1. Is the following argument valid, whether or not you agree with the conclusion?

All of the students in my class are fierce or friendly. If a student is friendly then he or she is smiling. I can see students in my class who are not smiling. I conclude that my class contains fierce students.

2. Translate each of the following statements into well-formed formulae involving P and Q and implication. Now convert these into logically equivalent well-formed formulae that avoid implication (using only negation, conjunction and disjunction):

 (a) P is a necessary condition for Q.
 (b) P is a sufficient condition for Q.
 (c) P is both necessary and sufficient for Q.
 *(d) P is necessary but not sufficient for Q.
 *(e) P is not necessary but is sufficient for Q.
 *(f) P is neither necessary nor sufficient for Q.

3. Interpret “P unless Q” using implication, and “P unless and until Q” using an if and only if statement. Is the following true?

 “P unless Q” if and only if “Q unless P”.

4. Find formal proofs for the following sequents:

 (a) $P \Rightarrow (P \Rightarrow Q)$, $P \vdash Q$
 (b) $P \Rightarrow (Q \Rightarrow R)$, $\sim R$, $P \vdash \sim Q$
 (c) $\sim P \Rightarrow \sim Q$, $Q \vdash P$
 (d) $P \Rightarrow \sim Q \vdash Q \Rightarrow \sim P$
 (e) $P \Rightarrow Q$, $Q \Rightarrow R \vdash P \Rightarrow R$
 *(f) $P \Rightarrow (Q \Rightarrow R) \vdash (P \Rightarrow Q) \Rightarrow (P \Rightarrow R)$
 *(g) $P \Rightarrow (Q \Rightarrow (R \Rightarrow S)) \vdash R \Rightarrow (P \Rightarrow (Q \Rightarrow S))$
 *(h) $P \Rightarrow Q \vdash (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$
 (i) $P \vdash (P \Rightarrow Q) \Rightarrow Q$
 *(j) $P \vdash (\sim (Q \Rightarrow R) \Rightarrow \sim P) \Rightarrow (\sim R \Rightarrow \sim Q)$
5. Prove that every wff (well-formed formula) has the same number of left brackets as right brackets.

*6. Let W be any wff. Let $b(W)$ be the number of times a binary connective occurs and $p(W)$ the number of times propositional variables occur in W. Prove that

$$p(W) = b(W) + 1.$$

*7. Explain why the function

$$f : \mathbb{Z}^+ \to \mathbb{R}\setminus\mathbb{Q} \text{ where } f(x) = x + \sqrt{2}$$

is sensibly defined and injective. Why is f not bijective?

*8. Recall in lectures we created a bijective map (a listing) $g : \mathbb{Z}^+ \to \mathbb{Q}$. Use g and the map f from the previous exercise to build a bijection $h : \mathbb{R}\setminus\mathbb{Q} \to \mathbb{R}$. Thus $|\mathbb{R}| = |\mathbb{R}\setminus\mathbb{Q}|$.