Preparatory exercises should be attempted before coming to the tutorial. Questions labelled with an asterisk are suitable for students aiming for a credit or higher.

Important Ideas and Useful Facts:

(i) Geometric definition of dot product: If \(\mathbf{v} \) and \(\mathbf{w} \) are vectors and \(\theta \) is the angle between them, then

\[
\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}||\mathbf{w}|\cos \theta ,
\]

so that

\[
\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}.
\]

(ii) Algebraic definition of dot product: If \(\mathbf{v} = a \mathbf{i} + b \mathbf{j} + c \mathbf{k} \) and \(\mathbf{w} = d \mathbf{i} + e \mathbf{j} + f \mathbf{k} \) then

\[
\mathbf{v} \cdot \mathbf{w} = ad + be + cf.
\]

(iii) The angle between two vectors is zero or acute if their dot product is positive. The angle is obtuse or \(180^\circ \) if the dot product is negative. Two vectors are mutually perpendicular if the dot product is zero.

(iv) Cauchy-Schwarz Inequality: \(|\mathbf{v} \cdot \mathbf{w}| \leq |\mathbf{v}||\mathbf{w}| \).

(v) Commutativity of dot product: \(\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \).

(vi) Distributivity of dot over plus: \((\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} \).

(vii) If \(\mathbf{v} \) is any vector then \(\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2 \), so \(|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}} \).

(viii) If \(\mathbf{v} \) and \(\mathbf{w} \) are vectors and \(\lambda \) is a scalar then \((\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda (\mathbf{v} \cdot \mathbf{w}) = \mathbf{v} \cdot (\lambda \mathbf{w}) \).

(ix) The vector projection of \(\mathbf{v} \) in the direction of \(\mathbf{w} \) is \(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|^2} \mathbf{w} \), which is the best approximation of \(\mathbf{v} \) using a scalar multiple of \(\mathbf{w} \).

(x) The scalar component of \(\mathbf{v} \) in the direction of \(\mathbf{w} \) is \(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|} \), which is plus or minus the magnitude of the vector projection (minus in the case that the angle is obtuse or \(180^\circ \)).

(xi) The vector component of \(\mathbf{v} \) orthogonal to \(\mathbf{w} \) is the difference between \(\mathbf{v} \) and its vector projection, which is

\[
\mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|^2} \mathbf{w}.
\]
Preparatory Exercises (answers below):

1. Given that
 \[u = 2i - j + k, \quad v = i - 2j + 2k, \quad w = 3i - k, \]
 find
 (i) \(u \cdot v \) (ii) \(u \cdot w \) (iii) \(v \cdot w \) (iv) \(u \cdot u \) (v) \(v \cdot v \) (vi) \(w \cdot w \)
 (vii) \(|u| \) (viii) \(|v| \) (ix) \(|w| \) (x) \(u \cdot (v + w) \) (xi) \(u \cdot (v - w) \)

2. Let \(u, v, w \) be as in the previous exercise. Let \(\alpha \) be the angle between \(u \) and \(v \), \(\beta \) be the angle between \(u \) and \(w \), and \(\gamma \) the angle between \(v \) and \(w \). Find
 (i) \(\cos \alpha \) (ii) \(\cos \beta \) (iii) \(\cos \gamma \)

3. Given that
 \[a = 2i - j + 2k, \quad b = i + j - k, \quad c = 3i + 6j, \]
 determine whether the following are true or false:
 (i) The angle between \(a \) and \(b \) is acute. (ii) The angle between \(b \) and \(c \) is acute.
 (iii) The vectors \(a \) and \(c \) are mutually perpendicular.
 (iv) The angle between the vectors \(a + b \) and \(b - c \) is obtuse.

Tutorial Exercises:

4. Given that \(P = (8, 4, -1) \), \(Q = (6, 3, -4) \) and \(R = (7, 5, -5) \), find
 \[\overrightarrow{QP}, \quad |\overrightarrow{QP}|, \quad \overrightarrow{QR}, \quad |\overrightarrow{QR}|, \quad \overrightarrow{QP} \cdot \overrightarrow{QR}, \]
 and the cosine of \(\angle PQR \).

5. Given that \(u = i - 2j \) and \(v = -2i + j \), find
 (i) \(u \cdot v \) (ii) \(\hat{u} \) (iii) \(\hat{v} \) (iv) \(\frac{u \cdot v}{|u|} \) (v) \(\frac{u \cdot v}{|v|} \) (vi) \(\frac{u \cdot v}{|u||v|} \)
 (vii) \(\frac{u \cdot v}{|u|^2} u \) (viii) \(\frac{u \cdot v}{|v|^2} v \) (ix) \(v - \frac{u \cdot v}{|u|^2} u \) (x) \(u - \frac{u \cdot v}{|v|^2} v \)
 (xi) the cosine of the angle between \(u \) and \(v \)
 (xii) the scalar component of \(u \) in the direction of \(v \)
 (xiii) the scalar component of \(v \) in the direction of \(u \)
 (xiv) the vector projection of \(u \) in the direction of \(v \)
 (xv) the vector projection of \(v \) in the direction of \(u \)
 (xvi) the vector component of \(u \) orthogonal to \(v \)
 (xvii) the vector component of \(v \) orthogonal to \(u \)
6. Use the dot product to verify that if \(\mathbf{v} \) and \(\mathbf{w} \) are any vectors and \(\mathbf{w} \) is nonzero, then

\[
\mathbf{w} \quad \text{and} \quad \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|^2} \mathbf{w}
\]

are mutually perpendicular.

7. Given that \(\mathbf{u} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \) and \(\mathbf{v} = -4\mathbf{i} + 4\mathbf{j} - \mathbf{k} \), find

(i) the cosine of the angle between \(\mathbf{u} \) and \(\mathbf{v} \)
(ii) the scalar component of \(\mathbf{u} \) in the direction of \(\mathbf{v} \)
(iii) the scalar component of \(\mathbf{v} \) in the direction of \(\mathbf{u} \)
(iv) the vector projection of \(\mathbf{u} \) in the direction of \(\mathbf{v} \)
(v) the vector projection of \(\mathbf{v} \) in the direction of \(\mathbf{u} \)
(vi) the vector component of \(\mathbf{u} \) orthogonal to \(\mathbf{v} \)
(vii) the vector component of \(\mathbf{v} \) orthogonal to \(\mathbf{u} \)

8. Verify that if \(\mathbf{a} \) and \(\mathbf{b} \) are vectors of the same length then

\[
\mathbf{a} + \mathbf{b} \quad \text{and} \quad \mathbf{a} - \mathbf{b}
\]

are mutually perpendicular.

9. (suitable for group discussion) Use vectors to find the following angles in a cube:

(i) between a major diagonal (between opposite vertices) and an edge,
(ii) between a major diagonal and a face diagonal,
(iii) between diagonals on adjacent faces,
(iv) between major diagonals.

10. * Use vectors to show that any angle inscribed in a semicircle is a right angle.

Further Exercises:

11. Resolve the vector \(\mathbf{u} = 5\mathbf{i} + \mathbf{j} + 6\mathbf{k} \) into a sum of two vectors, one of which is parallel and the other perpendicular to \(\mathbf{v} = 3\mathbf{i} - 6\mathbf{j} + 2\mathbf{k} \).

12. (Homework) Find the (vector) components of the force \(15\mathbf{i} + 20\mathbf{j} + 6\mathbf{k} \) newtons in the direction of and orthogonal to

\[
\begin{align*}
\text{(i)} & \quad -\mathbf{i} + \mathbf{j} & \quad \text{(ii)} & \quad 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}
\end{align*}
\]
13. Prove that if a and b are mutually perpendicular vectors then
\[|a + b|^2 = |a|^2 + |b|^2. \]
Interpret this result in terms of a well-known fact about triangles.

14.* (Homework) Verify that the sum of the squares of the lengths of the diagonals of a parallelogram is equal to the sum of the squares of the lengths of its sides.

15.* Prove that the diagonals of a parallelogram are perpendicular if and only if the parallelogram is a rhombus (that is, has all sides of equal length).

Answers to Preparatory Exercises:

1. (i) 6 (ii) 5 (iii) 1 (iv) 6 (v) 9 (vi) 10 (vii) \(\sqrt{6} \) (viii) 3
 (ix) \(\sqrt{10} \) (x) 11 (xi) 1

2. (i) \(\frac{\sqrt{6}}{3} \) (ii) \(\frac{\sqrt{15}}{6} \) (iii) \(\frac{\sqrt{10}}{30} \)

3. (i) false (ii) true (iii) true (iv) true