Recall that the Yangian $Y(gl_N)$ is an associative algebra with generators $t_{ij}^{(r)}$ and the defining relations

$$(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u),$$

where

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)} u^{-1} + t_{ij}^{(2)} u^{-2} + \cdots \in Y(gl_N)[[u^{-1}]].$$
Definition. A representation L of the Yangian $\mathcal{Y}(\mathfrak{gl}_N)$ is called a highest weight representation if there exists a nonzero vector $\zeta \in L$ such that L is generated by ζ and the following relations hold

\[t_{ij}(u) \zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq N, \quad \text{and} \]
\[t_{ii}(u) \zeta = \lambda_i(u) \zeta \quad \text{for} \quad 1 \leq i \leq N \]
Definition. A representation L of the Yangian $\mathcal{Y}(\mathfrak{gl}_N)$ is called a highest weight representation if there exists a nonzero vector $\zeta \in L$ such that L is generated by ζ and the following relations hold

$$t_{ij}(u)\zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq N,$$

and

$$t_{ii}(u)\zeta = \lambda_i(u)\zeta \quad \text{for} \quad 1 \leq i \leq N$$

for some formal series

$$\lambda_i(u) = 1 + \lambda_i^{(1)} u^{-1} + \lambda_i^{(2)} u^{-2} + \ldots, \quad \lambda_i^{(r)} \in \mathbb{C}.$$

The vector ζ is called the highest vector of L, and the N-tuple of formal series $\lambda(u) = (\lambda_1(u), \ldots, \lambda_N(u))$ is the highest weight of L.
Verma module

Definition

Let $\lambda(u) = (\lambda_1(u), \ldots, \lambda_N(u))$ be an arbitrary tuple of formal series. The Verma module $M(\lambda(u))$ is the quotient of $\mathcal{Y}(\mathfrak{gl}_N)$ by the left ideal generated by all coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq N$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq N$.

Proposition. For any given order on the set of generators t_{ji} with $1 \leq i < j \leq N$ and $r \geq 1$, the elements $t_{r1}^{j1} t_{r2}^{j2} \ldots t_{rm}^{jm} \lambda(u)$, $m \geq 0$, with ordered products of the generators, form a basis of $M(\lambda(u))$.

Verma module

Definition

Let $\lambda(u) = (\lambda_1(u), \ldots, \lambda_N(u))$ be an arbitrary tuple of formal series. The Verma module $M(\lambda(u))$ is the quotient of $Y(\mathfrak{gl}_N)$ by the left ideal generated by all coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq N$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq N$.

Proposition. For any given order on the set of generators $t_{ji}^{(r)}$ with $1 \leq i < j \leq N$ and $r \geq 1$, the elements

$$t_{j_1 i_1}^{(r_1)} \cdots t_{j_m i_m}^{(r_m)} 1\lambda(u), \quad m \geq 0,$$

with ordered products of the generators, form a basis of $M(\lambda(u))$.
The irreducible highest weight representation $L(\lambda(u))$ of $\mathcal{Y}(gl_N)$ with the highest weight $\lambda(u)$ is defined as the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.
The irreducible highest weight representation $L(\lambda(u))$ of $Y(\mathfrak{gl}_N)$ with the highest weight $\lambda(u)$ is defined as the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem

Every finite-dimensional irreducible representation of $Y(\mathfrak{gl}_N)$ is isomorphic to $L(\lambda(u))$ for some $\lambda(u)$.

Proof.

Regard the representation of $Y(\mathfrak{gl}_N)$ as a \mathfrak{gl}_N-module using the embedding $E_{ij} \mapsto t_{ij}^{(1)}$.
Given an N-tuple of complex numbers $\lambda = (\lambda_1, \ldots, \lambda_N)$ denote by $L(\lambda)$ the irreducible representation of the Lie algebra \mathfrak{gl}_N with the highest weight λ. So, $L(\lambda)$ is generated by a nonzero vector ζ such that

$$E_{ij} \zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq N,$$

and

$$E_{ii} \zeta = \lambda_i \zeta \quad \text{for} \quad 1 \leq i \leq N.$$
Given an \(N \)-tuple of complex numbers \(\lambda = (\lambda_1, \ldots, \lambda_N) \) denote by \(L(\lambda) \) the irreducible representation of the Lie algebra \(\mathfrak{gl}_N \) with the highest weight \(\lambda \). So, \(L(\lambda) \) is generated by a nonzero vector \(\zeta \) such that

\[
E_{ij} \zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq N, \quad \text{and}
\]

\[
E_{ii} \zeta = \lambda_i \zeta \quad \text{for} \quad 1 \leq i \leq N.
\]

Equip \(L(\lambda) \) with a structure of \(Y(\mathfrak{gl}_N) \)-module via the evaluation homomorphism

\[
t_{ij}(u) \mapsto \delta_{ij} + E_{ij} u^{-1}.
\]
$L(\lambda)$ is the evaluation module over $Y(gl_N)$.
$L(\lambda)$ is the evaluation module over $Y(gl_N)$.

$L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ, and the components of the highest weight are given by

$$\lambda_i(u) = 1 + \lambda_i u^{-1}, \quad i = 1, \ldots, N.$$
$L(\lambda)$ is the evaluation module over $Y(gl_N)$.

$L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ, and the components of the highest weight are given by

$$\lambda_i(u) = 1 + \lambda_i u^{-1}, \quad i = 1, \ldots, N.$$

If L and M are any two $Y(gl_N)$-modules, then the tensor product space $L \otimes M$ can be equipped with a $Y(gl_N)$-action with the use of the comultiplication Δ on $Y(gl_N)$.
$L(\lambda)$ is the evaluation module over $\mathcal{Y}(\mathfrak{gl}_N)$.

$L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ, and the components of the highest weight are given by

$$\lambda_i(u) = 1 + \lambda_i u^{-1}, \quad i = 1, \ldots, N.$$

If L and M are any two $\mathcal{Y}(\mathfrak{gl}_N)$-modules, then the tensor product space $L \otimes M$ can be equipped with a $\mathcal{Y}(\mathfrak{gl}_N)$-action with the use of the comultiplication Δ on $\mathcal{Y}(\mathfrak{gl}_N)$.

By the coassociativity of Δ, we may unambiguously define multiple tensor product modules of the form

$$L(\lambda^{(1)}) \otimes L(\lambda^{(2)}) \otimes \ldots \otimes L(\lambda^{(k)}).$$
Consider the irreducible highest weight representation $L(\lambda(u))$ of $Y(gl_2)$ with an arbitrary highest weight $\lambda(u) = (\lambda_1(u), \lambda_2(u))$.
Consider the irreducible highest weight representation $L(\lambda(u))$ of $Y(gl_2)$ with an arbitrary highest weight $\lambda(u) = (\lambda_1(u), \lambda_2(u))$.

Proposition

If $\dim L(\lambda(u)) < \infty$ then there exists a formal series

$$f(u) = 1 + f_1 u^{-1} + f_2 u^{-2} + \ldots, \quad f_r \in \mathbb{C},$$

such that $f(u)\lambda_1(u)$ and $f(u)\lambda_2(u)$ are polynomials in u^{-1}.

let $\lambda_1(u)$ and $\lambda_2(u)$ be polynomials in u^{-1} of degree not more than k. Write the decompositions

$$\lambda_1(u) = (1 + \alpha_1 u^{-1}) \ldots (1 + \alpha_k u^{-1}),$$

$$\lambda_2(u) = (1 + \beta_1 u^{-1}) \ldots (1 + \beta_k u^{-1}).$$
let $\lambda_1(u)$ and $\lambda_2(u)$ be polynomials in u^{-1} of degree not more than k. Write the decompositions

$$\lambda_1(u) = (1 + \alpha_1 u^{-1}) \ldots (1 + \alpha_k u^{-1}),$$

$$\lambda_2(u) = (1 + \beta_1 u^{-1}) \ldots (1 + \beta_k u^{-1}).$$

Proposition

Suppose that for every $i = 1, \ldots, k - 1$ the following condition holds: if the multiset \{ $\alpha_p - \beta_q$ $|$ $i \leq p, q \leq k$ \} contains nonnegative integers, then $\alpha_i - \beta_i$ is minimal amongst them. Then the representation $L(\lambda_1(u), \lambda_2(u))$ of $Y(gl_2)$ is isomorphic to the tensor product module

$$L(\alpha_1, \beta_1) \otimes L(\alpha_2, \beta_2) \otimes \ldots \otimes L(\alpha_k, \beta_k).$$
Theorem

The irreducible highest weight representation $L(\lambda_1(u), \lambda_2(u))$ of $\mathcal{Y}(\mathfrak{gl}_2)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$\frac{\lambda_1(u)}{\lambda_2(u)} = \frac{P(u + 1)}{P(u)}.$$

In this case $P(u)$ is unique.
Theorem

The irreducible highest weight representation $L(\lambda_1(u), \lambda_2(u))$ of $\mathcal{Y}(\mathfrak{gl}_2)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$\frac{\lambda_1(u)}{\lambda_2(u)} = \frac{P(u + 1)}{P(u)}.$$

In this case $P(u)$ is unique.

The polynomial $P(u)$ is called the Drinfeld polynomial of the finite-dimensional representation $L(\lambda_1(u), \lambda_2(u))$.
Proof.

\[\dim L(\alpha, \beta) < \infty \text{ if and only if } \alpha - \beta \in \mathbb{Z}_+. \]
Proof.

\[\dim L(\alpha, \beta) < \infty \text{ if and only if } \alpha - \beta \in \mathbb{Z}_+. \]

The highest weight of the \(Y(\mathfrak{gl}_2) \)-evaluation module is

\[\lambda_1(u) = 1 + \alpha u^{-1}, \quad \lambda_2(u) = 1 + \beta u^{-1}. \]

Hence, if \(\alpha - \beta \in \mathbb{Z}_+ \) then

\[\frac{\lambda_1(u)}{\lambda_2(u)} = \frac{u + \alpha}{u + \beta} = \frac{P(u + 1)}{P(u)} \]

for

\[P(u) = (u + \beta)(u + \beta + 1) \ldots (u + \alpha - 1). \]
Recall that the Yangian $Y(\mathfrak{sl}_2)$ is the subalgebra of $Y(\mathfrak{gl}_2)$ which consists of the elements stable under all automorphisms of the form $T(u) \mapsto f(u) \ T(u)$.

Corollary

The isomorphism classes of finite-dimensional irreducible representations of the Yangian $Y(\mathfrak{sl}_2)$ are parameterized by monic polynomials in u. Every such representation is isomorphic to the restriction of a $Y(\mathfrak{gl}_2)$-module of the form $L(\alpha_1, \beta_1) \otimes L(\alpha_2, \beta_2) \otimes \cdots \otimes L(\alpha_k, \beta_k)$, where each difference $\alpha_i - \beta_i$ is a positive integer.
Recall that the Yangian $\mathcal{Y}(\mathfrak{sl}_2)$ is the subalgebra of $\mathcal{Y}(\mathfrak{gl}_2)$ which consists of the elements stable under all automorphisms of the form $T(u) \mapsto f(u)T(u)$.

Corollary

The isomorphism classes of finite-dimensional irreducible representations of the Yangian $\mathcal{Y}(\mathfrak{sl}_2)$ are parameterized by monic polynomials in u. Every such representation is isomorphic to the restriction of a $\mathcal{Y}(\mathfrak{gl}_2)$-module of the form

$$L(\alpha_1, \beta_1) \otimes L(\alpha_2, \beta_2) \otimes \ldots \otimes L(\alpha_k, \beta_k),$$

where each difference $\alpha_i - \beta_i$ is a positive integer.
Irreducibility criterion

Define the string corresponding to a pair of complex numbers \((\alpha, \beta)\) with \(\alpha - \beta \in \mathbb{Z}_+\) as the set

\[S(\alpha, \beta) = \{\beta, \beta + 1, \ldots, \alpha - 1\}. \]

If \(\alpha = \beta\) then the set \(S(\alpha, \beta)\) is regarded to be empty.
Irreducibility criterion

Define the string corresponding to a pair of complex numbers \((\alpha, \beta)\) with \(\alpha - \beta \in \mathbb{Z}_+\) as the set

\[
S(\alpha, \beta) = \{\beta, \beta + 1, \ldots, \alpha - 1\}.
\]

If \(\alpha = \beta\) then the set \(S(\alpha, \beta)\) is regarded to be empty.

Definition

Two strings \(S_1\) and \(S_2\) are in general position if either

(i) \(S_1 \cup S_2\) is not a string, or

(ii) \(S_1 \subset S_2\), or \(S_2 \subset S_1\).
Suppose that all differences $\alpha_i - \beta_i$ are nonnegative integers.
Suppose that all differences $\alpha_i - \beta_i$ are nonnegative integers.

Corollary

The representation

$$L(\alpha_1, \beta_1) \otimes L(\alpha_2, \beta_2) \otimes \ldots \otimes L(\alpha_k, \beta_k)$$

of $Y(\mathfrak{gl}_2)$ (or $Y(\mathfrak{sl}_2)$) *is irreducible if and only if the strings* $S(\alpha_1, \beta_1), \ldots, S(\alpha_k, \beta_k)$ *are pairwise in general position.*
Example. The representation $L(7, 1) \otimes L(6, 4)$ of $\mathfrak{Y}(\mathfrak{gl}_2)$ is irreducible:

![Diagram]

1 2 3 4 5 6
Example. The representation $L(7, 1) \otimes L(6, 4)$ of \mathfrak{gl}_2 is irreducible:
Example. The representation $L(7, 1) \otimes L(6, 4)$ of $\mathcal{Y}(\mathfrak{gl}_2)$ is irreducible:

$$\begin{array}{cccc}\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
1 & 2 & 3 & 4 & 5 & 6 \end{array}$$

while $L(6, 1) \otimes L(7, 4)$ is reducible:

$$\begin{array}{cccc} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
1 & 2 & 3 & 4 & 5 & \end{array}$$
Example. The representation $L(7, 1) \otimes L(6, 4)$ of $Y(\mathfrak{gl}_2)$ is irreducible:

\[
\begin{array}{ccc}
\bullet & \bullet & \bullet & \circ & \circ & \bullet \\
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

while $L(6, 1) \otimes L(7, 4)$ is reducible:

\[
\begin{array}{ccc}
\bullet & \bullet & \bullet & \circ & \circ & \circ \\
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]
Representations of $\mathcal{Y}(\mathfrak{gl}_N)$

Let $\lambda(u)$ be an N-tuple of formal series in u^{-1},

$$\lambda(u) = (\lambda_1(u), \ldots, \lambda_N(u)).$$
Representations of $\mathcal{Y}(\mathfrak{gl}_N)$

Let $\lambda(u)$ be an N-tuple of formal series in u^{-1},

$$\lambda(u) = (\lambda_1(u), \ldots, \lambda_N(u)).$$

Theorem

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathcal{Y}(\mathfrak{gl}_N)$ is finite-dimensional, if and only if there exist monic polynomials $P_1(u), \ldots, P_{N-1}(u)$ in u such that

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u + 1)}{P_i(u)}, \quad i = 1, \ldots, N - 1.$$
Definition

The polynomials $P_i(u)$ with $i = 1, \ldots, N - 1$ are called the Drinfeld polynomials of $L(\lambda(u))$.
Definition

The polynomials \(P_i(u) \) with \(i = 1, \ldots, N - 1 \) are called the Drinfeld polynomials of \(L(\lambda(u)) \).

Lemma. Suppose that \(L \) and \(M \) are finite-dimensional irreducible representations of \(\mathcal{Y}(\mathfrak{gl}_N) \) with the respective sets of Drinfeld polynomials

\[
(P_1(u), \ldots, P_{N-1}(u)) \quad \text{and} \quad (Q_1(u), \ldots, Q_{N-1}(u)).
\]

Then the irreducible quotient of the cyclic \(\mathcal{Y}(\mathfrak{gl}_N) \)-span of the tensor product of the highest vectors of \(L \) and \(M \) corresponds to

\[
(P_1(u)Q_1(u), \ldots, P_{N-1}(u)Q_{N-1}(u)).
\]
The evaluation $Y(\mathfrak{gl}_N)$-module $L(\alpha + 1, \ldots, \alpha + 1, \alpha, \ldots, \alpha)$ with i copies of $\alpha + 1$ is a fundamental representation; its Drinfeld polynomials are given by

$$P_i(u) = u + \alpha \quad \text{and} \quad P_j(u) = 1 \quad \text{if} \quad j \neq i.$$
The evaluation $\mathcal{Y}(\mathfrak{gl}_N)$-module $L(\alpha + 1, \ldots, \alpha + 1, \alpha, \ldots, \alpha)$ with i copies of $\alpha + 1$ is a fundamental representation; its Drinfeld polynomials are given by

$$P_i(u) = u + \alpha \quad \text{and} \quad P_j(u) = 1 \quad \text{if} \quad j \neq i.$$

Corollary

Every finite-dimensional irreducible representation of the Yangian $\mathcal{Y}(\mathfrak{gl}_N)$ is isomorphic to a subquotient of a tensor product of fundamental representations.
Remark

Contrary to the case $N = 2$, it is not true for $N \geq 3$ that every finite-dimensional irreducible representation of $Y(sl_N)$ is isomorphic to a tensor product of evaluation modules. For example, the $Y(sl_3)$-module $L(\lambda(u))$ with

$$\lambda_1(u) = (1 + 3u^{-1})(1 + u^{-1}),$$

$$\lambda_2(u) = 1 + 3u^{-1}, \quad \lambda_3(u) = 1 + 2u^{-1}$$

is 8-dimensional. On the other hand, the possible dimensions of the evaluation modules are $1, 3, 6, 8, \ldots$ so that $L(\lambda(u))$ cannot be isomorphic to a tensor product of such modules.
Irreducibility criterion for tensor products
of evaluation modules

Let the $\lambda^{(i)}$ be \mathfrak{gl}_N-highest weights.
Irreducibility criterion for tensor products of evaluation modules

Let the $\lambda^{(i)}$ be \mathfrak{gl}_N-highest weights.

Theorem (Binary property). The $\mathcal{Y}(\mathfrak{gl}_N)$-module

$$L(\lambda^{(1)}) \otimes L(\lambda^{(2)}) \otimes \ldots \otimes L(\lambda^{(l)})$$

is irreducible if and only if the modules $L(\lambda^{(i)}) \otimes L(\lambda^{(j)})$ are irreducible for all $1 \leq i < j \leq l$.
Let
\[\lambda = (\lambda_1, \ldots, \lambda_N), \quad \mu = (\mu_1, \ldots, \mu_N) \]
with \(\lambda_i, \mu_i \in \mathbb{Z} \) and
\[\lambda_1 \geq \cdots \geq \lambda_N, \quad \mu_1 \geq \cdots \geq \mu_N. \]
Let

$$\lambda = (\lambda_1, \ldots, \lambda_N), \quad \mu = (\mu_1, \ldots, \mu_N)$$

with $\lambda_i, \mu_i \in \mathbb{Z}$ and

$$\lambda_1 \geq \cdots \geq \lambda_N, \quad \mu_1 \geq \cdots \geq \mu_N.$$

We will call two disjoint finite subsets A and B of \mathbb{Z} crossing if there exist elements $a_1, a_2 \in A$ and $b_1, b_2 \in B$ such that

$$a_1 < b_1 < a_2 < b_2 \quad \text{or} \quad b_1 < a_1 < b_2 < a_2.$$

Otherwise, A and B are called non-crossing.
For any \mathfrak{gl}_N-highest weight λ with integer components introduce the subset $\mathcal{A}_\lambda \subset \mathbb{Z}$ by

$$\mathcal{A}_\lambda = \{\lambda_1, \lambda_2 - 1, \ldots, \lambda_N - N + 1\}.$$
For any \(\mathfrak{gl}_N \)-highest weight \(\lambda \) with integer components introduce the subset \(A_\lambda \subset \mathbb{Z} \) by

\[
A_\lambda = \{ \lambda_1, \lambda_2 - 1, \ldots, \lambda_N - N + 1 \}.
\]

Theorem

The \(Y(\mathfrak{gl}_N) \)-module \(L(\lambda) \otimes L(\mu) \) is irreducible if and only if the sets \(A_\lambda \setminus A_\mu \) and \(A_\mu \setminus A_\lambda \) are non-crossing.
Example. The $Y(gl_4)$-module $L(7, 5, 5, 4) \otimes L(9, 8, 8, 6)$ is irreducible:
Example. The $\mathcal{Y}(\mathfrak{gl}_4)$-module $L(7, 5, 5, 4) \otimes L(9, 8, 8, 6)$ is irreducible:
Example. The $\mathcal{Y}(\mathfrak{gl}_4)$-module $L(7, 5, 5, 4) \otimes L(9, 8, 8, 6)$ is irreducible:

\[
A_\lambda \quad 1 \quad 3 \quad 4 \quad 7
\]

\[
A_\mu \quad 3 \quad 6 \quad 7 \quad 9
\]

The $\mathcal{Y}(\mathfrak{gl}_4)$-module $L(7, 6, 6, 4) \otimes L(9, 8, 8, 6)$ is reducible:

\[
A_\lambda \quad 1 \quad 4 \quad 5 \quad 7
\]
Example. The $\mathcal{Y}(\mathfrak{gl}_4)$-module $L(7,5,5,4) \otimes L(9,8,8,6)$ is irreducible:

\[\begin{array}{cccccc}
3 & 6 & 7 & 9 & \mathcal{A}_\mu \\
\bullet & \bullet & \bullet & \circ & \circ & \circ \\
\mathcal{A}_\lambda & 1 & 3 & 4 & 7 \\
\end{array}\]

The $\mathcal{Y}(\mathfrak{gl}_4)$-module $L(7,6,6,4) \otimes L(9,8,8,6)$ is reducible:

\[\begin{array}{cccccc}
3 & 6 & 7 & 9 & \mathcal{A}_\mu \\
\bullet & \bullet & \bullet & \circ & \circ & \circ \\
\mathcal{A}_\lambda & 1 & 4 & 5 & 7 \\
\end{array}\]
The irreducible representations of \mathfrak{S}_k over \mathbb{C} are parameterized by partitions of k. Given a partition λ of k denote the corresponding irreducible representation of \mathfrak{S}_k by V_λ. The vector space V_λ is equipped with an \mathfrak{S}_k-invariant inner product $(\ , \)$. The orthonormal Young basis $\{v_{\mathcal{U}}\}$ of V_λ is parameterized by the set of standard λ-tableaux \mathcal{U}.
Set $s_i = (i, i + 1)$ for $i \in \{1, \ldots, k - 1\}$. We have
\[s_i \cdot v_{\mathcal{U}} = d v_{\mathcal{U}} + \sqrt{1 - d^2} v_{s_i \mathcal{U}}, \]
where $d = (c_{i+1} - c_i)^{-1}$ and $c_i = c_i(\mathcal{U})$ the content of the cell occupied by the number i in a standard λ-tableau \mathcal{U}. The tableau $s_i \mathcal{U}$ is obtained from \mathcal{U} by swapping the entries i and $i + 1$.
The group algebra $\mathbb{C}[S_k]$ is isomorphic to the direct sum of matrix algebras

$$\mathbb{C}[S_k] \cong \bigoplus_{\lambda \vdash k} \text{Mat}_{f_\lambda}(\mathbb{C}),$$

where $f_\lambda = \dim V_\lambda$. The matrix units $e_{UU'} \in \text{Mat}_{f_\lambda}(\mathbb{C})$ are parameterized by pairs of standard λ-tableaux U and U'.
The group algebra $\mathbb{C}[S_k]$ is isomorphic to the direct sum of matrix algebras

$$\mathbb{C}[S_k] \cong \bigoplus_{\lambda\vdash k} \text{Mat}_{f_\lambda}(\mathbb{C}),$$

where $f_\lambda = \dim V_\lambda$. The matrix units $e_{UU'} \in \text{Mat}_{f_\lambda}(\mathbb{C})$ are parameterized by pairs of standard λ-tableaux U and U'. Identify $\mathbb{C}[S_k]$ with the direct sum of matrix algebras by

$$e_{UU'} = \frac{f_\lambda}{k!} \phi_{UU'},$$

where $\phi_{UU'}$ is the matrix element corresponding to the basis vectors v_U and $v_{U'}$ of the representation V_λ,

$$\phi_{UU'} = \sum_{s \in S_k} (s \cdot v_U, v_{U'}) \cdot s^{-1} \in \mathbb{C}[S_k].$$
For the diagonal elements we will simply write $e_u = e_{uu}$ and $\phi_u = \phi_{uu}$.
For the diagonal elements we will simply write $e_u = e_{uu}$ and $\phi_u = \phi_{uu}$.

The Jucys–Murphy elements of $\mathbb{C}[\mathfrak{S}_k]$ are defined by

$$x_1 = 0, \quad x_i = (1 \ i) + (2 \ i) + \cdots + (i - 1 \ i), \quad i = 2, \ldots, k.$$

They generate a commutative subalgebra of $\mathbb{C}[\mathfrak{S}_k]$. Moreover, x_k commutes with all elements of \mathfrak{S}_{k-1}.
For the diagonal elements we will simply write $e_u = e_{uu}$ and $\phi_u = \phi_{uu}$.

The Jucys–Murphy elements of $\mathbb{C}[\mathfrak{S}_k]$ are defined by

$$x_1 = 0, \quad x_i = (1i) + (2i) + \cdots + (i-1i), \quad i = 2, \ldots, k.$$

They generate a commutative subalgebra of $\mathbb{C}[\mathfrak{S}_k]$. Moreover, x_k commutes with all elements of \mathfrak{S}_{k-1}.

The vectors of the Young basis are eigenvectors for the action of x_i on V_λ. For any standard λ-tableau U we have

$$x_i \cdot v_U = c_i(U) v_U, \quad i = 1, \ldots, k.$$
Fix a standard λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Proposition (Murphy's formula). We have the relation in $C[S_k]$,

$$e_\mathcal{U} = e_\mathcal{V} \left(x_k - a_1 \right) \cdots \left(x_k - a_l \right) \left(c - a_1 \right) \cdots \left(c - a_l \right),$$

where a_1, \ldots, a_l are the contents of all addable cells of μ except for α, while c is the content of the latter. Equivalently,

$$e_\mathcal{U} = e_\mathcal{V} u - c u - x_k \Big|_{u = c}.$$
Fix a standard λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Proposition (Murphy’s formula). We have the relation in $\mathbb{C}[\mathfrak{S}_k]$,

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_k - a_1) \ldots (x_k - a_l)}{(c - a_1) \ldots (c - a_l)},$$

where a_1, \ldots, a_l are the contents of all addable cells of μ except for α, while c is the content of the latter.
Fix a standard λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Proposition (Murphy’s formula). We have the relation in $\mathbb{C}[S_k]$,

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_k - a_1) \ldots (x_k - a_l)}{(c - a_1) \ldots (c - a_l)},$$

where a_1, \ldots, a_l are the contents of all addable cells of μ except for α, while c is the content of the latter.

Equivalently,

$$e_{\mathcal{U}} = e_{\mathcal{V}} \left. \frac{u - c}{u - x_k} \right|_{u=c}.$$
For any distinct indices $i, j \in \{1, \ldots, k\}$ introduce the rational function in two variables u, v with values in the group algebra $\mathbb{C}[S_k]$ by

$$\rho_{ij}(u, v) = 1 - \frac{(ij)}{u - v}. $$
For any distinct indices \(i, j \in \{1, \ldots, k\} \) introduce the rational function in two variables \(u, v \) with values in the group algebra \(\mathbb{C}[\mathfrak{S}_k] \) by

\[
\rho_{ij}(u, v) = 1 - \frac{(ij)}{u - v}.
\]

Proposition

Let \(r \) be a fixed index, \(r \geq k + 1 \). We have the equalities of rational functions in \(u \) valued in \(\mathbb{C}[\mathfrak{S}_r] \),

\[
\phi_U \rho_{k,r}(-c_k, u) \cdots \rho_{1,r}(-c_1, u) = \rho_{1,r}(-c_1, u) \cdots \rho_{k,r}(-c_k, u) \phi_U
\]

\[
= \phi_U \left(1 + \frac{(1r) + (2r) + \cdots + (kr)}{u} \right).
\]
Take k complex variables u_1, \ldots, u_k and set

$$\phi(u_1, \ldots, u_k) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3) \times \ldots \rho_{1k}(u_1, u_k) \rho_{2k}(u_2, u_k) \ldots \rho_{k-1,k}(u_{k-1}, u_k).$$
Take k complex variables u_1, \ldots, u_k and set

$$
\phi(u_1, \ldots, u_k) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3) \\
\times \ldots \rho_{1k}(u_1, u_k) \rho_{2k}(u_2, u_k) \ldots \rho_{k-1,k}(u_{k-1}, u_k).
$$

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard λ-tableau. Set $c_i = c_i(\mathcal{U})$ for $i = 1, \ldots, k$.
Take k complex variables u_1, \ldots, u_k and set

$$
\phi(u_1, \ldots, u_k) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3) \\
\times \ldots \rho_{1k}(u_1, u_k) \rho_{2k}(u_2, u_k) \ldots \rho_{k-1,k}(u_{k-1}, u_k).
$$

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard λ-tableau. Set $c_i = c_i(\mathcal{U})$ for $i = 1, \ldots, k$.

Then the consecutive evaluations

$$
\phi(u_1, \ldots, u_k) \bigg|_{u_1 = c_1} \bigg|_{u_2 = c_2} \ldots \bigg|_{u_k = c_k}
$$

of the rational function $\phi(u_1, \ldots, u_k)$ are well-defined. The corresponding value coincides with the matrix element $\phi_{\mathcal{U}}$.
Example: \(\lambda = (k) \). Then

\[
\mathcal{U} = \begin{array}{cccc}
1 & 2 & \cdots & k \\
\end{array}
\]

\(c_i = i - 1 \),
Example: $\lambda = (k)$. Then

$$U = \begin{bmatrix} 1 & 2 & \cdots & k \end{bmatrix} \quad c_i = i - 1,$$

and

$$\phi_U = \sum_{\sigma \in \mathcal{S}_k} \sigma,$$

is the symmetrizer in $\mathbb{C}[\mathcal{S}_k]$.
Example: \(\lambda = (k) \). Then

\[
\mathcal{U} = \begin{bmatrix} 1 & 2 & \cdots & k \end{bmatrix} \quad c_i = i - 1,
\]

and

\[
\phi_{\mathcal{U}} = \sum_{\sigma \in \mathfrak{S}_k} \sigma,
\]

is the symmetrizer in \(\mathbb{C}[\mathfrak{S}_k] \). By the theorem,

\[
\phi_{\mathcal{U}} = \left(1 + \frac{(12)}{1}\right) \left(1 + \frac{(13)}{2}\right) \left(1 + \frac{(23)}{1}\right) \times \cdots \left(1 + \frac{(1k)}{k-1}\right) \left(1 + \frac{(2k)}{k-2}\right) \cdots \left(1 + \frac{(k-1k)}{1}\right).
\]
Example: $\lambda = (1^k)$. Then

$$U = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ k \end{pmatrix}$$

$c_i = -i + 1,$
Example: \(\lambda = (1^k) \). Then

\[
U = \begin{bmatrix}
1 \\
2 \\
\vdots \\
k
\end{bmatrix}
\]

\(c_i = -i + 1 \),

and \(\phi_U = \sum_{\sigma \in \mathcal{S}_k} \text{sgn } \sigma \cdot \sigma \) is the anti-symmetrizer in \(\mathbb{C}[\mathcal{S}_k] \).
Example: \(\lambda = (1^k) \). Then

\[
U = \begin{array}{c}
1 \\
2 \\
\vdots \\
k
\end{array}
\]

and \(\phi_U = \sum_{\sigma \in \mathcal{S}_k} \text{sgn} \sigma \cdot \sigma \) is the anti-symmetrizer in \(\mathbb{C}[\mathcal{S}_k] \),

\[
\phi_U = \left(1 - \frac{(12)}{1}\right) \left(1 - \frac{(13)}{2}\right) \left(1 - \frac{(23)}{1}\right) \\
\times \ldots \left(1 - \frac{(1k)}{k-1}\right) \left(1 - \frac{(2k)}{k-2}\right) \ldots \left(1 - \frac{(k-1k)}{1}\right).
\]
Example: \(\lambda = (2, 1) \),

\[
U = \begin{pmatrix} 1 & 2 \\ 3 \end{pmatrix} \quad V = \begin{pmatrix} 1 & 3 \\ 2 \end{pmatrix}
\]
Example: $\lambda = (2, 1)$,

\[
\begin{bmatrix}
1 & 2 \\
3 & & \end{bmatrix} \quad \begin{bmatrix}
1 & 3 \\
2 & & \end{bmatrix}
\]

Then $c_1 = 0, \ c_2 = 1, \ c_3 = -1$ for \mathcal{U}, and

\[
\phi_\mathcal{U} = \left(1 + (12)\right) \left(1 - (13)\right) \left(1 - \frac{(23)}{2}\right),
\]
Example: $\lambda = (2, 1)$,

$$
\begin{bmatrix}
1 & 2 \\
3 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 3 \\
2 & 2
\end{bmatrix}

Then $c_1 = 0, \ c_2 = 1, \ c_3 = -1$ for U, and

$$
\phi_U = \left(1 + (12)\right) \left(1 - (13)\right) \left(1 - \frac{(23)}{2}\right),
$$

while $c_1 = 0, \ c_2 = -1, \ c_3 = 1$ for V, and

$$
\phi_V = \left(1 - (12)\right) \left(1 + (13)\right) \left(1 + \frac{(23)}{2}\right).
$$
Example: \(\lambda = (2^2) \),

\[
\phi(u_1, u_2, u_3, u_4) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3) \\
\times \rho_{14}(u_1, u_4) \rho_{24}(u_2, u_4) \rho_{34}(u_3, u_4).
\]
Example: \(\lambda = (2^2) \),

\[
\phi(u_1, u_2, u_3, u_4) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3) \\
\times \rho_{14}(u_1, u_4) \rho_{24}(u_2, u_4) \rho_{34}(u_3, u_4).
\]

Take the standard \(\lambda \)-tableau

\[
\mathcal{U} = \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}
\]
Example: \(\lambda = (2^2), \)

\[
\phi(u_1, u_2, u_3, u_4) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3) \\
\times \rho_{14}(u_1, u_4) \rho_{24}(u_2, u_4) \rho_{34}(u_3, u_4).
\]

Take the standard \(\lambda \)-tableau

\[
\mathcal{U} = \begin{array}{cc}
1 & 2 \\
3 & 4 \\
\end{array}
\]

The contents are \(c_1 = 0, \quad c_2 = 1, \quad c_3 = -1, \quad c_4 = 0. \)
Taking $u_1 = 0, \ u_2 = 1, \ u_3 = -1, \ u_4 = u$ we get

$$\phi(0, 1, -1, u) = \left(1 + (1\ 2)\right) \left(1 - (1\ 3)\right) \left(1 - \frac{2\ 3}{2}\right)$$

$$\times \left(1 + \frac{1\ 4}{u}\right) \left(1 + \frac{2\ 4}{u - 1}\right) \left(1 + \frac{3\ 4}{u + 1}\right).$$
Taking $u_1 = 0$, $u_2 = 1$, $u_3 = -1$, $u_4 = u$ we get

$$\phi(0, 1, -1, u) = \left(1 + (1\ 2)\right)\left(1 - (1\ 3)\right)\left(1 - \frac{(2\ 3)}{2}\right)$$

$$\times \left(1 + \frac{(1\ 4)}{u}\right)\left(1 + \frac{(2\ 4)}{u - 1}\right)\left(1 + \frac{(3\ 4)}{u + 1}\right).$$

By the theorem, this rational function is regular at $u = 0$ and the corresponding value coincides with ϕ_U.
We have

\[
\phi(0, 1, -1, u) = \phi_V \left(1 + \frac{(14)}{u} \right) \left(1 + \frac{(24)}{u - 1} \right) \left(1 + \frac{(34)}{u + 1} \right),
\]
We have

\[\phi(0, 1, -1, u) = \phi_V \left(1 + \left(\frac{14}{u} \right) \right) \left(1 + \left(\frac{24}{u - 1} \right) \right) \left(1 + \left(\frac{34}{u + 1} \right) \right), \]

where

\[V = \begin{bmatrix} 1 & 2 \\ 3 & \end{bmatrix} \]
Next step:

\[\phi_\mathcal{V} \left(1 + \frac{(14)}{u} \right) \left(1 + \frac{(24)}{u - 1} \right) \left(1 + \frac{(34)}{u + 1} \right) = \prod_{i=1}^{3} \left(1 - \frac{1}{(u - c_i)^2} \right) \frac{u}{u - c_4} \cdot \phi_\mathcal{V} \frac{u - c_4}{u - x_4}, \]
Next step:

\[\phi_\nu \left(1 + \frac{(14)}{u} \right) \left(1 + \frac{(24)}{u - 1} \right) \left(1 + \frac{(34)}{u + 1} \right) \]

\[= \prod_{i=1}^{3} \left(1 - \frac{1}{(u - c_i)^2} \right) \frac{u}{u - c_4} \cdot \phi_\nu \frac{u - c_4}{u - x_4}, \]

where \(c_1 = 0, \ c_2 = 1, \ c_3 = -1, \ c_4 = 0 \) and \(x_4 = (14) + (24) + (34). \)
Finally, apply Murphy’s formula to get

\[
\prod_{i=1}^{3} \left(1 - \frac{1}{(u - c_i)^2}\right) \frac{u}{u - c_4} \cdot \phi \left. \frac{u - c_4}{u - x_4} \right|_{u = c_4} = \phi u.
\]
Finally, apply Murphy’s formula to get

\[\prod_{i=1}^{3} \left(1 - \frac{1}{(u - c_i)^2} \right) \frac{u}{u - c_4} \cdot \phi \left. \frac{u - c_4}{u - x_4} \right|_{u = c_4} = \phi_U. \]

Thus,

\[\phi_U = \phi(0, 1, -1, 0) \]

\[= \frac{1}{2} \left(1 + (1 2) \right) \left(1 - (1 3) \right) \left(2 - (2 3) \right) \]

\[\times \left(2 - (1 4) - (2 4) - (3 4) \right) \left(2 + (1 4) + (2 4) + (3 4) \right). \]
The symmetric group \mathfrak{S}_k acts naturally on the tensor product space

$$\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N,$$ \quad \text{k factors,}

by permuting the factors. On the other hand, \mathbb{C}^N carries the vector representation of the Lie algebra \mathfrak{gl}_N so that the tensor product space is a representation of \mathfrak{gl}_N.
The symmetric group \mathcal{S}_k acts naturally on the tensor product space

$$\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N, \quad \text{k factors},$$

by permuting the factors. On the other hand, \mathbb{C}^N carries the vector representation of the Lie algebra \mathfrak{gl}_N so that the tensor product space is a representation of \mathfrak{gl}_N.

Suppose that $\lambda = (\lambda_1, \ldots, \lambda_N)$ is a partition of k with $\ell(\lambda) \leq N$. Consider an arbitrary standard λ-tableau \mathcal{U} and let $\Phi_\mathcal{U} \in \text{End} (\mathbb{C}^N)^{\otimes k}$ denote the image of the matrix element $\phi_\mathcal{U}$ under the action of \mathcal{S}_k on the tensor product space.
Then the subspace

$$L_U = \Phi_U(C^N \otimes k)$$

is a \mathfrak{gl}_N-submodule of the tensor product module. This submodule is irreducible and isomorphic to $L(\lambda)$.
Then the subspace

$$L_U = \Phi_U (\mathbb{C}^N)^\otimes k$$

is a \mathfrak{gl}_N-submodule of the tensor product module. This submodule is irreducible and isomorphic to $L(\lambda)$.

If $U = U^r$ is the row tableau of shape λ, then the subspace L_{U^r} coincides with the image of the Young symmetrizer,

$$L_{U^r} = H_{U^r} A_{U^r} (\mathbb{C}^N)^\otimes k,$$

where H_{U^r} and A_{U^r} are the row symmetrizer and column anti-symmetrizer of U^r.
In the vector representation \mathbb{C}^N of \mathfrak{gl}_N we have $E_{ij} \mapsto e_{ij}$ and so the image of the matrix $E = \sum_{i,j=1}^N e_{ij} \otimes E_{ij}$ under the action of \mathfrak{gl}_N can be written as

$$
\sum_{a=1}^k \sum_{i,j=1}^N e_{ij} \otimes 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (k-a)} \in \text{End} \mathbb{C}^N \otimes \text{End} (\mathbb{C}^N)^{\otimes k}.
$$
In the vector representation \mathbb{C}^N of \mathfrak{gl}_N we have $E_{ij} \mapsto e_{ij}$ and so the image of the matrix $E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}$ under the action of \mathfrak{gl}_N can be written as

$$\sum_{a=1}^{k} \sum_{i,j=1}^{N} e_{ij} \otimes 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (k-a)} \in \text{End } \mathbb{C}^N \otimes \text{End } (\mathbb{C}^N)^{\otimes k}.$$

Hence, under the evaluation homomorphism

$$T(u) \mapsto 1 + E u^{-1},$$

the image of $T^t(u)$ in the representation $L_{\mathcal{U}}$ is

$$T^t(u) \mapsto 1 + (P_{01} + P_{02} + \cdots + P_{0k}) u^{-1}.$$
In particular, if $k = 1$ then this takes the form

$$T^t(u) \mapsto R_{01}(-u),$$

where we have used the Yang R-matrix.
In particular, if $k = 1$ then this takes the form

$$T^t(u) \mapsto R_{01}(-u),$$

where we have used the Yang R-matrix.

For any complex number z we can make the vector space \mathbb{C}^N into a representation of $\mathcal{Y}(\mathfrak{gl}_N)$ by the assignment

$$T^t(u) \mapsto R_{01}(-u - z).$$
In particular, if \(k = 1\) then this takes the form

\[
T^t(u) \mapsto R_{01}(-u),
\]

where we have used the Yang \(R\)-matrix.

For any complex number \(z\) we can make the vector space \(\mathbb{C}^N\) into a representation of \(\mathcal{Y}(\mathfrak{gl}_N)\) by the assignment

\[
T^t(u) \mapsto R_{01}(-u - z).
\]

More generally, \(\mathcal{Y}(\mathfrak{gl}_N)\) acts on \((\mathbb{C}^N)^\otimes k\) by

\[
T^t(u) \mapsto R_{01}(-u - z_1) R_{02}(-u - z_2) \ldots R_{0k}(-u - z_k),
\]

where \(z_1, \ldots, z_k\) are fixed complex numbers.
Consider a standard λ-tableau \mathcal{U} and for any index $r = 1, \ldots, k$ denote by $c_r = c_r(\mathcal{U})$ the content of the cell of \mathcal{U} occupied by r.
Consider a standard λ-tableau \mathcal{U} and for any index $r = 1, \ldots, k$ denote by $c_r = c_r(\mathcal{U})$ the content of the cell of \mathcal{U} occupied by r.

Proposition

The subspace L_U of $(\mathbb{C}^N)^\otimes k$ is stable under the action of $\mathcal{Y}(\mathfrak{gl}_N)$ defined by

$$T^t(u) \mapsto R_{01}(-u - c_1) R_{02}(-u - c_2) \ldots R_{0k}(-u - c_k).$$

Moreover, the representation of $\mathcal{Y}(\mathfrak{gl}_N)$ on L_U obtained by restriction is isomorphic to the evaluation module $L(\lambda)$.
Proof.

Observe that $R_{ij}(u - v)$ coincides with the image of the element $\rho_{ij}(u, v)$ under the action of the symmetric group \mathfrak{S}_{k+1} on the tensor product of the vector spaces \mathbb{C}^N. Hence, applying the fusion procedure, we get

$$R_{01}(-u - c_1)R_{02}(-u - c_2)\cdots R_{0k}(-u - c_k)\Phi_U$$

$$= \Phi_U \left(1 + \frac{P_{01} + P_{02} + \cdots + P_{0k}}{u} \right).$$

This implies the first part of the proposition. The second part follows by taking into account that $P_{01} + P_{02} + \cdots + P_{0k}$ commutes with Φ_U. \qed
Gelfand–Tsetlin bases

Given any finite-dimensional irreducible representation of the Yangian $Y(\mathfrak{gl}_N)$, there exists an automorphism of $Y(\mathfrak{gl}_N)$ of the form $T(u) \mapsto f(u) T(u)$ such that its composition with the representation is isomorphic to a subquotient of a tensor product module

$$L(\lambda^{(1)}) \otimes \ldots \otimes L(\lambda^{(p)}),$$

where $L(\lambda^{(i)})$ is the irreducible representation of \mathfrak{gl}_N with the highest weight $\lambda^{(i)}$.
Gelfand–Tsetlin bases

Given any finite-dimensional irreducible representation of the Yangian $Y(\mathfrak{gl}_N)$, there exists an automorphism of $Y(\mathfrak{gl}_N)$ of the form $T(u) \mapsto f(u) \cdot T(u)$ such that its composition with the representation is isomorphic to a subquotient of a tensor product module

$$L(\lambda^{(1)}) \otimes \ldots \otimes L(\lambda^{(p)}),$$

where $L(\lambda^{(i)})$ is the irreducible representation of \mathfrak{gl}_N with the highest weight $\lambda^{(i)}$.

All generators $t_{ij}^{(r)}$ with $r \geq p + 1$ act as zero operators.
Definition

For any positive integer p, the Yangian of level p is the quotient $Y_p(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$ by the ideal generated by all elements $t^{(r)}_{ij}$ with $r \geq p + 1$ and $1 \leq i, j \leq N$.
Definition

For any positive integer p, the Yangian of level p is the quotient $Y_p(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$ by the ideal generated by all elements $t^{(r)}_{ij}$ with $r \geq p + 1$ and $1 \leq i, j \leq N$.

The composition of any finite-dimensional irreducible representation of $Y(\mathfrak{gl}_N)$ with an appropriate automorphism $T(u) \mapsto f(u) T(u)$ can be regarded as a representation of $Y_p(\mathfrak{gl}_N)$ for some $p \geq 1$. If $p = 1$ then the algebra $Y_1(\mathfrak{gl}_N)$ is isomorphic to the universal enveloping algebra $U(\mathfrak{gl}_N)$.
\(\mathcal{Y}_p(\mathfrak{gl}_N) \) can be regarded as an algebra with generators \(t_{ij}^{(r)} \) for \(1 \leq r \leq p \) and \(1 \leq i, j \leq N \), subject to the defining relations

\[
(u - \nu) \left[T_{ij}(u), T_{kl}(\nu) \right] = T_{kj}(u) T_{il}(\nu) - T_{kj}(\nu) T_{il}(u),
\]

where

\[
T_{ij}(u) = \delta_{ij} u^p + t_{ij}^{(1)} u^{p-1} + \cdots + t_{ij}^{(p)}.
\]
The irreducible representation $L(\lambda(u))$ is generated by a nonzero vector ζ such that

$$T_{ij}(u)\zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq N,$$

$$T_{ii}(u)\zeta = \lambda_i(u)\zeta \quad \text{for} \quad 1 \leq i \leq N,$$

where $\lambda_i(u)$ is a monic polynomial in u of degree p. Write

$$\lambda_i(u) = (u + \lambda_i^{(1)})(u + \lambda_i^{(2)}) \ldots (u + \lambda_i^{(p)}), \quad i = 1, \ldots, N.$$
The irreducible representation $L(\lambda(u))$ is generated by a nonzero vector ζ such that

$$T_{ij}(u) \zeta = 0 \quad \text{for} \quad 1 \leq i < j \leq N,$$

and

$$T_{ii}(u) \zeta = \lambda_i(u) \zeta \quad \text{for} \quad 1 \leq i \leq N,$$

where $\lambda_i(u)$ is a monic polynomial in u of degree p. Write

$$\lambda_i(u) = (u + \lambda_i^{(1)})(u + \lambda_i^{(2)}) \ldots (u + \lambda_i^{(p)}), \quad i = 1, \ldots, N.$$

Impose the generality condition

$$\lambda_i^{(k)} - \lambda_j^{(m)} \notin \mathbb{Z}, \quad \text{for all} \quad i, j \quad \text{and all} \quad k \neq m.$$
The Gelfand–Tsetlin pattern $\Lambda(u)$ (associated with the highest weight $\lambda(u)$) is an array of monic polynomials in u of degree p of the form

\[
\begin{array}{cccc}
\lambda_{N1}(u) & \lambda_{N2}(u) & \ldots & \lambda_{NN}(u) \\
\lambda_{N-1,1}(u) & \ldots & \lambda_{N-1,N-1}(u) \\
\ldots & \ldots & \ldots \\
\lambda_{21}(u) & \lambda_{22}(u) \\
\lambda_{11}(u)
\end{array}
\]
Here the top row coincides with $\lambda(u)$, and we have the betweenness conditions

$$\lambda_{r+1,i}(u) \rightarrow \lambda_{ri}(u) \rightarrow \lambda_{r+1,i+1}(u)$$

for $r = 1, \ldots, N - 1$ and $i = 1, \ldots, r$.

$\lambda_i(u) \rightarrow \mu_i(u)$ means that there exists a uniquely determined decomposition

$$\mu_i(u) = (u + \mu_1(u)) (u + \mu_2(u)) \cdots (u + \mu_p(u)),$$

$i = 1, \ldots, N - 1$, such that \[\lambda(k)i - \mu(k)i \in \mathbb{Z}^+\] for all i and k.

Here the top row coincides with $\lambda(u)$, and we have the betweenness conditions

$$
\lambda_{r+1,i}(u) \longrightarrow \lambda_{ri}(u) \longrightarrow \lambda_{r+1,i+1}(u)
$$

for $r = 1, \ldots, N - 1$ and $i = 1, \ldots, r$.

Notation

$$
\lambda_i(u) \longrightarrow \mu_i(u)
$$

means that there exists a uniquely determined decomposition

$$
\mu_i(u) = (u + \mu_i^{(1)})(u + \mu_i^{(2)}) \cdots (u + \mu_i^{(p)}), \quad i = 1, \ldots, N - 1,
$$

such that $\lambda_i^{(k)} - \mu_i^{(k)} \in \mathbb{Z}_+$ for all i and k.
Theorem

The representation $L(\lambda(u))$ of $Y_p(\mathfrak{gl}_N)$ admits a basis $\{\zeta_\Lambda\}$ parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$.

Corollary (Branching rule).

$L(\lambda(u))|_{Y_p(\mathfrak{gl}_{N-1})} \sim L(\mu(u))L'(\mu(u))$, where $\mu(u)$ runs over all tuples of monic polynomials $\mu(u) = (\mu_1(u), ..., \mu_{N-1}(u))$ of degree p satisfying the betweenness conditions.
Theorem

The representation $L(\lambda(u))$ of $\mathcal{Y}_p(\mathfrak{gl}_N)$ admits a basis $\{\zeta_\Lambda\}$ parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$.

Corollary (Branching rule).

$$L(\lambda(u))|_{\mathcal{Y}_p(\mathfrak{gl}_{N-1})} \cong \bigoplus_{\mu(u)} L'(\mu(u)),$$

where $\mu(u)$ runs over all tuples of monic polynomials $\mu(u) = (\mu_1(u), \ldots, \mu_{N-1}(u))$ of degree p satisfying the betweenness conditions.
Introduce the polynomials with coefficients in $\mathcal{Y}_p(\mathfrak{gl}_N)$ by

\[
A_r(u) = T_{\frac{1}{1} \cdots \frac{r}{r}}(u), \quad B_r(u) = T_{\frac{1}{1} \cdots \frac{r}{r-1}, \frac{r+1}{r+1}}(u),
\]

\[
C_r(u) = T_{\frac{1}{1} \cdots \frac{r-1}{r-1}, \frac{r+1}{r+1}}(u).
\]
Introduce the polynomials with coefficients in $Y_p(gl_N)$ by

$$A_r(u) = T_{1\ldots r}^1(u), \quad B_r(u) = T_{1\ldots r}^{1\ldots r-1, r+1}(u), \quad C_r(u) = T_{1\ldots r}^{1\ldots r-1,r+1}(u).$$

The coefficients of the polynomials $A_r(u)$ for $r = 1, \ldots, N$ and the polynomials $B_r(u)$ and $C_r(u)$ for $r = 1, \ldots, N - 1$ generate the algebra $Y_p(gl_N)$.
For a pattern $\Lambda(u)$ due to the generality condition there exist uniquely determined decompositions

$$
\lambda_{ri}(u) = (u + \lambda_{ri}^{(1)}) \ldots (u + \lambda_{ri}^{(p)}), \quad 1 \leq i \leq r \leq N,
$$

such that $\lambda_{Ni}^{(k)} = \lambda_{i}^{(k)}$,

$$
\lambda_{r+1,i}^{(k)} - \lambda_{ri}^{(k)} \in \mathbb{Z}_+ \quad \text{and} \quad \lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \in \mathbb{Z}_+
$$

for $k = 1, \ldots, p$ and $1 \leq i \leq r \leq N - 1$.
For a pattern $\Lambda(u)$ due to the generality condition there exist uniquely determined decompositions

$$\lambda_{ri}(u) = (u + \lambda_{ri}^{(1)}) \ldots (u + \lambda_{ri}^{(p)}), \quad 1 \leq i \leq r \leq N,$$

such that $\lambda_{Ni}^{(k)} = \lambda_{i}^{(k)}$,

$$\lambda_{r+1,i}^{(k)} - \lambda_{ri}^{(k)} \in \mathbb{Z}^+ \quad \text{and} \quad \lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \in \mathbb{Z}^+$$

for $k = 1, \ldots, p$ and $1 \leq i \leq r \leq N - 1$.

Set

$$l_{ri}^{(k)} = \lambda_{ri}^{(k)} - i + 1, \quad k = 1, \ldots, p \quad \text{and} \quad i = 1, \ldots, r.$$
Theorem

We have

\[A_r(u) \zeta_\Lambda = \lambda_{r1}(u) \ldots \lambda_{rr}(u - r + 1) \zeta_\Lambda, \]

for \(r = 1, \ldots, N \), and
Theorem

We have

\[A_r(u) \zeta_\Lambda = \lambda_{r1}(u) \ldots \lambda_{rr}(u - r + 1) \zeta_\Lambda, \]

for \(r = 1, \ldots, N \), and

\[B_r(-l_{ri}^{(k)}) \zeta_\Lambda = -\lambda_{r+1,1}(-l_{ri}^{(k)}) \ldots \lambda_{r+1,r+1}(-l_{ri}^{(k)} - r) \zeta_{\Lambda + \delta_{ri}^{(k)}}, \]

\[C_r(-l_{ri}^{(k)}) \zeta_\Lambda = \lambda_{r-1,1}(-l_{ri}^{(k)}) \ldots \lambda_{r-1,r-1}(-l_{ri}^{(k)} - r + 2) \zeta_{\Lambda - \delta_{ri}^{(k)}}, \]

for \(r = 1, \ldots, N - 1 \).
Representations of twisted Yangians

- Classification theorems, highest weight theory
Representations of twisted Yangians

- Classification theorems, highest weight theory
- Constructions of all representations of $Y(\sigma_2)$ and $Y(\mathfrak{sp}_2)$ via tensor products
Representations of twisted Yangians

- Classification theorems, highest weight theory
- Constructions of all representations of $Y(o_2)$ and $Y(sp_2)$ via tensor products
- Open problems:
 - Gelfand–Tsetlin bases
Representations of twisted Yangians

- Classification theorems, highest weight theory
- Constructions of all representations of $\mathcal{Y}(\mathfrak{o}_2)$ and $\mathcal{Y}(\mathfrak{sp}_2)$ via tensor products
- Open problems:
 - Gelfand–Tsetlin bases
 - Characters of irreducible representations