1. Define \(f : \mathbb{N} \rightarrow \mathbb{N} \) by \(f(x) = x + 1 \). Determine whether or not \(f \) is
 (a) one-to-one; (b) onto.

2. Each of the following sets of pairs may or may not represent a function from \(\{1, 2, 3\} \) to \(\{a, b, c, d\} \):
 \[
 \{(1, d), (2, b), (3, d)\}, \quad \{(1, c), (2, a), (3, b)\}, \quad \{(1, a), (3, b)\}
 \]
 \[
 \{(1, a), (1, c), (3, d)\}, \quad \{(2, b), (3, c), (1, d)\}
 \]
 (i) Identify the sets which represent functions and determine which of these are one-to-one.
 (ii) Explain clearly why each of the sets does or does not represent a function.
 (iii) Explain clearly why each of the sets does or does not represent a one-to-one function.

3. (i) Let \(A = \{-1, 2, 3, 5, 7, 11\} \) and let \(B = \{1, 2, \ldots, 200\} \). Is the function \(f : A \rightarrow B \) given by \(f(x) = x^2 \) one-to-one?
 (ii) Now suppose that \(A = \{-2, -1, 2, 3, 5, 7, 11\} \) and \(B = \{1, 2, \ldots, 200\} \). Is the function \(f : A \rightarrow B \) given by \(f(x) = x^2 \) one-to-one?

4. Use arrow diagrams to write down all the functions from the set \(\{1, 2\} \) to the set \(\{a, b, c\} \). How many are there? How many one-to-one functions and how many onto functions?

5. Let \(A = \{1, 2, 3\} \) and \(B = \{a, b, c\} \). Write down all the one-to-one correspondences between \(A \) and \(B \).

6. For each of the following functions, determine whether it is one-to-one and/or onto.
 (i) \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) given by \(f(x) = x^2 \).
 (ii) \(f : \mathbb{N} \rightarrow \mathbb{Z} \) given by \(f(x) = x^2 \).
 (iii) \(f : \mathbb{N} \rightarrow \mathbb{N} \) given by \(f(x) = x^2 \).
 (iv) \(f : \mathbb{R} \rightarrow \mathbb{R} \) given by \(f(x) = x^2 \).
 (v) \(f : \mathbb{R}^+ \rightarrow \mathbb{R} \) given by \(f(x) = x^2 \).
 (vi) \(f : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) given by \(f(x) = x^2 \).
 In this question \(\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\} \).

7. Let \(C_{n,k} \) be the set of subsets of \(\{1, \ldots, n\} \) of size \(k \).
 (i) Describe explicitly \(C_{5,2} \). What is the cardinality of \(C_{5,2} \)?
 (ii) Describe explicitly \(C_{4,2} \cup C_{4,1} \). What is the cardinality of \(C_{4,2} \cup C_{4,1} \)?
 (iii) Define \(f : C_{5,2} \rightarrow C_{4,2} \cup C_{4,1} \) by \(f(A) = A \setminus \{5\} \). Describe \(f \) explicitly on the elements of \(C_{5,2} \).
Problem Set 3

1. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Which of the following arrow diagrams determine functions from A to B? Which of them determine a one-to-one functions?

 (i) ![Diagram 1]
 (ii) ![Diagram 2]
 (iii) ![Diagram 3]
 (iv) ![Diagram 4]

2. (i) Use arrow diagrams to write down all the functions from the set $\{1, 2\}$ to $\{a, b\}$.
 (ii) Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Let $f : A \rightarrow B$ be the function given by the 4-tuple (b, a, c, a). Draw the arrow diagram of f. Is f injective? Is f surjective?
 (iii) Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$. Does the following set of pairs
 \[F = \{(a, 2), (b, 1), (c, 2)\} \]
 represent a function g from A to B.
 If so, is g injective? Is g surjective?

3. Let $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 2, 3, 4, 5\}$, and consider the function $f : A \rightarrow B$ with rule $f(x) = x^2 - 4x + 4$ for all $x \in A$.
 (i) Draw an arrow diagram to represent f. Write f as a set of ordered pairs of integers.
 (ii) Is f injective? Give reasons.
 (iii) Find the image of f. Is f surjective? Give reasons.
 (iv) Find a set C such that with the same domain A,
 \[f : A \rightarrow C, \ f(x) = x^2 - 4x + 4 \]
 is surjective.

4. Use arrow diagrams to write down all the functions from the set $\{1, 2, 3, 4\}$ to the set $\{a, b\}$. How many are there? How many one-to-one functions and how many onto functions?