Feigin–Frenkel center for classical types

Alexander Molev

University of Sydney
Affine Kac–Moody algebras
Affine Kac–Moody algebras

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.
Affine Kac–Moody algebras

Let \(\mathfrak{g} \) be a simple Lie algebra over \(\mathbb{C} \).

Consider the standard invariant bilinear form on \(\mathfrak{g} \)

\[
\langle X, Y \rangle = \frac{1}{2h^\vee} \text{tr}(\text{ad} X \text{ ad} Y),
\]

where \(h^\vee \) is the dual Coxeter number.
Affine Kac–Moody algebras

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Consider the standard invariant bilinear form on \mathfrak{g}

$$\langle X, Y \rangle = \frac{1}{2h^\vee} \text{tr}(\text{ad} X \text{ ad} Y),$$

where h^\vee is the dual Coxeter number.

For the classical types,

$$h^\vee = \begin{cases}
 n & \text{for } \mathfrak{g} = \mathfrak{sl}_n, \\
 N - 2 & \text{for } \mathfrak{g} = \mathfrak{o}_N, \\
 n + 1 & \text{for } \mathfrak{g} = \mathfrak{sp}_{2n}.
\end{cases}$$
The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

$$\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$$
The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

$$\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C} K$$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r + s] + r \delta_{r,-s} \langle X, Y \rangle K,$$

where $X[r] = X t^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.
The affine Kac–Moody algebra \hat{g} is the central extension

$$\hat{g} = g[t, t^{-1}] \oplus \mathbb{C}K$$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r + s] + r \delta_{r,-s} \langle X, Y \rangle K,$$

where $X[r] = X t^r$ for any $X \in g$ and $r \in \mathbb{Z}$.

The vacuum module at the critical level $V(g)$ over \hat{g} is the quotient of the universal enveloping algebra $U(\hat{g})$ by the left ideal generated by $g[t]$ and $K + h^\vee$.
The Feigin–Frenkel center $\mathfrak{z}(\hat{g})$ is the algebra $\mathfrak{z}(\hat{g}) = \text{End}_{\hat{g}} V(g)$. Equivalently, $\mathfrak{z}(\hat{g}) = V(g) \{ t \} = \{ v \in V(g) | g[t] v = 0 \}$. The algebra $\mathfrak{z}(\hat{g})$ is commutative.
The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is the algebra

$$\mathfrak{z}(\hat{\mathfrak{g}}) = \text{End}_{\hat{\mathfrak{g}}} V(\mathfrak{g}).$$
The Feigin–Frenkel center \(\mathcal{Z}(\hat{\mathfrak{g}}) \) is the algebra

\[
\mathcal{Z}(\hat{\mathfrak{g}}) = \text{End}_{\hat{\mathfrak{g}}} V(\mathfrak{g}).
\]

Equivalently,

\[
\mathcal{Z}(\hat{\mathfrak{g}}) = V(\mathfrak{g})^{\mathfrak{g}[t]} = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.
\]
Feigin–Frenkel center

The Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \text{End}_{\widehat{\mathfrak{g}}} V(\mathfrak{g}).$$

Equivalently,

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = V(\mathfrak{g})^{\mathfrak{g}[t]} = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t]v = 0 \}.$$

The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
As a vector space, the vacuum module $V(\mathfrak{g})$ can be identified with the universal enveloping algebra $U(t^{-1}\mathfrak{g}[t^{-1}])$.

Define the translation operator $T: V(\mathfrak{g}) \to V(\mathfrak{g})$ as the derivation $T = -\partial_t$.

The subspace $z(\hat{\mathfrak{g}})$ of $V(\mathfrak{g})$ is T-invariant. Any element of $z(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector.
As a vector space, the vacuum module $V(\mathfrak{g})$ can be identified with the universal enveloping algebra $U(t^{-1}\mathfrak{g}[t^{-1}])$.

Then the Feigin–Frenkel center $\mathcal{Z}(\hat{\mathfrak{g}})$ can be regarded as a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.

Define the translation operator $T: V(\mathfrak{g}) \to V(\mathfrak{g})$ as the derivation $T = -\partial t$. The subspace $\mathcal{Z}(\hat{\mathfrak{g}})$ of $V(\mathfrak{g})$ is T-invariant. Any element of $\mathcal{Z}(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector.
As a vector space, the vacuum module $V(g)$ can be identified with the universal enveloping algebra $U(t^{-1}g[t^{-1}])$.

Then the Feigin–Frenkel center $\mathfrak{z}(\hat{g})$ can be regarded as a commutative subalgebra of $U(t^{-1}g[t^{-1}])$.

Define the translation operator $T : V(g) \to V(g)$ as the derivation $T = -\partial_t$.

The subspace $\mathfrak{z}(\hat{g})$ of $V(g)$ is T-invariant. Any element of $\mathfrak{z}(\hat{g})$ is called a Segal–Sugawara vector.
As a vector space, the vacuum module $V(g)$ can be identified with the universal enveloping algebra $U(t^{-1}g[t^{-1}])$.

Then the Feigin–Frenkel center $\mathfrak{z}(\hat{g})$ can be regarded as a commutative subalgebra of $U(t^{-1}g[t^{-1}])$.

Define the translation operator $T : V(g) \to V(g)$ as the derivation $T = -\partial_t$.

The subspace $\mathfrak{z}(\hat{g})$ of $V(g)$ is T-invariant.
As a vector space, the vacuum module $V(g)$ can be identified with the universal enveloping algebra $U(t^{-1}g[t^{-1}])$.

Then the Feigin–Frenkel center $\hat{\mathfrak{z}}(\hat{g})$ can be regarded as a commutative subalgebra of $U(t^{-1}g[t^{-1}])$.

Define the translation operator $T : V(g) \to V(g)$ as the derivation $T = -\partial_t$.

The subspace $\mathfrak{z}(\hat{g})$ of $V(g)$ is T-invariant.

Any element of $\mathfrak{z}(\hat{g})$ is called a Segal–Sugawara vector.
Theorem (Feigin–Frenkel, 1992).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}g[t^{-1}])$ such that

Theorem (Feigin–Frenkel, 1992).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathbf{U}(t^{-1} g[t^{-1}])$ such that

$$\mathfrak{z}(\hat{g}) = \mathbb{C} [T^k S_l \mid l = 1, \ldots, n, \quad k \geq 0],$$

where $n = \text{rank } g$ and the symbols S_1, \ldots, S_n coincide with the images of certain algebraically independent generators of the algebra of invariants $\mathbf{S}(g)$ under the embedding $\mathbf{S}(g) \hookrightarrow \mathbf{S}(t^{-1} g[t^{-1}])$ defined by $X \mapsto X[-1]$. We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.
Theorem (Feigin–Frenkel, 1992).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}g[t^{-1}])$ such that

$$\mathfrak{z} \hat{g} = \mathbb{C} [T^k S_l \mid l = 1, \ldots, n, \ k \geq 0],$$

where $n = \text{rank } g$ and the symbols $\bar{S}_1, \ldots, \bar{S}_n$ coincide with the images of certain algebraically independent generators of the algebra of invariants $S(g)^g$ under the embedding

$S(g) \hookrightarrow S(t^{-1}g[t^{-1}])$ defined by $X \mapsto X[-1]$.
Theorem (Feigin–Frenkel, 1992).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$ such that

$$\mathfrak{z}(\hat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \ldots, n, \ k \geq 0],$$

where $n = \text{rank}\ \mathfrak{g}$ and the symbols $\overline{S}_1, \ldots, \overline{S}_n$ coincide with the images of certain algebraically independent generators of the algebra of invariants $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ under the embedding $\mathcal{S}(\mathfrak{g}) \hookrightarrow \mathcal{S}(t^{-1}\mathfrak{g}[t^{-1}])$ defined by $X \mapsto X[-1]$.

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.
A detailed proof is explained in the book by

Let \(P = P(Y_1, \ldots, Y_l) \) be a \(g \)-invariant in \(S(g) \).

Let \(P = P(Y_1, \ldots, Y_l) \) be a \(g \)-invariant in \(S(g) \).

Set \(Y_i(z) = \sum_{r<0} Y_i[r] z^{-r-1} \) and write

\[
P(Y_1(z), \ldots, Y_l(z)) = \sum_{r<0} P(r) z^{-r-1}.
\]
A detailed proof is explained in the book by

Let \(P = P(Y_1, \ldots, Y_l) \) be a \(g \)-invariant in \(S(g) \).

Set \(Y_i(z) = \sum_{r < 0} Y_i[r]z^{-r-1} \) and write

\[
P(Y_1(z), \ldots, Y_l(z)) = \sum_{r < 0} P(r)z^{-r-1}.
\]

Then each \(P(r) \) is a \(g[t] \)-invariant in \(S(t^{-1}g[t^{-1}]) \).

Let \(P = P(Y_1, \ldots, Y_l) \) be a \(g \)-invariant in \(S(g) \).

Set \(Y_i(z) = \sum_{r<0} Y_i[r] z^{-r-1} \) and write

\[
P(Y_1(z), \ldots, Y_l(z)) = \sum_{r<0} P(r) z^{-r-1}.
\]

Then each \(P(r) \) is a \(g[t] \)-invariant in \(S(t^{-1}g[t^{-1}]) \).

Moreover, \(k! P(-k-1) = T^k P(Y_1[-1], \ldots, Y_l[-1]) \) for \(k \geq 0 \).
Theorem (Beilinson–Drinfeld, 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(g)^g$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r < 0$ are algebraically independent generators of $S(t^{-1}g[t^{-1}])^g[t]$. Earlier work: R. Goodman and N. Wallach, 1989, type A; T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.
Theorem (Beilinson–Drinfeld, 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(g)^g$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r < 0$ are algebraically independent generators of $S(t^{-1} g[t^{-1}])^g[t]$.

Explicit formulas for Segal–Sugawara vectors

They will lead, in particular, to a simpler proof of the Feigin–Frenkel theorem for classical types.

We will need the extended Lie algebra \(\hat{g} \oplus \mathbb{C} \tau \), where for the element \(\tau = -\partial_t \) we have the relations

\[
\left[\tau, X^r \right] = -r X^{r-1},
\]

\[
\left[\tau, K \right] = 0.
\]
Explicit formulas for Segal–Sugawara vectors

They will lead, in particular, to a simpler proof of the Feigin–Frenkel theorem for classical types.
Explicit formulas for Segal–Sugawara vectors

They will lead, in particular, to a simpler proof of the Feigin–Frenkel theorem for classical types.

We will need the extended Lie algebra \(\widehat{g} \oplus \mathbb{C} \tau \), where for the element \(\tau = -\partial_t \) we have the relations

\[
[\tau, X[r]] = -r X[r - 1], \quad [\tau, K] = 0.
\]
Type A

Lie algebra $\mathfrak{g} = \mathfrak{gl}_n$, the standard basis $\{E_{ij} | i, j = 1, \ldots, n\}$.

Consider the $n \times n$ matrix $\tau + E_{[-1]}$ given by

\[
\begin{pmatrix}
\tau + E_{11}[(-1)] & E_{12}[(-1)] & \cdots & E_{1n}[(-1)] \\
E_{21}[(-1)] & \tau + E_{22}[(-1)] & \cdots & E_{2n}[(-1)] \\
\cdots & \cdots & \cdots & \cdots \\
E_{n1}[(-1)] & E_{n2}[(-1)] & \cdots & \tau + E_{nn}[(-1)]
\end{pmatrix}
\]
Type A

Lie algebra $\mathfrak{g} = \mathfrak{gl}_n$, the standard basis $\{E_{ij} \mid i, j = 1, \ldots, n\}$.
Type A

Lie algebra $\mathfrak{g} = \mathfrak{gl}_n$, the standard basis $\{E_{ij} \mid i, j = 1, \ldots, n\}$.

Consider the $n \times n$ matrix $\tau + E[-1]$ given by

$$
\tau + E[-1] = \begin{bmatrix}
\tau + E_{11}[-1] & E_{12}[-1] & \cdots & E_{1n}[-1] \\
E_{21}[-1] & \tau + E_{22}[-1] & \cdots & E_{2n}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
E_{n1}[-1] & E_{n2}[-1] & \cdots & \tau + E_{nn}[-1]
\end{bmatrix}.
$$
Theorem (Chervov–Talalaev, 2006; also Chervov–M., 2009).

The coefficients S_1, \ldots, S_n of the polynomial

$$\text{cdet}(\tau + E[-1]) = \tau^n + S_1 \tau^{n-1} + \cdots + S_{n-1} \tau + S_n$$

form a complete set of Segal–Sugawara vectors in $V(\mathfrak{gl}_n)$.
Theorem (Chervov–Talalaev, 2006; also Chervov–M., 2009).

The coefficients S_1, \ldots, S_n of the polynomial

$$
cdet(\tau + E[-1]) = \tau^n + S_1 \tau^{n-1} + \cdots + S_{n-1} \tau + S_n
$$

form a complete set of Segal–Sugawara vectors in $V(gl_n)$.

Example. For $n = 2$

$$
cdet(\tau + E[-1]) = (\tau + E_{11}[-1])(\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]
$$

$$
= \tau^2 + S_1 \tau + S_2
$$
Theorem (Chervov–Talalaev, 2006; also Chervov–M., 2009).

The coefficients S_1, \ldots, S_n of the polynomial

$$
cdet\left(\tau + E[-1]\right) = \tau^n + S_1 \tau^{n-1} + \cdots + S_{n-1} \tau + S_n
$$

form a complete set of Segal–Sugawara vectors in $V(\mathfrak{gl}_n)$.

Example. For $n = 2$

$$
cdet\left(\tau + E[-1]\right) = (\tau + E_{11}[-1]) (\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]
$$

$$
= \tau^2 + S_1 \tau + S_2
$$

with

$$
S_1 = E_{11}[-1] + E_{22}[-1],
$$

$$
S_2 = E_{11}[-1]E_{22}[-1] - E_{21}[-1]E_{12}[-1] + E_{22}[-2].
$$
Corollary. For any $k \geq 0$ all coefficients P_{kl} in the expansion

$$\text{tr}(\tau + E[-1])^k = P_{k0} \tau^k + P_{k1} \tau^{k-1} + \cdots + P_{kk}$$

are Segal–Sugawara vectors in $V(\mathfrak{gl}_n)$.

Remark. These results generalize to the Lie superalgebra $\mathfrak{gl}_m|_n$. The column-determinant is replaced by a noncommutative Berezinian (M.–Ragoucy, 2009).
Corollary. For any $k \geq 0$ all coefficients P_{kl} in the expansion

$$\text{tr}(\tau + E[-1])^k = P_{k0} \tau^k + P_{k1} \tau^{k-1} + \cdots + P_{kk}$$

are Segal–Sugawara vectors in $V(\mathfrak{gl}_n)$.

Moreover, the elements P_{11}, \ldots, P_{nn} form a complete set of Segal–Sugawara vectors.
Corollary. For any \(k \geq 0 \) all coefficients \(P_{kl} \) in the expansion

\[
\text{tr}(\tau + E[-1])^k = P_{k0} \tau^k + P_{k1} \tau^{k-1} + \cdots + P_{kk}
\]

are Segal–Sugawara vectors in \(V(\mathfrak{gl}_n) \).

Moreover, the elements \(P_{11}, \ldots, P_{nn} \) form a complete set of Segal–Sugawara vectors.

Remark. These results generalize to the Lie superalgebra \(\mathfrak{gl}_{m|n} \).

The column-determinant is replaced by a noncommutative Berezinian (M.–Ragoucy, 2009).
Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_N of skew-symmetric matrices is the subalgebra of \mathfrak{gl}_N spanned by the elements $F_{ij} = E_{ij} - E_{ji}$.
Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_N of skew-symmetric matrices is the subalgebra of \mathfrak{gl}_N spanned by the elements $F_{ij} = E_{ij} - E_{ji}$.

Denote by F the $N \times N$ matrix whose (i,j) entry is F_{ij}. Regard F as the element

$$F = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij} \in \text{End } \mathbb{C}^N \otimes \text{U}(\mathfrak{o}_N).$$
Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_N of skew-symmetric matrices is the subalgebra of \mathfrak{gl}_N spanned by the elements $F_{ij} = E_{ij} - E_{ji}$.

Denote by F the $N \times N$ matrix whose (i,j) entry is F_{ij}. Regard F as the element

$$F = \sum_{i,j=1}^N e_{ij} \otimes F_{ij} \in \text{End } \mathbb{C}^N \otimes U(\mathfrak{o}_N).$$

Introduce elements of $\text{End } \mathbb{C}^N \otimes \text{End } \mathbb{C}^N \cong \text{End } (\mathbb{C}^N \otimes \mathbb{C}^N)$ by

$$P = \sum_{i,j=1}^N e_{ij} \otimes e_{ji}, \quad Q = \sum_{i,j=1}^N e_{ij} \otimes e_{ij}.$$
The defining relations of the algebra $U(\sigma_N)$ have the form

$$F_1 F_2 - F_2 F_1 = (P - Q) F_2 - F_2 (P - Q)$$

together with the relation $F + F^t = 0,$
The defining relations of the algebra $U(\mathfrak{o}_N)$ have the form

\[F_1 F_2 - F_2 F_1 = (P - Q) F_2 - F_2 (P - Q) \]

together with the relation $F + F^t = 0$, where both sides are regarded as elements of the algebra $\text{End } \mathbb{C}^N \otimes \text{End } \mathbb{C}^N \otimes U(\mathfrak{o}_N)$ and

\[F_1 = \sum_{i,j=1}^{N} e_{ij} \otimes 1 \otimes F_{ij}, \quad F_2 = \sum_{i,j=1}^{N} 1 \otimes e_{ij} \otimes F_{ij}. \]
In the affine Kac–Moody algebra $\hat{\mathfrak{o}}_N = \mathfrak{o}_N[t, t^{-1}] \oplus \mathbb{C} K$ set

$$F_{ij}[r] = F_{ij} t^r \text{ for any } r \in \mathbb{Z}.$$
In the affine Kac–Moody algebra $\widehat{\mathfrak{o}_N} = \mathfrak{o}_N[t, t^{-1}] \oplus \mathbb{C}K$ set $F_{ij}[r] = F_{ij} t^r$ for any $r \in \mathbb{Z}$. Introduce the matrix $F[r] = [F_{ij}[r]]$ and regard it as the element

$$F[r] = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij}[r] \in \text{End} \mathbb{C}^N \otimes U(\widehat{\mathfrak{o}_N}).$$
In the affine Kac–Moody algebra \(\hat{\mathfrak{o}}_N = \mathfrak{o}_N [t, t^{-1}] \oplus \mathbb{C} K \) set
\[
F_{ij}[r] = F_{ij} t^r \quad \text{for any } r \in \mathbb{Z}.
\]
Introduce the matrix \(F[r] = [F_{ij}[r]] \) and regard it as the element
\[
F[r] = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij}[r] \in \text{End} \mathbb{C}^N \otimes U(\hat{\mathfrak{o}}_N).
\]

The defining relations of the algebra \(U(\hat{\mathfrak{o}}_N) \) can be written as
\[
F[r_1] F[s_2] - F[s_2] F[r_1] = (P - Q) F[r + s_2] - F[r + s_2] (P - Q)
+ r \delta_{r,-s} (P - Q) K.
\]
Consider the $N \times N$ matrix $\Phi = \tau + F[-1]$,
Consider the \(N \times N \) matrix \(\Phi = \tau + F[-1] \),

\[
\Phi = \begin{bmatrix}
\tau & F_{12}[-1] & \cdots & F_{1N}[-1] \\
F_{21}[-1] & \tau & \cdots & F_{2N}[-1] \\
& & \ddots & \\
F_{N1}[-1] & F_{N2}[-1] & \cdots & \tau
\end{bmatrix}.
\]
Consider the $N \times N$ matrix $\Phi = \tau + F[-1]$,

$$
\Phi = \begin{bmatrix}
\tau & F_{12}[-1] & \ldots & F_{1N}[-1] \\
F_{21}[-1] & \tau & \ldots & F_{2N}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
F_{N1}[-1] & F_{N2}[-1] & \ldots & \tau
\end{bmatrix}.
$$

Note that

$$
F_{ij}[-1] + F_{ji}[-1] = 0.
$$
For each \(a \in \{1, \ldots, m\} \) define the element \(\Phi_a \) of the algebra

\[
\text{End } \mathbb{C}^N \otimes \ldots \otimes \text{End } \mathbb{C}^N \otimes U(\hat{\mathfrak{o}}_N \oplus \mathbb{C} \tau)
\]
For each \(a \in \{1, \ldots, m\} \) define the element \(\Phi_a \) of the algebra

\[
\text{End } \mathbb{C}^N \otimes \ldots \otimes \text{End } \mathbb{C}^N \otimes U(\hat{o}_N \oplus \mathbb{C} \tau)
\]

by

\[
\Phi_a = \sum_{i,j=1}^{N} 1^\otimes(a-1) \otimes e_{ij} \otimes 1^\otimes(m-a) \otimes \Phi_{ij},
\]
For each \(a \in \{1, \ldots, m\} \) define the element \(\Phi_a \) of the algebra

\[
\text{End } \mathbb{C}^N \otimes \ldots \otimes \text{End } \mathbb{C}^N \otimes U(\hat{\phi}_N \oplus \mathbb{C}_\tau)
\]

by

\[
\Phi_a = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (m-a)} \otimes \Phi_{ij},
\]

where \(\Phi_{ij} = \delta_{ij}\tau + F_{ij}[-1] \).
For each $a \in \{1, \ldots, m\}$ define the element Φ_a of the algebra

$$\text{End } \mathbb{C}^N \otimes \ldots \otimes \text{End } \mathbb{C}^N \otimes U(\hat{\alpha}_N \oplus \mathbb{C} \tau)$$

by

$$\Phi_a = \sum_{i,j=1}^{N} 1^{\otimes(a-1)} \otimes e_{ij} \otimes 1^{\otimes(m-a)} \otimes \Phi_{ij},$$

where $\Phi_{ij} = \delta_{ij}\tau + F_{ij}[-1]$.

The trace map $\text{tr} : \text{End } \mathbb{C}^N \rightarrow \mathbb{C}$ is defined by $\text{tr} : e_{ij} \mapsto \delta_{ij}$.
Introduce the element $S^{(m)}$ of the algebra

$$\text{End } \mathbb{C}^N \otimes \ldots \otimes \text{End } \mathbb{C}^N$$

by $S^{(m)} = 1_n$, the product is taken in the lexicographic order on the pairs (a, b), and P_{ab} and Q_{ab} act as the respective operators P and Q in the a-th and b-th copies of \mathbb{C}^N and as the identity operators in all the remaining copies.
Introduce the element $S^{(m)}$ of the algebra

$$\text{End } \mathbb{C}^N \otimes \ldots \otimes \text{End } \mathbb{C}^N$$

by

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

the product is taken in the lexicographic order on the pairs (a, b), and P_{ab} and Q_{ab} act as the respective operators P and Q in the a-th and b-th copies of \mathbb{C}^N and as the identity operators in all the remaining copies.
Properties: for $1 \leq a < b \leq m$ we have

\[P_{ab} S^{(m)} = S^{(m)} P_{ab} = S^{(m)} \quad \text{and} \quad Q_{ab} S^{(m)} = S^{(m)} Q_{ab} = 0. \]
Properties: for $1 \leq a < b \leq m$ we have

\[P_{ab} S^{(m)} = S^{(m)} P_{ab} = S^{(m)} \quad \text{and} \quad Q_{ab} S^{(m)} = S^{(m)} Q_{ab} = 0. \]

Equivalent formula:

\[S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} \left(1 - \frac{Q_{ab}}{N + a + b - 3} \right) \prod_{1 \leq a < b \leq m} \left(1 + \frac{P_{ab}}{b - a} \right). \]

Remark. $S^{(m)}$ is the idempotent associated with the trivial representation of the Brauer algebra B_m^λ. In particular, $(S^{(m)})^2 = S^{(m)}$.
Properties: for $1 \leq a < b \leq m$ we have

$$P_{ab} S^{(m)} = S^{(m)} P_{ab} = S^{(m)}$$

and

$$Q_{ab} S^{(m)} = S^{(m)} Q_{ab} = 0.$$

Equivalent formula:

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} \left(1 - \frac{Q_{ab}}{N + a + b - 3} \right) \prod_{1 \leq a < b \leq m} \left(1 + \frac{P_{ab}}{b - a} \right).$$

Remark. $S^{(m)}$ is the idempotent associated with the trivial representation of the Brauer algebra $\mathcal{B}_m(N)$. In particular, $(S^{(m)})^2 = S^{(m)}$.
In a reduced form,

\[S^{(m)} = H^{(m)} \sum_{r=0}^{\lfloor m/2 \rfloor} \frac{(-1)^r}{2^r r!} \binom{N/2 + m - 2}{r}^{-1} \sum_{a_i < b_i} Q_{a_1 b_1} \cdots Q_{a_r b_r}, \]

where \(H^{(m)} \) is the symmetrizer in the group algebra \(\mathbb{C}[S_m] \).
In a reduced form,

\[S^{(m)} = H^{(m)} \sum_{r=0}^{\lfloor m/2 \rfloor} \frac{(-1)^r}{2^r r!} \left(\frac{N}{2} + m - 2 \right)^{-1} \sum_{a_i < b_i} Q_{a_1 \ b_1} \cdots Q_{a_r \ b_r}, \]

where \(H^{(m)} \) is the symmetrizer in the group algebra \(\mathbb{C}[S_m] \).

In terms of the Jucys–Murphy elements:

\[S^{(m)} = \prod_{b=2}^{m} \frac{1}{b(N + 2b - 4)} \left(1 + \sum_{a=1}^{b-1} (P_{ab} - Q_{ab}) \right) \times \left(N + b - 3 + \sum_{a=1}^{b-1} (P_{ab} - Q_{ab}) \right). \]
Theorem. The elements $\phi_{ma} \in U(t^{-1}o_N[t^{-1}])$ defined by

$$\text{tr} S^{(m)} \Phi_1 \ldots \Phi_m = \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \cdots + \phi_{mm}$$

are Segal–Sugawara vectors for o_N.
Theorem. The elements $\phi_{ma} \in U(t^{-1}o_N[t^{-1}])$ defined by

$$\text{tr} S^{(m)} \Phi_1 \ldots \Phi_m = \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \cdots + \phi_{mm}$$

are Segal–Sugawara vectors for o_N.

Moreover, $\phi_{22}, \phi_{44}, \ldots, \phi_{2n\cdot2n}$ is a complete set of Segal–Sugawara vectors for o_{2n+1}.
Theorem. The elements $\phi_{ma} \in U(t^{-1} \mathfrak{o}_N[t^{-1}])$ defined by

$$\text{tr } S^{(m)} \Phi_1 \ldots \Phi_m = \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \cdots + \phi_{mm}$$

are Segal–Sugawara vectors for \mathfrak{o}_N.

Moreover, $\phi_{22}, \phi_{44}, \ldots, \phi_{2n \cdot 2n}$ is a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1},

$\phi_{22}, \phi_{44}, \ldots, \phi_{2n - 2 \cdot 2n - 2}, \phi'_n$ is a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n}, where $\phi'_n = \text{Pf } F[-1]$ is the Pfaffian of the skew-symmetric matrix $F[-1]$.
Example. For \(m = 2 \) we have

\[
S^{(2)} = \frac{1 + P}{2} - \frac{Q}{N}.
\]
Example. For \(m = 2 \) we have

\[
S^{(2)} = \frac{1 + P}{2} - \frac{Q}{N}.
\]

Note the relations \(\text{tr}_1 P = 1 \) and \(\text{tr}_1 Q = 1 \).
Example. For $m = 2$ we have

$$S^{(2)} = \frac{1 + P}{2} - \frac{Q}{N}.$$

Note the relations $\text{tr}_1 P = 1$ and $\text{tr}_1 Q = 1$.

Hence, ϕ_{22} is found from

$$\text{tr} S^{(2)} \Phi_1 \Phi_2 = \frac{1}{2} \left(\text{tr} (\tau + F[-1]) \right)^2 + \frac{1}{2} \text{tr} (\tau + F[-1])^2$$

$$- \frac{1}{N} \text{tr} (\tau - F[-1])(\tau + F[-1]).$$
Example. For $m = 2$ we have

$$S^{(2)} = \frac{1 + P}{2} - \frac{Q}{N}.\]

Note the relations $\text{tr}_1 P = 1$ and $\text{tr}_1 Q = 1$.

Hence, ϕ_{22} is found from

\[
\text{tr} S^{(2)} \Phi_1 \Phi_2 = \frac{1}{2} (\text{tr} (\tau + F[-1]))^2 + \frac{1}{2} \text{tr} (\tau + F[-1])^2
- \frac{1}{N} \text{tr} (\tau - F[-1])(\tau + F[-1])
= \frac{N + 2}{2N} \left((N^2 - N) \tau^2 + \text{tr} F[-1]^2 \right).
\]
In the case of \mathfrak{o}_{2n} the Pfaffian $\text{Pf} F[-1]$ is

$$\text{Pf} F[-1] = \sum_{\sigma} \text{sgn} \sigma \cdot F_{\sigma(1)\sigma(2)}[-1] \cdots F_{\sigma(2n-1)\sigma(2n)}[-1],$$

summed over the permutations $\sigma \in S_{2n}$ such that
In the case of σ_{2n} the Pfaffian $\text{Pf} F[−1]$ is

$$\text{Pf} F[−1] = \sum_{\sigma} \text{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[−1] \cdots F_{\sigma(2n−1) \sigma(2n)}[−1],$$

summed over the permutations $\sigma \in \mathfrak{S}_{2n}$ such that

$$\sigma(1) < \sigma(2), \quad \sigma(3) < \sigma(4), \quad \ldots, \quad \sigma(2n−1) < \sigma(2n)$$

and
In the case of σ_{2n} the Pfaffian $\text{Pf } F[-1]$ is

$$\text{Pf } F[-1] = \sum_{\sigma} \text{sgn } \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \cdots F_{\sigma(2n-1) \sigma(2n)}[-1],$$

summed over the permutations $\sigma \in S_{2n}$ such that

$\sigma(1) < \sigma(2), \quad \sigma(3) < \sigma(4), \quad \ldots, \quad \sigma(2n-1) < \sigma(2n)$ and $\sigma(1) < \sigma(3) < \cdots < \sigma(2n-1)$.
In the case of σ_{2n} the Pfaffian $\text{Pf} F[-1]$ is

$$\text{Pf} F[-1] = \sum_{\sigma} \text{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \cdots F_{\sigma(2n-1) \sigma(2n)}[-1],$$

summed over the permutations $\sigma \in \mathfrak{S}_{2n}$ such that

$\sigma(1) < \sigma(2), \quad \sigma(3) < \sigma(4), \quad \ldots, \quad \sigma(2n-1) < \sigma(2n)$ and

$\sigma(1) < \sigma(3) < \cdots < \sigma(2n-1)$.

Example. For σ_4 we have

For the proof of the theorem we show that

\[F[0]_0 \, \text{tr} \, S^{(m)} \Phi_1 \ldots \Phi_m = 0 \quad \text{and} \quad F[1]_0 \, \text{tr} \, S^{(m)} \Phi_1 \ldots \Phi_m = 0 \]
For the proof of the theorem we show that

\[F[0]_0 \text{tr} S^{(m)} \Phi_1 \ldots \Phi_m = 0 \quad \text{and} \quad F[1]_0 \text{tr} S^{(m)} \Phi_1 \ldots \Phi_m = 0 \]

in the module

\[
\underbrace{\text{End } \mathbb{C}^N \otimes \ldots \otimes \text{End } \mathbb{C}^N}_{m+1} \otimes V(\mathfrak{o}_N)[\tau]
\]

with the copies of \(\text{End } \mathbb{C}^N \) labelled by \(0, 1, \ldots, m \).
For the symbols of the Segal–Sugawara vectors ϕ_{2k2k} find

$$\text{tr } S^{(2k)} X_1 \ldots X_{2k}, \quad X \in \mathfrak{o}_N.$$
For the symbols of the Segal–Sugawara vectors ϕ_{2k2k} find

$$\text{tr} S^{(2k)} X_1 \ldots X_{2k}, \quad X \in \mathfrak{o}_N.$$

Suppose that the eigenvalues of X are

$$x_1, \ldots, x_n, -x_1, \ldots, -x_n, 0 \quad \text{if} \quad N = 2n + 1,$$

$$x_1, \ldots, x_n, -x_1, \ldots, -x_n \quad \text{if} \quad N = 2n.$$
For the symbols of the Segal–Sugawara vectors ϕ_{2k2k} find

$$\text{tr } S^{(2k)} X_1 \ldots X_{2k}, \quad X \in \mathfrak{o}_N.$$

Suppose that the eigenvalues of X are

$$x_1, \ldots, x_n, -x_1, \ldots, -x_n, 0 \quad \text{if} \quad N = 2n + 1,$$

$$x_1, \ldots, x_n, -x_1, \ldots, -x_n \quad \text{if} \quad N = 2n.$$

Then

$$\text{tr } S^{(2k)} X_1 \ldots X_{2k} = \frac{N + 4k - 2}{N + 2k - 2} h_k(x_1^2, \ldots, x_n^2),$$

h_k is the complete symmetric polynomial.
Vertex algebra structure

The vacuum module $V(g)$ is a vertex algebra with the vacuum vector 1, the translation operator $T = -\partial_t$, and the state-field correspondence Y which is a linear map $Y: V(g) \to \text{End} V(g)[[z, z^{-1}]]$.

It is determined by

$$Y(X[-1], z) = \sum_{r \in \mathbb{Z}} X[r] z^{-r-1} =: X(z).$$
Vertex algebra structure

The vacuum module $V(g)$ is a vertex algebra with
Vertex algebra structure

The vacuum module $V(g)$ is a vertex algebra with the vacuum vector 1,
Vertex algebra structure

The vacuum module $V(g)$ is a vertex algebra with

the vacuum vector 1,

the translation operator $T = -\partial_t$,

Vertex algebra structure

The vacuum module $V(g)$ is a vertex algebra with

the vacuum vector 1,

the translation operator $T = -\partial_t$,

and the state-field correspondence Y which is a linear map

$$Y : V(g) \to \text{End} \ V(g)[[z, z^{-1}]].$$
The vacuum module $V(g)$ is a vertex algebra with the vacuum vector 1,
the translation operator $T = -\partial_t$,
and the state-field correspondence Y which is a linear map

$$Y : V(g) \rightarrow \text{End} V(g)[[z, z^{-1}]].$$

It is determined by

$$Y(X[-1], z) = \sum_{r \in \mathbb{Z}} X[r] z^{-r-1} =: X(z).$$
For any $r_i \geq 0$ we have

$$Y(X_1[-r_1 - 1] \ldots X_m[-r_m - 1], z) = \frac{1}{r_1! \ldots r_m!} : \partial_z^{r_1} X_1(z) \ldots \partial_z^{r_m} X_m(z) :,$$

with the convention that the normally ordered product is read from right to left;
For any $r_i \geq 0$ we have

$$Y(X_1[-r_1-1] \ldots X_m[-r_m-1], z) = \frac{1}{r_1! \ldots r_m!} : \partial_z^{r_1} X_1(z) \ldots \partial_z^{r_m} X_m(z) :,$$

with the convention that the normally ordered product is read from right to left;

$$: a(z) b(w) : = a(z) + b(w) + b(w) a(z)_-, $$
For any $r_i \geq 0$ we have

$$Y(X_1[-r_1-1] \ldots X_m[-r_m-1], z)$$

$$= \frac{1}{r_1! \ldots r_m!} : \partial_{z}^{r_1} X_1(z) \ldots \partial_{z}^{r_m} X_m(z) :,$$

with the convention that the normally ordered product is read from right to left;

$$: a(z) b(w) : = a(z)_{+} b(w) + b(w) a(z)_{-},$$

where

$$a(z)_{+} = \sum_{r \geq 0} a_r z^r \quad \text{and} \quad a(z)_{-} = \sum_{r < 0} a_r z^r.$$
Suppose that S_1, \ldots, S_n is a complete set of Segal–Sugawara vectors in $\hat{\mathfrak{g}}(\mathfrak{g})$. Apply the state-field correspondence map:

$$Y(S_l, z) = \sum_{r \in \mathbb{Z}} S_{l,r} z^{-r-1}.$$
Suppose that S_1, \ldots, S_n is a complete set of Segal–Sugawara vectors in $\mathfrak{z}(\widehat{\mathfrak{g}})$. Apply the state-field correspondence map:

$$Y(S_l, z) = \sum_{r \in \mathbb{Z}} S_{l,r} z^{-r-1}.$$

The elements $S_{l,r}$ are Sugawara operators for $\widehat{\mathfrak{g}}$. They generate the center of the completed algebra $U(\widehat{\mathfrak{g}})$ at the critical level.
Suppose that S_1, \ldots, S_n is a complete set of Segal–Sugawara vectors in $\mathfrak{z}(\hat{\mathfrak{g}})$. Apply the state-field correspondence map:

$$Y(S_l, z) = \sum_{r \in \mathbb{Z}} S_{l,r} z^{-r-1}.$$

The elements $S_{l,r}$ are Sugawara operators for $\hat{\mathfrak{g}}$. They generate the center of the completed algebra $U(\hat{\mathfrak{g}})$ at the critical level.

Applications: Singular vectors in Verma modules and Weyl modules over $\hat{\mathfrak{g}}$ (E. Frenkel and D. Gaitsgory, 2006, 2007).
Example.

Apply Y to the Segal–Sugawara vector $\text{tr} F[-1]^2$ for \hat{o}_N:
Example.

Apply Y to the Segal–Sugawara vector $\text{tr } F[-1]^2$ for \hat{o}_N:

$$\text{tr } F(z)^2 = \sum_{i,j=1}^{N} : F_{ij}(z) F_{ji}(z) :$$
Example.

Apply Y to the Segal–Sugawara vector $\text{tr} F[-1]^2$ for $\hat{\sigma}_N$:

\[
: \text{tr} F(z)^2 : = \sum_{i,j=1}^{N} : F_{ij}(z) F_{ji}(z) : \\
= \sum_{i,j=1}^{N} \left(F_{ij}(z) + F_{ji}(z) + F_{ji}(z) F_{ij}(z)_{-} \right) = \sum_{p \in \mathbb{Z}} S_p z^{-p-2}.
\]
Example.

Apply Y to the Segal–Sugawara vector $\text{tr } F[-1]^2$ for \hat{o}_N:

$$: \text{tr } F(z)^2 : = \sum_{i,j=1}^{N} : F_{ij}(z) F_{ji}(z) :$$

$$= \sum_{i,j=1}^{N} \left(F_{ij}(z) + F_{ji}(z) + F_{ji}(z) F_{ij}(z)_{-} \right) = \sum_{p \in \mathbb{Z}} S_p z^{-p-2}.$$

The S_p are the Sugawara operators

$$S_p = \sum_{i,j=1}^{N} \left(\sum_{r < 0} F_{ij}[r] F_{ji}[p - r] + \sum_{r \geq 0} F_{ji}[p - r] F_{ij}[r] \right)$$

commuting with \hat{o}_N.
Apply the state-field correspondence map Y:

$$\text{cdet}(\tau + E[-1]) \mapsto \text{cdet}(\partial z + E(z)),$$

where $E_{ij}(z) = \sum_{r \in Z} E_{ij}[r]z^{r-1}$ and

$$
\begin{bmatrix}
\partial z + E_{11}(z) & E_{12}(z) & \ldots & E_{1n}(z) \\
E_{21}(z) & \partial z + E_{22}(z) & \ldots & E_{2n}(z) \\
\vdots & \vdots & \ddots & \vdots \\
E_{n1}(z) & E_{n2}(z) & \ldots & \partial z + E_{nn}(z)
\end{bmatrix}.
$$
Apply the state-field correspondence map

\[Y : \text{cdet}(\tau + E[-1]) \leftrightarrow \text{cdet}(\partial_z + E(z)) : \]
Apply the state-field correspondence map

\[Y : \text{cdet} (\tau + E[-1]) \mapsto : \text{cdet} (\partial z + E(z)) : \]

where \[E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] z^{-r-1} \] and
Type A

Apply the state-field correspondence map

\[Y : \text{cdet}(\tau + E[-1]) \mapsto : \text{cdet}(\partial_z + E(z)) : \]

where \[E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] z^{-r-1} \]
and

\[\partial_z + E(z) = \begin{bmatrix}
\partial_z + E_{11}(z) & E_{12}(z) & \ldots & E_{1n}(z) \\
E_{21}(z) & \partial_z + E_{22}(z) & \ldots & E_{2n}(z) \\
\vdots & \vdots & \ddots & \vdots \\
E_{n1}(z) & E_{n2}(z) & \ldots & \partial_z + E_{nn}(z)
\end{bmatrix}. \]
Expand the normally ordered column-determinant

\[: \text{cdet}(\partial_z + E(z)) : = \partial_z^n + S_1(z) \partial_z^{n-1} + \cdots + S_{n-1}(z) \partial_z + S_n(z) \].
Expand the normally ordered column-determinant

\[\text{cdet}(\partial_z + E(z)) : = \partial_z^n + S_1(z) \partial_z^{n-1} + \cdots + S_{n-1}(z) \partial_z + S_n(z). \]

The coefficients $S_{l,r}$ of the $S_l(z)$ are Sugawara operators for $\hat{\mathfrak{gl}}_n$.
Expand the normally ordered column-determinant

\[: \text{cdet}(\partial_z + E(z)) : = \partial_z^n + S_1(z) \partial_z^{n-1} + \cdots + S_{n-1}(z) \partial_z + S_n(z). \]

The coefficients \(S_{l,r} \) of the \(S_l(z) \) are Sugawara operators for \(\hat{\mathfrak{gl}}_n \).

Using the vacuum axiom

\[: \text{cdet}(\partial_z + E(z)) : 1 = \text{cdet}(\partial_z + E(z)_+), \]

we get explicit generators of \(\mathfrak{gl}_n \) and hence, generators of the commutative subalgebra of \(U(t^{-1} \mathfrak{gl}_n[t^{-1}]) \).
Types B, C and D
Types B, C and D

Apply the state-field correspondence map

$$Y : \text{tr} \ S^{(m)} \Phi_1 \ldots \Phi_m \mapsto \text{tr} \ S^{(m)} (\partial_z + F_1(z)) \ldots (\partial_z + F_m(z)) :$$
Types B, C and D

Apply the state-field correspondence map

$$Y : \text{tr } S(m) \Phi_1 \ldots \Phi_m \mapsto \text{tr } S(m) \left(\partial_z + F_1(z) \right) \ldots \left(\partial_z + F_m(z) \right) :$$

where

$$F_{ij}(z) = \sum_{r \in \mathbb{Z}} F_{ij}[r] z^{-r-1}$$

and
Types B, C and D

Apply the state-field correspondence map

$$Y : \text{tr } S(m) \Phi_1 \ldots \Phi_m \mapsto \text{tr } S(m) (\partial_z + F_1(z)) \ldots (\partial_z + F_m(z)) :$$

where

$$F_{ij}(z) = \sum_{r \in \mathbb{Z}} F_{ij}[r] z^{-r-1} \quad \text{and}$$

$$\partial_z + F(z) = \begin{bmatrix}
\partial_z & F_{12}(z) & \ldots & F_{1N}(z) \\
F_{21}(z) & \partial_z & \ldots & F_{2N}(z) \\
\vdots & \vdots & \ddots & \vdots \\
F_{N1}(z) & F_{N2}(z) & \ldots & \partial_z
\end{bmatrix}.$$
Expand into a polynomial in ∂_z:

$$: \text{tr} S^{(m)} \left(\partial_z + F_1(z) \right) \cdots \left(\partial_z + F_m(z) \right) :$$

$$= f_{m0}(z) \partial_z^m + f_{m1}(z) \partial_z^{m-1} + \cdots + f_{mm}(z).$$
Expand into a polynomial in ∂_z:

\[
: \text{tr} S^{(m)} \left(\partial_z + F_1(z) \right) \cdots \left(\partial_z + F_m(z) \right) :
\]

\[
= f_{m0}(z) \partial_z^m + f_{m1}(z) \partial_z^{m-1} + \cdots + f_{mm}(z).
\]

All coefficients of the $f_{ma}(z)$ are Sugawara operators for \hat{o}_N.
Expand into a polynomial in ∂_z:

$$: \text{tr} S^{(m)} \left(\partial_z + F_1(z) \right) \ldots \left(\partial_z + F_m(z) \right) : = f_{m0}(z) \partial_z^m + f_{m1}(z) \partial_z^{m-1} + \cdots + f_{mm}(z).$$

All coefficients of the $f_{ma}(z)$ are Sugawara operators for \hat{o}_N.

Applying them to the vacuum vector, we get explicit generators of the Feigin–Frenkel center $\mathfrak{z}(\hat{o}_N)$, and hence, generators of the commutative subalgebra of $U(t^{-1}o_N[t^{-1}])$.
Introduce the matrix $F(z) = [F_{ij}(z)]$ and set $L(z) = \partial_z - F(z)$,

$$F_{ij}(z) = \sum_{r=0}^{\infty} F_{ij}[r]z^{-r-1}.$$
Introduce the matrix $F(z) = [F_{ij}(z)]$ and set $L(z) = \partial_z - F(z)$,

$$F_{ij}(z) = \sum_{r=0}^{\infty} F_{ij}[r] z^{-r-1}.$$

Corollary. The coefficients of all series $l_{ma}(z)$ with $m = 1, 2, \ldots$

defined by the decompositions

$$\text{tr} S^{(m)} L_1(z) \ldots L_m(z) = l_{m0}(z) \partial_z^m + l_{m1}(z) \partial_z^{m-1} + \cdots + l_{mm}(z),$$

generate a commutative subalgebra of $U(o_N[t])$.
Pfaffian-type Sugawara operators

In type D, $PfF[-1] \mapsto PfF(z)$ (no normal ordering).

Taking the coefficients of the powers of z we get Sugawara operators $S_r, r \in \mathbb{Z}$, of the form

$$S_r = \sum_{r_1 + \cdots + r_n = r} \prod_{\sigma \in S_n} \text{sgn} \sigma \cdot F_{\sigma}(1)_{\sigma}(2)_{\sigma}(2n-1)_{\sigma}(2n).$$
Pfaffian-type Sugawara operators

In type D,

$$Y : Pf F[-1] \leftrightarrow Pf F(z)$$

(no normal ordering).
Pfaffian-type Sugawara operators

In type D,

\[Y : \text{Pf} \, F[-1] \leftrightarrow \text{Pf} \, F(z) \]

(no normal ordering).

Taking the coefficients of the powers of z we get Sugawara operators S_r, $r \in \mathbb{Z}$, of the form

\[S_r = \sum_{r_1 + \cdots + r_n = r} \sum_{\sigma} \text{sgn} \, \sigma \cdot F_{\sigma(1)} \sigma(2) [r_1] \cdots F_{\sigma(2n-1)} \sigma(2n) [r_n]. \]
Harmonic polynomials

The operator $S(m)$ projects the vector space $(\mathbb{C}^N)^\otimes m$ to a subspace of the space of symmetric tensors, which carries an irreducible representation of the orthogonal group O_N.

Identify symmetric tensors with polynomials in variables x_1, \ldots, x_N. Then the subspace $S(m) (\mathbb{C}^N)^\otimes m$ is isomorphic to the space H^N_m of harmonic polynomials of degree m.

These are polynomials annihilated by the Laplace operator $\partial^2_1 + \cdots + \partial^2_N$.
Harmonic polynomials

The operator $S^{(m)}$ projects the vector space $(\mathbb{C}^N)^\otimes m$ to a subspace of the space of symmetric tensors, which carries an irreducible representation of the orthogonal group O_N. These are polynomials annihilated by the Laplace operator $\partial_1^2 + \cdots + \partial_N^2$.
Harmonic polynomials

The operator $S^{(m)}$ projects the vector space $(\mathbb{C}^N)^\otimes m$ to a subspace of the space of symmetric tensors, which carries an irreducible representation of the orthogonal group O_N.

Identify symmetric tensors with polynomials in variables x_1, \ldots, x_N. Then the subspace $S^{(m)}(\mathbb{C}^N)^\otimes m$ is isomorphic to the space \mathcal{H}_N^m of harmonic polynomials of degree m.
Harmonic polynomials

The operator $S^{(m)}$ projects the vector space $(\mathbb{C}^N)^\otimes m$ to a subspace of the space of symmetric tensors, which carries an irreducible representation of the orthogonal group O_N.

Identify symmetric tensors with polynomials in variables x_1, \ldots, x_N. Then the subspace $S^{(m)}(\mathbb{C}^N)^\otimes m$ is isomorphic to the space \mathcal{H}^m_N of harmonic polynomials of degree m.

These are polynomials annihilated by the Laplace operator $\partial_1^2 + \cdots + \partial_N^2$.
The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p : \mathbb{C}[x_1, \ldots, x_N] \rightarrow \mathcal{H}_N$ to the subspace of homogeneous polynomials of degree m, where
The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p : \mathbb{C}[x_1, \ldots, x_N] \rightarrow \mathcal{H}_N$ to the subspace of homogeneous polynomials of degree m, where

$$\mathbb{C}[x_1, \ldots, x_N] = \mathcal{H}_N \oplus (x_1^2 + \cdots + x_N^2) \mathbb{C}[x_1, \ldots, x_N].$$
The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p : \mathbb{C}[x_1, \ldots, x_N] \to \mathcal{H}_N$ to the subspace of homogeneous polynomials of degree m, where

$$\mathbb{C}[x_1, \ldots, x_N] = \mathcal{H}_N \oplus (x_1^2 + \cdots + x_N^2) \mathbb{C}[x_1, \ldots, x_N].$$

Remark. The operator p is associated with the action of \mathfrak{sl}_2 commuting with that of O_N via the special case of Howe duality:
The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p : \mathbb{C}[x_1, \ldots, x_N] \to \mathcal{H}_N$ to the subspace of homogeneous polynomials of degree m, where

$$\mathbb{C}[x_1, \ldots, x_N] = \mathcal{H}_N \oplus (x_1^2 + \cdots + x_N^2) \mathbb{C}[x_1, \ldots, x_N].$$

Remark. The operator p is associated with the action of \mathfrak{sl}_2 commuting with that of O_N via the special case of Howe duality:

$$e \mapsto -\frac{1}{2} \sum_{i=1}^{N} \partial^2_i, \quad f \mapsto \frac{1}{2} \sum_{i=1}^{N} x_i^2, \quad h \mapsto -\frac{N}{2} - \sum_{i=1}^{N} x_i \partial_i,$$
The operator \(S^{(m)} \) coincides with the restriction of the extremal projector \(p : \mathbb{C}[x_1, \ldots, x_N] \rightarrow \mathcal{H}_N \) to the subspace of homogeneous polynomials of degree \(m \), where

\[
\mathbb{C}[x_1, \ldots, x_N] = \mathcal{H}_N \oplus (x_1^2 + \cdots + x_N^2) \mathbb{C}[x_1, \ldots, x_N].
\]

Remark. The operator \(p \) is associated with the action of \(\mathfrak{sl}_2 \) commuting with that of \(O_N \) via the special case of Howe duality:

\[
e \mapsto -\frac{1}{2} \sum_{i=1}^{N} \partial_i^2, \quad f \mapsto \frac{1}{2} \sum_{i=1}^{N} x_i^2, \quad h \mapsto -\frac{N}{2} - \sum_{i=1}^{N} x_i \partial_i,
\]

and \(p \) satisfies \(e p = p f = 0 \).
Corollary. The Segal–Sugawara vectors ϕ_{mk} can be found from the expansion

$$\text{tr} p \Phi^{(m)}|_{\mathcal{H}^{m}_N} = \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \cdots + \phi_{mm}$$

with the trace taken over the subspace \mathcal{H}^{m}_N.
Corollary. The Segal–Sugawara vectors ϕ_{mk} can be found from the expansion

$$\text{tr} \ p \Phi^{(m)}|_{\mathcal{H}_N^m} = \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \cdots + \phi_{mm}$$

with the trace taken over the subspace \mathcal{H}_N^m,

$$\Phi^{(m)} : x_{j_1} \cdots x_{j_m} \mapsto \sum_{i_1 \leq \cdots \leq i_m} x_{i_1} \cdots x_{i_m} \otimes \Phi_{i_1, \ldots, i_m}$$
Corollary. The Segal–Sugawara vectors ϕ_{mk} can be found from the expansion

$$\text{tr} \, p \Phi^{(m)}|_{\mathcal{H}_N^m} = \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \cdots + \phi_{mm}$$

with the trace taken over the subspace \mathcal{H}_N^m,

$$\Phi^{(m)} : x_{j_1} \cdots x_{j_m} \mapsto \sum_{i_1 \leq \cdots \leq i_m} x_{i_1} \cdots x_{i_m} \otimes \Phi_{j_1, \ldots, j_m}^{i_1, \ldots, i_m}$$

where

$$\Phi_{j_1, \ldots, j_m}^{i_1, \ldots, i_m} = \frac{1}{\alpha_1! \cdots \alpha_N! m!} \sum_{\sigma, \pi \in S_m} \Phi_{i_{\sigma(1)}j_{\pi(1)}} \cdots \Phi_{i_{\sigma(m)}j_{\pi(m)}}$$

and α_i is the multiplicity of i in the multiset $\{i_1, \ldots, i_m\}$.