbreviations.

Meta-theorem: Let \(V \) be a subwff of a wff \(W \) and suppose \(V' \) is another wff such that \(V \rightarrow V' \).

Let \(W' \) be the wff obtained by replacing \(V \) by \(V' \) in the construction of \(W \).

Then \(W \rightarrow W' \).
e.g. Since \(\sim \sim X \vdash X \)

for all wfts \(X \), we may "cancel" consecutive pairs of double tildes wherever we see them (or introduce them) without changing the "provability" of any given wft.

E.g. If \(\sim X \forall Y \) appears as a subwft

we may replace it by \(X \Rightarrow Y \) since

\[
X \Rightarrow Y \vdash \sim X \forall Y
\]

E.g. If \(\forall X \forall Y \) appears as a subwft

we may replace it by \(\forall X \Rightarrow \forall Y \) or \(\forall Y \Rightarrow X \)

since

\[
\forall X \forall Y \vdash \sim \forall X \forall Y \Rightarrow \forall X \sim \forall Y \Rightarrow X
\]

(Note \(\Rightarrow \) is transitive.)
Recall W is a \underline{wff} (well-formed formula) if
\begin{enumerate}
\item W is a propositional variable,
\item $W = \neg x, (x \land y), (x \lor y), (x = y), (x \equiv y)$
\end{enumerate}
for some wff x, y of shorter length.

A \underline{subwff} of W is any wff that appears in the construction of W at any stage.

\textit{e.g.}, let W be the wff
\[\neg ((P \lor \neg Q) \land (\neg (P \land (\neg Q \Rightarrow \neg P)))) \],
then the subwffs are precisely W and
\[(P \lor \neg Q) \land (\neg (P \land (\neg Q \Rightarrow \neg P))) \],
\[P \lor \neg Q, \neg (P \land (\neg Q \Rightarrow \neg P)) \],
\[P, \neg Q, P \land (\neg Q \Rightarrow \neg P), Q, P, \neg Q \Rightarrow \neg P, \neg Q, \neg P, Q, P. \]

Now $\boxed{P \land (\neg Q \Rightarrow \neg P) \vdash P \lor Q}$

(exercise)

So $\boxed{W \vdash \neg (P \lor Q) \land (\neg (P \land \neg Q))}$

by the Meta- theorem using \textit{resolution}.
But \[\sim (P \land Q) \quad \Rightarrow \quad \sim P \lor \sim Q \]
(exercise)

So \[\sim P \lor \sim Q \quad \Rightarrow \quad \sim (P \land Q) \]
by the Metatheorem

But \[(P \lor Q) \land (\sim P \land Q) \quad \Rightarrow \quad \sim Q \]
(exercise)

So \[\sim Q \quad \Rightarrow \quad \sim P \lor \sim Q \]
by the Metatheorem

Proof of the Metatheorem:
If \(V = W \) then \(V' = W' \) and it is immediate that \(W \models W' \). If \(W \) is a propositional variable then \(V \models W \) and we are done by the previous observation, which states our induction (on the length of \(W \)).

Suppose \(W \) is not a variable, so either

(i) \(W = \sim X \) or
(ii) \(W = X + Y \)

where \(X, Y \) are wffs of shorter length and
\[\sim (\lor) \Rightarrow \lor (\equiv) \]
We may suppose $V \neq W$.

Case (1): $W = \sim X$ and V is a subwff of X.

By an inductive hypothesis,

$\boxed{X \vdash X'}$,

where X' is the result of replacing V by V' in X. The following is a proof of $W \vdash W' = \sim X'$:

1. (1) $\sim X$ A
2. (2) X' A
2. (3) X 2 SI ⊢
1, 2 (4) $X \land \sim X$ 1, 3 ∧I
1 (5) $\sim X'$ 2, 4 RAA

A similar proof yields $W' \vdash W$ and so $W \vdash W'$ as required.
Case (ii): \(W = x \cdot y \) and \(V \) is a subwff of \(x \) or \(y \).

Without loss of generality.

Subcase (a): \(W = x \cdot y \) and WLOC \(V \) is a subwff of \(x \), and \(\otimes \) holds as before.

The following is a proof of \(W \vdash W' = x' \cdot y' \):

1. \((1) \; x \cdot y \; A \)
2. \((2) \; x \; 1 \cdot E \)
3. \((3) \; x' \; 2 \; SI \otimes \)
4. \((4) \; y \; 1 \cdot E \)
5. \((5) \; x' \cdot y' \; 3,4 \cdot I \)

and similarly \(W' \vdash W \) to \(W \vdash W' \).

Subcase (b): \(W = x \cdot y \) and WLOC \(V \) is a subwff of \(x \), and \(\otimes \) holds as before.

The following is a proof of \(W \vdash W' = x' \cdot y' \):

1. \((1) \; x' \cdot y' \; A \)

 "case (i)"

 2. \((2) \; x' \; A \)
3. \((3) \; x' \cdot y' \; 2 \; SI \otimes \)
4. \((4) \; x' \cdot y' \; 3 \cdot I \)

 "case (ii)"

 5. \((5) \; y \; A \)
6. \((6) \; x' \cdot y' \; 5 \cdot E \)

and similarly \(W' \vdash W \) to \(W \vdash W' \).
Subcase (c): $w = x \Rightarrow y$.

Suppose first w is a subwell of x and

0 holds as before.

The following is a proof of $w \vdash w' = x \Rightarrow y$.

1. (1) $x \Rightarrow y$ A
2. (2) x' A
3. $x \Rightarrow y$, 2, SI ⊢
4. $y \in x$, 1, 3, MP
5. $x' \Rightarrow y$, 2, 4, CP

and similarly $w \vdash w'$ so $w \vdash w'$ √

Now suppose w is a subwell of y and y' is the result of replacing w by x'.

In the inductive hypothesis, yields

$y \vdash y'$

The following is a proof of $w \vdash w' = x \Rightarrow y'$.

1. (1) $x \Rightarrow y$ A
2. (2) x A
3. $x \Rightarrow y$, 2, MP
4. $y \Rightarrow y'$, 3, SI √
5. $x \Rightarrow y'$, 2, 4, CP
and similarly $W' - W$ so $\boxed{W' + W'}$.

Subcase (d): $W = x \ominus y$ and $w \not\in \om$. V is a subwff of x and $\neg \beta$ holds as before.

The following is a proof of $W - W' = x \ominus y$.

\begin{align*}
1 & \quad (1) \quad x \ominus y \quad A \\
2 & \quad (2) \quad (x \ominus y) \land (y = x) \\
3 & \quad (3) \quad x = y \\
4 & \quad (4) \quad y = x \\
5 & \quad (5) \quad x' \equiv y \\
6 & \quad (6) \quad y \equiv x' \\
7 & \quad (7) \quad (x' \equiv y) \land (y = 1 \cdot x') \\
8 & \quad (8) \quad x' \ominus y \\
\end{align*}

and similarly $W' - W$ so $\boxed{W' + W'}$.

This completes the proof of the metatheorem by induction (on the length of W).