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Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985),

the universal enveloping algebra U(g) of a simple Lie algebra g

admits a deformation Uq(g) in the class of Hopf algebras.

The dual Hopf algebras are quantized algebras of functions

Funq(G) on the associated Lie group G

[N. Reshetikhin, L. Takhtajan and L. Faddeev 1990].

A detailed review of the theory and applications:

V. Chari and A. Pressley, A guide to quantum groups, 1994.
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Basic example

The algebra Funq(Mat2) is generated by four elements a, b, c, d,

understood as the entries of the matrix

[
a b

c d

]
, such that

ba = qab, dc = qcd, ca = qac, db = qbd,

and

bc = cb, ad − da + (q− q−1)bc = 0.

[L. Faddeev and L. Takhtajan 1986].
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As observed by Yu. Manin (1988), the relations are recovered

via a “coaction” on the quantum plane: the algebra with

generators x, y and the relation yx = qxy.

A 2× 2 matrix is q-Manin if the elements x ′ and y ′ defined by

[
x ′

y ′

]
=

[
a b

c d

][
x

y

]
,

satisfy y ′x ′ = qx ′y ′. The defining relations for Funq(Mat2)

are equivalent to the conditions that the matrix

[
a b

c d

]
and its transpose are q-Manin matrices.
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MacMahon Master Theorem

Consider the characteristic polynomial of a matrix

M =


M11 . . . M1n

...
...

...

Mn1 . . . Mnn


with entries in C :

det(I + tM) = 1 + ∆1 t + · · ·+ ∆n tn.

In particular,

∆1 = tr M, ∆n = det M.
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Regard the matrix M as the element

M =

n∑
i,j=1

eij ⊗Mij ∈ EndCn ⊗ C .

Consider the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
k

⊗ C

and for a = 1, . . . , k set

Ma =

n∑
i,j=1

I ⊗ . . .⊗ I︸ ︷︷ ︸
a−1

⊗ eij ⊗ I ⊗ . . .⊗ I︸ ︷︷ ︸
k−a

⊗Mij.
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The symmetric group Sk acts on the tensor product space

Cn ⊗ . . .⊗ Cn︸ ︷︷ ︸
k

by permutations of tensor factors.

Denote by H(k) and A(k) the respective images of the

symmetrizer and anti-symmetrizer

1
k !

∑
σ∈Sk

σ and
1
k !

∑
σ∈Sk

sgnσ · σ.

We regard H(k) and A(k) as elements of the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
k

.
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We have

∆k = tr A(k)M1 . . .Mk, k = 1, . . . , n.

Introduce the sums

Ferm = 1 +

n∑
k=1

(−1)k tr A(k)M1 . . .Mk = det(I −M),

Bos = 1 +
∞∑

k=1

tr H(k)M1 . . .Mk.

Theorem [P. MacMahon 1916]. We have the identity

Bos× Ferm = 1.
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Manin matrices

Consider the tensor product algebra A⊗ C [x, y].

Look for 2× 2 matrices over A such that x ′ and y ′ defined by[
x ′

y ′

]
=

[
a b

c d

][
x

y

]
,

commute. We have

[ax + by, cx + dy] = [a, c] x2 +
(
[a, d] + [b, c]

)
xy + [b, d] y2.

This leads to the definition of Manin matrices:

[a, c] = [b, d] = 0 and [a, d] = [c, b].
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Definition. An n× n matrix M over an associative algebra A is

a Manin matrix if all its 2× 2 submatrices are Manin matrices:

[
Mi j,Mk l

]
=
[
Mk j,Mi l

]
, i, j, k, l ∈ {1, . . . , n}.

Equivalently, using the permutation operator

P ∈ EndCn ⊗ EndCn, P : ξ ⊗ η 7→ η ⊗ ξ

we find that M is a Manin matrix if and only if

(1− P) M1 M2 (1 + P) = 0

in the algebra EndCn ⊗ EndCn ⊗A.
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For any n× n matrix M over an associative algebra set

Ferm = 1 +

n∑
k=1

(−1)k tr A(k)M1 . . .Mk,

Bos = 1 +

∞∑
k=1

tr H(k)M1 . . .Mk.

Theorem [Garoufalidis–Lê–Zeilberger 2006].

If M is a Manin matrix, then

Bos× Ferm = 1.
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Introduce the column-determinant of a matrix M by

cdet M =
∑
σ∈Sn

sgnσ ·Mσ(1)1 . . .Mσ(n)n.

Proposition. If M is a Manin matrix, then

cdet(I + tM) =

n∑
k=0

t k tr A(k)M1 . . .Mk,

[
cdet(I − tM)

]−1
=
∞∑

k=0

t k tr H(k)M1 . . .Mk.

Proof. For any σ ∈ Sk we have

A(k)M1 . . .Mk = sgnσ · A(k)M1 . . .Mk Pσ.
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I The Newton identity holds:

d
dt

cdet(I + tM) = cdet(I + tM)

∞∑
k=0

(−t)k tr M k+1.

I Set C(u) = cdet(uI −M) = un −∆1 un−1 + · · ·+ (−1)n∆n.

The Cayley–Hamilton identity holds: C(M) = 0.

I If M and cdet M are invertible, them M−1 is a Manin matrix.

Moreover, cdet(M−1) = (cdet M)−1.

Further properties and generalizations: [Chervov, Falqui,

Foata, Han, M., Ragoucy, Rubtsov, Silantyev, . . . 2007–2020].



14

I The Newton identity holds:

d
dt

cdet(I + tM) = cdet(I + tM)

∞∑
k=0

(−t)k tr M k+1.

I Set C(u) = cdet(uI −M) = un −∆1 un−1 + · · ·+ (−1)n∆n.

The Cayley–Hamilton identity holds: C(M) = 0.

I If M and cdet M are invertible, them M−1 is a Manin matrix.

Moreover, cdet(M−1) = (cdet M)−1.

Further properties and generalizations: [Chervov, Falqui,

Foata, Han, M., Ragoucy, Rubtsov, Silantyev, . . . 2007–2020].



14

I The Newton identity holds:

d
dt

cdet(I + tM) = cdet(I + tM)

∞∑
k=0

(−t)k tr M k+1.

I Set C(u) = cdet(uI −M) = un −∆1 un−1 + · · ·+ (−1)n∆n.

The Cayley–Hamilton identity holds: C(M) = 0.

I If M and cdet M are invertible, them M−1 is a Manin matrix.

Moreover, cdet(M−1) = (cdet M)−1.

Further properties and generalizations: [Chervov, Falqui,

Foata, Han, M., Ragoucy, Rubtsov, Silantyev, . . . 2007–2020].



14

I The Newton identity holds:

d
dt

cdet(I + tM) = cdet(I + tM)

∞∑
k=0

(−t)k tr M k+1.

I Set C(u) = cdet(uI −M) = un −∆1 un−1 + · · ·+ (−1)n∆n.

The Cayley–Hamilton identity holds: C(M) = 0.

I If M and cdet M are invertible, them M−1 is a Manin matrix.

Moreover, cdet(M−1) = (cdet M)−1.

Further properties and generalizations: [Chervov, Falqui,

Foata, Han, M., Ragoucy, Rubtsov, Silantyev, . . . 2007–2020].



14

I The Newton identity holds:

d
dt

cdet(I + tM) = cdet(I + tM)

∞∑
k=0

(−t)k tr M k+1.

I Set C(u) = cdet(uI −M) = un −∆1 un−1 + · · ·+ (−1)n∆n.

The Cayley–Hamilton identity holds: C(M) = 0.

I If M and cdet M are invertible, them M−1 is a Manin matrix.

Moreover, cdet(M−1) = (cdet M)−1.

Further properties and generalizations: [Chervov, Falqui,

Foata, Han, M., Ragoucy, Rubtsov, Silantyev, . . . 2007–2020].



15

Applications: Casimir elements

The Lie algebra gln is the vector space EndCn with the bracket

[
A,B

]
= AB− BA.

The matrix units eij form its basis with the commutation relations

[
eij, ekl

]
= δkj eil − δil ekj.

The group GLn acts on gln by conjugation: X 7→ gX g−1,

and the action extends to the symmetric algebra S(gln) which

can be viewed as the algebra of polynomials in n2 variables Eij.
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The group GLn acts on gln by conjugation: X 7→ gX g−1,

and the action extends to the symmetric algebra S(gln) which

can be viewed as the algebra of polynomials in n2 variables Eij.
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Consider the matrix

E =


E11 . . . E1n

...
...

...

En1 . . . Enn


with entries in the symmetric algebra S(gln).

Write

det(u + E) = un + ∆1 un−1 + · · ·+ ∆n.

We have

S(gln)GLn = C [∆1, . . . ,∆n].
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The universal enveloping algebra U(gln) is the associative

algebra with n2 generators Eij and the defining relations

Eij Ekl − Ekl Eij = δkj Eil − δil Ekj.

The symmetrization map

$ : S(gln) ∼→ U(gln),

is a GLn-module isomorphism, defined by

$ : X1 . . .Xk 7→
1
k!

∑
σ∈Sk

Xσ(1) . . .Xσ(k), Xi ∈ gln,

[Poincaré–Birkhoff–Witt Theorem].
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This implies the isomorphism

S(gln)GLn ∼= Z(gln),

where Z(gln) is the center of U(gln).

Hence

Z(gln) = C
[
$(∆1), . . . , $(∆n)

]
.

By Schur’s Lemma, any element z ∈ Z(gln) acts as scalar

multiplication in any finite-dimensional simple gln-module.

Question: What are the scalars corresponding to $(∆i)?
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Any finite-dimensional simple gln-module L is generated

by a nonzero vector ξ ∈ L

such that

Eij ξ = 0 for 1 6 i < j 6 n, and

Eii ξ = λi ξ for 1 6 i 6 n,

for certain λi ∈ C satisfying the conditions λi − λi+1 ∈ Z+.

Any element z ∈ Z(gln) acts in L by multiplying each vector by a

scalar χ(z). As a function of the parameters λi, the scalar χ(z)

is a shifted symmetric polynomial in the variables λ1, . . . , λn.
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The polynomial χ(z) is symmetric in the shifted variables

λ1, λ2 − 1, . . . , λn − n + 1.

The map χ is the Harish-Chandra isomorphism between

Z(gln) and the algebra of shifted symmetric polynomials.

Algebraically independent generators:

elementary shifted symmetric polynomials

e∗m(λ1, . . . , λn) =
∑

i1<···<im

λi1(λi2 − 1) . . . (λim − m + 1)

with m = 1, . . . , n.
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Stirling numbers

The Stirling number of the second kind
{

m
k

}
counts the number

of partitions of the set {1, . . . ,m} into k nonempty subsets.

Equivalently, k!

{
m
k

}
is the number of surjective functions

{1, . . . ,m} → {1, . . . , k}.

Recurrence relation:{
m
k

}
=

{
m− 1
k − 1

}
+ k

{
m− 1

k

}
.
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Stirling triangle:
{

m
k

}
is in row m and column k

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1
...

...
...

...
. . .
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Theorem. For the Harish-Chandra images we have

χ : $(∆m) 7→
m∑

k=1

{
m
k

}(
n
m

)(
n
k

)−1

e∗k(λ1, . . . , λn).

Proof. Regard the matrix E =
[
Eij
]

as the element

E =

n∑
i,j=1

eij ⊗ Eij ∈ EndCn ⊗ U
(
gln
)
.

Consider the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
m

⊗ U
(
gln
)

Observe that

$(∆m) = tr A(m)E1 . . .Em.
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The defining relations of the algebra U(gln) can be written as

E1 E2 − E2 E1 = (E1 − E2)P

in the tensor product algebra

EndCn ⊗ EndCn ⊗ U(gln).

Introduce the extended algebra U(gln)⊗ C [u, e±∂u ], where

the element e∂u satisfies e∂u f (u) = f (u + 1)e∂u .

Key observation:

M = (uI + E)e−∂u

is a Manin matrix.
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Hence

cdet M = tr A(n)M1 . . .Mn.

This implies the relation for the Capelli determinant (1890),

cdet



u + E11 E12 . . . E1n

E21 u + E22 − 1 . . . E2n

...
...

. . .
...

En1 . . . . . . u + Enn − n + 1


= tr A(n)(u + E1)(u + E2 − 1) . . . (u + En − n + 1).

The Harish-Chandra image is (u + λ1) . . . (u + λn − n + 1).
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Similarly,

χ : tr A(m)E1(E2 − 1) . . . (Em − m + 1) 7→ e∗m(λ1, . . . , λn).

Using the identities for the Stirling numbers

xm =
m∑

k=1

{
m
k

}
x(x− 1) . . . (x− k + 1),

we derive

tr A(m)E1 . . .Em = tr A(m)
m∑

k=1

{
m
k

}
E1(E2 − 1) . . . (Ek − k + 1).

It remains to calculate the partial traces of A(m).
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Feigin–Frenkel center

The affine Kac–Moody algebra ĝ is the central extension

ĝ = g[t, t−1]⊕ CK

with the commutation relations for X[r] = X tr:

[
X[r],Y[s]

]
= [X,Y][r + s] + r δr,−s〈X,Y〉K.

Note that τ = − d
dt

is a derivation of ĝ.
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Consider the vacuum module at the critical level over ĝ,

V(g) = U(ĝ)/I,

where the left ideal I is generated by g[t] and K + h∨.

The Feigin–Frenkel center z(ĝ) is defined by

z(ĝ) = {v ∈ V(g) | g[t]v = 0}.

We have V(g) ∼= U
(
t−1g[t−1]

)
as vector spaces, and

z(ĝ) is a τ -invariant commutative subalgebra of U
(
t−1g[t−1]

)
.
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Equivalently, z(ĝ) can be defined as the centralizer of

the canonical Segal–Sugawara vector

S =

d∑
i=1

Xi[−1]2,

where X1, . . . ,Xd is an orthonormal basis of g.

As a differential algebra, it possesses free generators

S1, . . . , Sn (a complete set of Segal–Sugawara vectors),

where n = rank g and S1 = S.

[B. Feigin and E. Frenkel 1992, L. Rybnikov 2008].
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I The Segal–Sugawara vectors S1, . . . , Sn give rise to higher

order Hamiltonians in the Gaudin model.

I The eigenvalues of the Hamiltonians on the Bethe vectors

are found from the Harish-Chandra images of S1, . . . , Sn.

I Applying homomorphisms U
(
t−1g[t−1]

)
→ U(g) one gets

commutative subalgebras of U(g) thus solving

Vinberg’s quantization problem.
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Type A

Working with the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
m

⊗ U
(
t−1gln[t−1]

)
,

write

Sm = tr A(m)
(
τ + E1[−1]

)
. . .
(
τ + Em[−1]

)
1,

where

E[r] =
n∑

i,j=1

eij ⊗ Eij[r] ∈ EndCn ⊗ U
(
t−1gln[t−1]

)
.
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Key lemma: M = τ I + E[−1] is a Manin matrix.

Hence the elements Sm are also found by

cdet


τ + E11[−1] . . . E1n[−1]

...
. . .

...

En1[−1] . . . τ + Enn[−1]

 = τ n + S1 τ
n−1 + · · ·+ Sn.

Theorem S1, . . . , Sn are free generators of z(ĝln).

[A. Chervov and D. Talalaev 2006, A. Chervov and A. M. 2009].
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Eliminate τ = − d
dt

to get

Sm = tr A(m)
(
τ + E1[−1]

)
. . .
(
τ + Em[−1]

)
1

=
∑
λ`m

cλ tr A(m)E1[−λ1] . . .E`[−λ`],

where the parts of partitions λ are λ1 > · · · > λ` > 0 and

cλ is the number of permutations of {1, . . . ,m} of cycle type λ.
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Theorem [O. Yakimova 2019, A. M. 2020].

The Segal–Sugawara vectors are given by

Sm =
∑
λ`m

(
N
m

)(
N
`

)−1

cλ tr A(`)E1[−λ1] . . .E`[−λ`].

Applications [L. Rybnikov 2006]: for any z ∈ C× and µ ∈ gl∗n

the image of z(ĝln) under the homomorphism

%µ,z : U
(
t−1gln[t−1]

)
→ U(gln), X[r] 7→ X z r + δr,−1 µ(X),

is a commutative subalgebra Aµ of U(gln) independent of z.
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