Classical Lie algebras and Yangians

Alexander Molev

University of Sydney

Advanced Summer School
Integrable Systems and Quantum Symmetries
Prague 2007
Recall \(E = [E_{ij}] \) with \(i, j \in \{1, \ldots, N\} \). We have

\[
[E_{ij}, (E^s)_{kl}] = \delta_{kj}(E^s)_{il} - \delta_{il}(E^s)_{kj}.
\]

This implies that \(\text{tr} \ E^s \) are Casimir elements for \(\mathfrak{gl}_N \) (the Gelfand invariants).
Recall $E = [E_{ij}]$ with $i, j \in \{1, \ldots, N\}$. We have

$$[E_{ij}, (E^s)_{kl}] = \delta_{kj}(E^s)_{il} - \delta_{il}(E^s)_{kj}.$$

This implies that $\text{tr} E^s$ are Casimir elements for \mathfrak{gl}_N (the Gelfand invariants).

More generally, we have

$$[(E^{r+1})_{ij}, (E^s)_{kl}] - [(E^r)_{ij}, (E^{s+1})_{kl}] = (E^r)_{kj}(E^s)_{il} - (E^s)_{kj}(E^r)_{il},$$

where $r, s \geq 0$ and $E^0 = 1$ is the identity matrix.
Yangian for \mathfrak{gl}_N

Definition

The Yangian for \mathfrak{gl}_N is the associative algebra over \mathbb{C} with countably many generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots$ where $i, j = 1, \ldots, N$, and the defining relations

$$[t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where $r, s = 0, 1, \ldots$ and $t_{ij}^{(0)} = \delta_{ij}$.
Yangian for \mathfrak{gl}_N

Definition

The Yangian for \mathfrak{gl}_N is the associative algebra over \mathbb{C} with countably many generators $t_{ij}^{(1)}$, $t_{ij}^{(2)}$, \ldots where $i, j = 1, \ldots, N$, and the defining relations

$$[t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where $r, s = 0, 1, \ldots$ and $t_{ij}^{(0)} = \delta_{ij}$.

This algebra is denoted by $Y(\mathfrak{gl}_N)$.
Introduce the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)} u^{-1} + t_{ij}^{(2)} u^{-2} + \cdots \in Y(gl_N)[[u^{-1}]].$$

The defining relations take the form

$$(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u).$$
Introduce the formal generating series

\[t_{ij}(u) = \delta_{ij} + t^{(1)}_{ij} u^{-1} + t^{(2)}_{ij} u^{-2} + \cdots \in Y(gl_N)[[u^{-1}]]. \]

The defining relations take the form

\[(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u). \]

The defining relations are equivalent to

\[[t^{(r)}_{ij}, t^{(s)}_{kl}] = \sum_{a=1}^{\min\{r,s\}} \left(t^{(a-1)}_{kj} t^{(r+s-a)}_{il} - t^{(r+s-a)}_{kj} t^{(a-1)}_{il} \right). \]
Proposition

The assignment

$$\pi_N : t_{ij}(u) \mapsto \delta_{ij} + E_{ij} u^{-1}$$

defines a surjective homomorphism $Y(gl_N) \to U(gl_N)$. Moreover, the assignment

$$E_{ij} \mapsto t_{ij}^{(1)}$$

defines an embedding $U(gl_N) \hookrightarrow Y(gl_N)$.
Proposition

The assignment

\[\pi_N : t_{ij}(u) \mapsto \delta_{ij} + E_{ij} u^{-1} \]

defines a surjective homomorphism \(Y(\mathfrak{gl}_N) \to U(\mathfrak{gl}_N) \). Moreover,
the assignment

\[E_{ij} \mapsto t_{ij}^{(1)} \]

defines an embedding \(U(\mathfrak{gl}_N) \hookrightarrow Y(\mathfrak{gl}_N) \).

We may regard \(U(\mathfrak{gl}_N) \) as a subalgebra of \(Y(\mathfrak{gl}_N) \).
Matrix form of the defining relations

Introduce the $N \times N$ matrix $T(u)$ whose ij-th entry is the series $t_{ij}(u)$. We regard $T(u)$ as an element of the algebra $\text{End } \mathbb{C}^N \otimes Y(\mathfrak{gl}_N)[[u^{-1}]]$. Then

$$T(u) = \sum_{i,j=1}^{N} e_{ij} \otimes t_{ij}(u),$$

where $e_{ij} \in \text{End } \mathbb{C}^N$ are the standard matrix units.
For any positive integer m consider the algebra

$$(\text{End } \mathbb{C}^N)^{\otimes m} \otimes Y(\mathfrak{gl}_N).$$

For any $a \in \{1, \ldots, m\}$ denote by $T_a(u)$ the matrix $T(u)$ which corresponds to the a-th copy of the algebra $\text{End } \mathbb{C}^N$ in the tensor product algebra.
For any positive integer m consider the algebra

$$(\text{End} \mathbb{C}^N)^{\otimes m} \otimes Y(\mathfrak{gl}_N).$$

For any $a \in \{1, \ldots, m\}$ denote by $T_a(u)$ the matrix $T(u)$ which corresponds to the a-th copy of the algebra $\text{End} \mathbb{C}^N$ in the tensor product algebra. That is, $T_a(u)$ is a formal power series in u^{-1} given by

$$T_a(u) = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (m-a)} \otimes t_{ij}(u),$$

where 1 is the identity matrix.
If
\[C = \sum_{i,j,k,l=1}^{N} c_{ijkl} e_{ij} \otimes e_{kl} \in \text{End } \mathbb{C}^N \otimes \text{End } \mathbb{C}^N, \]

then for any two indices \(a, b \in \{1, \ldots, m\} \) such that \(a < b \), define the element \(C_{ab} \) of the algebra \((\text{End } \mathbb{C}^N)^{\otimes m}\) by

\[C_{ab} = \sum_{i,j,k,l=1}^{N} c_{ijkl} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{kl} \otimes 1^{\otimes (m-b)}. \]

The tensor factors \(e_{ij} \) and \(e_{kl} \) belong to the \(a \)-th and \(b \)-th copies of \(\text{End } \mathbb{C}^N \), respectively.
Consider now the permutation operator

\[P = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ji} \in \text{End} \mathbb{C}^N \otimes \text{End} \mathbb{C}^N. \]
Consider now the permutation operator

\[P = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ji} \in \text{End } \mathbb{C}^N \otimes \text{End } \mathbb{C}^N. \]

The rational function

\[R(u) = 1 - Pu^{-1} \]

with values in \(\text{End } \mathbb{C}^N \otimes \text{End } \mathbb{C}^N \) is called the Yang \(R \)-matrix.
Proposition

In the algebra \((\text{End} \mathbb{C}^N)^{\otimes 3} (u, v) \) we have the identity

\[
R_{12}(u) R_{13}(u + v) R_{23}(v) = R_{23}(v) R_{13}(u + v) R_{12}(u).
\]
Proposition

In the algebra \((\text{End } \mathbb{C}^N)^\otimes 3(u, \nu)\) we have the identity

\[R_{12}(u) R_{13}(u + \nu) R_{23}(\nu) = R_{23}(\nu) R_{13}(u + \nu) R_{12}(u). \]

This relation is known as the Yang–Baxter equation. The Yang \(R\)-matrix is its simplest nontrivial solution.
Proposition

The defining relations of the algebra $\mathcal{Y}(\mathfrak{gl}_N)$ can be written in the equivalent form

$$ R(u - v) \, T_1(u) \, T_2(v) = T_2(v) \, T_1(u) \, R(u - v). $$
Proposition

The defining relations of the algebra $Y(\mathfrak{gl}_N)$ can be written in the equivalent form

$$ R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v). $$

Here $T_1(u)$ and $T_2(v)$ as formal power series with the coefficients in the algebra

$$ \text{End } \mathbb{C}^N \otimes \text{End } \mathbb{C}^N \otimes Y(\mathfrak{gl}_N). $$
Proposition

The defining relations of the algebra $Y(gl_N)$ can be written in the equivalent form

$$R(u - v) \ T_1(u) \ T_2(v) = T_2(v) \ T_1(u) \ R(u - v).$$

Here $T_1(u)$ and $T_2(v)$ as formal power series with the coefficients in the algebra

$$\text{End } \mathbb{C}^N \otimes \text{End } \mathbb{C}^N \otimes Y(gl_N).$$

The matrix relation is called the \textit{RTT} relation (or ternary relation).
Symmetries of $Y(\mathfrak{gl}_N)$

Let $f(u)$ be a formal power series in u^{-1} of the form

\[f(u) = 1 + f_1 u^{-1} + f_2 u^{-2} + \cdots \in \mathbb{C}[[u^{-1}]]. \]

Let $c \in \mathbb{C}$ and let B be any nonsingular complex $N \times N$ matrix.
Symmetries of $Y(gl_N)$

Let $f(u)$ be a formal power series in u^{-1} of the form

$$f(u) = 1 + f_1 u^{-1} + f_2 u^{-2} + \cdots \in \mathbb{C}[[u^{-1}]].$$

Let $c \in \mathbb{C}$ and let B be any nonsingular complex $N \times N$ matrix.

Proposition. Each of the mappings

1. $T(u) \mapsto f(u) T(u)$,
2. $T(u) \mapsto T(u - c)$,
3. $T(u) \mapsto B T(u) B^{-1}$

defines an automorphism of $Y(gl_N)$.
Proposition. Each of the mappings

\[\sigma_N : T(u) \mapsto T(-u), \]
\[t : T(u) \mapsto T^t(u), \]
\[S : T(u) \mapsto T^{-1}(u) \]

defines an anti-automorphism of \(Y(gl_N) \).
Proposition. Each of the mappings

\[\sigma_N : T(u) \mapsto T(-u), \]

\[t : T(u) \mapsto T^t(u), \]

\[S : T(u) \mapsto T^{-1}(u) \]

defines an anti-automorphism of \(Y(\mathfrak{gl}_N) \).

Corollary. The mapping

\[\omega_N : T(u) \mapsto T^{-1}(-u) \]

defines an involutive automorphism of \(Y(\mathfrak{gl}_N) \).
Poincaré–Birkhoff–Witt theorem

Theorem

Given an arbitrary linear order on the set of generators $t_{ij}^{(r)}$, any element of the algebra $Y(\mathfrak{gl}_N)$ can be uniquely written as a linear combination of ordered monomials in these generators.
Theorem

Given an arbitrary linear order on the set of generators $t_{ij}^{(r)}$, *any element of the algebra* $\mathcal{Y}(\mathfrak{gl}_N)$ *can be uniquely written as a linear combination of ordered monomials in these generators.*

Corollary. Consider the ascending filtration on $\mathcal{Y}(\mathfrak{gl}_N)$ defined by

$$\deg t_{ij}^{(r)} = r.$$

The graded algebra $\text{gr} \ \mathcal{Y}(\mathfrak{gl}_N)$ is an algebra of polynomials.
A coalgebra (over the field \(\mathbb{C} \)) is a vector space \(A \) equipped with linear maps \(\Delta : A \rightarrow A \otimes A \), the comultiplication, and \(\varepsilon : A \rightarrow \mathbb{C} \), the counit, satisfying some axioms; e.g.,

\[
A \otimes A \otimes A \xrightarrow{\Delta \otimes \text{id}} A \otimes A
\]

\[
\text{id} \otimes \Delta
\]

\[
A \otimes A \xrightarrow{\Delta} A
\]

the coassociativity of \(\Delta \).
A bialgebra is an associative unital algebra A equipped with a coalgebra structure, such that Δ and ε are algebra homomorphisms. In particular, then we have $\Delta(1) = 1 \otimes 1$ and $\varepsilon(1) = 1$.
A bialgebra is an associative unital algebra A equipped with a coalgebra structure, such that Δ and ε are algebra homomorphisms. In particular, then we have $\Delta(1) = 1 \otimes 1$ and $\varepsilon(1) = 1$.

A bialgebra A is called a Hopf algebra, if it is also equipped with an anti-automorphism $S : A \to A$, the antipode, such that the following two diagrams commute:

\[
\begin{array}{ccc}
A \otimes A & \xrightarrow{S \otimes \text{id}} & A \otimes A \\
\Delta & \uparrow & \downarrow \mu \\
A & \xrightarrow{\delta \circ \varepsilon} & A
\end{array}
\quad
\begin{array}{ccc}
A \otimes A & \xrightarrow{\text{id} \otimes S} & A \otimes A \\
\Delta & \uparrow & \downarrow \mu \\
A & \xrightarrow{\delta \circ \varepsilon} & A
\end{array}
\]
Theorem

The Yangian $\mathcal{Y}(\mathfrak{gl}_N)$ is a Hopf algebra with comultiplication

$$\Delta : t_{ij}(u) \mapsto \sum_{k=1}^{N} t_{ik}(u) \otimes t_{kj}(u),$$

the antipode

$$S : T(u) \mapsto T^{-1}(u),$$

and the counit $\varepsilon : T(u) \mapsto 1.$
Quantum determinant

For any $m \geq 2$ introduce the rational function $R(u_1, \ldots, u_m)$ with values in the tensor product algebra $(\text{End } \mathbb{C}^N)^\otimes m$ by

$$R(u_1, \ldots, u_m) = (R_{m-1,m})(R_{m-2,m}R_{m-2,m-1}) \cdots (R_{1m} \cdots R_{12}),$$

where u_1, \ldots, u_m are independent complex variables and we abbreviate $R_{ij} = R_{ij}(u_i - u_j) = 1 - P_{ij}(u_i - u_j)^{-1}$.
Quantum determinant

For any $m \geq 2$ introduce the rational function $R(u_1, \ldots, u_m)$ with values in the tensor product algebra $(\text{End } \mathbb{C}^N)^\otimes m$ by

$$R(u_1, \ldots, u_m) = (R_{m-1,m})(R_{m-2,m}R_{m-2,m-1}) \cdots (R_{1m} \cdots R_{12}),$$

where u_1, \ldots, u_m are independent complex variables and we abbreviate $R_{ij} = R_{ij}(u_i - u_j) = 1 - P_{ij}(u_i - u_j)^{-1}$.

Using the Yang–Baxter equation, we get

$$R(u_1, \ldots, u_m) = (R_{12} \cdots R_{1m}) \cdots (R_{m-2,m-1}R_{m-2,m})(R_{m-1,m}).$$
Applying the \(RTT \) relation repeatedly, we come to the fundamental relation

\[
R(u_1, \ldots, u_m) \ T_1(u_1) \ldots \ T_m(u_m) = T_m(u_m) \ldots \ T_1(u_1) \ R(u_1, \ldots, u_m).
\]
Applying the RTT relation repeatedly, we come to the fundamental relation

$$R(u_1, \ldots, u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1, \ldots, u_m).$$

Lemma

If $u_i - u_{i+1} = 1$ for all $i = 1, \ldots, m - 1$ then

$$R(u_1, \ldots, u_m) = A_m,$$

the image of the anti-symmetrizer $\sum_{p \in S_m} \text{sgn } p \cdot p \in \mathbb{C}[S_m]$ in the algebra $\text{End } (\mathbb{C}^N)^{\otimes m}$.
Hence, we have

$$A_m \ T_1(u) \ldots T_m(u - m + 1) = T_m(u - m + 1) \ldots T_1(u) \ A_m.$$
Hence, we have

\[A_m \ T_1(u) \ldots T_m(u - m + 1) = T_m(u - m + 1) \ldots T_1(u) A_m. \]

If \(m = N \) then the operator \(A_N \) on \((C^N)^\otimes N \) is one-dimensional.

Definition

The quantum determinant of the matrix \(T(u) \) with the coefficients in \(Y(gl_N) \) is the formal series

\[\text{qdet} \ T(u) = 1 + d_1 u^{-1} + d_2 u^{-2} + \ldots \]

such that both sides of the above relation with \(m = N \), are equal to \(A_N \text{qdet} \ T(u) \).
Proposition

For any permutation $q \in \mathcal{S}_N$ we have

$$q \det T(u) = \text{sgn } q \sum_{p \in \mathcal{S}_N} \text{sgn } p \cdot t_{p(1),q(1)}(u) \cdots t_{p(N),q(N)}(u - N + 1)$$

$$= \text{sgn } q \sum_{p \in \mathcal{S}_N} \text{sgn } p \cdot t_{q(1),p(1)}(u - N + 1) \cdots t_{q(N),p(N)}(u).$$
Proposition

For any permutation $q \in \mathfrak{S}_N$ we have

$$q\det T(u) = \sgn q \sum_{p \in \mathfrak{S}_N} \sgn p \cdot t_{p(1), q(1)}(u) \ldots t_{p(N), q(N)}(u - N + 1)$$

$$= \sgn q \sum_{p \in \mathfrak{S}_N} \sgn p \cdot t_{q(1), p(1)}(u - N + 1) \ldots t_{q(N), p(N)}(u).$$

In particular,

$$q\det T(u) = \sum_{p \in \mathfrak{S}_N} \sgn p \cdot t_{p(1), 1}(u) \ldots t_{p(N), N}(u - N + 1)$$

$$= \sum_{p \in \mathfrak{S}_N} \sgn p \cdot t_{1, p(1)}(u - N + 1) \ldots t_{N, p(N)}(u).$$
Example

For $N = 2$ we have

$$\text{qdet } T(u) = t_{11}(u) t_{22}(u - 1) - t_{21}(u) t_{12}(u - 1)$$

$$= t_{22}(u) t_{11}(u - 1) - t_{12}(u) t_{21}(u - 1)$$

$$= t_{11}(u - 1) t_{22}(u) - t_{12}(u - 1) t_{21}(u)$$

$$= t_{22}(u - 1) t_{11}(u) - t_{21}(u - 1) t_{12}(u).$$
Assuming that \(m \leq N \) is arbitrary, define the \(m \times m \) quantum minors \(t_{a_1 \ldots a_m}^{b_1 \ldots b_m}(u) \) so that each side of

\[
A_m \ T_1(u) \ldots T_m(u - m + 1) = T_m(u - m + 1) \ldots T_1(u) \ A_m
\]
equals

\[
\sum e_{a_1 b_1} \otimes \ldots \otimes e_{a_m b_m} \otimes t_{b_1 \ldots b_m}^{a_1 \ldots a_m}(u),
\]
summed over the indices \(a_i, b_i \in \{1, \ldots, N\} \).
Proposition

The images of quantum minors under the comultiplication are given by

$$\Delta(t^{a_1 \ldots a_m}(u)) = \sum_{c_1 < \cdots < c_m} t^{a_1 \ldots a_m}(u) \otimes t^{c_1 \ldots c_m}(u),$$

summed over all subsets of indices \(\{c_1, \ldots, c_m\}\) from \(\{1, \ldots, N\}\).
Proposition

The images of quantum minors under the comultiplication are given by

\[\Delta(t_{b_1\ldots b_m}(u)) = \sum_{c_1<\cdots<c_m} t_{c_1\ldots c_m}(u) \otimes t_{b_1\ldots b_m}(u), \]

summed over all subsets of indices \(\{c_1, \ldots, c_m\} \) from \(\{1, \ldots, N\} \).

In particular, as \(\text{qdet } T(u) = t_{1\ldots N}(u) \),

\[\Delta : \text{qdet } T(u) \mapsto \text{qdet } T(u) \otimes \text{qdet } T(u). \]
Center of $\mathcal{Y}(\mathfrak{gl}_N)$

Proposition

We have the relations

\[
(u - v) \left[t_{kl}(u), t_{b_1 \ldots b_m}(v) \right] = \sum_{i=1}^{m} t_{a_i l}(u) t_{b_1 \ldots k \ldots b_m}(v) - \sum_{i=1}^{m} t_{b_1 \ldots l \ldots b_m}(v) t_{k b_i}(u)
\]

where the indices k and l in the quantum minors replace a_i and b_i, respectively.
Theorem

The coefficients \(d_1, d_2, \ldots\) of the series \(q \det T(u)\) belong to the center \(Z \mathcal{Y}(\mathfrak{gl}_N)\) of the algebra \(\mathcal{Y}(\mathfrak{gl}_N)\). Moreover, these elements are algebraically independent and generate \(Z \mathcal{Y}(\mathfrak{gl}_N)\).

Proof.

The first part follows from the Proposition. For the second part introduce another filtration on \(\mathcal{Y}(\mathfrak{gl}_N)\) by setting

\[
\deg' t_{ij}^{(r)} = r - 1
\]

for every \(r \geq 1\). Then the corresponding graded algebra \(\text{gr}' \mathcal{Y}(\mathfrak{gl}_N)\) is isomorphic to the universal enveloping algebra \(U(\mathfrak{gl}_N[z])\). \(\square\)
Yangian for \mathfrak{sl}_N

For any series $f(u) \in 1 + u^{-1}\mathbb{C}[[u^{-1}]]$ consider the automorphism $\mu_f : T(u) \mapsto f(u) T(u)$ of $Y(\mathfrak{gl}_N)$.
Yangian for \mathfrak{sl}_N

For any series $f(u) \in 1 + u^{-1} \mathbb{C}[[u^{-1}]]$ consider the automorphism $\mu_f : T(u) \mapsto f(u) T(u)$ of $Y(\mathfrak{gl}_N)$.

The Yangian for \mathfrak{sl}_N is the subalgebra $Y(\mathfrak{sl}_N)$ of $Y(\mathfrak{gl}_N)$ which consists of the elements stable under all automorphisms μ_f.
Yangian for \mathfrak{sl}_N

For any series $f(u) \in 1 + u^{-1}\mathbb{C}[[u^{-1}]]$ consider the automorphism $\mu_f : T(u) \mapsto f(u) T(u)$ of $Y(\mathfrak{gl}_N)$.

The **Yangian** for \mathfrak{sl}_N is the subalgebra $Y(\mathfrak{sl}_N)$ of $Y(\mathfrak{gl}_N)$ which consists of the elements stable under all automorphisms μ_f.

Theorem

We have the isomorphism

$$Y(\mathfrak{gl}_N) = ZY(\mathfrak{gl}_N) \otimes Y(\mathfrak{sl}_N).$$

In particular, the center of $Y(\mathfrak{sl}_N)$ is trivial.
Corollary

The algebra $Y(\mathfrak{sl}_N)$ is isomorphic to the quotient of $Y(\mathfrak{gl}_N)$ by the ideal generated by the elements d_1, d_2, \ldots, i.e.,

$$Y(\mathfrak{sl}_N) \cong Y(\mathfrak{gl}_N)/(\text{qdet } T(u) = 1).$$
Corollary

The algebra $\mathcal{Y}(\mathfrak{sl}_N)$ is isomorphic to the quotient of $\mathcal{Y}(\mathfrak{gl}_N)$ by the ideal generated by the elements d_1, d_2, \ldots, i.e.,

$$\mathcal{Y}(\mathfrak{sl}_N) \cong \mathcal{Y}(\mathfrak{gl}_N)/(\text{qdet } T(u) = 1).$$

Proposition

The subalgebra $\mathcal{Y}(\mathfrak{sl}_N)$ of $\mathcal{Y}(\mathfrak{gl}_N)$ is a Hopf algebra whose comultiplication, antipode and counit are obtained by restricting those from $\mathcal{Y}(\mathfrak{gl}_N)$.
Quantum Liouville formula

The quantum comatrix $\hat{T}(u)$ is defined by

$$\hat{T}(u) \ T(u - N + 1) = \text{qdet} \ T(u).$$
Quantum Liouville formula

The quantum comatrix $\hat{T}(u)$ is defined by

$$\hat{T}(u) \ T(u - N + 1) = \text{qdet} \ T(u).$$

Proposition

The entries $\hat{t}_{ij}(u)$ of the matrix $\hat{T}(u)$ are given by

$$\hat{t}_{ij}(u) = (-1)^{i+j} t_{\hat{1}\ldots\hat{j}\ldots\hat{i}\ldots\hat{N}}(u),$$

where the hats on the right hand side indicate the indices to be omitted. Moreover, we have the relation

$$\hat{T}^t(u - 1) \ T^t(u) = \text{qdet} \ T(u).$$
Consider the series $z(u)$ with coefficients from $Y(gl_N)$ given by the formula

$$z(u)^{-1} = \frac{1}{N} \text{tr} \left(T(u) T^{-1}(u - N) \right),$$

so that

$$z(u) = 1 + z_2 u^{-2} + z_3 u^{-3} + \ldots \quad \text{where} \quad z_i \in Y(gl_N).$$
Consider the series $z(u)$ with coefficients from $\mathcal{Y}(\mathfrak{gl}_N)$ given by the formula

$$z(u)^{-1} = \frac{1}{N} \text{tr} \left(T(u) T^{-1}(u - N) \right),$$

so that

$$z(u) = 1 + z_2 u^{-2} + z_3 u^{-3} + \ldots \quad \text{where} \quad z_i \in \mathcal{Y}(\mathfrak{gl}_N).$$

Theorem

We have the relation

$$z(u) = \frac{\text{qdet} \ T(u - 1)}{\text{qdet} \ T(u)}.$$
Proof.

We have

\[z(u)^{-1} = \frac{1}{N} \text{tr} (T(u) \hat{T}(u - 1) (\text{qdet } T(u - 1))^{-1}) \, . \]

Using the centrality of \(\text{qdet } T(u) \) we get

\[T^t(u) \hat{T}^t(u - 1) = \text{qdet } T(u) \]

and so

\[\text{tr} (T(u) \hat{T}(u - 1)) = N \text{qdet } T(u), \]

implying the formula.
Theorem

The square of the antipode S is the automorphism of $\mathcal{Y}(\mathfrak{gl}_N)$ given by

$$S^2 : T(u) \mapsto z(u + N) T(u + N).$$

In particular, $\text{qdet } T(u)$ is stable under S^2.
Application to \mathfrak{gl}_N

Recall the evaluation homomorphism $\pi_N : T(u) \mapsto 1 + E \, u^{-1}$:

$$\pi_N : z(-u + N)^{-1} \mapsto \frac{1}{N} \, \text{tr} \left((1 - E \, (u - N)^{-1}) (1 - E \, u^{-1})^{-1} \right)$$

$$= 1 - \frac{1}{u - N} \sum_{k=1}^{\infty} \text{tr} \, E^k \, u^{-k}.$$
Application to \mathfrak{gl}_N

Recall the evaluation homomorphism $\pi_N : T(u) \mapsto 1 + E u^{-1}$:

$$\pi_N : z(-u + N)^{-1} \mapsto \frac{1}{N} \text{tr} \left((1 - E (u - N)^{-1}) (1 - E u^{-1})^{-1} \right)$$

$$= 1 - \frac{1}{u - N} \sum_{k=1}^{\infty} \text{tr} E^k u^{-k}.$$

The quantum Liouville formula gives

$$z(u + 1)^{-1} = \frac{\text{qdet} \ T(u + 1)}{\text{qdet} \ T(u)}.$$

Applying the evaluation homomorphism to both sides of this relation, we get Newton’s formulas (see Lecture 1).
Factorization of the quantum determinant

Let $A = [a_{ij}]$ be an $N \times N$ matrix over a ring with 1. The ij-th quasideterminant of A is defined by

$$|A|_{ij} = ((A^{-1})_{ji})^{-1}.$$

Example

For a 2×2 matrix A the four quasideterminants are

$$|A|_{11} = a_{11} - a_{12} a_{22}^{-1} a_{21}, \quad |A|_{12} = a_{12} - a_{11} a_{22}^{-1} a_{21},$$

$$|A|_{21} = a_{21} - a_{22} a_{12}^{-1} a_{11}, \quad |A|_{22} = a_{22} - a_{21} a_{11}^{-1} a_{12}.$$
For $m = 1, \ldots, N$ denote by $T^{(m)}(u)$ the submatrix of $T(u)$ corresponding to the first m rows and columns.
For \(m = 1, \ldots, N \) denote by \(T^{(m)}(u) \) the submatrix of \(T(u) \) corresponding to the first \(m \) rows and columns.

Theorem

The quantum determinant \(\text{qdet} \ T(u) \) admits the factorization in the algebra \(\mathcal{Y}(\mathfrak{gl}_N)[[u^{-1}]] \)

\[
\text{qdet} \ T(u) = t_{11}(u) \left| T^{(2)}(u - 1) \right|_{22} \cdots \left| T^{(N)}(u - N + 1) \right|_{NN}.
\]

Moreover, the \(N \) factors on the right hand side of this equality pairwise commute.
Set

\[\tilde{C}(q) = \sum_{p \in \mathcal{S}_N} \text{sgn} \; p \cdot (1 + q \; E)_{p(1),1} \cdots (1 + q \; (E - N + 1))_{p(N),N}. \]

Then \(\tilde{C}(q) = q^N C(q^{-1}), \) where \(C(u) \) is the Capelli determinant.
Set

\[\tilde{C}(q) = \sum_{p \in \mathcal{S}_N} \text{sgn } p \cdot (1 + q E)_{p(1),1} \cdots (1 + q (E - N + 1))_{p(N),N}. \]

Then \(\tilde{C}(q) = q^N C(q^{-1}) \), where \(C(u) \) is the Capelli determinant.

Apply the evaluation homomorphism to the decomposition of the Theorem to get

\[\tilde{C}(q) = \left| 1 + q E^{(1)} \right|_{11} \cdots \left| 1 + q (E^{(N)} - N + 1) \right|_{NN}, \]

where \(E^{(m)} \) is the submatrix of \(E \) corresponding to the first \(m \) rows and columns.
For the Harish-Chandra image of $\tilde{C}(q)$ we have

$$\chi(\tilde{C}(q)) = (1 + q l_1) \ldots (1 + q l_N), \quad l_i = \lambda_i - i + 1.$$
For the Harish-Chandra image of \(\widetilde{C}(q) \) we have

\[
\chi(\widetilde{C}(q)) = (1 + q l_1) \cdots (1 + q l_N), \quad l_i = \lambda_i - i + 1.
\]

Hence, if we define the Casimir elements \(\Phi_k \) by

\[
\sum_{k=1}^{\infty} \Phi_k q^{k-1} = -\frac{d}{dq} \log \widetilde{C}(-q),
\]

then

\[
\chi(\Phi_k) = l_1^k + \cdots + l_N^k.
\]
On the other hand, by the quasideterminant decomposition,

\[
\sum_{k=1}^{\infty} \Phi_k q^{k-1} = - \sum_{m=1}^{N} \frac{d}{dq} \log |1 - q (E^{(m)} - m + 1)|_{mm}.
\]
On the other hand, by the quasideterminant decomposition,

$$
\sum_{k=1}^{\infty} \Phi_k q^{k-1} = - \sum_{m=1}^{N} \frac{d}{dq} \log |1 - q (E^{(m)} - m + 1)|_{mm}.
$$

Therefore,

$$
\Phi_k = \Phi_k^{(1)} + \cdots + \Phi_k^{(N)},
$$

where

$$
\sum_{k=1}^{\infty} \Phi_k^{(m)} q^{k-1} = - \frac{d}{dq} \log |1 - q (E^{(m)} - m + 1)|_{mm}.
$$
Quantum Sylvester theorem

Suppose that $A = [a_{ij}]$ is a numerical $(M + N) \times (M + N)$ matrix. For any indices $i, j = 1, \ldots, N$ introduce the minors c_{ij} of A corresponding to the rows $1, \ldots, M, M+i$ and columns $1, \ldots, M, M+j$ so that

$$c_{ij} = a_{1\ldots M,M+i}^{1\ldots M,M+j}.$$

Let $A^{(M)}$ be the submatrix of A determined by the first M rows and columns. The classical Sylvester theorem provides a formula for the determinant of the matrix $C = [c_{ij}]$:

$$\det C = \det A \cdot \left(\det A^{(M)} \right)^{N-1}.$$
Introduce the series with coefficients in $\mathcal{Y}(gl_{M+N})$ by

$$t_{ij}^\#(u) = t_{1\ldots M,M+i}^{1\ldots M,M+j}(u)$$

and set $T^\#(u) = [t_{ij}^\#(u)]$.
Introduce the series with coefficients in $Y(gl_{M+N})$ by

$$t_{ij}^\#(u) = t^{1\ldots M,M+i}_{1\ldots M,M+j}(u)$$

and set $T^\#(u) = [t_{ij}^\#(u)]$.

Theorem

The mapping

$$t_{ij}(u) \mapsto t_{ij}^\#(u), \quad 1 \leq i, j \leq N,$$

defines a homomorphism $Y(gl_N) \to Y(gl_{M+N})$. Moreover,

$$\text{qdet } T^\#(u) = \text{qdet } T(u) \cdot \text{qdet } T^{(M)}(u-1) \ldots \text{qdet } T^{(M)}(u-N+1).$$
Consider the orthogonal Lie algebra \mathfrak{o}_N as the subalgebra of \mathfrak{gl}_N spanned by the skew-symmetric matrices. The elements $F_{ij} = E_{ij} - E_{ji}$ with $i < j$ form a basis of \mathfrak{o}_N. Introduce the $N \times N$ matrix F whose ij-th entry is F_{ij}.
Twisted Yangians

Consider the orthogonal Lie algebra \mathfrak{o}_N as the subalgebra of \mathfrak{gl}_N spanned by the skew-symmetric matrices. The elements $F_{ij} = E_{ij} - E_{ji}$ with $i < j$ form a basis of \mathfrak{o}_N. Introduce the $N \times N$ matrix F whose ij-th entry is F_{ij}.

The matrix elements of the powers of the matrix F are known to satisfy the relations

$$[F_{ij}, (F^s)_{kl}] = \delta_{kj}(F^s)_{il} - \delta_{il}(F^s)_{kj} - \delta_{ik}(F^s)_{jl} + \delta_{lj}(F^s)_{ki}. $$
Introduce the generating series

$$f_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} (F^r)_{ij} \left(u + \frac{N - 1}{2} \right)^{-r}.$$
Introduce the generating series
\[f_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} (F^r)_{ij} \left(u + \frac{N - 1}{2} \right)^{-r}. \]

Then we have the relations
\[
(u^2 - v^2) [f_{ij}(u), f_{kl}(v)] = (u + v) \left(f_{kj}(u) f_{il}(v) - f_{kj}(v) f_{il}(u) \right) \\
- (u - v) \left(f_{ik}(u) f_{jl}(v) - f_{ki}(v) f_{lj}(u) \right) \\
+ f_{ki}(u) f_{jl}(v) - f_{ki}(v) f_{jl}(u).
\]
More generally, equip \mathbb{C}^N with a nonsingular bilinear form which may be either symmetric or alternating. The alternating case can only occur if N is even. Let $G = [g_{ij}]$ be the corresponding matrix so that G is nonsingular with $G^t = \pm G$.
More generally, equip \mathbb{C}^N with a nonsingular bilinear form which may be either symmetric or alternating. The alternating case can only occur if N is even. Let $G = [g_{ij}]$ be the corresponding matrix so that G is nonsingular with $G^t = \pm G$.

Whenever the double sign \pm or \mp occurs, the upper sign corresponds to the symmetric case and the lower sign to the alternating case. Introduce the elements F_{ij} of the Lie algebra \mathfrak{gl}_N by the formulas

$$F_{ij} = \sum_{k=1}^{N} (E_{ik} g_{kj} \mp E_{jk} g_{ki}).$$
Obviously,

$$F_{ji} = \mp F_{ij}$$

and the elements F_{ij} satisfy the commutation relations

$$[F_{ij}, F_{kl}] = g_{kj} F_{il} - g_{il} F_{kj} - g_{ik} F_{jl} + g_{lj} F_{ki}.$$
Obviously,

\[F_{ji} = \mp F_{ij} \]

and the elements \(F_{ij} \) satisfy the commutation relations

\[[F_{ij}, F_{kl}] = g_{kj} F_{il} - g_{il} F_{kj} - g_{ik} F_{jl} + g_{lj} F_{ki}. \]

The Lie subalgebra of \(\mathfrak{gl}_N \) spanned by the elements \(F_{ij} \) is isomorphic to the orthogonal Lie algebra \(\mathfrak{o}_N \) in the symmetric case and to the symplectic Lie algebra \(\mathfrak{sp}_N \) in the alternating case. This Lie algebra will be denoted by \(\mathfrak{g}_N \).
The twisted Yangian $Y_G(g_N)$ is an associative algebra with generators $s_{ij}^{(1)}$, $s_{ij}^{(2)}$, \ldots where $1 \leq i, j \leq N$, and the defining relations written in terms of the generating series

$$s_{ij}(u) = g_{ij} + s_{ij}^{(1)} u^{-1} + s_{ij}^{(2)} u^{-2} + \ldots$$
The twisted Yangian $Y_G(g_N)$ is an associative algebra with generators $s^{(1)}_{ij}, s^{(2)}_{ij}, \ldots$ where $1 \leq i, j \leq N$, and the defining relations written in terms of the generating series

$$s_{ij}(u) = g_{ij} + s^{(1)}_{ij}u^{-1} + s^{(2)}_{ij}u^{-2} + \ldots$$

as follows

$$(u^2 - v^2) [s_{ij}(u), s_{kl}(v)] = (u + v) (s_{kj}(u)s_{il}(v) - s_{kj}(v)s_{il}(u))$$

$$- (u - v) (s_{ik}(u)s_{jl}(v) - s_{ki}(v)s_{jl}(u))$$

$$+ s_{ki}(u)s_{jl}(v) - s_{ki}(v)s_{jl}(u)$$

and

$$s_{ji}(-u) = \pm s_{ij}(u) + \frac{s_{ij}(u) - s_{ij}(-u)}{2u}.$$
If G and G' are two nonsingular symmetric (respectively, skew-symmetric) $N \times N$-matrices then the algebras $Y_G(g_N)$ and $Y_{G'}(g_N)$ are isomorphic to each other.
If G and G' are two nonsingular symmetric (respectively, skew-symmetric) $N \times N$-matrices then the algebras $Y_G(g_N)$ and $Y_{G'}(g_N)$ are isomorphic to each other.

Proposition

The assignment

\[s_{ij}(u) \mapsto g_{ij} + F_{ij} \left(u \pm \frac{1}{2} \right)^{-1} \]

defines an algebra epimorphism $\varrho_N : Y(g_N) \to U(g_N)$. Moreover, the assignment

\[F_{ij} \mapsto s_{ij}^{(1)} \]

defines an embedding $U(g_N) \hookrightarrow Y(g_N)$.
Matrix form of the defining relations

Introduce the $N \times N$ matrix $S(u)$ by

$$S(u) = \sum_{i,j=1}^{N} e_{ij} \otimes s_{ij}(u) \in \text{End} \mathbb{C}^N \otimes Y(g_N)[[u^{-1}]]$$
Matrix form of the defining relations

Introduce the $N \times N$ matrix $S(u)$ by

$$S(u) = \sum_{i,j=1}^{N} e_{ij} \otimes s_{ij}(u) \in \text{End} \mathbb{C}^N \otimes Y(g_N)[[u^{-1}]]$$

Proposition

The defining relations of $Y(g_N)$ have the form

$$R(u-v) S_1(u) R^t(-u-v) S_2(v) = S_2(v) R^t(-u-v) S_1(u) R(u-v)$$

and

$$S^t(-u) = \pm S(u) + \frac{S(u) - S(-u)}{2u}.$$
Here

\[R(u) = 1 - Pu^{-1} \]

is the Yang \(R \)-matrix, while

\[R^t(u) = 1 - Q u^{-1}, \quad Q = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ij}. \]
Here

$$R(u) = 1 - Pu^{-1}$$

is the Yang R-matrix, while

$$R^t(u) = 1 - Q u^{-1}, \quad Q = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ij}.$$

Theorem

The mapping

$$S(u) \mapsto T(u) G T^t(-u)$$

*defines an embedding $Y(gl_N) \hookrightarrow Y(gl_{1N})$.***
Sklyanin determinant

The Sklyanin determinant is a series in u^{-1} defined by

$$s\text{det } S(u) = \gamma_{n,G}(u) q\text{det } T(u) q\text{det } T(-u + N - 1),$$

where

$$\gamma_{n,G}(u) = \begin{cases}
\det G & \text{if } g_N = o_N, \\
\frac{2u + 1}{2u - 2n + 1} \det G & \text{if } g_N = sp_{2n}.
\end{cases}$$
The Sklyanin determinant is a series in u^{-1} defined by

$$s\text{det} \ S(u) = \gamma_{n,G}(u) \ q\text{det} \ T(u) \ q\text{det} \ T(-u + N - 1),$$

where

$$\gamma_{n,G}(u) = \begin{cases}
\det G & \text{if } g_N = o_N, \\
\frac{2u + 1}{2u - 2n + 1} \det G & \text{if } g_N = sp_{2n}.
\end{cases}$$

All coefficients of $s\text{det} \ S(u)$ are contained in $Y(g_N)$ and belong to the center of $Y(g_N)$.
Introduce the scalar $\gamma_n(u)$ by

\[
\gamma_n(u) = \begin{cases}
1 & \text{if } g_N = o_N, \\
(-1)^n \frac{2u + 1}{2u - 2n + 1} & \text{if } g_N = sp_{2n}.
\end{cases}
\]

Theorem

We have

\[
\text{sdet } S(u) = \gamma_n(u) \sum_{p \in G_N} \text{sgn } pp' \cdot s_{p(1),p'(1)}^t(-u) \cdots s_{p(n),p'(n)}^t(-u + n - 1) \\
\times s_{p(n+1),p'(n+1)}(u - n) \cdots s_{p(N),p'(N)}(u - N + 1).
\]
Here we denote the matrix elements of the transposed matrix $S^t(u)$ by $s^t_{ij}(u)$, and for any permutation $p \in \mathfrak{S}_N$ we denote by p' its image under the map $\varphi_N : \mathfrak{S}_N \rightarrow \mathfrak{S}_N$ (Lecture 1).
Here we denote the matrix elements of the transposed matrix $S^t(u)$ by $s^t_{ij}(u)$, and for any permutation $p \in S_N$ we denote by p' its image under the map $\varphi_N : S_N \to S_N$ (Lecture 1).

Example

For $N = 2$ we have

$$\text{sdet } S(u) = \frac{1 + 2u}{1 - 2u} \left(s_{11}^t(-u) s_{22}(u - 1) - s_{21}^t(-u) s_{12}(u - 1) \right).$$
Here we denote the matrix elements of the transposed matrix \(S^t(u) \) by \(s_{ij}^t(u) \), and for any permutation \(p \in \mathfrak{S}_N \) we denote by \(p' \) its image under the map \(\varphi_N : \mathfrak{S}_N \to \mathfrak{S}_N \) (Lecture 1).

Example

For \(N = 2 \) we have

\[
\text{sdet } S(u) = \frac{1 \mp 2u}{1 - 2u} (s_{11}^t(-u) s_{22}(u - 1) - s_{21}^t(-u) s_{12}(u - 1)).
\]

If \(N = 3 \) then \(\text{sdet } S(u) = \)

\[
s_{22}^t(-u) s_{11}(u - 1) s_{33}(u - 2) + s_{12}^t(-u) s_{31}(u - 1) s_{23}(u - 2) \\
+ s_{21}^t(-u) s_{32}(u - 1) s_{13}(u - 2) - s_{12}^t(-u) s_{21}(u - 1) s_{33}(u - 2) \\
- s_{32}^t(-u) s_{11}(u - 1) s_{23}(u - 2) - s_{31}^t(-u) s_{22}(u - 1) s_{13}(u - 2).
\]
The center of the twisted Yangian

Theorem

All coefficients of the series

\[
\text{sdet } S(u) = c_0 + c_1 u^{-1} + c_2 u^{-2} + \ldots
\]

*belong to the center of the algebra } \mathcal{Y}(\mathfrak{g}_N). Moreover, the even coefficients } c_2, c_4, \ldots \text{ are algebraically independent and generate the center of } \mathcal{Y}(\mathfrak{g}_N).
Coideal property

Theorem

The subalgebra $Y(g_N)$ is a left coideal of the Hopf algebra $Y(gl_N)$, i.e.,

\[\Delta(Y(g_N)) \subset Y(gl_N) \otimes Y(g_N). \]

Moreover,

\[\Delta : s_{ij}(u) \mapsto \sum_{a,b=1}^{N} t_{ia}(u) t_{jb}(-u) \otimes s_{ab}(u). \]
Twisted analogues of some Yangian theorems

- Quantum Liouville formula
Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $s\det S(u)$
Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\text{sdet } S(u)$
- Quantum Sylvester theorem
Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\text{sdet } S(u)$
- Quantum Sylvester theorem

Applications to classical Lie algebras \mathfrak{g}_N

- Constructions of Casimir elements
Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\text{sdet } S(u)$
- Quantum Sylvester theorem

Applications to classical Lie algebras \mathfrak{g}_N

- Constructions of Casimir elements
- Cayley–Hamilton theorem
Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\text{sdet } S(u)$
- Quantum Sylvester theorem

Applications to classical Lie algebras g_N

- Constructions of Casimir elements
- Cayley–Hamilton theorem
- Characteristic identities