Manin matrices, Casimir elements and

Sugawara operators

Alexander Molev

University of Sydney

Plan

Plan

- Origins and motivations.

Plan

- Origins and motivations.
- Basic properties of Manin matrices.

Plan

- Origins and motivations.
- Basic properties of Manin matrices.
- Applications:
- Casimir elements for $\mathfrak{g l}_{n}$.

Plan

- Origins and motivations.
- Basic properties of Manin matrices.
- Applications:
- Casimir elements for $\mathfrak{g l}_{n}$.
- Segal-Sugawara vectors for $\mathfrak{g l}_{n}$.

Quantum groups

Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985), the universal enveloping algebra $U(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g} admits a deformation $\mathrm{U}_{q}(\mathfrak{g})$ in the class of Hopf algebras.

Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985), the universal enveloping algebra $U(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g} admits a deformation $\mathrm{U}_{q}(\mathfrak{g})$ in the class of Hopf algebras.

The dual Hopf algebras are quantized algebras of functions
$\operatorname{Fun}_{q}(G)$ on the associated Lie group G
[N. Reshetikhin, L. Takhtajan and L. Faddeev 1990].

Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985), the universal enveloping algebra $U(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g} admits a deformation $\mathrm{U}_{q}(\mathfrak{g})$ in the class of Hopf algebras.

The dual Hopf algebras are quantized algebras of functions
$\operatorname{Fun}_{q}(G)$ on the associated Lie group G
[N. Reshetikhin, L. Takhtajan and L. Faddeev 1990].

A detailed review of the theory and applications:
V. Chari and A. Pressley, A guide to quantum groups, 1994.

Basic example

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d,
understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d, understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

$$
b a=q a b, \quad d c=q c d, \quad c a=q a c, \quad d b=q b d,
$$

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d, understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

$$
b a=q a b, \quad d c=q c d, \quad c a=q a c, \quad d b=q b d,
$$

and

$$
b c=c b, \quad a d-d a+\left(q-q^{-1}\right) b c=0 .
$$

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d, understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

$$
b a=q a b, \quad d c=q c d, \quad c a=q a c, \quad d b=q b d,
$$

and

$$
b c=c b, \quad a d-d a+\left(q-q^{-1}\right) b c=0 .
$$

[L. Faddeev and L. Takhtajan 1986].

As observed by Yu. Manin (1988), the relations are recovered via a "coaction" on the quantum plane: the algebra with generators x, y and the relation $y x=q x y$.

As observed by Yu. Manin (1988), the relations are recovered via a "coaction" on the quantum plane: the algebra with generators x, y and the relation $y x=q x y$.

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$.

As observed by Yu. Manin (1988), the relations are recovered via a "coaction" on the quantum plane: the algebra with generators x, y and the relation $y x=q x y$.

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$. The defining relations for $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$
are equivalent to the conditions that the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
and its transpose are q-Manin matrices.

MacMahon Master Theorem

MacMahon Master Theorem

Consider the characteristic polynomial of a matrix

$$
M=\left[\begin{array}{ccc}
M_{11} & \ldots & M_{1 n} \\
\vdots & \vdots & \vdots \\
M_{n 1} & \ldots & M_{n n}
\end{array}\right]
$$

with entries in \mathbb{C} :

MacMahon Master Theorem

Consider the characteristic polynomial of a matrix

$$
M=\left[\begin{array}{ccc}
M_{11} & \ldots & M_{1 n} \\
\vdots & \vdots & \vdots \\
M_{n 1} & \ldots & M_{n n}
\end{array}\right]
$$

with entries in \mathbb{C} :

$$
\operatorname{det}(I+t M)=1+\Delta_{1} t+\cdots+\Delta_{n} t^{n}
$$

MacMahon Master Theorem

Consider the characteristic polynomial of a matrix

$$
M=\left[\begin{array}{ccc}
M_{11} & \ldots & M_{1 n} \\
\vdots & \vdots & \vdots \\
M_{n 1} & \ldots & M_{n n}
\end{array}\right]
$$

with entries in \mathbb{C} :

$$
\operatorname{det}(I+t M)=1+\Delta_{1} t+\cdots+\Delta_{n} t^{n}
$$

In particular,

$$
\Delta_{1}=\operatorname{tr} M, \quad \Delta_{n}=\operatorname{det} M
$$

Regard the matrix M as the element

$$
M=\sum_{i, j=1}^{n} e_{i j} \otimes M_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathbb{C}
$$

Regard the matrix M as the element

$$
M=\sum_{i, j=1}^{n} e_{i j} \otimes M_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathbb{C}
$$

Consider the algebra

Regard the matrix M as the element

$$
M=\sum_{i, j=1}^{n} e_{i j} \otimes M_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathbb{C}
$$

Consider the algebra

and for $a=1, \ldots, k$ set

$$
M_{a}=\sum_{i, j=1}^{n} \underbrace{I \otimes \ldots \otimes I}_{a-1} \otimes e_{i j} \otimes \underbrace{I \otimes \ldots \otimes I}_{k-a} \otimes M_{i j} .
$$

The symmetric group \mathfrak{S}_{k} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n}}_{k}
$$

by permutations of tensor factors.

The symmetric group \mathfrak{S}_{k} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n}}_{k}
$$

by permutations of tensor factors.

Denote by $H^{(k)}$ and $A^{(k)}$ the respective images of the
symmetrizer and anti-symmetrizer

$$
\frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \sigma \quad \text { and } \quad \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot \sigma
$$

The symmetric group \mathfrak{S}_{k} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n}}_{k}
$$

by permutations of tensor factors.

Denote by $H^{(k)}$ and $A^{(k)}$ the respective images of the
symmetrizer and anti-symmetrizer

$$
\frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \sigma \quad \text { and } \quad \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot \sigma
$$

We regard $H^{(k)}$ and $A^{(k)}$ as elements of the algebra

We have

$$
\Delta_{k}=\operatorname{tr} A^{(k)} M_{1} \ldots M_{k}, \quad k=1, \ldots, n
$$

We have

$$
\Delta_{k}=\operatorname{tr} A^{(k)} M_{1} \ldots M_{k}, \quad k=1, \ldots, n
$$

Introduce the sums

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{n}(-1)^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k}=\operatorname{det}(I-M) \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k}
\end{aligned}
$$

We have

$$
\Delta_{k}=\operatorname{tr} A^{(k)} M_{1} \ldots M_{k}, \quad k=1, \ldots, n
$$

Introduce the sums

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{n}(-1)^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k}=\operatorname{det}(I-M) \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k}
\end{aligned}
$$

Theorem [P. MacMahon 1916]. We have the identity

$$
\text { Bos } \times \text { Ferm }=1
$$

Manin matrices

Manin matrices

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.

Manin matrices

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.
Look for 2×2 matrices over \mathcal{A} such that x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

commute.

Manin matrices

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.
Look for 2×2 matrices over \mathcal{A} such that x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

commute. We have

$$
[a x+b y, c x+d y]=[a, c] x^{2}+([a, d]+[b, c]) x y+[b, d] y^{2}
$$

Manin matrices

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.
Look for 2×2 matrices over \mathcal{A} such that x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

commute. We have

$$
[a x+b y, c x+d y]=[a, c] x^{2}+([a, d]+[b, c]) x y+[b, d] y^{2}
$$

This leads to the definition of Manin matrices:

$$
[a, c]=[b, d]=0 \quad \text { and } \quad[a, d]=[c, b]
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Equivalently, using the permutation operator

$$
P \in \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n}, \quad P: \xi \otimes \eta \mapsto \eta \otimes \xi
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is

 a Manin matrix if all its 2×2 submatrices are Manin matrices:$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Equivalently, using the permutation operator

$$
P \in \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n}, \quad P: \xi \otimes \eta \mapsto \eta \otimes \xi
$$

we find that M is a Manin matrix if and only if

$$
(1-P) M_{1} M_{2}(1+P)=0
$$

in the algebra End $\mathbb{C}^{n} \otimes$ End $\mathbb{C}^{n} \otimes \mathcal{A}$.

For any $n \times n$ matrix M over an associative algebra set

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{n}(-1)^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k} \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k}
\end{aligned}
$$

For any $n \times n$ matrix M over an associative algebra set

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{n}(-1)^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k} \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k} .
\end{aligned}
$$

Theorem [Garoufalidis-Lê-Zeilberger 2006].
If M is a Manin matrix, then

Bos \times Ferm $=1$.

Introduce the column-determinant of a matrix M by

$$
\operatorname{cdet} M=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n} .
$$

Introduce the column-determinant of a matrix M by

$$
\operatorname{cdet} M=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n}
$$

Proposition. If M is a Manin matrix, then

$$
\begin{aligned}
\operatorname{cdet}(I+t M) & =\sum_{k=0}^{n} t^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k} \\
{[\operatorname{cdet}(I-t M)]^{-1} } & =\sum_{k=0}^{\infty} t^{k} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k}
\end{aligned}
$$

Introduce the column-determinant of a matrix M by

$$
\operatorname{cdet} M=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n}
$$

Proposition. If M is a Manin matrix, then

$$
\begin{aligned}
\operatorname{cdet}(I+t M) & =\sum_{k=0}^{n} t^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k} \\
{[\operatorname{cdet}(I-t M)]^{-1} } & =\sum_{k=0}^{\infty} t^{k} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k} .
\end{aligned}
$$

Proof. For any $\sigma \in \mathfrak{S}_{k}$ we have

$$
A^{(k)} M_{1} \ldots M_{k}=\operatorname{sgn} \sigma \cdot A^{(k)} M_{1} \ldots M_{k} P_{\sigma}
$$

- The Newton identity holds:

$$
\frac{d}{d t} \operatorname{cdet}(I+t M)=\operatorname{cdet}(I+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}
$$

- The Newton identity holds:

$$
\frac{d}{d t} \operatorname{cdet}(I+t M)=\operatorname{cdet}(I+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}
$$

- Set $C(u)=\operatorname{cdet}(u I-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}$.
- The Newton identity holds:

$$
\frac{d}{d t} \operatorname{cdet}(I+t M)=\operatorname{cdet}(I+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}
$$

- Set $C(u)=\operatorname{cdet}(u I-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}$.

The Cayley-Hamilton identity holds: $C(M)=0$.

- The Newton identity holds:

$$
\frac{d}{d t} \operatorname{cdet}(I+t M)=\operatorname{cdet}(I+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}
$$

- Set $C(u)=\operatorname{cdet}(u I-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}$. The Cayley-Hamilton identity holds: $C(M)=0$.
- If M and $\operatorname{cdet} M$ are invertible, them M^{-1} is a Manin matrix. Moreover, $\operatorname{cdet}\left(M^{-1}\right)=(\operatorname{cdet} M)^{-1}$.
- The Newton identity holds:

$$
\frac{d}{d t} \operatorname{cdet}(I+t M)=\operatorname{cdet}(I+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}
$$

- Set $C(u)=\operatorname{cdet}(u I-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}$. The Cayley-Hamilton identity holds: $C(M)=0$.
- If M and $\operatorname{cdet} M$ are invertible, them M^{-1} is a Manin matrix. Moreover, $\operatorname{cdet}\left(M^{-1}\right)=(\operatorname{cdet} M)^{-1}$.

Further properties and generalizations: [Chervov, Falqui,
Foata, Han, M., Ragoucy, Rubtsov, Silantyev, ... 2007-2020].

Applications: Casimir elements

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

The matrix units $e_{i j}$ form its basis with the commutation relations

$$
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i l}-\delta_{i l} e_{k j} .
$$

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

The matrix units $e_{i j}$ form its basis with the commutation relations

$$
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i l}-\delta_{i l} e_{k j} .
$$

The group GL_{n} acts on $\mathfrak{g l}_{n}$ by conjugation: $X \mapsto g X g^{-1}$,

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

The matrix units $e_{i j}$ form its basis with the commutation relations

$$
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i l}-\delta_{i l} e_{k j} .
$$

The group GL_{n} acts on $\mathfrak{g l}_{n}$ by conjugation: $X \mapsto g X g^{-1}$, and the action extends to the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{n}\right)$ which can be viewed as the algebra of polynomials in n^{2} variables $E_{i j}$.

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 n} \\
\vdots & \vdots & \vdots \\
E_{n 1} & \ldots & E_{n n}
\end{array}\right]
$$

with entries in the symmetric algebra $S\left(\mathfrak{g l}_{n}\right)$.

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 n} \\
\vdots & \vdots & \vdots \\
E_{n 1} & \ldots & E_{n n}
\end{array}\right]
$$

with entries in the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{n}\right)$.
Write

$$
\operatorname{det}(u+E)=u^{n}+\Delta_{1} u^{n-1}+\cdots+\Delta_{n} .
$$

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 n} \\
\vdots & \vdots & \vdots \\
E_{n 1} & \ldots & E_{n n}
\end{array}\right]
$$

with entries in the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{n}\right)$.
Write

$$
\operatorname{det}(u+E)=u^{n}+\Delta_{1} u^{n-1}+\cdots+\Delta_{n} .
$$

We have

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}}=\mathbb{C}\left[\Delta_{1}, \ldots, \Delta_{n}\right] .
$$

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ is the associative algebra with n^{2} generators $E_{i j}$ and the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ is the associative algebra with n^{2} generators $E_{i j}$ and the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

The symmetrization map

$$
\varpi: \mathrm{S}\left(\mathfrak{g l}_{n}\right) \xrightarrow{\sim} \mathrm{U}\left(\mathfrak{g l}_{n}\right),
$$

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ is the associative algebra with n^{2} generators $E_{i j}$ and the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

The symmetrization map

$$
\varpi: \mathrm{S}\left(\mathfrak{g l}_{n}\right) \xrightarrow{\sim} \mathrm{U}\left(\mathfrak{g l}_{n}\right),
$$

is a GL_{n}-module isomorphism, defined by

$$
\varpi: X_{1} \ldots X_{k} \mapsto \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} X_{\sigma(1)} \ldots X_{\sigma(k)}, \quad X_{i} \in \mathfrak{g l}_{n}
$$

[Poincaré-Birkhoff-Witt Theorem].

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right),
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$.

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right)
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$. Hence

$$
\mathrm{Z}\left(\mathfrak{g l}_{n}\right)=\mathbb{C}\left[\varpi\left(\Delta_{1}\right), \ldots, \varpi\left(\Delta_{n}\right)\right] .
$$

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right)
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$. Hence

$$
\mathrm{Z}\left(\mathfrak{g l}_{n}\right)=\mathbb{C}\left[\varpi\left(\Delta_{1}\right), \ldots, \varpi\left(\Delta_{n}\right)\right]
$$

By Schur's Lemma, any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts as scalar multiplication in any finite-dimensional simple $\mathfrak{g l}_{n}$-module.

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right)
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$. Hence

$$
\mathrm{Z}\left(\mathfrak{g l}_{n}\right)=\mathbb{C}\left[\varpi\left(\Delta_{1}\right), \ldots, \varpi\left(\Delta_{n}\right)\right]
$$

By Schur's Lemma, any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts as scalar multiplication in any finite-dimensional simple $\mathfrak{g l}_{n}$-module.

Question: What are the scalars corresponding to $\varpi\left(\Delta_{i}\right)$?

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant n, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n,
\end{array}
$$

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant n, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n,
\end{array}
$$

for certain $\lambda_{i} \in \mathbb{C}$ satisfying the conditions $\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}$.

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant n, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n,
\end{array}
$$

for certain $\lambda_{i} \in \mathbb{C}$ satisfying the conditions $\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts in L by multiplying each vector by a scalar $\chi(z)$.

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{ll}
E_{i j} \xi=0 & \text { for } \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } \\
1 \leqslant i \leqslant n,
\end{array}
$$

for certain $\lambda_{i} \in \mathbb{C}$ satisfying the conditions $\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts in L by multiplying each vector by a scalar $\chi(z)$. As a function of the parameters λ_{i}, the scalar $\chi(z)$ is a shifted symmetric polynomial in the variables $\lambda_{1}, \ldots, \lambda_{n}$.

The polynomial $\chi(z)$ is symmetric in the shifted variables

$$
\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{n}-n+1
$$

The polynomial $\chi(z)$ is symmetric in the shifted variables
$\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{n}-n+1$.
The map χ is the Harish-Chandra isomorphism between
$\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ and the algebra of shifted symmetric polynomials.

The polynomial $\chi(z)$ is symmetric in the shifted variables
$\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{n}-n+1$.
The map χ is the Harish-Chandra isomorphism between
$\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ and the algebra of shifted symmetric polynomials.

Algebraically independent generators:
elementary shifted symmetric polynomials

$$
e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{i_{1}<\cdots<i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}-1\right) \ldots\left(\lambda_{i_{m}}-m+1\right)
$$

with $m=1, \ldots, n$.

Stirling numbers

Stirling numbers

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Stirling numbers

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Equivalently, $k!\left\{\begin{array}{c}m \\ k\end{array}\right\}$ is the number of surjective functions $\{1, \ldots, m\} \rightarrow\{1, \ldots, k\}$.

Stirling numbers

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Equivalently, $k!\left\{\begin{array}{c}m \\ k\end{array}\right\}$ is the number of surjective functions $\{1, \ldots, m\} \rightarrow\{1, \ldots, k\}$.

Recurrence relation:

$$
\left\{\begin{array}{c}
m \\
k
\end{array}\right\}=\left\{\begin{array}{c}
m-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
m-1 \\
k
\end{array}\right\} .
$$

Stirling triangle: $\left\{\begin{array}{l}m \\ k\end{array}\right\}$ is in row m and column k

1

11
131
$1 \quad 7 \quad 6 \quad 1$
$\begin{array}{lllll}1 & 15 & 25 & 10 & 1\end{array}$
$\begin{array}{llllll}1 & 31 & 90 & 65 & 15 & 1\end{array}$
$\begin{array}{lllllll}1 & 63 & 301 & 350 & 140 & 21 & 1\end{array}$
$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \ddots$

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{n}{m}\binom{n}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{n}{m}\binom{n}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Proof. Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{n} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{n}{m}\binom{n}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Proof. Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{n} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{n}{m}\binom{n}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Proof. Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{n} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Observe that

$$
\varpi\left(\Delta_{m}\right)=\operatorname{tr} A^{(m)} E_{1} \ldots E_{m} .
$$

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

in the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

in the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Introduce the extended algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right) \otimes \mathbb{C}\left[u, e^{ \pm \partial_{u}}\right]$, where the element $e^{\partial_{u}}$ satisfies $e^{\partial_{u}} f(u)=f(u+1) e^{\partial_{u}}$.

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

in the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Introduce the extended algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right) \otimes \mathbb{C}\left[u, e^{ \pm \partial_{u}}\right]$, where the element $e^{\partial_{u}}$ satisfies $e^{\partial_{u}} f(u)=f(u+1) e^{\partial_{u}}$.

Key observation:

$$
M=(u I+E) e^{-\partial_{u}}
$$

is a Manin matrix.

Hence

$$
\operatorname{cdet} M=\operatorname{tr} A^{(n)} M_{1} \ldots M_{n} .
$$

Hence

$$
\operatorname{cdet} M=\operatorname{tr} A^{(n)} M_{1} \ldots M_{n} .
$$

This implies the relation for the Capelli determinant (1890),

$$
\begin{array}{r}
\operatorname{cdet}\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 n} \\
E_{21} & u+E_{22}-1 & \ldots & E_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
E_{n 1} & \ldots & \ldots & u+E_{n n}-n+1
\end{array}\right] \\
\\
\\
=\operatorname{tr} A^{(n)}\left(u+E_{1}\right)\left(u+E_{2}-1\right) \ldots\left(u+E_{n}-n+1\right)
\end{array}
$$

Hence

$$
\operatorname{cdet} M=\operatorname{tr} A^{(n)} M_{1} \ldots M_{n} .
$$

This implies the relation for the Capelli determinant (1890),

$$
\begin{array}{r}
\operatorname{cdet}\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 n} \\
E_{21} & u+E_{22}-1 & \ldots & E_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
E_{n 1} & \ldots & \ldots & u+E_{n n}-n+1
\end{array}\right] \\
\\
\quad=\operatorname{tr} A^{(n)}\left(u+E_{1}\right)\left(u+E_{2}-1\right) \ldots\left(u+E_{n}-n+1\right) .
\end{array}
$$

The Harish-Chandra image is $\left(u+\lambda_{1}\right) \ldots\left(u+\lambda_{n}-n+1\right)$.

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using the identities for the Stirling numbers

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using the identities for the Stirling numbers

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

we derive

$$
\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}=\operatorname{tr} A^{(m)} \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} E_{1}\left(E_{2}-1\right) \ldots\left(E_{k}-k+1\right) .
$$

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using the identities for the Stirling numbers

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

we derive

$$
\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}=\operatorname{tr} A^{(m)} \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} E_{1}\left(E_{2}-1\right) \ldots\left(E_{k}-k+1\right) .
$$

It remains to calculate the partial traces of $A^{(m)}$.

Feigin-Frenkel center

Feigin-Frenkel center

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

Feigin-Frenkel center

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations for $X[r]=X t^{r}$:

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K
$$

Feigin-Frenkel center

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations for $X[r]=X t^{r}$:

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K .
$$

Note that $\tau=-\frac{d}{d t}$ is a derivation of $\widehat{\mathfrak{g}}$.

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

We have $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as vector spaces,

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

We have $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as vector spaces, and
$\mathfrak{z}(\widehat{\mathfrak{g}})$ is a τ-invariant commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Equivalently, $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the centralizer of the canonical Segal-Sugawara vector

$$
S=\sum_{i=1}^{d} X_{i}[-1]^{2}
$$

where X_{1}, \ldots, X_{d} is an orthonormal basis of \mathfrak{g}.

Equivalently, $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the centralizer of the canonical Segal-Sugawara vector

$$
S=\sum_{i=1}^{d} X_{i}[-1]^{2},
$$

where X_{1}, \ldots, X_{d} is an orthonormal basis of \mathfrak{g}.

As a differential algebra, it possesses free generators
S_{1}, \ldots, S_{n} (a complete set of Segal-Sugawara vectors),
where $n=\operatorname{rank} \mathfrak{g}$ and $S_{1}=S$.

Equivalently, $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the centralizer of the canonical Segal-Sugawara vector

$$
S=\sum_{i=1}^{d} X_{i}[-1]^{2}
$$

where X_{1}, \ldots, X_{d} is an orthonormal basis of \mathfrak{g}.

As a differential algebra, it possesses free generators
S_{1}, \ldots, S_{n} (a complete set of Segal-Sugawara vectors),
where $n=\operatorname{rank} \mathfrak{g}$ and $S_{1}=S$.
[B. Feigin and E. Frenkel 1992, L. Rybnikov 2008].

- The Segal-Sugawara vectors S_{1}, \ldots, S_{n} give rise to higher order Hamiltonians in the Gaudin model.
- The Segal-Sugawara vectors S_{1}, \ldots, S_{n} give rise to higher order Hamiltonians in the Gaudin model.
- The eigenvalues of the Hamiltonians on the Bethe vectors are found from the Harish-Chandra images of S_{1}, \ldots, S_{n}.
- The Segal-Sugawara vectors S_{1}, \ldots, S_{n} give rise to higher order Hamiltonians in the Gaudin model.
- The eigenvalues of the Hamiltonians on the Bethe vectors are found from the Harish-Chandra images of S_{1}, \ldots, S_{n}.
- Applying homomorphisms $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})$ one gets commutative subalgebras of $\mathrm{U}(\mathfrak{g})$ thus solving

Vinberg's quantization problem.

Type A

Type A

Working with the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{m} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)
$$

Type A

Working with the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{m} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)
$$

write

$$
S_{m}=\operatorname{tr} A^{(m)}\left(\tau+E_{1}[-1]\right) \ldots\left(\tau+E_{m}[-1]\right) 1
$$

Type A

Working with the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{m} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)
$$

write

$$
S_{m}=\operatorname{tr} A^{(m)}\left(\tau+E_{1}[-1]\right) \ldots\left(\tau+E_{m}[-1]\right) 1
$$

where

$$
E[r]=\sum_{i, j=1}^{n} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)
$$

Key lemma: $\quad M=\tau I+E[-1]$ is a Manin matrix.

Key lemma: $\quad M=\tau I+E[-1]$ is a Manin matrix.

Hence the elements S_{m} are also found by
$\operatorname{cdet}\left[\begin{array}{ccc}\tau+E_{11}[-1] & \ldots & E_{1 n}[-1] \\ \vdots & \ddots & \vdots \\ E_{n 1}[-1] & \ldots & \tau+E_{n n}[-1]\end{array}\right]=\tau^{n}+S_{1} \tau^{n-1}+\cdots+S_{n}$.

Key lemma: $\quad M=\tau I+E[-1]$ is a Manin matrix.

Hence the elements S_{m} are also found by
$\operatorname{cdet}\left[\begin{array}{ccc}\tau+E_{11}[-1] & \ldots & E_{1 n}[-1] \\ \vdots & \ddots & \vdots \\ E_{n 1}[-1] & \cdots & \tau+E_{n n}[-1]\end{array}\right]=\tau^{n}+S_{1} \tau^{n-1}+\cdots+S_{n}$.

Theorem $\quad S_{1}, \ldots, S_{n}$ are free generators of $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)$.
[A. Chervov and D. Talalaev 2006, A. Chervov and A. M. 2009].

Eliminate $\tau=-\frac{d}{d t}$ to get

$$
\begin{aligned}
S_{m}=\operatorname{tr} A^{(m)}\left(\tau+E_{1}[-1]\right) \ldots & \left.\ldots+E_{m}[-1]\right) 1 \\
& =\sum_{\lambda \vdash m} c_{\lambda} \operatorname{tr} A^{(m)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right],
\end{aligned}
$$

Eliminate $\tau=-\frac{d}{d t}$ to get

$$
\begin{aligned}
S_{m}=\operatorname{tr} A^{(m)}\left(\tau+E_{1}[-1]\right) \ldots & \left.\ldots+E_{m}[-1]\right) 1 \\
& =\sum_{\lambda \vdash m} c_{\lambda} \operatorname{tr} A^{(m)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right],
\end{aligned}
$$

where the parts of partitions λ are $\lambda_{1} \geqslant \cdots \geqslant \lambda_{\ell}>0$ and

Eliminate $\tau=-\frac{d}{d t}$ to get

$$
\begin{aligned}
& S_{m}=\operatorname{tr} A^{(m)}\left(\tau+E_{1}[-1]\right) \ldots\left(\tau+E_{m}[-1]\right) 1 \\
&=\sum_{\lambda \vdash m} c_{\lambda} \operatorname{tr} A^{(m)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right],
\end{aligned}
$$

where the parts of partitions λ are $\lambda_{1} \geqslant \cdots \geqslant \lambda_{\ell}>0$ and
c_{λ} is the number of permutations of $\{1, \ldots, m\}$ of cycle type λ.

Theorem [O. Yakimova 2019, A. M. 2020].
The Segal-Sugawara vectors are given by

$$
S_{m}=\sum_{\lambda \vdash m}\binom{N}{m}\binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right] .
$$

Theorem [O. Yakimova 2019, A. M. 2020].
The Segal-Sugawara vectors are given by

$$
S_{m}=\sum_{\lambda \vdash m}\binom{N}{m}\binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right] .
$$

Applications [L. Rybnikov 2006]: for any $z \in \mathbb{C}^{\times}$and $\mu \in \mathfrak{g l}_{n}^{*}$ the image of $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)$ under the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{n}\right), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X)
$$

is a commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ independent of z.

