1. The Klein-Gordon equation is a linearised version of the Sine-Gordon equation for small \(u(x, t) \):

\[
Au_{tt} - Ku_{xx} + Tu = 0
\]

where \(A, K \) and \(T \) are constants.

(a) Find all travelling wave solutions to this equation.

(b) If \(u(x, t) \) is, indeed, small then \(u \) must remain bounded. Which wavespeeds \(c \) admit a travelling wave solution which is bounded? Sketch some representative bounded travelling wave solutions.

(c) Is the Klein-Gordon equation dispersive? In particular, do wave train solutions with high frequency travel faster, slower or at the same speed as solutions with low frequency?

(d) Show that there is a cutoff frequency \(\omega_0 \) such that solutions with frequency \(\omega \leq \omega_0 \) are not permitted.

Adapted from Knobel An Introduction to the Mathematical Theory of Waves.

2. (a) Consider the equation

\[
 u_t + c(x, t)u_x = 0.
\]

Show that along a characteristic curve \(x = x(t) \) that

\[
 \frac{d}{dt} (u(x(t), t)) = 0
\]

where \(\frac{dx}{dt} = c(x, t) \).

(b) Consider the following initial value problem:

\[
 u_t + txu_x = 0, \quad u(x, 0) = \frac{1}{1 + x^2},
\]

where \(-\infty < x < \infty\) and \(t \geq 0 \).

Question 2 continues on the next page
(i) Solve the equation \(\frac{dx}{dt} = c(x, t) \) to find the explicit solution for the family of characteristic curves. Hence show that the characteristic curve with \(x = x_0 \) when \(t = 0 \) has equation \(x = x_0e^{t^2/2} \). Plot several characteristics in the \(xt \)-plane for \(t \in [0, 2] \) and \(x \in [-5, 5] \).

(ii) Write down the solution \(u(x, t) \) obtained using the method of characteristics.

Adapted from Knobel *An Introduction to the Mathematical Theory of Waves.*