Assumed Knowledge: Integration techniques.

Objectives:

(9a) To be able to distinguish between separable and linear first-order differential equations.

(9b) To be able to solve a linear equations utilising an integrating factor.

Exercises:

1. For each of these equations, determine whether it is separable or a first-order linear equation. If an equation is linear, write it in standard form \(\frac{dy}{dx} + p(x)y = q(x) \) (with a suitable renaming of variables where necessary) and identify the functions \(p \) and \(q \).

 (a) \(t \frac{dx}{dt} + x = \cos t \)

 Solution: This equation is linear.

 In standard form this is \(\frac{dx}{dt} + \frac{x}{t} = \frac{\cos t}{t} \) so \(p(t) = \frac{1}{t} \) and \(q(t) = \frac{\cos t}{t} \).

 (b) \(\frac{dy}{dx} = \frac{2x\sqrt{y}}{\sqrt{1+x^2}} \)

 Solution: This equation is separable.

2. Find the general solution of \(t \frac{dx}{dt} + x = \cos t \).

 Solution: Working with the standard form (see Question 1 part (a)), the integrating factor is \(r(t) = e^{\int(1/t)dt} = e^{\ln t} = t \). Multiply the standard form by the integrating factor:

 \[t \frac{dx}{dt} + x = \cos t \]

 \[t \frac{d}{dt}(tx) = \cos t \] .

 Integrate both sides with respect to \(t \).

 \[tx = \sin t + C \] .

 So \(x = \frac{\sin t}{t} + \frac{C}{t} \).
3. (a) For each of the following differential equations, find the general solution and also the particular solution satisfying $y(1) = 0$.

(i) $\frac{dy}{dx} + 4y = e^{-2x}$

\textbf{Solution:} The integrating factor is $e^{\int 4 \, dx} = e^{4x}$, and multiplying our equation by this gives

$$\frac{d}{dx} \left(e^{4x} y \right) = e^{2x}$$

and thus

$$e^{4x} y = \frac{1}{2} e^{2x} + C,$$

which then gives the general solution

$$y = \frac{1}{2} e^{-2x} + Ce^{-4x}.$$

The condition $y(1) = 0$ gives $0 = \frac{1}{2} e^{-2} + Ce^{-4}$, and so $C = -\frac{1}{2} e^2$.

Thus the required particular solution is

$$y = \frac{1}{2} e^{-2x} \left(1 - e^{2(1-x)} \right).$$

(ii) $\frac{dy}{dx} + (\sinh x)y = (2x)e^{-\cosh x}$

\textbf{Solution:} The integrating factor is $e^{\int \sinh x \, dx} = e^{\cosh x}$. Multiplying our equation by this integrating factor gives

$$\frac{d}{dx} \left(e^{\cosh x} y \right) = 2x,$$

and so

$$e^{\cosh x} y = x^2 + C,$$

which then gives the general solution

$$y = (x^2 + C)e^{-\cosh x}.$$

The condition $y(1) = 0$ means $0 = (1 + C)e^{(-\cosh(1))}$, and so $C = -1$.

Thus the required particular solution is

$$y = (x^2 - 1)e^{-\cosh x}.$$

(b) Find the general solution of the differential equation

$$\frac{dz}{dx} + (\cot x)z = -2x,$$

where we assume $0 < x < \pi$.

2
Solution: This is a first-order linear equation. Its integrating factor is

\[e^\int \cot x \, dx = e^\int \frac{\cos x}{\sin x} \, dx = e^{\ln x} = x. \]

Multiplying our equation by this integrating factor gives

\[(\sin x) \frac{dz}{dx} + (\cos x) z = -2x \sin x \]

that is

\[\frac{d}{dx}(z \sin x) = -2x \sin x. \]

We then integrate by parts to get

\[z \sin x = 2x \cos x - \int 2 \cos x \, dx = 2x \cos x - 2 \sin x + C, \]

and thus we obtain the general solution as

\[z = \frac{2x \cos x - 2 \sin x + C}{\sin x}. \]

4. Consider the equation

\[\frac{dy}{dx} + y \cos x = \cos x. \]

Solve this equation as a linear equation and then solve it as a separable equation. Are the solutions the same?

Solution: The equation is already in standard first-order linear form with \(p(x) = \cos x \). So the integrating factor is \(\exp \left(\int \cos x \, dx \right) = e^{\sin x} \). Thus

\[\frac{d}{dx}(ye^{\sin x}) = \cos x \, e^{\sin x} , \]

\[ye^{\sin x} = e^{\sin x} + C \]

\[y = 1 + Ce^{-\sin x}. \]

Solving by separating the variables, we have

\[\int \frac{1}{1 - y} \, dy = \int \cos x \, dx \]

\[- \ln |1 - y| = \sin x + C \]

\[\ln |1 - y| = - \sin x - C \]

\[|1 - y| = e^{-C} e^{-\sin x} \]

\[1 - y = Ae^{-\sin x} \]

\[y = 1 - Ae^{-\sin x}. \]

The way that the constants of integration occur in the two solution methods is slightly different but the solutions are, of course, the same. To see this, simply replace \(A \) with \(-C\) in the solution above.
5. In electronic circuit theory, circuits with a resistor and an inductance coil in series with a voltage applied across these two components are known as RL circuits. This is because the resistance of the resistor is conventionally given as R ohms and the inductance of the coil is conventionally given as L henries. The equation for the rate of change of the electric current I in such a circuit is

$$\frac{dI}{dt} + \frac{R}{L}I = \frac{V}{L}$$

where V is the voltage applied to the circuit. In a circuit with an applied AC current, V will vary with time as $V = A\sin \omega t$. So, if R and L are constant the equation becomes

$$\frac{dI}{dt} + \frac{R}{L}I = \frac{A\sin \omega t}{L}.$$

Solve this equation to find the general solution for I as a function of t. Find the particular solution if the circuit has no current in it when it is switched on. What happens to the current as $t \to \infty$? How does the initial condition affect this long-term behaviour?

[Hint: $\int e^{au} \sin bu \, du = \frac{e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C$]

Solution: The equation is first-order linear with $p(t) = R/L$. So the integrating factor is

$$r(t) = \exp \left(\int \frac{R}{L} \, dt \right) = e^{Rt/L}.$$

So the differential equation becomes

$$\frac{d}{dt} (e^{Rt/L}I) = \frac{A\sin \omega t}{L} e^{Rt/L},$$

since R and L are constants. Integrating both sides with respect to t:

$$e^{Rt/L}I = \frac{A e^{Rt/L}}{L (R/L)^2 + \omega^2} \left(\frac{R}{L} \sin \omega t - \omega \cos \omega t \right) + C$$

$$I = \frac{A}{L (R/L)^2 + \omega^2} \left(\frac{R}{L} \sin \omega t - \omega \cos \omega t \right) + Ce^{-Rt/L}.$$

This is the general solution. To find the particular solution let $I = 0$ when $t = 0$. Then the equation gives

$$\frac{A}{L (R/L)^2 + \omega^2} \frac{-\omega}{\omega} + C = 0$$

so

$$C = \frac{A}{L (R/L)^2 + \omega^2} \omega$$

and the particular solution is

$$I = A \frac{1}{L (R/L)^2 + \omega^2} \left(\frac{R}{L} \sin \omega t - \omega \cos \omega t + \omega e^{-Rt/L} \right).$$

As $t \to \infty$, $e^{-Rt/L} \to 0$ leaving just the sine and cosine terms. So eventually the current will be a periodic function of time (that is it will oscillate) with a period of $2\pi/\omega$. The initial condition only contributed to the $e^{-Rt/L}$ term (the transient term). Hence it has no effect on the long term behaviour.