Combinatorial bases for representations of the Lie superalgebra $\mathfrak{gl}_{m|n}$

Alexander Molev

University of Sydney
Gelfand–Tsetlin bases for \mathfrak{gl}_n
Gelfand–Tsetlin bases for \mathfrak{gl}_n

Finite-dimensional irreducible representations $L(\lambda)$ of \mathfrak{gl}_n are in a one-to-one correspondence with n-tuples of complex numbers $\lambda = (\lambda_1, \ldots, \lambda_n)$ such that

$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+ \quad \text{for} \quad i = 1, \ldots, n - 1.$$
Gelfand–Tsetlin bases for \mathfrak{gl}_n

Finite-dimensional irreducible representations $L(\lambda)$ of \mathfrak{gl}_n are in a one-to-one correspondence with n-tuples of complex numbers $\lambda = (\lambda_1, \ldots, \lambda_n)$ such that

$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+ \quad \text{for} \quad i = 1, \ldots, n - 1.$$

$L(\lambda)$ contains a highest vector $\zeta \neq 0$ such that

$$E_{ii} \zeta = \lambda_i \zeta \quad \text{for} \quad i = 1, \ldots, n \quad \text{and}$$

$$E_{ij} \zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq n.$$
Suppose that λ is a partition, $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$.
Suppose that λ is a partition, $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$.

Depict it as a Young diagram.

Example. The diagram $\lambda = (5, 5, 3, 0, 0)$ is

$$\ell(\lambda) = 3$$
Suppose that λ is a partition, $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$.

Depict it as a Young diagram.

Example. The diagram $\lambda = (5, 5, 3, 0, 0)$ is

![Young diagram](image)

\[\ell(\lambda) = 3 \]

The number of nonzero rows is the **length of λ**, denoted $\ell(\lambda)$.
Given a diagram λ, a column-strict λ-tableau T is obtained by filling in the boxes of λ with the numbers $1, 2, \ldots, n$ in such a way that the entries weakly increase along the rows and strictly increase down the columns.
Given a diagram λ, a column-strict λ-tableau T is obtained by filling in the boxes of λ with the numbers $1, 2, \ldots, n$ in such a way that the entries weakly increase along the rows and strictly increase down the columns.

Example. A column-strict λ-tableau for $\lambda = (5, 5, 3, 0, 0)$:

\[
\begin{array}{cccc}
1 & 1 & 2 & 4 \\
2 & 3 & 4 & 5 \\
4 & 5 & 5 & \\
\end{array}
\]
Theorem (Gelfand and Tsetlin, 1950). $L(\lambda)$ admits a basis ζ_T parameterized by all column-strict λ-tableaux T such that the action of generators of \mathfrak{gl}_n is given by the formulas

$$E_{ss} \zeta_T = \omega_s \zeta_T,$$

$$E_{s,s+1} \zeta_T = \sum_{T'} c_{TT'} \zeta_{T'},$$

$$E_{s+1,s} \zeta_T = \sum_{T'} d_{TT'} \zeta_{T'}.$$
Theorem (Gelfand and Tsetlin, 1950). $L(\lambda)$ admits a basis ζ_T parameterized by all column-strict λ-tableaux T such that the action of generators of \mathfrak{gl}_n is given by the formulas

$$E_{ss} \zeta_T = \omega_s \zeta_T,$$

$$E_{s,s+1} \zeta_T = \sum_{T'} c_{TT'} \zeta_{T'},$$

$$E_{s+1,s} \zeta_T = \sum_{T'} d_{TT'} \zeta_{T'}.$$

Here ω_s is the number of entries in T equal to s, and the sums are taken over column-strict tableaux T' obtained from T respectively by replacing an entry $s + 1$ by s and s by $s + 1$.
For any $1 \leq j \leq s \leq n$ denote by λ_{sj} the number of entries in row j which do not exceed s and set

$$l_{sj} = \lambda_{sj} - j + 1.$$
For any $1 \leq j \leq s \leq n$ denote by λ_{sj} the number of entries in row j which do not exceed s and set

$$l_{sj} = \lambda_{sj} - j + 1.$$

Then

$$c_{TT'} = -\frac{(l_{si} - l_{s+1,1}) \cdots (l_{si} - l_{s+1,1+s+1})}{(l_{si} - l_{s1}) \cdots \wedge \cdots (l_{si} - l_{ss})},$$

$$d_{TT'} = \frac{(l_{si} - l_{s-1,1}) \cdots (l_{si} - l_{s-1,1+s-1})}{(l_{si} - l_{s1}) \cdots \wedge \cdots (l_{si} - l_{ss})},$$

if the replacement occurs in row i.
Equivalent parametrization of the basis vectors by the Gelfand–Tsetlin patterns:
Equivalent parametrization of the basis vectors by the Gelfand–Tsetlin patterns:

\[
\begin{array}{cccc}
\lambda_{n1} & \lambda_{n2} & \cdots & \lambda_{nn} \\
\lambda_{n-1,1} & \cdots & \lambda_{n-1,n-1} \\
\lambda_{21} & \lambda_{22} \\
\lambda_{11} & \\
\end{array}
\]
Equivalent parametrization of the basis vectors by the Gelfand–Tsetlin patterns:

\[
\begin{array}{cccc}
\lambda_{n1} & \lambda_{n2} & \cdots & \lambda_{nn} \\
\lambda_{n-1,1} & \cdots & \lambda_{n-1,n-1} \\
T & \cdots & \cdots & \cdots \\
\lambda_{21} & \lambda_{22} \\
\lambda_{11}
\end{array}
\]

The top row coincides with \(\lambda \) and the entries satisfy the betweenness conditions \(\lambda_{k,i} \geq \lambda_{k-1,i} \geq \lambda_{k,i+1} \).
Example. The column-strict tableau with \(\lambda = (5, 5, 3, 0, 0) \)

\[
\begin{array}{cccc}
1 & 1 & 2 & 4 \\
2 & 3 & 4 & 5 \\
4 & 5 & 5 & \\
\end{array}
\]
Example. The column-strict tableau with $\lambda = (5, 5, 3, 0, 0)$

\[
\begin{array}{cccc}
1 & 1 & 2 & 4 \\
2 & 3 & 4 & 5 \\
4 & 5 & 5 & \\
\end{array}
\]

corresponds to the pattern

\[
\begin{array}{cccc}
5 & 5 & 3 & 0 \\
5 & 3 & 1 & 0 \\
3 & 2 & 0 & \\
3 & 1 & \\
2 & \\
\end{array}
\]
Given $\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{Z}_+^n$, consider the weight subspace

$$L(\lambda) \omega = \{ \eta \in L(\lambda) \mid E_{ss} \eta = \omega_s \eta \text{ for all } s \}.$$
Given \(\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{Z}_+^n \), consider the weight subspace

\[
L(\lambda) \omega = \{ \eta \in L(\lambda) \mid E_{ss} \eta = \omega_s \eta \quad \text{for all} \quad s \}\.
\]

The character of \(L(\lambda) \) is the polynomial in variables \(x_1, \ldots, x_n \) defined by

\[
\text{ch} \ L(\lambda) = \sum_\omega \dim L(\lambda) \omega \ x_1^{\omega_1} \ldots x_n^{\omega_n}.
\]
Given $\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{Z}_+^n$, consider the weight subspace

$$L(\lambda)_{\omega} = \{ \eta \in L(\lambda) \mid E_{ss}\eta = \omega_s\eta \text{ for all } s \}.$$

The character of $L(\lambda)$ is the polynomial in variables x_1, \ldots, x_n defined by

$$\text{ch} \ L(\lambda) = \sum_{\omega} \dim L(\lambda)_{\omega} x_1^{\omega_1} \ldots x_n^{\omega_n}.$$

Corollary. $\text{ch} \ L(\lambda) = s_\lambda(x_1, \ldots, x_n)$, the Schur polynomial.
Lie superalgebra $\mathfrak{gl}_{m|n}$
Lie superalgebra $\mathfrak{gl}_{m|n}$

Basis elements of $\mathfrak{gl}_{m|n}$ are E_{ij} with $1 \leq i, j \leq m + n$.
Lie superalgebra $\mathfrak{gl}_{m|n}$

Basis elements of $\mathfrak{gl}_{m|n}$ are E_{ij} with $1 \leq i, j \leq m + n$.

The \mathbb{Z}_2-degree (or parity) is given by

$$\deg(E_{ij}) = \bar{i} + \bar{j},$$

where $\bar{i} = 0$ for $1 \leq i \leq m$ and $\bar{i} = 1$ for $m + 1 \leq i \leq m + n$.
Lie superalgebra $\mathfrak{gl}_{m|n}$

Basis elements of $\mathfrak{gl}_{m|n}$ are E_{ij} with $1 \leq i, j \leq m + n$.

The \mathbb{Z}_2-degree (or parity) is given by

$$\text{deg}(E_{ij}) = \bar{i} + \bar{j},$$

where $\bar{i} = 0$ for $1 \leq i \leq m$ and $\bar{i} = 1$ for $m + 1 \leq i \leq m + n$.

The commutation relations in $\mathfrak{gl}_{m|n}$ have the form

$$[E_{ij}, E_{kl}] = \delta_{kj} E_{il} - \delta_{il} E_{kj}(-1)^{\bar{i}+\bar{j}}(\bar{k}+\bar{l)}),$$

where the square brackets denote the super-commutator.
The span of \(\{ E_{ij} \mid 1 \leq i, j \leq m \} \) is a Lie subalgebra isomorphic to \(\mathfrak{gl}_m \),
The span of \(\{ E_{ij} \mid 1 \leq i, j \leq m \} \) is a Lie subalgebra isomorphic to \(\mathfrak{gl}_m \),

the span of \(\{ E_{ij} \mid m + 1 \leq i, j \leq m + n \} \) is a Lie subalgebra of isomorphic to \(\mathfrak{gl}_n \),
The span of $\{E_{ij} \mid 1 \leq i, j \leq m\}$ is a Lie subalgebra isomorphic to \mathfrak{gl}_m,

the span of $\{E_{ij} \mid m + 1 \leq i, j \leq m + n\}$ is a Lie subalgebra of isomorphic to \mathfrak{gl}_n,

the Lie subalgebra of even elements of $\mathfrak{gl}_{m|n}$ is isomorphic to $\mathfrak{gl}_m \oplus \mathfrak{gl}_n$.
Finite-dimensional irreducible representations of $\mathfrak{g}_{m|n}$ are parameterized by their highest weights λ of the form

$\lambda = (\lambda_1, \ldots, \lambda_m \mid \lambda_{m+1}, \ldots, \lambda_{m+n})$,
Finite-dimensional irreducible representations of $\mathfrak{gl}_{m|n}$ are parameterized by their highest weights λ of the form $
abla \lambda = (\lambda_1, \ldots, \lambda_m | \lambda_{m+1}, \ldots, \lambda_{m+n})$, where

$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+, \quad \text{for} \quad i = 1, \ldots, m + n - 1, \quad i \neq m.$$
Finite-dimensional irreducible representations of $\mathfrak{gl}_{m|n}$ are parameterized by their highest weights λ of the form

$$\lambda = (\lambda_1, \ldots, \lambda_m \mid \lambda_{m+1}, \ldots, \lambda_{m+n})$$

where

$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+, \quad \text{for} \quad i = 1, \ldots, m + n - 1, \quad i \neq m.$$

The corresponding representation $L(\lambda)$ contains a highest vector $\zeta \neq 0$ such that

$$E_{ii} \zeta = \lambda_i \zeta \quad \text{for} \quad i = 1, \ldots, m + n \quad \text{and}$$

$$E_{ij} \zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq m + n.$$
Covariant representations $L(\lambda)$
Covariant representations $L(\lambda)$

These are the irreducible components of the representations

$$\mathbb{C}^{m|n} \otimes \ldots \otimes \mathbb{C}^{m|n}$$

k
Covariant representations $L(\lambda)$

These are the irreducible components of the representations

$$\mathbb{C}^{m|n} \otimes \ldots \otimes \mathbb{C}^{m|n}$$

They are distinguished by the conditions:

- all components $\lambda_1, \ldots, \lambda_{m+n}$ of λ are nonnegative integers;
Covariant representations $L(\lambda)$

These are the irreducible components of the representations

$$\underbrace{\mathbb{C}^{m|n} \otimes \ldots \otimes \mathbb{C}^{m|n}}_{k}$$

They are distinguished by the conditions:

- all components $\lambda_1, \ldots, \lambda_{m+n}$ of λ are nonnegative integers;
- the number ℓ of nonzero components among $\lambda_{m+1}, \ldots, \lambda_{m+n}$ is at most λ_m.
To each highest weight λ satisfying these conditions, associate the Young diagram Γ_λ containing $\lambda_1 + \cdots + \lambda_{m+n}$ boxes.
To each highest weight λ satisfying these conditions, associate the Young diagram Γ_λ containing $\lambda_1 + \cdots + \lambda_{m+n}$ boxes.

It is determined by the conditions that the first m rows of Γ_λ are $\lambda_1, \ldots, \lambda_m$ while the first ℓ columns are $\lambda_{m+1} + m, \ldots, \lambda_{m+\ell} + m$.
To each highest weight λ satisfying these conditions, associate the Young diagram Γ_{λ} containing $\lambda_1 + \cdots + \lambda_{m+n}$ boxes.

It is determined by the conditions that the first m rows of Γ_{λ} are $\lambda_1, \ldots, \lambda_m$ while the first ℓ columns are $\lambda_{m+1} + m, \ldots, \lambda_{m+\ell} + m$.

The condition $\ell \leq \lambda_m$ ensures that Γ_{λ} is the diagram of a partition.
Example. The following is the diagram Γ_λ associated with the highest weight $\lambda = (10, 7, 4, 3 | 3, 1, 0, 0, 0)$ of $\mathfrak{gl}_{4|5}$:
A supertableau Λ of shape Γ_λ is obtained by filling in the boxes of the diagram Γ_λ with the numbers $1, \ldots, m+n$ in such a way that
A supertableau Λ of shape Γ_λ is obtained by filling in the boxes of the diagram Γ_λ with the numbers $1, \ldots, m+n$ in such a way that

- the entries weakly increase from left to right along each row and down each column;
A supertableau Λ of shape Γ_λ is obtained by filling in the boxes of the diagram Γ_λ with the numbers $1, \ldots, m+n$ in such a way that

- the entries weakly increase from left to right along each row and down each column;

- the entries in $\{1, \ldots, m\}$ strictly increase down each column;

- the entries in $\{m+1, \ldots, m+n\}$ strictly increase from left to right along each row.
A supertableau Λ of shape Γ_λ is obtained by filling in the boxes of the diagram Γ_λ with the numbers $1, \ldots, m+n$ in such a way that

- the entries weakly increase from left to right along each row and down each column;
- the entries in $\{1, \ldots, m\}$ strictly increase down each column;
- the entries in $\{m+1, \ldots, m+n\}$ strictly increase from left to right along each row.
Example. The following is a supertableau of shape Γ_λ
associated with the highest weight $\lambda = (10, 7, 4, 3 | 3, 1, 0, 0, 0)$
of $\mathfrak{gl}_{4|5}$:

$$
\begin{array}{cccccccccc}
1 & 1 & 1 & 2 & 2 & 3 & 5 & 6 & 7 & 9 \\
2 & 2 & 3 & 3 & 4 & 4 & 5 \\
3 & 4 & 7 & 9 \\
3 & 4 & 7 & 9 \\
4 & 6 & 8 \\
5 & 6 \\
7 \\
7 \\
\end{array}
$$
Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{gl}_{m|n}$ admits a basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_λ.

The action of the generators of the Lie superalgebra $\mathfrak{gl}_{m|n}$ in this basis is given by the formulas:

$$E_{ss} \zeta_{\Lambda} = \omega_{ss} \zeta_{\Lambda},$$

$$E_{s, s+1} \zeta_{\Lambda} = \sum_{\Lambda'} c_{\Lambda \Lambda'} \zeta_{\Lambda'},$$

$$E_{s+1, s} \zeta_{\Lambda} = \sum_{\Lambda'} d_{\Lambda \Lambda'} \zeta_{\Lambda'}.$$

The sums are over supertableaux Λ' obtained from Λ by replacing an entry $s+1$ by s and an entry s by $s+1$, respectively.
Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{gl}_{m|n}$ admits a basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_λ. The action of the generators of the Lie superalgebra $\mathfrak{gl}_{m|n}$ in this basis is given by the formulas

\[E_{ss} \zeta_{\Lambda} = \omega_s \zeta_{\Lambda}, \]

\[E_{s,s+1} \zeta_{\Lambda} = \sum_{\Lambda'} c_{\Lambda\Lambda'} \zeta_{\Lambda'}, \]

\[E_{s+1,s} \zeta_{\Lambda} = \sum_{\Lambda'} d_{\Lambda\Lambda'} \zeta_{\Lambda'}. \]
Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{gl}_{m|n}$ admits a basis ζ_Λ parameterized by all supertableaux Λ of shape Γ_λ. The action of the generators of the Lie superalgebra $\mathfrak{gl}_{m|n}$ in this basis is given by the formulas

\[E_{ss} \zeta_\Lambda = \omega_s \zeta_\Lambda, \]
\[E_{s,s+1} \zeta_\Lambda = \sum_{\Lambda'} c_{\Lambda\Lambda'} \zeta_{\Lambda'}, \]
\[E_{s+1,s} \zeta_\Lambda = \sum_{\Lambda'} d_{\Lambda\Lambda'} \zeta_{\Lambda'}. \]

The sums are over supertableaux Λ' obtained from Λ by replacing an entry $s + 1$ by s and an entry s by $s + 1$, resp.
Here ω_s denotes the number of entries in Λ equal to s.
Here ω_s denotes the number of entries in Λ equal to s.

Corollary (Sergeev 1985, Berele and Regev 1987). The character $\text{ch } L(\lambda)$ coincides with the supersymmetric Schur polynomial $s_{\Gamma_\lambda}(x_1, \ldots, x_m \mid x_{m+1}, \ldots, x_{m+n})$ associated with the Young diagram Γ_λ.
Given such a supertableau Λ, for any $1 \leq i \leq s \leq m$ denote by λ_{si} the number of entries in row i which do not exceed s.
Given such a supertableau Λ, for any $1 \leq i \leq s \leq m$ denote by λ_{si} the number of entries in row i which do not exceed s.

Set $r = \lambda_{m1}$ and for any $0 \leq p \leq n$ and $1 \leq j \leq r + p$ denote by $\lambda'_{r+p,j}$ the number of entries in column j which do not exceed $m + p$.
Example. The supertableau with \(\lambda = (7, 5, 2 \mid 2, 1) \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example. The supertableau with $\lambda = (7, 5, 2 \mid 2, 1)$

$$
\begin{array}{cccccc}
1 & 1 & 2 & 2 & 2 & 4 & 5 \\
2 & 3 & 3 & 4 & 5 & & \\
3 & 5 & & & & & \\
4 & 5 & & & & & \\
4 & & & & & & \\
\end{array}
$$

corresponds to the patterns \mathcal{U} and \mathcal{V}:

$$
\begin{array}{ccccccccc}
5 & 3 & 1 & & & & & & \\
5 & 4 & 2 & 2 & 2 & 1 & 1 & & \\
5 & 1 & & & & & & & \\
3 & 2 & 2 & 1 & 1 & & & & \\
2 & & & & & & & & \\
\end{array}
$$
Set \(l_i = \lambda_i - i + 1, \)

\[
l_{s_i} = \lambda_{s_i} - i + 1, \quad l'_{r+p,j} = \lambda'_{r+p,j} - j + 1.
\]
Set \(l_i = \lambda_i - i + 1, \)

\[l_{si} = \lambda_{si} - i + 1, \quad l'_{r+p,j} = \lambda'_{r+p,j} - j + 1. \]

The coefficients in the expansions of \(E_{s,s+1} \zeta_\lambda \) and \(E_{s+1,s} \zeta_\lambda \) are given by
Set \(l_i = \lambda_i - i + 1 \),

\[
\begin{align*}
 l_{si} &= \lambda_{si} - i + 1, \\
 l'_{r+p, j} &= \lambda'_{r+p, j} - j + 1.
\end{align*}
\]

The coefficients in the expansions of \(E_{s, s+1} \zeta_{\Lambda} \) and \(E_{s+1, s} \zeta_{\Lambda} \) are given by

\[
\begin{align*}
 c_{\Lambda\Lambda'} &= -\frac{(l_{si} - l_{s+1, 1}) \cdots (l_{si} - l_{s+1, s+1})}{(l_{si} - l_{s1}) \cdots \wedge \cdots (l_{si} - l_{ss})}, \\
 d_{\Lambda\Lambda'} &= \frac{(l_{si} - l_{s-1, 1}) \cdots (l_{si} - l_{s-1, s-1})}{(l_{si} - l_{s1}) \cdots \wedge \cdots (l_{si} - l_{ss})},
\end{align*}
\]

if \(1 \leq s \leq m - 1 \) and the replacement occurs in row \(i \),
and by

\[
\begin{align*}
c_{\wedge\wedge'} &= -\frac{(l'_{r+p,j} - l'_{r+p+1,1}) \cdots (l'_{r+p,j} - l'_{r+p+1,r+p+1})}{(l'_{r+p,j} - l'_{r+p,1}) \cdots \wedge \cdots (l'_{r+p,j} - l'_{r+p,r+p})}, \\
d_{\wedge\wedge'} &= \frac{(l'_{r+p,j} - l'_{r+p-1,1}) \cdots (l'_{r+p,j} - l'_{r+p-1,r+p-1})}{(l'_{r+p,j} - l'_{r+p,1}) \cdots \wedge \cdots (l'_{r+p,j} - l'_{r+p,r+p})},
\end{align*}
\]

if \(s = m + p \) for \(1 \leq p \leq n - 1 \) and the replacement occurs in column \(j \).
Formulas for the expansions of $E_{m,m+1} \zeta_\Lambda$ and $E_{m+1,m} \zeta_\Lambda$ are also available.
Formulas for the expansions of $E_{m,m+1} \zeta_{\Lambda}$ and $E_{m+1,m} \zeta_{\Lambda}$ are also available.

Example (Palev 1989). The basis ζ_{Λ} of the $\mathfrak{gl}_{m|1}$-module $L(\lambda_1, \ldots, \lambda_m | \lambda_{m+1})$ is parameterized by the patterns

\[U = \begin{bmatrix} \lambda_{m1} & \lambda_{m2} & \cdots & \lambda_{mm} \\ \lambda_{m-1,1} & \cdots & \lambda_{m-1,m-1} \\ \vdots & \ddots & \ddots & \ddots \\ \lambda_{21} & \lambda_{22} \\ \lambda_{11} \end{bmatrix} \]
The top row runs over partitions \((\lambda_{m_1}, \ldots, \lambda_{m_m})\) such that either \(\lambda_{mj} = \lambda_j\) or \(\lambda_{mj} = \lambda_j - 1\) for each \(j = 1, \ldots, m\).
The top row runs over partitions \((\lambda_{m1}, \ldots, \lambda_{mm})\) such that either \(\lambda_{mj} = \lambda_j\) or \(\lambda_{mj} = \lambda_j - 1\) for each \(j = 1, \ldots, m\).

\[
E_{m,m+1} \zeta_U = \sum_{i=1}^{m} (l_{mi} + \lambda_{m+1} + m) \\
\times \prod_{j=1}^{i-1} (-1)^{\lambda_j - \lambda_{mj}} \frac{l_{mi} - l_j}{l_{mi} - l_{mj}} \prod_{j=i+1}^{m} \frac{l_{mi} - l_{mj} + 1}{l_{mi} - l_j + 1} \zeta_U^{\delta_{mi}},
\]

\[
E_{m+1,m} \zeta_U = \sum_{i=1}^{m} \frac{(l_{mi} - l_{m-1,1}) \cdots (l_{mi} - l_{m-1,m-1})}{(l_{mi} - l_{m1}) \cdots \wedge \cdots (l_{mi} - l_{mm})} \\
\times \prod_{j=1}^{i-1} (-1)^{\lambda_j - \lambda_{mj}} \frac{l_{mi} - l_{mj} - 1}{l_{mi} - l_j - 1} \prod_{j=1}^{i-1} \frac{l_{mi} - l_{mj}}{l_{mi} - l_j} \zeta_U^{-\delta_{mi}}.
\]
Example. The basis ζ_{Λ} of the $\mathfrak{gl}_{1|n}$-module $L(\lambda_1 | \lambda_2, \ldots, \lambda_{n+1})$ is parameterized by the trapezium patterns

$$
\begin{array}{cccccc}
\lambda'_{r+n,1} & \lambda'_{r+n,2} & \cdots & \cdots & \lambda'_{r+n,r+n} \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
\lambda'_{r+1,1} & \lambda'_{r+1,2} & \cdots & \cdots & \lambda'_{r+1,r+1} \\
1 & 1 & \cdots & \cdots & 1 \\
\end{array}
$$

The number r of $1'$s in the bottom row is nonnegative and varies between $\lambda_1 - n$ and λ_1. The top row coincides with $(\lambda'_1, \ldots, \lambda'_p, 0, \ldots, 0)$, where $p = \lambda_1$.

Example. The basis ζ_Λ of the $\mathfrak{gl}_{1|n}$-module $L(\lambda_1 | \lambda_2, \ldots, \lambda_{n+1})$ is parameterized by the trapezium patterns

\[
\begin{array}{cccccc}
\lambda'_{r+n,1} & \lambda'_{r+n,2} & \cdots & \cdots & \lambda'_{r+n, r+n} \\
\vdots & \ddots & \cdots & \cdots & \vdots \\
\lambda'_{r+1,1} & \lambda'_{r+1,2} & \cdots & \lambda'_{r+1, r+1} \\
1 & 1 & \cdots & 1 \\
\end{array}
\]

The number r of 1’s in the bottom row is nonnegative and varies between $\lambda_1 - n$ and λ_1. The top row coincides with $(\lambda'_1, \ldots, \lambda'_{p}, 0, \ldots, 0)$, where $p = \lambda_1$.
Yangian $Y(gl_n)$
Yangian $\mathcal{Y}(\mathfrak{gl}_n)$

The Yangian $\mathcal{Y}(\mathfrak{gl}_n)$ is a unital associative algebra with generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots$ where i and j run over the set \{1, \ldots, n\}.
Yangian $\mathcal{Y}(\mathfrak{gl}_n)$

The Yangian $\mathcal{Y}(\mathfrak{gl}_n)$ is a unital associative algebra with generators $t_{ij}^{(1)}$, $t_{ij}^{(2)}$, ..., where i and j run over the set $\{1, \ldots, n\}$. The defining relations are given by

\[[t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)}, \]

where $r, s \geq 0$ and $t_{ij}^{(0)} := \delta_{ij}$.
Using the formal generating series

\[t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)} u^{-1} + t_{ij}^{(2)} u^{-2} + \ldots \]
Using the formal generating series

\[t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)} u^{-1} + t_{ij}^{(2)} u^{-2} + \ldots \]

the defining relations can be written in the equivalent form

\[(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u). \]
Using the formal generating series

\[t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \ldots \]

the defining relations can be written in the equivalent form

\[(u - v) \left[t_{ij}(u), t_{kl}(v) \right] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u). \]

A natural analogue of the Poincaré–Birkhoff–Witt theorem holds for the Yangian \(Y(\mathfrak{gl}_n) \).
Every finite-dimensional irreducible representation L of \mathfrak{gl}_n contains a highest vector ζ such that

$$t_{ij}(u)\zeta = 0 \quad \text{for } 1 \leq i < j \leq n,$$

and

$$t_{ii}(u)\zeta = \lambda_i(u)\zeta \quad \text{for } 1 \leq i \leq n,$$

for some formal series $\lambda_i(u) = 1 + \lambda_1(u)u - 1 + \lambda_2(u)u^2 - 1 + \ldots$, $\lambda_i(u) \in \mathbb{C}$. The n-tuple of formal series $\lambda(u) = (\lambda_1(u), \ldots, \lambda_n(u))$ is the highest weight of L.
Every finite-dimensional irreducible representation L of \mathfrak{gl}_n contains a highest vector ζ such that

$$t_{ij}(u) \zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq n,$$

and

$$t_{ii}(u) \zeta = \lambda_i(u) \zeta \quad \text{for} \quad 1 \leq i \leq n,$$

for some formal series

$$\lambda_i(u) = 1 + \lambda_i^{(1)} u^{-1} + \lambda_i^{(2)} u^{-2} + \ldots, \quad \lambda_i^{(r)} \in \mathbb{C}.$$
Every finite-dimensional irreducible representation L of \mathfrak{gl}_n contains a highest vector ζ such that

$$t_{ij}(u)\zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq n,$$

and

$$t_{ii}(u)\zeta = \lambda_i(u)\zeta \quad \text{for} \quad 1 \leq i \leq n,$$

for some formal series

$$\lambda_i(u) = 1 + \lambda_i^{(1)}u^{-1} + \lambda_i^{(2)}u^{-2} + \ldots, \quad \lambda_i^{(r)} \in \mathbb{C}.$$

The n-tuple of formal series $\lambda(u) = (\lambda_1(u), \ldots, \lambda_n(u))$ is the highest weight of L.
Moreover, there exist monic polynomials $P_1(u), \ldots, P_{n-1}(u)$ in u (the Drinfeld polynomials) such that

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u + 1)}{P_i(u)}$$

for $i = 1, \ldots, n - 1$.

Moreover, there exist monic polynomials $P_1(u), \ldots, P_{n-1}(u)$ in u (the Drinfeld polynomials) such that

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u + 1)}{P_i(u)}$$

for $i = 1, \ldots, n - 1$.

For an arbitrary representation $L(\lambda)$ of $\mathfrak{gl}_{m|n}$ consider the vector space isomorphism

$$L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^{+}_{\mu},$$
For an arbitrary representation \(L(\lambda) \) of \(\mathfrak{gl}_{m|n} \), consider the vector space isomorphism

\[
L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^{\perp},
\]

where \(L'(\mu) \) denotes the irreducible representation of the Lie algebra \(\mathfrak{gl}_m \) with the highest weight \(\mu = (\mu_1, \ldots, \mu_m) \),
For an arbitrary representation $L(\lambda)$ of $\mathfrak{gl}_m|_n$

consider the vector space isomorphism

$$L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^{\perp}_\mu,$$

where $L'(\mu)$ denotes the irreducible representation of the Lie algebra \mathfrak{gl}_m with the highest weight $\mu = (\mu_1, \ldots, \mu_m)$, and

$L(\lambda)^{\perp}_\mu$ is the multiplicity space spanned by the \mathfrak{gl}_m-highest vectors in $L(\lambda)$ of weight μ,
For an arbitrary representation $L(\lambda)$ of $\mathfrak{gl}_m|n$

consider the vector space isomorphism

$$L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^+_\mu,$$

where $L'(\mu)$ denotes the irreducible representation of the Lie algebra \mathfrak{gl}_m with the highest weight $\mu = (\mu_1, \ldots, \mu_m)$, and

$L(\lambda)^+_\mu$ is the multiplicity space spanned by the \mathfrak{gl}_m-highest vectors in $L(\lambda)$ of weight μ,

$$L(\lambda)^+_\mu \cong \text{Hom}_{\mathfrak{gl}_m}(L'(\mu), L(\lambda)).$$
Olshanski homomorphism
Olshanski homomorphism

Set $E = [E_{ij}]_{i,j=1}^m$. The mapping $\psi : Y(\mathfrak{gl}_n) \to U(\mathfrak{gl}_{m|n})$ given by

t_{ij}^{(1)} \mapsto E_{m+i,m+j},

t_{ij}^{(r)} \mapsto \sum_{k,l=1}^m E_{m+i,k}(E^{r-2})_{k,l}E_{l,m+j}, \quad r \geq 2,

defines an algebra homomorphism.
Olshanski homomorphism

Set $E = [E_{ij}]_{i,j=1}^m$. The mapping $\psi : Y(\mathfrak{gl}_n) \to U(\mathfrak{gl}_{m|n})$ given by

$$
t^{(1)}_{ij} \mapsto E_{m+i,m+j},
$$

$$
t^{(r)}_{ij} \mapsto \sum_{k,l=1}^m E_{m+i,k}(E^{r-2})_{k,l} E_{l,m+j}, \quad r \geq 2,$$

defines an algebra homomorphism.

The image of ψ is contained in the centralizer $U(\mathfrak{gl}_{m|n})^{\mathfrak{gl}_m}$.
Theorem. The representation of \(Y(\mathfrak{gl}_n) \) in \(L(\lambda)^\mu_+ \) defined via the homomorphism \(\psi \) is irreducible.
Theorem. The representation of \(Y(\mathfrak{gl}_n) \) in \(L(\lambda)^{\pm}_\mu \) defined via the homomorphism \(\psi \) is irreducible.

Proof.

\(L(\lambda)^{\pm}_\mu \) is an irreducible representation of the centralizer \(U(\mathfrak{gl}_m|_n)^{\mathfrak{gl}_m} \).
Theorem. The representation of $Y(gl_n)$ in $L(\lambda)^+_{\mu}$ defined via the homomorphism ψ is irreducible.

Proof.

- $L(\lambda)^+_{\mu}$ is an irreducible representation of the centralizer $U(gl_{m|n})_{gl_m}$.

- The centralizer $U(gl_{m|n})_{gl_m}$ is generated by the image of the homomorphism $Y(gl_n) \rightarrow U(gl_{m|n})_{gl_m}$ and the center of $U(gl_{m|n})$.
Twist the Yangian action on $L(\lambda)_\mu^+$ by the automorphism

$$t_{ij}(u) \rightarrow t_{ij}(u + m).$$
Twist the Yangian action on $L(\lambda)^{\pm}\mu$ by the automorphism

\[t_{ij}(u) \rightarrow t_{ij}(u + m). \]

For each box $\alpha = (i, j)$ of a Young diagram define its content by $c(\alpha) = j - i$.
Twist the Yangian action on $L(\lambda)^+_\mu$ by the automorphism $t_{ij}(u) \rightarrow t_{ij}(u + m)$.

For each box $\alpha = (i, j)$ of a Young diagram define its content by $c(\alpha) = j - i$.

Theorem. Suppose that $L(\lambda)$ is a covariant representation. The Drinfeld polynomials for the $\mathcal{Y}(\mathfrak{gl}_n)$-module $L(\lambda)^+_\mu$ are given by

$$P_k(u) = \prod_{\alpha} (u - c(\alpha)), \quad k = 1, \ldots, n - 1,$$

where α runs over the leftmost boxes of the rows of length k in the diagram Γ_{λ}/μ.
Example. For $\lambda = (7, 5, 2 \mid 3, 1, 0, 0)$ and $\mu = (4, 2, 1)$ we have
Example. For \(\lambda = (7, 5, 2 \mid 3, 1, 0, 0) \) and \(\mu = (4, 2, 1) \) we have

\[
P_1(u) = (u + 1)(u + 4)(u + 5),
\]
Example. For $\lambda = (7, 5, 2 | 3, 1, 0, 0)$ and $\mu = (4, 2, 1)$ we have

\[
P_1(u) = (u + 1)(u + 4)(u + 5),
\]

\[
P_2(u) = u + 3,
\]
Example. For \(\lambda = (7, 5, 2 \mid 3, 1, 0, 0) \) and \(\mu = (4, 2, 1) \) we have

\[
P_1(u) = (u + 1)(u + 4)(u + 5),
\]

\[
P_2(u) = u + 3,
\]

\[
P_3(u) = (u - 4)(u - 1).
\]
Introduce parameters of the diagram conjugate to $\Gamma_{\lambda/\mu}$. Set $r = \mu_1$ and let $\mu' = (\mu'_1, \ldots, \mu'_r)$ be the diagram conjugate to μ so that μ'_j equals the number of boxes in column j of μ.

Corollary. The $\mathfrak{Y}(\mathfrak{g}l_n)$-module $L(\lambda) + \mu$ is isomorphic to $L(\lambda') + \mu'$, the skew representation associated with $\mathfrak{g}l_r + n$-module $L(\lambda')$ and the $\mathfrak{g}l_r$-highest weight μ'.

Introduce parameters of the diagram conjugate to Γ_{λ}/μ. Set $r = \mu_1$ and let $\mu' = (\mu'_1, \ldots, \mu'_r)$ be the diagram conjugate to μ so that μ'_j equals the number of boxes in column j of μ.

Set $\lambda' = (\lambda'_1, \ldots, \lambda'_{r+n})$, where λ'_j equals the number of boxes in column j of the diagram Γ_{λ}.
Introduce parameters of the diagram conjugate to Γ_{λ}/μ. Set $r = \mu_1$ and let $\mu' = (\mu'_1, \ldots, \mu'_r)$ be the diagram conjugate to μ so that μ'_j equals the number of boxes in column j of μ.

Set $\lambda' = (\lambda'_1, \ldots, \lambda'_{r+n})$, where λ'_j equals the number of boxes in column j of the diagram Γ_{λ}.

Corollary. The $\mathbf{Y}(\mathfrak{gl}_n)$-module $L(\lambda)^{\mu}_\mu$ is isomorphic to $\overline{L}(\lambda')^{\mu'}_{\mu'}$, the skew representation associated with \mathfrak{gl}_{r+n}-module $\overline{L}(\lambda')$ and the \mathfrak{gl}_r-highest weight μ'.
Construction of basis vectors

produce the highest vector of the \(Y(gl_n) \)-module \(L(\lambda + \mu) \), use the isomorphism \(L(\lambda) + \mu \sim L(\lambda') + \mu' \) to get the vectors of the trapezium Gelfand–Tsetlin basis of \(L'(\mu) \) in terms of the Yangian generators, combine with the Gelfand–Tsetlin basis of \(L'(\mu) \).
Construction of basis vectors

- produce the highest vector of the $\mathcal{Y}(\mathfrak{gl}_n)$-module $L(\lambda)^+_\mu$,
Construction of basis vectors

- produce the highest vector of the $\mathcal{Y}(\mathfrak{gl}_n)$-module $L(\lambda)^+_\mu$,

- use the isomorphism $L(\lambda)^+_\mu \cong \bar{L}(\lambda')^+_{\mu'}$ to get the vectors of the trapezium Gelfand–Tsetlin basis of $\bar{L}(\lambda')^+_{\mu'}$ in terms of the Yangian generators,
Construction of basis vectors

- produce the highest vector of the Y(gl_n)-module $L(\lambda)_{\mu}^{+}$,

- use the isomorphism $L(\lambda)_{\mu}^{+} \cong \overline{L}(\lambda')_{\mu'}^{+}$ to get the vectors of the trapezium Gelfand–Tsetlin basis of $\overline{L}(\lambda')_{\mu'}^{+}$ in terms of the Yangian generators,

- combine with the Gelfand–Tsetlin basis of $L'(\mu)$.
The extremal projector p for \mathfrak{gl}_m is given by

$$p = \prod_{i<j} \sum_{k=0}^{\infty} (E_{ji})^k (E_{ij})^k \frac{(-1)^k}{k! (h_i - h_j + 1) \ldots (h_i - h_j + k)},$$

where $h_i = E_{ii} - i + 1$. The product is taken in a normal order.
The extremal projector p for \mathfrak{gl}_m is given by

$$p = \prod_{i<j} \sum_{k=0}^{\infty} (E_{ji})^k (E_{ij})^k \frac{(-1)^k}{k! (h_i - h_j + 1) \ldots (h_i - h_j + k)},$$

where $h_i = E_{ii} - i + 1$. The product is taken in a normal order.

The projector satisfies

$$E_{ij} p = p E_{ji} = 0 \quad \text{for} \quad 1 \leq i < j \leq m.$$
The extremal projector p for \mathfrak{gl}_m is given by

$$p = \prod_{i<j} \sum_{k=0}^{\infty} (E_{ji})^k (E_{ij})^k \frac{(-1)^k}{k! (h_i - h_j + 1) \ldots (h_i - h_j + k)},$$

where $h_i = E_{ii} - i + 1$. The product is taken in a normal order.

The projector satisfies

$$E_{ij} p = p E_{ji} = 0 \quad \text{for} \quad 1 \leq i < j \leq m.$$

For $i = 1, \ldots, m$ and $a = m + 1, \ldots, m + n$ set

\[z_{i a} = p E_{i a}(h_i - h_1) \cdots (h_i - h_{i-1}), \]

\[z_{a i} = p E_{a i}(h_i - h_{i+1}) \cdots (h_i - h_m). \]
For $i = 1, \ldots, m$ and $a = m + 1, \ldots, m + n$ set

$$z_{ia} = p E_{ia} (h_i - h_1) \cdots (h_i - h_{i-1}),$$

$$z_{ai} = p E_{ai} (h_i - h_{i+1}) \cdots (h_i - h_m).$$

z_{ia} and z_{ai} can be regarded as elements of $U(\mathfrak{gl}_{m|n})$ modulo the left ideal generated by E_{ij} with $1 \leq i < j \leq m$.
For \(i = 1, \ldots, m\) and \(a = m + 1, \ldots, m + n\) set

\[
 z_{i,a} = p E_{i,a}(h_i - h_1) \cdots (h_i - h_{i-1}),
\]
\[
 z_{a,i} = p E_{a,i}(h_i - h_{i+1}) \cdots (h_i - h_{m}).
\]

\(z_{i,a}\) and \(z_{a,i}\) can be regarded as elements of \(\mathcal{U}(\mathfrak{gl}_{m|n})\) modulo the left ideal generated by \(E_{ij}\) with \(1 \leq i < j \leq m\).

Example.

\[
 z_{1,a} = E_{1,a}, \quad z_{2,a} = E_{2,a}(h_2 - h_1) + E_{21}E_{1,a},
\]
\[
 z_{am} = E_{am}, \quad z_{a,m-1} = E_{a,m-1}(h_{m-1} - h_m) + E_{m,m-1}E_{am}.
\]
The elements z_{ia} and z_{ai} are odd; together with the even elements E_{ab} with $a, b \in \{m + 1, \ldots, m + n\}$ they generate the Mickelsson–Zhelobenko superalgebra $Z(\mathfrak{gl}_{m|n}, \mathfrak{gl}_m)$ associated with the pair $\mathfrak{gl}_m \subseteq \mathfrak{gl}_{m|n}$.
The elements z_{ia} and z_{ai} are odd; together with the even elements E_{ab} with $a, b \in \{m + 1, \ldots, m + n\}$ they generate the Mickelsson–Zhelobenko superalgebra $Z(\mathfrak{gl}_m|n, \mathfrak{gl}_m)$ associated with the pair $\mathfrak{gl}_m \subseteq \mathfrak{gl}_m|n$.

The generators satisfy quadratic relations that can be written in an explicit form.
They preserve the subspace of \mathfrak{gl}_m-highest vectors in $L(\lambda)$,

$$z_{ia} : L(\lambda)_{\mu}^+ \rightarrow L(\lambda)_{\mu+\delta_i}^+,$$

$$z_{ai} : L(\lambda)_{\mu}^+ \rightarrow L(\lambda)_{\mu-\delta_i}^+,$$

where $\mu \pm \delta_i$ is obtained from μ by replacing μ_i by $\mu_i \pm 1$.

They preserve the subspace of \mathfrak{gl}_m-highest vectors in $L(\lambda)$,

$$z_{ia} : L(\lambda)^+_{\mu} \rightarrow L(\lambda)^+_{\mu+\delta_i}, \quad z_{ai} : L(\lambda)^+_{\mu} \rightarrow L(\lambda)^+_{\mu-\delta_i},$$

where $\mu \pm \delta_i$ is obtained from μ by replacing μ_j by $\mu_j \pm 1$.

Proposition. The element

$$\zeta_\mu = \prod_{j=1}^{m} (z_{m+\lambda_j-\mu_j, j} \cdots z_{m+2,j} z_{m+1,j}) \zeta$$

with the product taken in the increasing order of j is the highest vector of the $Y(\mathfrak{gl}_n)$-module $L(\lambda)^+_{\mu}$.