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Preliminary course outline

Lecture 1. History and background, R-matrix definition, basic

structural results in type A.

Lecture 2. Quantum determinant and quantum minor

identities, center of the Yangian, Drinfeld presentation.

Lecture 3. Highest weight theory, finite-dimensional

irreducible representations in type A.

Lecture 4. Yangians in arbitrary types, their representations

and applications.
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Let R be a linear map

R : V ⊗ V → V ⊗ V,

where V is a vector space.

Then R satisfies the Yang–Baxter equation, if

R12 R13 R23 = R23 R13 R12,

in the space V ⊗ V ⊗ V, with the notation R12 = R⊗ 1, etc.

In this case we say that R is an R-matrix.
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In the case dim V = 2, the entries of the R-matrix R are

interpreted as the Boltzmann weights associated with lattices.

In the parameter-dependent Yang–Baxter equation, the

spectral parameter can be additive,

R12(u) R13(u + v) R23(v) = R23(v) R13(u + v) R12(u),

or multiplicative,

R12(u) R13(uv) R23(v) = R23(v) R13(uv) R12(u).
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In the theory of integrable lattice models, one considers the

monodromy matrices

T0(u) = R01(u + c1) . . .R0n(u + cn), ci ∈ C ,

in the vector space V ⊗ V⊗n.

By taking trace over the 0-th copy of V, we get

the transfer matrix tr T(u).
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The Yang–Baxter equation implies

R00′(u− v) T0(u) T0′(v) = T0′(v) T0(u) R00′(u− v)

in the vector space V ⊗ V ⊗ V⊗n.

If R00′(u− v) is invertible, then

T0(u) T0′(v) = R00′(u− v)−1 T0′(v) T0(u) R00′(u− v).

By taking trace over the copies of V labelled by 0 and 0′, we get

[
tr T(u), tr T(v)

]
= 0.
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The transfer matrices tr T(u) thus provide a commuting family of

operators in V⊗n. One would like to find their eigenvalues and

eigenvectors.

The models with particular R-matrices were studied, the

techniques of Bethe ansatz was used.

These include the XXX, XXZ and XYZ models;

see book by [R. Baxter 1982].

Another interpretation of the Yang–Baxter equation —

factorization property of scattering matrices;

originated in [C. N. Yang 1967].
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Work of the Leningrad (St. Petersburg) school of L. Faddeev:

emergence of new algebraic structures.

The key step is to regard the monodromy matrix relation as

a definition: review paper by P. Kulish and E. Sklyanin 1982.

The relation

R12(u− v) T1(u) T2(v) = T2(v) T1(u) R12(u− v),

which is now known as the RTT-relation, defines an abstract

algebra whose generators are matrix elements of T(u).
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Yang R-matrix

Let P denote the permutation operator on V ⊗ V, so that

P : ξ ⊗ η 7→ η ⊗ ξ.

The function

R(u) = u1 + P

is a solution of the Yang–Baxter equation, known as

the Yang R-matrix.
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Take dim V = 2 so that

T(u) =

A(u) B(u)

C(u) D(u)

 .

By taking the matrix elements on both sides of the RTT relation

R12(u− v) T1(u) T2(v) = T2(v) T1(u) R12(u− v),

we get the relations in terms of the matrix entries. In particular,[
A(u),A(v)

]
= 0,

(u− v)
[
A(u),B(v)

]
= A(v) B(u)− A(u) B(v),

(u− v)
[
B(u),C(v)

]
= D(v) A(u)− D(u) A(v), etc.
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Irreducible representations of such algebras were described

by V. Tarasov 1985.

The quantum determinant in an arbitrary dimension was

introduced by P. Kulish and E. Sklyanin 1982.

This generalized the work of A. Izergin and V. Korepin 1981 for

2× 2 matrices, where the quantum determinant is given by

A(u) D(u + 1)− C(u) B(u + 1).

These elements lie in the center of the algebra.
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Drinfeld’s definition

The matrix elements of T(u) should be understood as formal

series in u−1, like

A(u) = 1 + A1 u−1 + A2 u−2 + . . .

etc., so that the RTT relation defines an algebra with countably

many generators.

This leads to the definition of the Yangian Y(gl2)

[V. Drinfeld 1985]. The name was given in honor of C. N. Yang.

The Yangians Y(a) were defined for all simple Lie algebras a.
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Yangian for glN

Definition.

The Yangian for glN is the associative algebra over C with

countably many generators t(1)
ij , t(2)

ij , . . . where i, j = 1, . . . ,N,

and the defining relations

[
t(r+1)
ij , t(s)

kl

]
−
[
t(r)
ij , t

(s+1)
kl

]
= t(r)

kj t(s)
il − t(s)

kj t(r)
il ,

where r, s = 0, 1, . . . and t(0)
ij = δij.

This algebra is denoted by Y(glN).



15

Yangian for glN

Definition.

The Yangian for glN is the associative algebra over C with

countably many generators t(1)
ij , t(2)

ij , . . . where i, j = 1, . . . ,N,

and the defining relations

[
t(r+1)
ij , t(s)

kl

]
−
[
t(r)
ij , t

(s+1)
kl

]
= t(r)

kj t(s)
il − t(s)

kj t(r)
il ,

where r, s = 0, 1, . . . and t(0)
ij = δij.

This algebra is denoted by Y(glN).



15

Yangian for glN

Definition.

The Yangian for glN is the associative algebra over C with

countably many generators t(1)
ij , t(2)

ij , . . . where i, j = 1, . . . ,N,

and the defining relations

[
t(r+1)
ij , t(s)

kl

]
−
[
t(r)
ij , t

(s+1)
kl

]
= t(r)

kj t(s)
il − t(s)

kj t(r)
il ,

where r, s = 0, 1, . . . and t(0)
ij = δij.

This algebra is denoted by Y(glN).



16

Introduce the formal generating series

tij(u) = δij + t(1)
ij u−1 + t(2)

ij u−2 + · · · ∈ Y(glN)[[u−1]].

The defining relations take the form

(u− v)
[
tij(u), tkl(v)

]
= tkj(u) til(v)− tkj(v) til(u) :

equate the coefficients of u−r v−s.

Proposition. The defining relations can be written equivalently

as [
t(r)
ij , t

(s)
kl

]
=

min{r,s}∑
a=1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
.
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Proof. Write the relations in the form

[
tij(u), tkl(v)

]
=

1
u− v

(
tkj(u) til(v)− tkj(v) til(u)

)
.

Expand
1

u− v
=

∞∑
p=1

u−p v p−1.

Taking the coefficients of u−rv−s on both sides gives

[t(r)
ij , t

(s)
kl ] =

r∑
a=1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
.

This agrees with the formula in the case r 6 s. If r > s then

r∑
a=s+1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
= 0.
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Introduce the permutation operator

P =

N∑
i,j=1

eij ⊗ eji ∈ EndCN ⊗ EndCN ,

where eij ∈ EndCN are the standard matrix units.

The rational function

R(u) = 1− P u−1

with values in EndCN ⊗ EndCN is called the Yang R-matrix.
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Proposition.

The Yang R-matrix is a solution of the Yang–Baxter equation

R12(u) R13(u + v) R23(v) = R23(v) R13(u + v) R12(u).

Proof. Multiplying both sides by uv(u + v) we come to verify the

identity

(u− P12)(u + v− P13)(v− P23) = (v− P23)(u + v− P13)(u− P12).

It is immediate from the relations in the group algebra C [S3].

For instance, for the constant term we have

P12 P13 P23 = P23 P13 P12.
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Matrix form of the defining relations

Introduce the N × N matrix T(u) whose ij-th entry is the series

tij(u):

T(u) =


t11(u) t12(u) . . . t1N(u)

t21(u) t22(u) . . . t2N(u)

. . . . . . . . . . . .

tN1(u) tN2(u) . . . tNN(u)

 .
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Note that for any algebra A we have the isomorphism

MatN(A) ∼= EndCN ⊗A.

The image of any matrix A = [aij] is found by

A 7→
N∑

i,j=1

eij ⊗ aij.

We will regard T(u) as an element of the algebra

EndCN ⊗ Y(glN)[[u−1]]

by setting

T(u) =
N∑

i,j=1

eij ⊗ tij(u).
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Consider the algebra

EndCN ⊗ EndCN ⊗ Y(glN)[[u−1]]

and introduce its elements by

T1(u) =
N∑

i,j=1

eij ⊗ 1⊗ tij(u) and T2(u) =
N∑

i,j=1

1⊗ eij ⊗ tij(u).

Proposition.

The defining relations of the Yangian Y(glN) can be written in

the form of RTT-relation

R(u− v) T1(u) T2(v) = T2(v) T1(u) R(u− v).
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Proof. Recalling the definition of the Yang R-matrix, we can

write the relation in the form

[
T1(u),T2(v)

]
=

1
u− v

(
P T1(u) T2(v)− T2(v) T1(u) P

)
.

Now take the coefficient of the basis element

eij ⊗ ekl ∈ EndCN ⊗ EndCN

to get

[
tij(u), tkl(v)

]
=

1
u− v

(
tkj(u) til(v)− tkj(v) til(u)

)
.
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Connection with U(glN)

Denote the basis elements of glN by Eij for i, j = 1, . . . ,N.

Commutation relations:

[Eij,Ekl] = δkj Ei l − δi l Ekj.

Proposition. The assignment

ev : t(1)
ij 7→ Eij and t(r)

ij → 0 for r > 2,

defines an epimorphism Y(glN)→ U(glN). Equivalently,

ev : tij(u) 7→ δij + Eij u−1.



24

Connection with U(glN)

Denote the basis elements of glN by Eij for i, j = 1, . . . ,N.

Commutation relations:

[Eij,Ekl] = δkj Ei l − δi l Ekj.

Proposition. The assignment

ev : t(1)
ij 7→ Eij and t(r)

ij → 0 for r > 2,

defines an epimorphism Y(glN)→ U(glN). Equivalently,

ev : tij(u) 7→ δij + Eij u−1.



24

Connection with U(glN)

Denote the basis elements of glN by Eij for i, j = 1, . . . ,N.

Commutation relations:

[Eij,Ekl] = δkj Ei l − δi l Ekj.

Proposition. The assignment

ev : t(1)
ij 7→ Eij and t(r)

ij → 0 for r > 2,

defines an epimorphism Y(glN)→ U(glN). Equivalently,

ev : tij(u) 7→ δij + Eij u−1.



24

Connection with U(glN)

Denote the basis elements of glN by Eij for i, j = 1, . . . ,N.

Commutation relations:

[Eij,Ekl] = δkj Ei l − δi l Ekj.

Proposition. The assignment

ev : t(1)
ij 7→ Eij and t(r)

ij → 0 for r > 2,

defines an epimorphism Y(glN)→ U(glN).

Equivalently,

ev : tij(u) 7→ δij + Eij u−1.



24

Connection with U(glN)

Denote the basis elements of glN by Eij for i, j = 1, . . . ,N.

Commutation relations:

[Eij,Ekl] = δkj Ei l − δi l Ekj.

Proposition. The assignment

ev : t(1)
ij 7→ Eij and t(r)

ij → 0 for r > 2,

defines an epimorphism Y(glN)→ U(glN). Equivalently,

ev : tij(u) 7→ δij + Eij u−1.



25

Proof. Introduce the matrix

E =


E11 E12 . . . E1N

E21 E22 . . . E2N

. . . . . . . . . . . .

EN1 EN2 . . . ENN


with entries in U(glN).

We will regard it as the element of the

algebra

EndCN ⊗ U(glN)

by setting

E =

N∑
i,j=1

eij ⊗ Eij.
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The defining relations of U(glN) can be written in the matrix

form as [
E1,E2

]
= (E1 − E2) P

in the algebra

EndCN ⊗ EndCN ⊗ U(glN),

where

E1 =

N∑
i,j=1

eij ⊗ 1⊗ Eij and E2 =

N∑
i,j=1

1⊗ eij ⊗ Eij.
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Hence the map ev is written in the matrix form as

ev : T(u) 7→ 1 + E u−1.

We need to verify that

[
1 + E1 u−1, 1 + E2 v−1]

=
1

u− v

(
P (1 + E1 u−1) (1 + E2 v−1)

− (1 + E2 v−1) (1 + E1 u−1) P
)
.

Note the relations

PE1 = E2P and PE2 = E1P.
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We come to checking that

[
E1 ,E2

]
=

1
u− v

(
(u + E2) (v + E1) P− (v + E2) (u + E1) P

)
.

This follows from the defining relations in U(glN).

The map ev : Y(glN)→ U(glN) is known as

the evaluation homomorphism.
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Remark. Any representation of glN can be lifted to that of the

Yangian via the evaluation homomorphism.

No such epimorphism exists in the remaining types of simple

Lie algebras.

Proposition. The assignment

ı : Eij 7→ t(1)
ij

defines an embedding U(glN) ↪→ Y(glN).
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Proof. Recall the defining relations,

[
t(r)
ij , t

(s)
kl

]
=

min{r,s}∑
a=1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
,

and take r = s = 1, showing that the map is a homomorphism.

Note that the composition ev ◦ ı of the map ı : U(glN) ↪→ Y(glN)

and the evaluation homomorphism ev : Y(glN)→ U(glN) is the

identity map on U(glN). Therefore, the kernel of ı is trivial, so

that ı is an embedding.

We thus may regard U(glN) as a subalgebra of Y(glN).



30

Proof. Recall the defining relations,

[
t(r)
ij , t

(s)
kl

]
=

min{r,s}∑
a=1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
,

and take r = s = 1, showing that the map is a homomorphism.

Note that the composition ev ◦ ı of the map ı : U(glN) ↪→ Y(glN)

and the evaluation homomorphism ev : Y(glN)→ U(glN) is the

identity map on U(glN).

Therefore, the kernel of ı is trivial, so

that ı is an embedding.

We thus may regard U(glN) as a subalgebra of Y(glN).



30

Proof. Recall the defining relations,

[
t(r)
ij , t

(s)
kl

]
=

min{r,s}∑
a=1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
,

and take r = s = 1, showing that the map is a homomorphism.

Note that the composition ev ◦ ı of the map ı : U(glN) ↪→ Y(glN)

and the evaluation homomorphism ev : Y(glN)→ U(glN) is the

identity map on U(glN). Therefore, the kernel of ı is trivial, so

that ı is an embedding.

We thus may regard U(glN) as a subalgebra of Y(glN).



30

Proof. Recall the defining relations,

[
t(r)
ij , t

(s)
kl

]
=

min{r,s}∑
a=1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
,

and take r = s = 1, showing that the map is a homomorphism.

Note that the composition ev ◦ ı of the map ı : U(glN) ↪→ Y(glN)

and the evaluation homomorphism ev : Y(glN)→ U(glN) is the

identity map on U(glN). Therefore, the kernel of ı is trivial, so

that ı is an embedding.

We thus may regard U(glN) as a subalgebra of Y(glN).



31

Symmetries of Y(glN)

Let f (u) be a formal power series in u−1 of the form

f (u) = 1 + f1 u−1 + f2 u−2 + · · · ∈ C [[u−1]] .

Let c ∈ C and let B be any invertible complex N × N matrix.

Proposition. Each of the mappings

T(u) 7→ f (u) T(u),

T(u) 7→ T(u + c),

T(u) 7→ B T(u) B−1

defines an automorphism of Y(glN).
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Proof. We need to verify that each map preserves the defining

relations and is invertible.

It is clear that the maps T(u) 7→ f (u) T(u) and T(u) 7→ T(u + c)

preserve the RTT relation

R(u− v) T1(u) T2(v) = T2(v) T1(u) R(u− v).

Observe that any constant N × N matrix A satisfies the RTT

relation,

R(u− v) A1 A2 = A2 A1 R(u− v),

because

A1 A2 = A2 A1 and P A1 A2 = A2 A1 P.
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This implies that the matrices A T(u) and T(u) A also satisfy the

RTT relation:

R(u− v) A1 T1(u) A2 T2(v) = R(u− v) A1 A2 T1(u) T2(v)

A2 A1 R(u− v) T1(u) T2(v) = A2 A1 T2(v) T1(u) R(u− v)

which equals

A2 T2(v) A1 T1(u) R(u− v).

All three homomorphisms are obviously invertible.
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Proposition. Each of the mappings

σN : T(u) 7→ T(−u),

t : T(u) 7→ T t(u),

S : T(u) 7→ T−1(u)

defines an anti-automorphism of Y(glN).

Proof. The images t◦ij (u) of the series tij(u) under any

anti-automorphism of Y(glN) must satisfy the defining relations

with the opposite multiplication:

(u− v) [t◦ij (u), t◦kl(v)] = t◦il (u)t◦kj(v)− t◦il (v)t◦kj(u).
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These relations can be equivalently written in the matrix form:

R(u− v) T◦2 (v) T◦1 (u) = T◦1 (u) T◦2 (v) R(u− v),

where T◦(u) is the N × N matrix whose ij-th entry is t◦ij (u).

The relation

R(u− v) T2(−v) T1(−u) = T1(−u) T2(−v) R(u− v)

follows from the RTT relation by conjugating both sides by P

and then replacing (u, v) by (−v,−u).
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Lemma. Let A be an associative algebra.

Suppose that two elements

X =
N∑

i,j=1

eij ⊗ Xij and Y =
N∑

i,j=1

eij ⊗ Yij

of the algebra EndCN ⊗A satisfy the property

Xij Ykl = Ykl Xij for all i, j, k, l.

Then

(XY)t = Y tXt.
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Proof. We have

Y tXt =

N∑
i,j,k,l=1

elk eji ⊗ Ykl Xij =

N∑
i,j,l=1

eli ⊗ Yjl Xij.

On the other hand,

XY =
N∑

i,j,k,l=1

eij ekl ⊗ Xij Ykl =
N∑

i,j,l=1

eil ⊗ Yjl Xij,

so that the application of the transposition yields Y tXt.
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Apply the partial transposition operator t1 to both sides of the

RTT relation

R(u− v) T1(u) T2(v) = T2(v) T1(u) R(u− v)

in the algebra

EndCN ⊗ EndCN ⊗ Y(glN)[[u−1]].

By the Lemma, we get

T t
1(u) Rt(u− v) T2(v) = T2(v) Rt(u− v) T t

1(u).
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Since R(u− v) is stable under the composition t2 ◦ t1,

applying t2

we get

T t
1(u) T t

2(v) R(u− v) = R(u− v) T t
2(v) T t

1(u),

showing that t is an anti-automorphism.
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Finally, observe that the relation

R(u− v) T−1
2 (v) T−1

1 (u) = T−1
1 (u) T−1

2 (v) R(u− v)

is equivalent to the RTT relation so that S is an

anti-homomorphism.

Note now that the mappings σN and t are involutive and so

these anti-homomorphisms are bijective.

Remark. The anti-homomorphism S is not involutive.
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To complete the proof, take the composition of the

anti-homomorphisms σN and S to get the homomorphism

ωN : T(u) 7→ T−1(−u) .

Verify that ωN is involutive. Apply ωN to both sides of the identity

ωN (T(u)) · T(−u) = 1

to get

ω 2
N (T(u)) · T−1(u) = 1 .

So ω 2
N = 1 and S is bijective.
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Poincaré–Birkhoff–Witt theorem

Theorem. Given an arbitrary linear order on the set of

generators t(r)
ij , any element of the algebra Y(glN) can be

uniquely written as a linear combination of ordered monomials

in these generators.

Proof. Introduce the ascending filtration on Y(glN) by

deg t(r)
ij = r. By the defining relations

[
t(r)
ij , t

(s)
kl

]
=

min{r,s}∑
a=1

(
t(a−1)
kj t(r+s−a)

il − t(r+s−a)
kj t(a−1)

il

)
,

the corresponding graded algebra gr Y(glN) is commutative.
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This implies that the ordered monomials in the generators span

the algebra Y(glN).

We need to show that they are linearly independent.

Denote by t (r)
ij the image of t(r)

ij in the r-th component of

gr Y(glN). It will be sufficient to show that the elements t (r)
ij are

algebraically independent.
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By the defining relations, for any M > 0 there is a

homomorphism

ιM : Y(glN)→ Y(glN+M),

such that t(r)
ij 7→ t(r)

ij .

Take the composition

ζM = evN+M ◦ ωN+M ◦ ιM.
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The automorphism ωN+M of the algebra Y(glN+M) is defined by

ωN+M : T(u) 7→ T−1(−u),

while

evN+M : Y(glN+M)→ U(glN+M)

is the evaluation homomorphism,

T(u) 7→ 1 + E u−1.
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Then

evN+M ◦ ωN+M : T(u) 7→ (1− E u−1)−1 =

∞∑
r=0

E r u−r.

Hence, explicitly, for the homomorphism

ζM : Y(glN)→ U(glN+M)

we have

ζM : t(r)
ij 7→ (E r)ij,

and E is the (N + M)× (N + M) matrix whose ij-th entry is Eij .
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The homomorphism ζM respects the filtrations

on Y(glN) and U(glN+M).

Passing to the graded algebras, we get the homomorphism

ζM : gr Y(glN)→ S(glN+M),

where S(glN+M) is the symmetric algebra of glN+M.
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The image of t (r)
ij under ζM is the polynomial p (r)

ij such that

p (r)
ij (X) = (Xr)ij for any X ∈ MatN+M .

It suffices to show that for any positive integer R there exists a

large enough M such that the polynomials p (r)
ij with 1 6 i, j 6 N

and 1 6 r 6 R are algebraically independent.

For a large enough M, choose disjoint subsets

O(r)
ij = {a1, . . . , ar−1} ⊂ {N + 1,N + 2, . . . ,N + M}

and let y(r)
ij be independent parameters.
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Now take

X =

N∑
i,j=1

R∑
r=1

(
eia1 + ea1a2 + · · ·+ ear−2ar−1 + y(r)

ij ear−1j

)
.

For the polynomial p (r)
ij we have

p (r)
ij (X) = y(r)

ij + polynomial in y(s)
kl with s < r.

Hence, these polynomials are algebraically independent.
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Hopf algebra structure

A coalgebra (over the field C) is a vector space A

equipped with

linear maps ∆ : A→ A⊗ A, the coproduct, and ε : A→ C , the

counit, satisfying the axioms given by the following

commutative diagrams:

A⊗ A⊗ A ∆⊗id←−−−− A⊗ A

id⊗∆

x x∆

A⊗ A ←−−−−
∆

A

(the coassociativity of ∆), and
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the counit axioms

A⊗ C id⊗ε←−−−− A⊗ A

∼=
x x∆

A ←−−−−
id

A

C ⊗ A ε⊗id←−−−− A⊗ A

∼=
x x∆

A ←−−−−
id

A

A bialgebra is an associative unital algebra A equipped with a

coalgebra structure, such that ∆ and ε are algebra

homomorphisms.

In particular, ∆(1) = 1⊗ 1 and ε(1) = 1.
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A bialgebra A is called a Hopf algebra, if it is also equipped with

an anti-automorphism S : A→ A, the antipode,

such that the

following two diagrams commute:

A⊗ A S⊗id−−−−→ A⊗ A

∆

x yµ
A −−−−→

δ◦ε
A

A⊗ A id⊗S−−−−→ A⊗ A

∆

x yµ
A −−−−→

δ◦ε
A

where µ : A⊗ A→ A is the algebra multiplication and δ : C → A

is the unit map of the algebra A; that is, δ(c) = c · 1 for any

c ∈ C .
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