The University of Sydney
Faculties of Arts, Economics, Education, Engineering and Science
Math2004/2904
Lagrangian Dynamics/Lagrangian Dynamics (Advanced)

November 2004

Time Allowed: Two Hours

Lecturer: L. Poladian

This Examination consists of 4 pages numbered from 1 to 4. There are 5 questions numbered from 1 to 5.

Questions are of equal value.
The number of marks awarded for each subsection of each question is shown.

Students enrolled in MATH-2004 should attempt Questions 1 to 4 and may attempt Question 5.

Students enrolled in MATH-2904 should attempt all questions.
1. The position of a point on the surface of a circular cylinder of radius a and axis along the z-axis is represented by the cylindrical polar coordinates (r, θ, z).

(i) (3 marks)
State the formulae for the cartesian coordinates (x, y, z) in terms of these cylindrical coordinates.

(ii) (4 marks)
Let ds be the small distance between neighbouring points. Show that in cylindrical coordinates
$$ ds^2 = dr^2 + r^2 d\theta^2 + dz^2. $$

(iii) (3 marks)
Find the expression for the path length on the surface of the cylinder with constant $r = a$
$$ I = \int_{z_0}^{z_1} \frac{ds}{dz} dz. $$

(iv) (4 marks)
Find the function $\theta(z)$ that describes the path of least length between the points $(a, 0, 0)$ and (a, π, H).

2. A particle of unit mass is projected around the inner surface of an upright circular cone with its vertex down. The equation of the conical surface is $x^2 + y^2 = \frac{z^2}{a^2}$.

(i) (4 marks)
Find the Lagrangian for the particle in terms of the cylindrical coordinates r and θ.

(ii) (4 marks)
Find two integrals of the motion.

(iii) (3 marks)
If the angular momentum is $h = \sqrt{2ga}$ and the energy is $E = 2ga$, show that
$$ (1 + a^2)r^2 + 2ga \left(r - 2 + \frac{1}{r^2} \right) = 0. $$

(iv) (3 marks)
Using the factorisation $(x^3 - 2x^2 + 1) = (x - 1)(x^2 - x - 1)$, or otherwise, show that the particle moves between two fixed limits in r and find those limits.
3. A spring OA of natural length a_1 and stiffness k_1 has the end O fixed on a smooth horizontal surface. A particle of mass m is placed on the surface and attached at A. A second spring AB of natural length a_2 and stiffness k_2 is also attached to the mass m_1. A second particle of mass m is placed on the surface and attached at B.

The system is pulled out horizontally and released so that the subsequent motion is in a straight line.

(i) (4 marks)
Let x_1 and x_2 be the positions of the masses at A and B at time t. Show that the Lagrangian for the system is

$$L = \frac{1}{2}m(\dot{x}_1^2 + \dot{x}_2^2) - \frac{1}{2}k_1(x_1 - a_1)^2 - \frac{1}{2}k_2(x_2 - x_1 - a_2)^2.$$

(ii) (3 marks)
Find the equilibrium values of x_1 and x_2.

(iii) (2 marks)
Let s_1 and s_2 be the displacements of A and B from their equilibrium positions. Show that the Lagrangian is then

$$L = \frac{1}{2}m(s_1^2 + s_2^2) - \frac{1}{2}k_1s_1^2 - \frac{1}{2}k_2(s_2 - s_1)^2.$$

(iv) (2 marks)
Find the Lagrange equations of motion.

(v) (3 marks)
Writing $k_1/m = \omega_1^2$ and $k_2/m = \omega_2^2$, show that the frequencies of the normal modes of oscillation are given by

$$\omega^2 = \frac{\omega_1^2 + 2\omega_2^2 \pm \sqrt{\omega_1^4 + 4\omega_2^4}}{2}.$$
4. A sphere of mass M and radius a rolls, without slipping, down the face of a wedge which makes an angle α to the horizontal. The wedge has mass m and can slide freely on a smooth horizontal table. Both sphere and wedge are at rest when the sphere is released. Let s be the distance of the sphere from the apex of the wedge and x be the horizontal displacement of the wedge from its initial position.

(i) (2 marks)
Assume a cartesian coordinate system with its origin at the initial position of the apex of the wedge. By drawing a diagram, or otherwise, show that the coordinates (x_0, y_0) of the centre of the sphere are

\[
x_0 = x + s \cos \alpha - a \sin \alpha \\
y_0 = s \sin \alpha + a \cos \alpha
\]

(ii) (5 marks)
Show that the Lagrangian for the system is

\[
L = \frac{1}{2} (M + m) \dot{x}^2 + M \dot{x} \dot{s} \cos \alpha + \frac{7}{10} M \dot{s}^2 - Mgs \sin \alpha.
\]

(iii) (2 marks)
Write down the conjugate momentum corresponding to any ignorable coordinate.

(iv) (2 marks)
Write down the Lagrange equation for any non-ignorable coordinate.

(v) (3 marks)
Hence, or otherwise, show that

\[
\ddot{s} = \frac{g \sin \alpha}{\frac{M}{M+m} \cos^2 \alpha - \frac{7}{5}}.
\]

[The moment of inertia of a sphere of mass M and radius a is $\frac{2}{5}Ma^2$.]

5. (Advanced Question)
An experimental particle physicist is studying electro-weak unification and needs your help analysing an observed trajectory.
The trajectory of a particle with unit mass in plane polar coordinates (r, θ) is observed to be

\[
r = \frac{2}{\mu} \log \frac{\theta}{\theta_0}, \quad \theta > \theta_0 > 0.
\]

Let h be the angular momentum per unit mass, and let E be the total energy per unit mass. Assume both h and E are known or have been measured.

(i) (14 marks)
Assuming that the particle is moving under the action of a central force law, calculate the form of $V(r)$.

This is the Last Page of this Extended Answer Question Paper