4. (i) 6 (ii) 1 (iii) 6 (iv) 2/3

5.
\[\begin{align*}
\vec{b} \ &= \vec{a} - \vec{b} \\
\vec{b} \ &= \vec{b} - \vec{a} \\
\vec{b} \ &= \vec{a} + \vec{b}
\end{align*} \]

6. (i) \(\vec{u} - \vec{v} - \vec{w} \) (ii) \(\vec{u} + \vec{v} - \vec{w} \) (iii) \(-\vec{u} - \vec{v} + \vec{w} \)

7.
\[\begin{align*}
8 \\
\theta \\
d \\
6
\end{align*} \]

By Pythagoras \(d = \sqrt{8^2 + 6^2} = 10 \). If \(\theta \) is the angle to the horizontal then \(\cos \theta = 6/10 \), yielding an angle \(\theta \approx 53^\circ \). Thus the resultant force is 10 newtons in a direction 53° to the horizontal, towards the right.

8. The associative law for addition of vectors says that, for any vectors \(\vec{u}, \vec{v} \) and \(\vec{w} \),
\[\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}. \]

To verify this, we suppose that the vectors have been lined up so that the point \(P \) is at the tail of \(\vec{u} \), the point \(Q \) is both at the tip of \(\vec{u} \) and at the tail of \(\vec{v} \), the point \(R \) is both at the tip of \(\vec{v} \) and at the tail of \(\vec{w} \), and the point \(S \) is at the tip of \(\vec{w} \). Then
\[\begin{align*}
\vec{u} + (\vec{v} + \vec{w}) & = \overrightarrow{PQ} + (\overrightarrow{QR} + \overrightarrow{RS}) \\
& = \overrightarrow{PQ} + \overrightarrow{QS} \\
& = \overrightarrow{PR} + \overrightarrow{RS} \\
& = (\overrightarrow{PQ} + \overrightarrow{QR}) + \overrightarrow{RS} \\
& = (\vec{u} + \vec{v}) + \vec{w}.
\end{align*} \]
9. Place the vectors \(\mathbf{v} \) and \(\mathbf{w} \) tip-to-tail so that they label two directed edges of a triangle \(ABC \), so that

\[
\mathbf{v} = \overrightarrow{AB}, \quad \mathbf{w} = \overrightarrow{BC}.
\]

Then \(\mathbf{v} + \mathbf{w} = \overrightarrow{AC} \). The shortest distance between two points is a straight line, so that travelling from \(A \) to \(C \) via \(B \) is at least as far as travelling directly from \(A \) to \(C \).

Thus

\[
|\mathbf{v} + \mathbf{w}| = |\overrightarrow{AC}| \leq |\overrightarrow{AB}| + |\overrightarrow{BC}| = |\mathbf{v}| + |\mathbf{w}|,
\]

which verifies the triangle inequality. This becomes equality precisely when \(B \) falls on the direct path joining \(A \) to \(C \), so that the triangle becomes degenerate.

10.*

Observe that

\[
\overrightarrow{DE} = \overrightarrow{DB} + \overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{BC}) = \frac{1}{2} \overrightarrow{AC}.
\]

This tells us that the line segment joining \(D \) to \(E \) is parallel to and half the length of the line segment joining \(A \) to \(C \).

11. \(2a - 3b = -7u + 8v \).

12. \(\overrightarrow{CD} = \mathbf{b} - \mathbf{a} \), \(\overrightarrow{DE} = -\mathbf{a} \), \(\overrightarrow{EF} = -\mathbf{b} \), \(\overrightarrow{FA} = \mathbf{a} - \mathbf{b} \).
13.

We have $|\overrightarrow{AB}| = 20$ and $|\overrightarrow{BC}| = 10$. By the Cosine Rule,

$$|\overrightarrow{AC}| = \sqrt{20^2 + 10^2 - 2(10)(20) \cos 105^\circ} \approx 25.$$

By the Sine Rule,

$$\sin(30^\circ - \alpha) = \frac{10 \sin 105^\circ}{|\overrightarrow{AC}|},$$

from which it follows that

$$30^\circ - \alpha \approx 23^\circ,$$

so that $\alpha \approx 7^\circ$. Hence the final distance and direction of the aircraft from the starting point are approximately 25 km and 7° north of east respectively.

14.*

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AC})$$

$$= \overrightarrow{AB} + \frac{1}{2}(-\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}).$$

15.* Let P, Q, R, S be the respective midpoints of the edges AB, BC, CD, DA of the quadrilateral $ABCD$. Then, by two applications of Exercise 10, firstly to the triangle ABC, and then secondly to the triangle ADC,

$$\overrightarrow{PQ} = \frac{1}{2}\overrightarrow{AC} = \overrightarrow{SR},$$

which is sufficient to prove that $PQRS$ is a parallelogram.