Affine center at the critical level and quantum

Mishchenko-Fomenko subalgebras

Alexander Molev

University of Sydney

Plan

Plan

- Vinberg's quantization problem.

Plan

- Vinberg's quantization problem.
- Affine center at the critical level: explicit generators.

Plan

- Vinberg's quantization problem.
- Affine center at the critical level: explicit generators.
- Applications:
- Harish-Chandra images of the symmetrized basic invariants.

Plan

- Vinberg's quantization problem.
- Affine center at the critical level: explicit generators.
- Applications:
- Harish-Chandra images of the symmetrized basic invariants.
- Generators of quantum Mishchenko-Fomenko subalgebras.

Mishchenko-Fomenko subalgebras

Mishchenko-Fomenko subalgebras

Let \mathfrak{g} be a simple Lie algebra and let $n=$ rank \mathfrak{g}.

Mishchenko-Fomenko subalgebras

Let \mathfrak{g} be a simple Lie algebra and let $n=$ rank \mathfrak{g}.
The symmetric algebra $S(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

Mishchenko-Fomenko subalgebras

Let \mathfrak{g} be a simple Lie algebra and let $n=$ rank \mathfrak{g}.
The symmetric algebra $S(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

There exist invariants P_{k} such that $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$.

Mishchenko-Fomenko subalgebras

Let \mathfrak{g} be a simple Lie algebra and let $n=$ rank \mathfrak{g}.
The symmetric algebra $S(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

There exist invariants P_{k} such that $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$.

The subalgebra $S(\mathfrak{g})^{\mathfrak{g}} \subset S(\mathfrak{g})$ coincides with the Poisson center of $\mathrm{S}(\mathfrak{g})$.

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $S(\mathfrak{g})$ of degree d.

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments

$$
X_{i} \mapsto X_{i}+t \mu\left(X_{i}\right)
$$

where t is a variable:

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments

$$
X_{i} \mapsto X_{i}+t \mu\left(X_{i}\right),
$$

where t is a variable:

$$
\begin{aligned}
P\left(X_{1}+t \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+t \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} t+\cdots+P_{(d)} t^{d}
\end{aligned}
$$

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments

$$
X_{i} \mapsto X_{i}+t \mu\left(X_{i}\right),
$$

where t is a variable:

$$
\begin{aligned}
P\left(X_{1}+t \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+t \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} t+\cdots+P_{(d)} t^{d}
\end{aligned}
$$

Denote by $\overline{\mathcal{A}}_{\mu}$ the subalgebra of $S(\mathfrak{g})$ generated by all the μ-shifts $P_{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$.

Properties:

Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko 1978].

Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko 1978].
- If $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ is regular, then $\overline{\mathcal{A}}_{\mu}$ is a free polynomial algebra [A. Bolsinov 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo 2010].

Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko 1978].
- If $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ is regular, then $\overline{\mathcal{A}}_{\mu}$ is a free polynomial algebra [A. Bolsinov 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo 2010].
- Moreover, $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$ [D. Panyushev and O. Yakimova 2008].

Vinberg's problem

Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.

Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.

E. B. Vinberg 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g})$?

Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.
E. B. Vinberg 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g)}$?

We would like to find a commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$
(together with its free generators) such that $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

A solution via Yangian approach: classical types with regular semisimple μ [M. Nazarov and G. Olshanski 1996].

A solution via Yangian approach: classical types with regular semisimple μ [M. Nazarov and G. Olshanski 1996].

A solution in type A with regular semisimple μ via the symmetrization map [A. Tarasov 2000].

A solution via Yangian approach: classical types with regular semisimple μ [M. Nazarov and G. Olshanski 1996].

A solution in type A with regular semisimple μ via the symmetrization map [A. Tarasov 2000].

The uniqueness of the solution in this case is established
[A. Tarasov 2003].

Affine center at the critical level

Affine center at the critical level

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

Affine center at the critical level

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations for $X[r]=X t^{r}$:

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K .
$$

Affine center at the critical level

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations for $X[r]=X t^{r}$:

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K .
$$

Note that $T=-\frac{d}{d t}$ is a derivation of $\widehat{\mathfrak{g}}$.

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

We have $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as vector spaces,

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

We have $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as vector spaces, and
$\mathfrak{z}(\widehat{\mathfrak{g}})$ is a T-invariant commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

As a differential algebra, $\mathfrak{z}(\widehat{\mathfrak{g}})$ possesses free generators
S_{1}, \ldots, S_{n} (a complete set of Segal-Sugawara vectors),
where $n=\operatorname{rank} \mathfrak{g}$

As a differential algebra, $\mathfrak{z}(\widehat{\mathfrak{g}})$ possesses free generators
S_{1}, \ldots, S_{n} (a complete set of Segal-Sugawara vectors),
where $n=\operatorname{rank} \mathfrak{g}$ [B. Feigin and E. Frenkel 1992].

As a differential algebra, $\mathfrak{z}(\widehat{\mathfrak{g}})$ possesses free generators
S_{1}, \ldots, S_{n} (a complete set of Segal-Sugawara vectors),
where $n=\operatorname{rank} \mathfrak{g}$ [B. Feigin and E. Frenkel 1992].

Equivalently, $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the centralizer in
$\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ of the canonical Segal-Sugawara vector

$$
S=\sum_{i=1}^{l} X_{i}[-1]^{2}
$$

where X_{1}, \ldots, X_{l} is an orthonormal basis of \mathfrak{g}.

As a differential algebra, $\mathfrak{z}(\widehat{\mathfrak{g}})$ possesses free generators
S_{1}, \ldots, S_{n} (a complete set of Segal-Sugawara vectors),
where $n=\operatorname{rank} \mathfrak{g}$ [B. Feigin and E. Frenkel 1992].

Equivalently, $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the centralizer in
$\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ of the canonical Segal-Sugawara vector

$$
S=\sum_{i=1}^{l} X_{i}[-1]^{2}
$$

where X_{1}, \ldots, X_{l} is an orthonormal basis of \mathfrak{g}.
[L. Rybnikov 2008; also O. Yakimova 2019].

Connection with Casimir elements

Connection with Casimir elements

For any nonzero $z \in \mathbb{C}$, the images of S_{1}, \ldots, S_{n} under the evaluation homomorphism

$$
\varrho_{z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}
$$

are free generators of the center $\mathrm{Z}(\mathfrak{g})$ of $\mathrm{U}(\mathfrak{g})$.

Type A

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the standard basis $\left\{E_{i j}\right\}$.

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the standard basis $\left\{E_{i j}\right\}$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$, so that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{\ell}>0$ and $\lambda_{1}+\cdots+\lambda_{\ell}=m$.

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the standard basis $\left\{E_{i j}\right\}$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$, so that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{\ell}>0$ and $\lambda_{1}+\cdots+\lambda_{\ell}=m$.

We will denote by c_{λ} the number of permutations in the symmetric group \mathfrak{S}_{m} of cycle type λ :

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the standard basis $\left\{E_{i j}\right\}$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$, so that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{\ell}>0$ and $\lambda_{1}+\cdots+\lambda_{\ell}=m$.

We will denote by c_{λ} the number of permutations in the symmetric group \mathfrak{S}_{m} of cycle type λ :

$$
c_{\lambda}=\frac{m!}{1^{\alpha_{1}} \alpha_{1}!2^{\alpha_{2}} \alpha_{2}!\ldots m^{\alpha_{m}} \alpha_{m}!}
$$

for $\lambda=\left(1^{\alpha_{1}} 2^{\alpha_{2}} \ldots m^{\alpha_{m}}\right)$.

The symmetrized λ-minor $D(\lambda)$ and symmetrized λ-permanent $P(\lambda)$ are elements of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ defined by

The symmetrized λ-minor $D(\lambda)$ and symmetrized λ-permanent $P(\lambda)$ are elements of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ defined by

$$
D(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{\ell}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots E_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right]
$$

The symmetrized λ-minor $D(\lambda)$ and symmetrized λ-permanent $P(\lambda)$ are elements of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ defined by

$$
D(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{\ell}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots E_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right]
$$

and

$$
P(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{\ell}} E_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots E_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right] .
$$

Theorem (2021). All elements

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{N}{\ell}^{-1} c_{\lambda} D(\lambda)
$$

Theorem (2021). All elements

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{N}{\ell}^{-1} c_{\lambda} D(\lambda)
$$

and

$$
\psi_{m}=\sum_{\lambda \vdash m}\binom{N+\ell-1}{\ell}^{-1} c_{\lambda} P(\lambda)
$$

Theorem (2021). All elements

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{N}{\ell}^{-1} c_{\lambda} D(\lambda)
$$

and

$$
\psi_{m}=\sum_{\lambda \vdash m}\binom{N+\ell-1}{\ell}^{-1} c_{\lambda} P(\lambda)
$$

belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

Theorem (2021). All elements

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{N}{\ell}^{-1} c_{\lambda} D(\lambda)
$$

and

$$
\psi_{m}=\sum_{\lambda \vdash m}\binom{N+\ell-1}{\ell}^{-1} c_{\lambda} P(\lambda)
$$

belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

Moreover, each family $\phi_{1}, \ldots, \phi_{N}$ and $\psi_{1}, \ldots, \psi_{N}$ is a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$.

Proof. Show that ϕ_{m} and ψ_{m} coincide with previously known

Segal-Sugawara vectors.

Proof. Show that ϕ_{m} and ψ_{m} coincide with previously known Segal-Sugawara vectors. The elements $\phi_{1}^{\circ}, \ldots, \phi_{N}^{\circ}$ defined by
$\operatorname{cdet}\left[\begin{array}{ccc}T+E_{11}[-1] & \ldots & E_{1 N}[-1] \\ \vdots & \ddots & \vdots \\ E_{N 1}[-1] & \ldots & T+E_{N N}[-1]\end{array}\right]=T^{N}+\phi_{1}^{\circ} T^{N-1}+\cdots+\phi_{N}^{\circ}$

Proof. Show that ϕ_{m} and ψ_{m} coincide with previously known Segal-Sugawara vectors. The elements $\phi_{1}^{\circ}, \ldots, \phi_{N}^{\circ}$ defined by

form a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$
[A. Chervov and D. Talalaev 2006; A. Chervov and M. 2009].

Proof. Show that ϕ_{m} and ψ_{m} coincide with previously known Segal-Sugawara vectors. The elements $\phi_{1}^{\circ}, \ldots, \phi_{N}^{\circ}$ defined by
$\operatorname{cdet}\left[\begin{array}{ccc}T+E_{11}[-1] & \ldots & E_{1 N}[-1] \\ \vdots & \ddots & \vdots \\ E_{N 1}[-1] & \ldots & T+E_{N N}[-1]\end{array}\right]=T^{N}+\phi_{1}^{\circ} T^{N-1}+\cdots+\phi_{N}^{\circ}$
form a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$
[A. Chervov and D. Talalaev 2006; A. Chervov and M. 2009].
Verify that $\phi_{m}^{\circ}=\binom{N}{m} \phi_{m}$ for all m.

Types B, C, D

Types B, C, D

Define the orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ and
$N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as
subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

Types B, C, D

Define the orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ and
$N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as
subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

We use the involution $i \mapsto i^{\prime}=N-i+1$ on the set $\{1, \ldots, N\}$, and in the symplectic case we set

$$
\varepsilon_{i}=\left\{\begin{aligned}
1 & \text { for } \quad i=1, \ldots, n \\
-1 & \text { for } \quad i=n+1, \ldots, 2 n
\end{aligned}\right.
$$

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$.

For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ define the symmetrized λ-minor by

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$.

For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ define the symmetrized λ-minor by

$$
D(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{2 n} \sum_{\sigma \in \mathfrak{S}_{\ell}} \operatorname{sgn} \sigma \cdot F_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots F_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right] .
$$

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$.

For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ define the symmetrized λ-minor by

$$
D(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{2 n} \sum_{\sigma \in \mathfrak{S}_{\ell}} \operatorname{sgn} \sigma \cdot F_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots F_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right] .
$$

For $\mathfrak{g}=\mathfrak{o}_{N}$ the symmetrized λ-permanent is defined by

$$
P(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{\ell}} F_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots F_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right] .
$$

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition of m of length $\ell=\ell(\lambda)$.

For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ define the symmetrized λ-minor by

$$
D(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{2 n} \sum_{\sigma \in \mathfrak{S}_{\ell}} \operatorname{sgn} \sigma \cdot F_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots F_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right] .
$$

For $\mathfrak{g}=\mathfrak{o}_{N}$ the symmetrized λ-permanent is defined by

$$
P(\lambda)=\frac{1}{\ell!} \sum_{i_{1}, \ldots, i_{\ell}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{\ell}} F_{i_{\sigma(1)} i_{1}}\left[-\lambda_{1}\right] \ldots F_{i_{\sigma(\ell)} i_{\ell}}\left[-\lambda_{\ell}\right] .
$$

Both $D(\lambda)$ and $P(\lambda)$ are zero unless $\ell(\lambda)$ is even.

Theorem (2021). All elements

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{2 n+1}{\ell}^{-1} c_{\lambda} D(\lambda) \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n}
$$

Theorem (2021). All elements

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{2 n+1}{\ell}^{-1} c_{\lambda} D(\lambda) \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n}
$$

and

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{N+\ell-2}{\ell}^{-1} c_{\lambda} P(\lambda) \quad \text { for } \quad \mathfrak{g}=\mathfrak{o}_{N}
$$

Theorem (2021). All elements

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{2 n+1}{\ell}^{-1} c_{\lambda} D(\lambda) \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n},
$$

and

$$
\phi_{m}=\sum_{\lambda \vdash m}\binom{N+\ell-2}{\ell}^{-1} c_{\lambda} P(\lambda) \quad \text { for } \quad \mathfrak{g}=\mathfrak{o}_{N}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{G}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is known to belong to $\mathfrak{z}\left(\widehat{\mathfrak{o}}_{2 n}\right)$ [M. 2013].

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is known to belong to $\mathfrak{z}\left(\widehat{\mathfrak{o}}_{2 n}\right)$ [M. 2013].

Theorem (2021). The family $\phi_{2}, \phi_{4}, \ldots, \phi_{2 n}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{g}=\mathfrak{s p}_{2 n}$ and $\mathfrak{g}=\mathfrak{o}_{2 n+1}$,

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is known to belong to $\mathfrak{z}\left(\widehat{\mathfrak{o}}_{2 n}\right)$ [M. 2013].

Theorem (2021). The family $\phi_{2}, \phi_{4}, \ldots, \phi_{2 n}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{g}=\mathfrak{s p}_{2 n}$ and $\mathfrak{g}=\mathfrak{o}_{2 n+1}$, and
$\phi_{2}, \phi_{4}, \ldots, \phi_{2 n-2}, \operatorname{Pf} F[-1]$ is a complete set of Segal-Sugawara vectors for $\mathfrak{g}=\mathfrak{o}_{2 n}$.

Symmetrization map

Symmetrization map

The linear map $\varpi: S(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g})$ defined by

$$
\varpi: X_{1} \ldots X_{n} \mapsto \frac{1}{n!} \sum_{\sigma \in \mathfrak{G}_{n}} X_{\sigma(1)} \ldots X_{\sigma(n)}, \quad X_{i} \in \mathfrak{g} .
$$

is a \mathfrak{g}-module isomorphism known as the symmetrization map.

Symmetrization map

The linear map $\varpi: S(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g})$ defined by

$$
\varpi: X_{1} \ldots X_{n} \mapsto \frac{1}{n!} \sum_{\sigma \in \mathfrak{G}_{n}} X_{\sigma(1)} \ldots X_{\sigma(n)}, \quad X_{i} \in \mathfrak{g} .
$$

is a \mathfrak{g}-module isomorphism known as the symmetrization map.

Hence we have a vector space isomorphism

$$
\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} \mathrm{Z}(\mathfrak{g}) .
$$

Casimir elements in type A

Casimir elements in type A

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & \ldots & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

with entries in the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$.

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Phi_{1} u^{N-1}+\cdots+\Phi_{N}
$$

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Phi_{1} u^{N-1}+\cdots+\Phi_{N}
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Psi_{k} q^{k}
$$

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Phi_{1} u^{N-1}+\cdots+\Phi_{N}
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Psi_{k} q^{k}
$$

We have

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Phi_{1}, \ldots, \Phi_{N}\right]=\mathbb{C}\left[\Psi_{1}, \ldots, \Psi_{N}\right] .
$$

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Phi_{1} u^{N-1}+\cdots+\Phi_{N}
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Psi_{k} q^{k}
$$

We have

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Phi_{1}, \ldots, \Phi_{N}\right]=\mathbb{C}\left[\Psi_{1}, \ldots, \Psi_{N}\right] .
$$

This implies

$$
\mathrm{Z}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[\varpi\left(\Phi_{1}\right), \ldots, \varpi\left(\Phi_{N}\right)\right]=\mathbb{C}\left[\varpi\left(\Psi_{1}\right), \ldots, \varpi\left(\Psi_{N}\right)\right]
$$

Explicitly, $\varpi\left(\Phi_{m}\right)=\operatorname{Det}_{m}(E)$ is the symmetrized minor of E,

Explicitly, $\varpi\left(\Phi_{m}\right)=\operatorname{Det}_{m}(E)$ is the symmetrized minor of E,

$$
\operatorname{Det}_{m}(E)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}},
$$

Explicitly, $\varpi\left(\Phi_{m}\right)=\operatorname{Det}_{m}(E)$ is the symmetrized minor of E,

$$
\operatorname{Det}_{m}(E)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}},
$$

while $\varpi\left(\Psi_{m}\right)=\operatorname{Per}_{m}(E)$ is the symmetrized permanent of E,

Explicitly, $\varpi\left(\Phi_{m}\right)=\operatorname{Det}_{m}(E)$ is the symmetrized minor of E,

$$
\operatorname{Det}_{m}(E)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}},
$$

while $\varpi\left(\Psi_{m}\right)=\operatorname{Per}_{m}(E)$ is the symmetrized permanent of E,

$$
\operatorname{Per}_{m}(E)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)}} i_{m} .
$$

Explicitly, $\varpi\left(\Phi_{m}\right)=\operatorname{Det}_{m}(E)$ is the symmetrized minor of E,

$$
\operatorname{Det}_{m}(E)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{G}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}},
$$

while $\varpi\left(\Psi_{m}\right)=\operatorname{Per}_{m}(E)$ is the symmetrized permanent of E,

$$
\operatorname{Per}_{m}(E)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)}} i_{m} .
$$

They act by scalar multiplication in $L\left(\lambda_{1}, \ldots, \lambda_{N}\right)$.

Elementary shifted symmetric polynomials:

$$
e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1}<\cdots<i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}-1\right) \ldots\left(\lambda_{i_{m}}-m+1\right) .
$$

Elementary shifted symmetric polynomials:

$$
e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1}<\cdots<i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}-1\right) \ldots\left(\lambda_{i_{m}}-m+1\right) .
$$

Complete shifted symmetric polynomials:

$$
h_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}+1\right) \ldots\left(\lambda_{i_{m}}+m-1\right) .
$$

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Theorem (2021). For the action in $L\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ we have

$$
\varpi\left(\Phi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\}\binom{N}{m}\binom{N}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Theorem (2021). For the action in $L\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ we have

$$
\varpi\left(\Phi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\}\binom{N}{m}\binom{N}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

and

$$
\varpi\left(\Psi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-N}{m}\binom{-N}{k}^{-1} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

Casimir elements in types B, C, D

Casimir elements in types B, C, D

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$.

Casimir elements in types B, C, D

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$.

We let $N=2 n+1$ for type B, and $N=2 n$ for types C and D.

Write

$$
\operatorname{det}(u 1+F)=u^{2 n}+\Phi_{2} u^{2 n-2}+\cdots+\Phi_{2 n} \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n}
$$

Write

$$
\operatorname{det}(u 1+F)=u^{2 n}+\Phi_{2} u^{2 n-2}+\cdots+\Phi_{2 n} \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n}
$$

and

$$
\operatorname{det}(1-q F)^{-1}=1+\sum_{k=1}^{\infty} \Psi_{2 k} q^{2 k} \quad \text { for } \quad \mathfrak{g}=\mathfrak{o}_{N}
$$

Write

$$
\operatorname{det}(u 1+F)=u^{2 n}+\Phi_{2} u^{2 n-2}+\cdots+\Phi_{2 n} \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n}
$$

and

$$
\operatorname{det}(1-q F)^{-1}=1+\sum_{k=1}^{\infty} \Psi_{2 k} q^{2 k} \quad \text { for } \quad \mathfrak{g}=\mathfrak{o}_{N}
$$

The symmetrized invariants act by scalar multiplication in the irreducible highest weight \mathfrak{g}-modules $L\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Theorem (2021). (i) For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ we have

$$
\begin{aligned}
\varpi\left(\Phi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{2 n+1}{m} & \binom{2 n+1}{k}^{-1} \\
& \times e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}, 0,-\lambda_{n}, \ldots,-\lambda_{1}\right)
\end{aligned}
$$

Theorem (2021). (i) For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ we have

$$
\begin{aligned}
\varpi\left(\Phi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{2 n+1}{m} & \binom{2 n+1}{k}^{-1} \\
& \times e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}, 0,-\lambda_{n}, \ldots,-\lambda_{1}\right)
\end{aligned}
$$

(ii) For $\mathfrak{g}=\mathfrak{o}_{2 n+1}$ we have

$$
\varpi\left(\Psi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-2 n}{m}\binom{-2 n}{k}^{-1}
$$

$$
\times h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{n}, \ldots,-\lambda_{1}\right)
$$

(iii) For $\mathfrak{g}=\mathfrak{o}_{2 n}$ we have

$$
\begin{aligned}
\varpi\left(\Psi_{m}\right) & \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-2 n+1}{m}\binom{-2 n+1}{k}^{-1} \\
& \times\left(\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n-1},-\lambda_{n}, \ldots,-\lambda_{1}\right)\right. \\
& \left.\quad+\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right)\right) .
\end{aligned}
$$

(iii) For $\mathfrak{g}=\mathfrak{o}_{2 n}$ we have

$$
\begin{aligned}
\varpi\left(\Psi_{m}\right) & \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-2 n+1}{m}\binom{-2 n+1}{k}^{-1} \\
& \times\left(\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n-1},-\lambda_{n}, \ldots,-\lambda_{1}\right)\right. \\
& \left.\quad+\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right)\right) .
\end{aligned}
$$

Remark. If m is odd, then the elements Φ_{m}, Ψ_{m} are understood as equal to zero.

Quantum Mishchenko-Fomenko subalgebras

Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

The quantum Mishchenko-Fomenko subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})$ is defined as the image of the Feigin-Frenkel center
$\mathfrak{z}(\widehat{\mathfrak{g}}) \subset \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ under the homomorphism $\varrho_{\mu, z}$.

Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

The quantum Mishchenko-Fomenko subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})$ is defined as the image of the Feigin-Frenkel center
$\mathfrak{z}(\widehat{\mathfrak{g}}) \subset \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ under the homomorphism $\varrho_{\mu, z}$.

This subalgebra does not depend on z.

Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

The quantum Mishchenko-Fomenko subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})$ is defined as the image of the Feigin-Frenkel center
$\mathfrak{z}(\widehat{\mathfrak{g}}) \subset \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ under the homomorphism $\varrho_{\mu, z}$.

This subalgebra does not depend on z.
[L. Rybnikov 2006].

If $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is of degree d, define $S_{(a)} \in \mathrm{U}(\mathfrak{g})$ by

$$
\varrho_{\mu, z}(S)=S_{(0)} z^{-d}+\cdots+S_{(d-1)} z^{-1}+S_{(d)} .
$$

If $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is of degree d, define $S_{(a)} \in \mathrm{U}(\mathfrak{g})$ by

$$
\varrho_{\mu, z}(S)=S_{(0)} z^{-d}+\cdots+S_{(d-1)} z^{-1}+S_{(d)}
$$

Theorem [FFTL 2010, R 2006]. Let $\mu \in \mathfrak{g}^{*}$ be regular.

If $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is of degree d, define $S_{(a)} \in \mathrm{U}(\mathfrak{g})$ by

$$
\varrho_{\mu, z}(S)=S_{(0)} z^{-d}+\cdots+S_{(d-1)} z^{-1}+S_{(d)}
$$

Theorem [FFTL 2010, R 2006]. Let $\mu \in \mathfrak{g}^{*}$ be regular.
If S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors of the respective degrees d_{1}, \ldots, d_{n},

If $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is of degree d, define $S_{(a)} \in \mathrm{U}(\mathfrak{g})$ by

$$
\varrho_{\mu, z}(S)=S_{(0)} z^{-d}+\cdots+S_{(d-1)} z^{-1}+S_{(d)}
$$

Theorem [FFTL 2010, R 2006]. Let $\mu \in \mathfrak{g}^{*}$ be regular.
If S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors of the respective degrees d_{1}, \ldots, d_{n}, then the elements

$$
S_{k(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1
$$

are free generators of \mathcal{A}_{μ}.

If $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is of degree d, define $S_{(a)} \in \mathrm{U}(\mathfrak{g})$ by

$$
\varrho_{\mu, z}(S)=S_{(0)} z^{-d}+\cdots+S_{(d-1)} z^{-1}+S_{(d)}
$$

Theorem [FFTL 2010, R 2006]. Let $\mu \in \mathfrak{g}^{*}$ be regular.
If S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors of the respective degrees d_{1}, \ldots, d_{n}, then the elements

$$
S_{k(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1
$$

are free generators of \mathcal{A}_{μ}. Moreover, gr $\mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

If $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is of degree d, define $S_{(a)} \in \mathrm{U}(\mathfrak{g})$ by

$$
\varrho_{\mu, z}(S)=S_{(0)} z^{-d}+\cdots+S_{(d-1)} z^{-1}+S_{(d)}
$$

Theorem [FFTL 2010, R 2006]. Let $\mu \in \mathfrak{g}^{*}$ be regular.
If S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors of the respective degrees d_{1}, \ldots, d_{n}, then the elements

$$
S_{k(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1
$$

are free generators of \mathcal{A}_{μ}. Moreover, gr $\mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

Conjecture [FFTL 2010]. gr $\mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$ for all $\mu \in \mathfrak{g}^{*}$.

Type A

Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Theorem. The subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of each family of polynomials

Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Theorem. The subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+t \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+t \mu), \quad m \geqslant 1 .
$$

Moreover, if μ is regular, then the non-constant coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+t \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+t \mu), \quad m=1, \ldots, N,
$$

are free generators of the algebra \mathcal{A}_{μ}.

Moreover, if μ is regular, then the non-constant coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+t \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+t \mu), \quad m=1, \ldots, N,
$$

are free generators of the algebra \mathcal{A}_{μ}.
[A. Tarasov 2000, 2003; O. Yakimova and M. 2017].

Types B, C, D

Types B, C, D

Now let $\mathfrak{g}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}$ or $\mathfrak{o}_{2 n}$.

Types B, C, D

Now let $\mathfrak{g}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}$ or $\mathfrak{o}_{2 n}$.

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

Types B, C, D

Now let $\mathfrak{g}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}$ or $\mathfrak{o}_{2 n}$.

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Theorem [O. Yakimova and M. 2017].
Suppose that $\mu \in \mathfrak{g}^{*}$ is regular.

Theorem [O. Yakimova and M. 2017].

Suppose that $\mu \in \mathfrak{g}^{*}$ is regular.

- The non-constant coefficients of the polynomials
$\operatorname{Det}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n$ are free generators of
the algebra \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{s p}_{2 n}$.

Theorem [O. Yakimova and M. 2017].

Suppose that $\mu \in \mathfrak{g}^{*}$ is regular.

- The non-constant coefficients of the polynomials
$\operatorname{Det}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n$ are free generators of the algebra \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{s p}_{2 n}$.
- The non-constant coefficients of the polynomials
$\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n$ are free generators of the algebra \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{o}_{2 n+1}$.
- The non-constant coefficients of the polynomials $\operatorname{Pf}(F+t \mu)$ and $\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n-2$ are free generators of the algebra \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{o}_{2 n}$.
- The non-constant coefficients of the polynomials $\operatorname{Pf}(F+t \mu)$ and $\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n-2$ are free generators of the algebra \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{o}_{2 n}$.

Theorem [V. Futorny and M. 2015; O. Yakimova and M. 2017].

- The non-constant coefficients of the polynomials $\operatorname{Pf}(F+t \mu)$ and $\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n-2$ are free generators of the algebra \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{o}_{2 n}$.

Theorem [V. Futorny and M. 2015; O. Yakimova and M. 2017].

The FFTL-conjecture holds in types A and C :

- The non-constant coefficients of the polynomials $\operatorname{Pf}(F+t \mu)$ and $\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n-2$ are free generators of the algebra \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{o}_{2 n}$.

Theorem [V. Futorny and M. 2015; O. Yakimova and M. 2017].

The FFTL-conjecture holds in types A and C :
$\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$ for all $\mu \in \mathfrak{g}^{*}$.

Free generators of \mathcal{A}_{μ} : type A

Free generators of $\mathcal{A}_{\mu}:$ type A

Suppose that the distinct eigenvalues of μ are $\lambda_{1}, \ldots, \lambda_{r}$.

Free generators of $\mathcal{A}_{\mu}:$ type A

Suppose that the distinct eigenvalues of μ are $\lambda_{1}, \ldots, \lambda_{r}$.
To each λ_{i} associate the Young diagram $\alpha^{(i)}$ whose rows are the sizes of the Jordan blocks with the eigenvalue λ_{i}.

Free generators of $\mathcal{A}_{\mu}:$ type A

Suppose that the distinct eigenvalues of μ are $\lambda_{1}, \ldots, \lambda_{r}$.
To each λ_{i} associate the Young diagram $\alpha^{(i)}$ whose rows are the sizes of the Jordan blocks with the eigenvalue λ_{i}.

Introduce another Young diagram by

$$
\Pi=\alpha^{(1)}+\cdots+\alpha^{(r)}
$$

the sum is taken by rows.

Write the numbers $1,2, \ldots, N$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

Write the numbers $1,2, \ldots, N$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

For each $m \in\{1, \ldots, N\}$ define $r(m)$ as the row number of m.

Write the numbers $1,2, \ldots, N$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

For each $m \in\{1, \ldots, N\}$ define $r(m)$ as the row number of m.

Introduce another Young diagram by

$$
\varrho=(r(N)-1, \ldots, r(1)-1) .
$$

Example. For $\Pi=(3,2,1)$ we have

1	2	3
4	5	
6		

Example. For $\Pi=(3,2,1)$ we have

\[

\]

Therefore

$$
r(1)=r(2)=r(3)=1, \quad r(4)=r(5)=2, \quad r(6)=3
$$

Example. For $\Pi=(3,2,1)$ we have

\[

\]

Therefore

$$
r(1)=r(2)=r(3)=1, \quad r(4)=r(5)=2, \quad r(6)=3
$$

and

$$
\varrho=(2,1,1)
$$

Associate the coefficients of the polynomials

$$
\operatorname{Det}_{\ell}(E+t \mu)=\sum_{k=0}^{\ell} \Phi_{\ell k} t^{k}
$$

Associate the coefficients of the polynomials

$$
\operatorname{Det}_{\ell}(E+t \mu)=\sum_{k=0}^{\ell} \Phi_{\ell k} t^{k}
$$

with boxes of the diagram $\Gamma=(N, N-1, \ldots, 1)$ by

Associate the coefficients of the polynomials

$$
\operatorname{Det}_{\ell}(E+t \mu)=\sum_{k=0}^{\ell} \Phi_{\ell k} t^{k}
$$

with boxes of the diagram $\Gamma=(N, N-1, \ldots, 1)$ by

$$
\begin{array}{ccccc}
\Phi_{N N-1} & \Phi_{N N-2} & \cdots & \Phi_{N 1} & \Phi_{N 0} \\
\Gamma= & & & \\
\Phi_{N-1 N-2} & \Phi_{N-1 N-3} & \cdots & \Phi_{N-10} \\
\cdots & \cdots & \cdots & \\
\Phi_{21} & \Phi_{20} & & \\
& & & \\
& & & &
\end{array}
$$

The elements $\Phi_{\ell k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

The elements $\Phi_{\ell k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

Example. Take $N=6$ and let μ have two distinct eigenvalues with the associated Young diagrams

The elements $\Phi_{\ell k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

Example. Take $N=6$ and let μ have two distinct eigenvalues with the associated Young diagrams

Then $\Pi=(3,2,1)$ so that $\varrho=(2,1,1)$

The elements $\Phi_{\ell k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

Example. Take $N=6$ and let μ have two distinct eigenvalues with the associated Young diagrams

Then $\Pi=(3,2,1)$ so that $\varrho=(2,1,1)$ and Γ / ϱ is

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$.

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{\ell k}$ are algebraically independent.

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{\ell k}$ are algebraically independent.

Example. If μ is a scalar matrix then $\varrho=(N-1, N-2, \ldots, 1)$.

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{\ell k}$ are algebraically independent.

Example. If μ is a scalar matrix then $\varrho=(N-1, N-2, \ldots, 1)$.
The skew diagram Γ / ϱ is

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{\ell k}$ are algebraically independent.

Example. If μ is a scalar matrix then $\varrho=(N-1, N-2, \ldots, 1)$.
The skew diagram Γ / ϱ is

Thus $\mathcal{A}_{\mu}=\mathbb{C}\left[\Phi_{10}, \ldots, \Phi_{N 0}\right]=\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.

