Lecture 2

## Lecture 2

Key points from the last lecture.

## Lecture 2

Key points from the last lecture.

- Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is the associative algebra over $\mathbb{C}$ with generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$, and the defining relations

$$
\left[t_{i j}^{(r)}, t_{k l}^{(s)}\right]=\sum_{a=1}^{\min \{r, s\}}\left(t_{k j}^{(a-1)} t_{i l}^{(r+s-a)}-t_{k j}^{(r+s-a)} t_{i l}^{(a-1)}\right)
$$

where $t_{i j}^{(0)}=\delta_{i j}$.

- Equivalently,

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u) .
$$

- Equivalently,

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u) .
$$

where

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right] .
$$

- Equivalently,

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

where

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right] .
$$

- Also, the defining relations take the form of $R T T$-relation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

- We have the evaluation homomorphism

$$
\mathrm{ev}: \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right), \quad t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

- We have the evaluation homomorphism

$$
\mathrm{ev}: \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right), \quad t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

- and the embedding

$$
\imath: \mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right), \quad E_{i j} \mapsto t_{i j}^{(1)}
$$

- We have the evaluation homomorphism

$$
\mathrm{ev}: \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right), \quad t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

- and the embedding

$$
\imath: \mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right), \quad E_{i j} \mapsto t_{i j}^{(1)}
$$

- In particular,

$$
\left[E_{i j}, t_{k l}(u)\right]=\delta_{k j} t_{i l}(u)-\delta_{i l} t_{k j}(u) .
$$

- We have the automorphisms

$$
\begin{aligned}
T(u) & \mapsto f(u) T(u) \\
T(u) & \mapsto T(u+c) \\
T(u) & \mapsto B T(u) B^{-1}
\end{aligned}
$$

- We have the automorphisms

$$
\begin{aligned}
T(u) & \mapsto f(u) T(u) \\
T(u) & \mapsto T(u+c) \\
T(u) & \mapsto B T(u) B^{-1}
\end{aligned}
$$

Remark. $(u+c)^{-r}=u^{-r}-r c u^{-r-1}+\ldots$.

- We have the automorphisms

$$
\begin{aligned}
T(u) & \mapsto f(u) T(u), \\
T(u) & \mapsto T(u+c), \\
T(u) & \mapsto B T(u) B^{-1},
\end{aligned}
$$

Remark. $(u+c)^{-r}=u^{-r}-r c u^{-r-1}+\ldots$.

- and anti-automorphisms

$$
\begin{aligned}
\sigma_{N} & : T(u) \\
t: T(u) & \mapsto T^{t}(u) \\
\mathrm{S}: T(u) & \mapsto T^{-1}(u)
\end{aligned}
$$

- The Poincaré-Birkhoff-Witt theorem holds:
- The Poincaré-Birkhoff-Witt theorem holds:

Given an arbitrary linear order on the set of generators $t_{i j}^{(r)}$, any element of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be uniquely written as a linear combination of ordered monomials in these generators.

- The Poincaré-Birkhoff-Witt theorem holds:

Given an arbitrary linear order on the set of generators $t_{i j}^{(r)}$, any element of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be uniquely written as a linear combination of ordered monomials in these generators.

- We noted in the proof that the associated graded algebra $\operatorname{gr} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is the algebra of polynomials in infinitely many variables $\bar{t}_{i j}^{(r)}$.
- A Hopf algebra is a unital algebra $A$ equipped with a coproduct $\Delta$, an antipode $S$ and a counit $\varepsilon$.
- A Hopf algebra is a unital algebra $A$ equipped with a coproduct $\Delta$, an antipode $S$ and a counit $\varepsilon$.

Since $\Delta: A \mapsto A \otimes A$ is a homomorphism, the tensor product of two $A$-modules $V$ and $W$ is again an $A$-module with the action defined via $\Delta$.

- A Hopf algebra is a unital algebra $A$ equipped with a coproduct $\Delta$, an antipode $S$ and a counit $\varepsilon$.

Since $\Delta: A \mapsto A \otimes A$ is a homomorphism, the tensor product of two $A$-modules $V$ and $W$ is again an $A$-module with the action defined via $\Delta$.

For any $a \in A$ we have

$$
\begin{aligned}
a \cdot(v \otimes w) & =\Delta(a)(v \otimes w) \\
& =\left(\sum a_{(1)} \otimes a_{(2)}\right)(v \otimes w)=\sum a_{(1)} v \otimes a_{(2)} w .
\end{aligned}
$$

for any $v \in V$ and $w \in W$.

Example. If $V$ and $W$ are representations of a Lie algebra $\mathfrak{g}$,

Example. If $V$ and $W$ are representations of a Lie algebra $\mathfrak{g}$, then $V \otimes W$ is also a representation with the action

$$
X(v \otimes w)=X v \otimes w+v \otimes X w, \quad X \in \mathfrak{g}
$$

Example. If $V$ and $W$ are representations of a Lie algebra $\mathfrak{g}$, then $V \otimes W$ is also a representation with the action

$$
X(v \otimes w)=X v \otimes w+v \otimes X w, \quad X \in \mathfrak{g}
$$

In fact, $\mathrm{U}(\mathfrak{g})$ is a Hopf algebra with the coproduct

$$
\Delta: X \mapsto X \otimes 1+1 \otimes X, \quad X \in \mathfrak{g}
$$

the antipode $\mathrm{S}: X \mapsto-X$ and the counit $\varepsilon: X \rightarrow 0$.

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

the antipode

$$
\mathrm{S}: T(u) \mapsto T^{-1}(u)
$$

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

the antipode

$$
\mathrm{S}: T(u) \mapsto T^{-1}(u)
$$

and the counit $\varepsilon: T(u) \mapsto 1$.

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

the antipode

$$
\mathrm{S}: T(u) \mapsto T^{-1}(u)
$$

and the counit $\varepsilon: T(u) \mapsto 1$.

Proof. We will verify the main axiom that

$$
\Delta: \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

is an algebra homomorphism.

## The definition of $\Delta$ can be written in a matrix form,

$$
\Delta: T(u) \mapsto T_{[1]}(u) T_{[2]}(u),
$$

## The definition of $\Delta$ can be written in a matrix form,

$$
\Delta: T(u) \mapsto T_{[1]}(u) T_{[2]}(u),
$$

by extending it to the map

$$
\Delta: \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

The definition of $\Delta$ can be written in a matrix form,

$$
\Delta: T(u) \mapsto T_{[1]}(u) T_{[2]}(u),
$$

by extending it to the map

$$
\Delta: \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

with the notation

$$
T_{[1]}(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u) \otimes 1 \quad \text { and } \quad T_{[2]}(u)=\sum_{i, j=1}^{N} e_{i j} \otimes 1 \otimes t_{i j}(u) .
$$

We need to show that $\Delta(T(u))$ satisfies the $R T T$ relation

$$
\begin{aligned}
& R(u-v) T_{1[1]}(u) T_{1[2]}(u) T_{2[1]}(v) T_{2[2]}(v) \\
& =T_{2[1]}(v) T_{2[2]}(v) T_{1[1]}(u) T_{1[2]}(u) R(u-v)
\end{aligned}
$$

We need to show that $\Delta(T(u))$ satisfies the $R T T$ relation

$$
\begin{aligned}
& R(u-v) T_{1[1]}(u) T_{1[2]}(u) T_{2[1]}(v) T_{2[2]}(v) \\
& =T_{2[1]}(v) T_{2[2]}(v) T_{1[1]}(u) T_{1[2]}(u) R(u-v)
\end{aligned}
$$

in the algebra

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

We need to show that $\Delta(T(u))$ satisfies the $R T T$ relation

$$
\begin{aligned}
& R(u-v) T_{1[1]}(u) T_{1[2]}(u) T_{2[1]}(v) T_{2[2]}(v) \\
& =T_{2[1]}(v) T_{2[2]}(v) T_{1[1]}(u) T_{1[2]}(u) R(u-v)
\end{aligned}
$$

in the algebra

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

This follows by the RTT relation for $T(u)$ and by the observation that the elements $T_{1[2]}(u)$ and $T_{2[1]}(v)$ commute, as well as the elements $T_{1[1]}(u)$ and $T_{2[2]}(v)$.

## Classical limit

## Classical limit

Introduce new generators of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by setting

$$
\tilde{t}_{i j}^{(r)}=h^{r-1} t_{i j}^{(r)}, \quad r \geqslant 1,
$$

where $h$ is a nonzero complex number.

## Classical limit

Introduce new generators of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by setting

$$
\tilde{t}_{i j}^{(r)}=h^{r-1} t_{i j}^{(r)}, \quad r \geqslant 1,
$$

where $h$ is a nonzero complex number.

The defining relations of the algebra $\mathrm{Y}_{h}\left(\mathfrak{g l}_{N}\right)$ take the form

$$
\begin{aligned}
{\left[\widetilde{t}_{i j}^{(r)}, \widetilde{t}_{k l}^{(s)}\right] } & =\delta_{k j} \widetilde{t}_{i l}^{(r+s-1)}-\delta_{i l} \widetilde{t}_{k j}^{(r+s-1)} \\
& +h \sum_{a=2}^{\min \{r, s\}}\left(\widetilde{t}_{k j}^{(a-1)} \widetilde{t}_{i l}^{(r+s-a)}-\widetilde{t}_{k j}^{(r+s-a)} \widetilde{t}_{i l}^{(a-1)}\right)
\end{aligned}
$$

Note that $\mathrm{Y}_{0}\left(\mathfrak{g l}_{N}\right)=\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$ via the identification

$$
\tilde{t}_{i j}^{(r)} \mapsto E_{i j} x^{r-1} .
$$

Note that $\mathrm{Y}_{0}\left(\mathfrak{g l}_{N}\right)=\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$ via the identification

$$
\tilde{t}_{i j}^{(r)} \mapsto E_{i j} x^{r-1} .
$$

So the Yangian is a flat deformation of the algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$.

Note that $\mathrm{Y}_{0}\left(\mathfrak{g l}_{N}\right)=\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$ via the identification

$$
\tilde{t}_{i j}^{(r)} \mapsto E_{i j} x^{r-1} .
$$

So the Yangian is a flat deformation of the algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$.

For the coproduct we have

$$
\Delta: \widetilde{t}_{i j}^{(r)} \mapsto \widetilde{t}_{i j}^{(r)} \otimes 1+1 \otimes \widetilde{t}_{i j}^{(r)}+h \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{i k}^{(s)} \otimes \widetilde{t}_{k j}^{(r-s)}
$$

Note that $\mathrm{Y}_{0}\left(\mathfrak{g l}_{N}\right)=\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$ via the identification

$$
\tilde{t}_{i j}^{(r)} \mapsto E_{i j} x^{r-1} .
$$

So the Yangian is a flat deformation of the algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$.

For the coproduct we have

$$
\Delta: \widetilde{t}_{i j}^{(r)} \mapsto \widetilde{t}_{i j}^{(r)} \otimes 1+1 \otimes \widetilde{t}_{i j}^{(r)}+h \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{i k}^{(s)} \otimes \widetilde{t}_{k j}^{(r-s)}
$$

Hence the Yangian is a deformation of $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$ in the class of Hopf algebras.

Let $\Delta^{\prime}$ be the opposite coproduct on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
\Delta^{\prime}: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{k j}(u) \otimes t_{i k}(u)
$$

Let $\Delta^{\prime}$ be the opposite coproduct on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
\Delta^{\prime}: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{k j}(u) \otimes t_{i k}(u)
$$

In the algebra $\mathrm{Y}_{h}\left(\mathfrak{g l}_{N}\right)$ we have

$$
\frac{\Delta\left(\tilde{t}_{i j}^{(r)}\right)-\Delta^{\prime}\left(\tilde{t}_{i j}^{(r)}\right)}{h}=\sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{i k}^{(s)} \otimes \widetilde{t}_{k j}^{(r-s)}-\sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{k j}^{(s)} \otimes \widetilde{t}_{i k}^{(r-s)}
$$

Let $\Delta^{\prime}$ be the opposite coproduct on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
\Delta^{\prime}: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{k j}(u) \otimes t_{i k}(u)
$$

In the algebra $\mathrm{Y}_{h}\left(\mathfrak{g l}_{N}\right)$ we have

$$
\frac{\Delta\left(\tilde{t}_{i j}^{(r)}\right)-\Delta^{\prime}\left(\tilde{t}_{i j}^{(r)}\right)}{h}=\sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{i k}^{(s)} \otimes \widetilde{t}_{k j}^{(r-s)}-\sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{k j}^{(s)} \otimes \widetilde{t}_{i k}^{(r-s)}
$$

For $h=0$ this coincides with the image $\delta\left(\widetilde{t}_{i j}^{(r)}\right)=\delta\left(E_{i j} x^{r-1}\right)$ of the cocommutator $\delta$ on $\mathfrak{g l}_{N}[x]$.

## The cocommutator is the map

$$
\delta: \mathfrak{g l}_{N}[x] \mapsto \mathfrak{g l}_{N}[x] \otimes \mathfrak{g l}_{N}[x] \cong\left(\mathfrak{g l}_{N} \otimes \mathfrak{g l}_{N}\right)[x, y],
$$

## The cocommutator is the map

$$
\delta: \mathfrak{g l}_{N}[x] \mapsto \mathfrak{g l}_{N}[x] \otimes \mathfrak{g l}_{N}[x] \cong\left(\mathfrak{g l}_{N} \otimes \mathfrak{g l}_{N}\right)[x, y],
$$

defined by

$$
\delta: Z x^{r} \mapsto \frac{[Z \otimes 1, C] x^{r}+[1 \otimes Z, C] y^{r}}{x-y}
$$

The cocommutator is the map

$$
\delta: \mathfrak{g l}_{N}[x] \mapsto \mathfrak{g l}_{N}[x] \otimes \mathfrak{g l}_{N}[x] \cong\left(\mathfrak{g l}_{N} \otimes \mathfrak{g l}_{N}\right)[x, y]
$$

defined by

$$
\delta: Z x^{r} \mapsto \frac{[Z \otimes 1, C] x^{r}+[1 \otimes Z, C] y^{r}}{x-y}
$$

where $Z \in \mathfrak{g l}_{N}$ and

$$
C=\sum_{i, j=1}^{N} E_{i j} \otimes E_{j i}
$$

The cocommutator is the map

$$
\delta: \mathfrak{g l}_{N}[x] \mapsto \mathfrak{g l}_{N}[x] \otimes \mathfrak{g l}_{N}[x] \cong\left(\mathfrak{g l}_{N} \otimes \mathfrak{g l}_{N}\right)[x, y]
$$

defined by

$$
\delta: Z x^{r} \mapsto \frac{[Z \otimes 1, C] x^{r}+[1 \otimes Z, C] y^{r}}{x-y}
$$

where $Z \in \mathfrak{g l}_{N}$ and

$$
C=\sum_{i, j=1}^{N} E_{i j} \otimes E_{j i} .
$$

Remark. This is the starting point to define the Yangian $\mathrm{Y}(\mathfrak{a})$ associated with a simple Lie algebra $\mathfrak{a}$.

## Quantum determinant

## Quantum determinant

Direct definition. The quantum determinant of the matrix

$$
T(u)=\left[\begin{array}{cccc}
t_{11}(u) & t_{12}(u) & \ldots & t_{1 N}(u) \\
t_{21}(u) & t_{22}(u) & \ldots & t_{2 N}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{N 1}(u) & t_{N 2}(u) & \ldots & t_{N N}(u)
\end{array}\right]
$$

## Quantum determinant

Direct definition. The quantum determinant of the matrix

$$
T(u)=\left[\begin{array}{cccc}
t_{11}(u) & t_{12}(u) & \ldots & t_{1 N}(u) \\
t_{21}(u) & t_{22}(u) & \ldots & t_{2 N}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{N 1}(u) & t_{N 2}(u) & \ldots & t_{N N}(u)
\end{array}\right]
$$

is defined as the series

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

Exercise. (1) Show that for $N=2$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =t_{11}(u) t_{22}(u-1)-t_{21}(u) t_{12}(u-1) \\
& =t_{22}(u) t_{11}(u-1)-t_{12}(u) t_{21}(u-1) \\
& =t_{11}(u-1) t_{22}(u)-t_{12}(u-1) t_{21}(u) \\
& =t_{22}(u-1) t_{11}(u)-t_{21}(u-1) t_{12}(u)
\end{aligned}
$$

Exercise. (1) Show that for $N=2$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =t_{11}(u) t_{22}(u-1)-t_{21}(u) t_{12}(u-1) \\
& =t_{22}(u) t_{11}(u-1)-t_{12}(u) t_{21}(u-1) \\
& =t_{11}(u-1) t_{22}(u)-t_{12}(u-1) t_{21}(u) \\
& =t_{22}(u-1) t_{11}(u)-t_{21}(u-1) t_{12}(u)
\end{aligned}
$$

(2) Prove that the coefficients of the series qdet $T(u)$ belong to the center of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$.

## $R$-matrix construction of qdet $T(u)$

## $R$-matrix construction of qdet $T(u)$

For any positive integer $m$ consider the algebra

$$
\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

For any $a \in\{1, \ldots, m\}$ denote by $T_{a}(u)$ the matrix $T(u)$ which corresponds to the $a$-th copy of the algebra End $\mathbb{C}^{N}$ in the tensor product algebra.

## $R$-matrix construction of qdet $T(u)$

For any positive integer $m$ consider the algebra

$$
\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

For any $a \in\{1, \ldots, m\}$ denote by $T_{a}(u)$ the matrix $T(u)$ which corresponds to the $a$-th copy of the algebra End $\mathbb{C}^{N}$ in the tensor product algebra. That is, $T_{a}(u)$ is a formal power series in $u^{-1}$ given by

$$
T_{a}(u)=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes t_{i j}(u)
$$

where 1 is the identity matrix.

If

$$
C=\sum_{i, j, k, l=1}^{N} c_{i j k l} e_{i j} \otimes e_{k l} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

then for any two indices $a, b \in\{1, \ldots, m\}$ such that $a<b$, define the element $C_{a b}$ of the algebra $\left(\text { End } \mathbb{C}^{N}\right)^{\otimes m}$ by

If

$$
C=\sum_{i, j, k, l=1}^{N} c_{i j k l} e_{i j} \otimes e_{k l} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

then for any two indices $a, b \in\{1, \ldots, m\}$ such that $a<b$, define the element $C_{a b}$ of the algebra $\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
C_{a b}=\sum_{i, j, k, l=1}^{N} c_{i j k l} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{k l} \otimes 1^{\otimes(m-b)}
$$

The tensor factors $e_{i j}$ and $e_{k l}$ belong to the $a$-th and $b$-th copies of End $\mathbb{C}^{N}$, respectively.

For any $m \geqslant 2$ introduce the rational function $R\left(u_{1}, \ldots, u_{m}\right)$ with values in the tensor product algebra $\left(\text { End } \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\left(R_{m-1, m}\right)\left(R_{m-2, m} R_{m-2, m-1}\right) \ldots\left(R_{1 m} \ldots R_{12}\right),
$$

For any $m \geqslant 2$ introduce the rational function $R\left(u_{1}, \ldots, u_{m}\right)$ with values in the tensor product algebra $\left(\text { End } \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\left(R_{m-1, m}\right)\left(R_{m-2, m} R_{m-2, m-1}\right) \ldots\left(R_{1 m} \ldots R_{12}\right),
$$

where $u_{1}, \ldots, u_{m}$ are independent complex variables and we abbreviate

$$
R_{a b}=R_{a b}\left(u_{a}-u_{b}\right)=1-\frac{P_{a b}}{u_{a}-u_{b}} .
$$

Using the Yang-Baxter equation, we also get

$$
\begin{aligned}
R\left(u_{1}, \ldots, u_{m}\right) & =\left(R_{12} \ldots R_{1 m}\right) \ldots\left(R_{m-2, m-1} R_{m-2, m}\right)\left(R_{m-1, m}\right) \\
& =\prod_{a<b}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
\end{aligned}
$$

Using the Yang-Baxter equation, we also get

$$
\begin{aligned}
R\left(u_{1}, \ldots, u_{m}\right) & =\left(R_{12} \ldots R_{1 m}\right) \ldots\left(R_{m-2, m-1} R_{m-2, m}\right)\left(R_{m-1, m}\right) \\
& =\prod_{a<b}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
\end{aligned}
$$

with the lexicographical order of the pairs $(a, b)$.

Using the Yang-Baxter equation, we also get

$$
\begin{aligned}
R\left(u_{1}, \ldots, u_{m}\right) & =\left(R_{12} \ldots R_{1 m}\right) \ldots\left(R_{m-2, m-1} R_{m-2, m}\right)\left(R_{m-1, m}\right) \\
& =\prod_{a<b}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
\end{aligned}
$$

with the lexicographical order of the pairs $(a, b)$.

We used the observation that $R_{a b}$ and $R_{c d}$ commute, if the indices $a, b, c, d$ are all distinct.

Applying the RTT relation repeatedly, we come to the fundamental relation for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

Applying the RTT relation repeatedly, we come to the fundamental relation for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

For $m=3$ we have $R\left(u_{1}, u_{2}, u_{3}\right)=R_{23} R_{13} R_{12}$.

Applying the $R T T$ relation repeatedly, we come to the fundamental relation for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

For $m=3$ we have $R\left(u_{1}, u_{2}, u_{3}\right)=R_{23} R_{13} R_{12}$. Hence, omitting the arguments, we get

$$
R\left(u_{1}, u_{2}, u_{3}\right) T_{1} T_{2} T_{3}=R_{23} R_{13} R_{12} T_{1} T_{2} T_{3}
$$

Applying the $R T T$ relation repeatedly, we come to the fundamental relation for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

For $m=3$ we have $R\left(u_{1}, u_{2}, u_{3}\right)=R_{23} R_{13} R_{12}$. Hence, omitting the arguments, we get

$$
R\left(u_{1}, u_{2}, u_{3}\right) T_{1} T_{2} T_{3}=R_{23} R_{13} R_{12} T_{1} T_{2} T_{3}
$$

which equals

$$
R_{23} R_{13} T_{2} T_{1} R_{12} T_{3}=R_{23} T_{2} R_{13} T_{1} T_{3} R_{12}
$$

Applying the $R T T$ relation repeatedly, we come to the fundamental relation for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

For $m=3$ we have $R\left(u_{1}, u_{2}, u_{3}\right)=R_{23} R_{13} R_{12}$. Hence, omitting the arguments, we get

$$
R\left(u_{1}, u_{2}, u_{3}\right) T_{1} T_{2} T_{3}=R_{23} R_{13} R_{12} T_{1} T_{2} T_{3}
$$

which equals

$$
\begin{aligned}
& R_{23} R_{13} T_{2} T_{1} R_{12} T_{3}=R_{23} T_{2} R_{13} T_{1} T_{3} R_{12} \\
= & R_{23} T_{2} T_{3} T_{1} R_{13} R_{12}=T_{3} T_{2} T_{1} R_{23} R_{13} R_{12}
\end{aligned}
$$

Lemma. We have

$$
R(u, u-1, \ldots, u-m+1)=A_{m},
$$

## Lemma. We have

$$
R(u, u-1, \ldots, u-m+1)=A_{m}
$$

the image of the anti-symmetrizer

$$
a_{m}=\sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot p \in \mathbb{C}\left[\mathfrak{S}_{m}\right] .
$$

Lemma. We have

$$
R(u, u-1, \ldots, u-m+1)=A_{m}
$$

the image of the anti-symmetrizer

$$
a_{m}=\sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot p \in \mathbb{C}\left[\mathfrak{S}_{m}\right]
$$

Equivalently,

$$
A_{m}=\prod_{a<b}\left(1-\frac{P_{a b}}{b-a}\right) .
$$

Lemma. We have

$$
R(u, u-1, \ldots, u-m+1)=A_{m}
$$

the image of the anti-symmetrizer

$$
a_{m}=\sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot p \in \mathbb{C}\left[\mathfrak{S}_{m}\right] .
$$

Equivalently,

$$
A_{m}=\prod_{a<b}\left(1-\frac{P_{a b}}{b-a}\right) .
$$

Remark. This is a particular case of the fusion procedure going back to [A. Jucys 1966].

Proof. We use induction on $m$. Case $m=2$ is obvious for

$$
A_{2}=R_{12}(1)=1-P_{12} .
$$

Proof. We use induction on $m$. Case $m=2$ is obvious for

$$
A_{2}=R_{12}(1)=1-P_{12} .
$$

By the induction hypothesis we have for $m>2$

$$
R(u, u-1, \ldots, u-m+1)=\left(R_{12} \ldots R_{1 m}\right) A_{m-1}^{\prime}
$$

where $A_{m-1}^{\prime}$ denotes the anti-symmetrizer over $\{2, \ldots, m\}$.

## Calculate

$$
\left(R_{12} \ldots R_{1 m}\right) A_{m-1}^{\prime}=\left(1-P_{12}\right)\left(1-\frac{P_{13}}{2}\right) \ldots\left(1-\frac{P_{1 m}}{m-1}\right) A_{m-1}^{\prime} .
$$

## Calculate

$$
\left(R_{12} \ldots R_{1 m}\right) A_{m-1}^{\prime}=\left(1-P_{12}\right)\left(1-\frac{P_{13}}{2}\right) \ldots\left(1-\frac{P_{1 m}}{m-1}\right) A_{m-1}^{\prime}
$$

Expand the product and write

$$
P_{1 i_{1}} P_{1 i_{2}} \ldots P_{1 i_{k}} A_{m-1}^{\prime}=P_{1 i_{k}} P_{i_{k} i_{1}} \ldots P_{i_{k} i_{k-1}} A_{m-1}^{\prime}
$$

## Calculate

$$
\left(R_{12} \ldots R_{1 m}\right) A_{m-1}^{\prime}=\left(1-P_{12}\right)\left(1-\frac{P_{13}}{2}\right) \ldots\left(1-\frac{P_{1 m}}{m-1}\right) A_{m-1}^{\prime}
$$

Expand the product and write

$$
P_{1 i_{1}} P_{1 i_{2}} \ldots P_{1 i_{k}} A_{m-1}^{\prime}=P_{1 i_{k}} P_{i_{k} i_{1}} \ldots P_{i_{k} i_{k-1}} A_{m-1}^{\prime}
$$

which equals

$$
(-1)^{k-1} P_{1 i_{k}} A_{m-1}^{\prime}
$$

Therefore,

$$
\left(R_{12} \ldots R_{1 m}\right) A_{m-1}^{\prime}=\left(1-\alpha_{2} P_{12}-\cdots-\alpha_{m} P_{1 m}\right) A_{m-1}^{\prime}
$$

Therefore,

$$
\left(R_{12} \ldots R_{1 m}\right) A_{m-1}^{\prime}=\left(1-\alpha_{2} P_{12}-\cdots-\alpha_{m} P_{1 m}\right) A_{m-1}^{\prime}
$$

with

$$
\alpha_{r}=\frac{1}{r-1}(1+1)\left(1+\frac{1}{2}\right) \ldots\left(1+\frac{1}{r-2}\right)=1 .
$$

Therefore,

$$
\left(R_{12} \ldots R_{1 m}\right) A_{m-1}^{\prime}=\left(1-\alpha_{2} P_{12}-\cdots-\alpha_{m} P_{1 m}\right) A_{m-1}^{\prime}
$$

with

$$
\alpha_{r}=\frac{1}{r-1}(1+1)\left(1+\frac{1}{2}\right) \ldots\left(1+\frac{1}{r-2}\right)=1 .
$$

Finally, note that

$$
\left(1-P_{12}-\cdots-P_{1 m}\right) A_{m-1}^{\prime}=A_{m} .
$$

Hence, by the Lemma and the fundamental relation

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

Hence, by the Lemma and the fundamental relation

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

we have

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)=T_{m}(u-m+1) \ldots T_{1}(u) A_{m} .
$$

Hence, by the Lemma and the fundamental relation

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

we have

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)=T_{m}(u-m+1) \ldots T_{1}(u) A_{m} .
$$

Observe that if $m=N$, then the operator $A_{N}$ on $\left(\mathbb{C}^{N}\right)^{\otimes N}$ has a one-dimensional image.

We have

$$
A_{N}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{N}}\right)=0
$$

unless $\left(i_{1}, \ldots, i_{N}\right)$ is a permutation of $(1, \ldots, N)$.

We have

$$
A_{N}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{N}}\right)=0
$$

unless $\left(i_{1}, \ldots, i_{N}\right)$ is a permutation of $(1, \ldots, N)$.

Moreover, in that case,

$$
A_{N}\left(e_{q(1)} \otimes \ldots \otimes e_{q(N)}\right)=\operatorname{sgn} q \cdot \xi
$$

where

We have

$$
A_{N}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{N}}\right)=0
$$

unless $\left(i_{1}, \ldots, i_{N}\right)$ is a permutation of $(1, \ldots, N)$.

Moreover, in that case,

$$
A_{N}\left(e_{q(1)} \otimes \ldots \otimes e_{q(N)}\right)=\operatorname{sgn} q \cdot \xi
$$

where

$$
\xi=\sum_{\tau \in \mathfrak{G}_{N}} \operatorname{sgn} \tau \cdot e_{\tau(1)} \otimes \ldots \otimes e_{\tau(N)}
$$

Since $A_{N}^{2}=N A_{N}$,

Since $A_{N}^{2}=N A_{N}$, both sides of the relation

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=T_{N}(u-N+1) \ldots T_{1}(u) A_{N}
$$

are equal to $A_{N} d(u)$ for a series $d(u)$ with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

Since $A_{N}^{2}=N A_{N}$, both sides of the relation

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=T_{N}(u-N+1) \ldots T_{1}(u) A_{N}
$$

are equal to $A_{N} d(u)$ for a series $d(u)$ with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
d(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots .
$$

Since $A_{N}^{2}=N A_{N}$, both sides of the relation

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=T_{N}(u-N+1) \ldots T_{1}(u) A_{N}
$$

are equal to $A_{N} d(u)$ for a series $d(u)$ with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,

$$
d(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots .
$$

Definition. The series $d(u)$ is called the quantum determinant of the matrix $T(u)$ and denoted $q \operatorname{det} T(u)$.

Proposition. For any permutation $q \in \mathfrak{S}_{N}$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) q(1)}(u) \ldots t_{p(N) q(N)}(u-N+1) \\
& =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{q(1) p(1)}(u-N+1) \ldots t_{q(N) p(N)}(u) .
\end{aligned}
$$

Proposition. For any permutation $q \in \mathfrak{S}_{N}$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) q(1)}(u) \ldots t_{p(N) q(N)}(u-N+1) \\
& =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{q(1) p(1)}(u-N+1) \ldots t_{q(N) p(N)}(u) .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1) \\
& =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{1 p(1)}(u-N+1) \ldots t_{N p(N)}(u)
\end{aligned}
$$

## Proof. By definition,

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=A_{N} \operatorname{qdet} T(u)
$$

## Proof. By definition,

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=A_{N} \operatorname{qdet} T(u) .
$$

Apply both sides to the basis vector $e_{q(1)} \otimes \ldots \otimes e_{q(N)}$.

Proof. By definition,

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=A_{N} \operatorname{qdet} T(u)
$$

Apply both sides to the basis vector $e_{q(1)} \otimes \ldots \otimes e_{q(N)}$.

The right hand side yields $\operatorname{sgn} q \cdot \operatorname{qdet} T(u) \xi$.

Proof. By definition,

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=A_{N} \operatorname{qdet} T(u)
$$

Apply both sides to the basis vector $e_{q(1)} \otimes \ldots \otimes e_{q(N)}$.

The right hand side yields $\operatorname{sgn} q \cdot \operatorname{qdet} T(u) \xi$.

For the left hand side we get

$$
A_{N} \sum_{i_{1}, \ldots, i_{N}} t_{i_{1} q(1)}(u) \ldots t_{i_{N} q(N)}(u-N+1)\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{N}}\right)
$$

proving the first formula.

Assuming that $m \leqslant N$ is arbitrary, define the $m \times m$ quantum minors $t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)$ so that each side of

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)=T_{m}(u-m+1) \ldots T_{1}(u) A_{m}
$$

equals

$$
\sum e_{a_{1} b_{1}} \otimes \ldots \otimes e_{a_{m} b_{m}} \otimes t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)
$$

summed over the indices $a_{i}, b_{i} \in\{1, \ldots, N\}$.

Skew-symmetry properties: for any $p \in \mathfrak{S}_{m}$ we have

$$
t_{b_{1} \ldots b_{m}}^{a_{p(1)} \ldots a_{p(m)}}(u)=\operatorname{sgn} p \cdot t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)
$$

Skew-symmetry properties: for any $p \in \mathfrak{S}_{m}$ we have

$$
t_{b_{1} \ldots b_{m}}^{a_{p(1)} \ldots a_{p(m)}}(u)=\operatorname{sgn} p \cdot t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)
$$

and

$$
t_{b_{p(1)} \ldots b_{p(m)}}^{a_{1} \ldots a_{m}}(u)=\operatorname{sgn} p \cdot t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)
$$

Skew-symmetry properties: for any $p \in \mathfrak{S}_{m}$ we have

$$
t_{b_{1} \ldots b_{m}}^{a_{p(1)} \ldots a_{p(m)}}(u)=\operatorname{sgn} p \cdot t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)
$$

and

$$
t_{b_{p(1)} \ldots b_{p(m)}}^{a_{1} \ldots a_{m}}(u)=\operatorname{sgn} p \cdot t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)
$$

As with the quantum determinant, we have

$$
\begin{aligned}
t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u) & =\sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot t_{a_{p(1)} b_{1}}(u) \ldots t_{a_{p(m)} b_{m}}(u-m+1) \\
& =\sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot t_{a_{1} b_{p(1)}}(u-m+1) \ldots t_{a_{m} b_{p(m)}}(u)
\end{aligned}
$$

Proposition. The images of quantum minors under the coproduct are given by

$$
\Delta\left(t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)\right)=\sum_{c_{1}<\cdots<c_{m}} t_{c_{1} \ldots c_{m}}^{a_{1} \ldots a_{m}}(u) \otimes t_{b_{1} \ldots b_{m}}^{c_{1} \ldots c_{m}}(u)
$$

summed over all subsets of indices $\left\{c_{1}, \ldots, c_{m}\right\}$ from $\{1, \ldots, N\}$.

Proposition. The images of quantum minors under the coproduct are given by

$$
\Delta\left(t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)\right)=\sum_{c_{1}<\cdots<c_{m}} t_{c_{1} \ldots c_{m}}^{a_{1} \ldots a_{m}}(u) \otimes t_{b_{1} \ldots b_{m}}^{c_{1} \ldots c_{m}}(u)
$$

summed over all subsets of indices $\left\{c_{1}, \ldots, c_{m}\right\}$ from $\{1, \ldots, N\}$.

Proof. Apply $\Delta$ to the product

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)
$$

Proposition. The images of quantum minors under the coproduct are given by

$$
\Delta\left(t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)\right)=\sum_{c_{1}<\cdots<c_{m}} t_{c_{1} \ldots c_{m}}^{a_{1} \ldots a_{m}}(u) \otimes t_{b_{1} \ldots b_{m}}^{c_{1} \ldots c_{m}}(u)
$$

summed over all subsets of indices $\left\{c_{1}, \ldots, c_{m}\right\}$ from $\{1, \ldots, N\}$.

Proof. Apply $\Delta$ to the product

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)
$$

to get the element of the algebra $\left(\text { End } \mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]^{\otimes 2}$ :

$$
A_{m} T_{1[1]}(u) T_{1[2]}(u) \ldots T_{m[1]}(u-m+1) T_{m[2]}(u-m+1) .
$$

Write $A_{m}=\frac{1}{m!} A_{m}^{2}$, and starting from the expression

$$
A_{m} T_{1[1]}(u) \ldots T_{m[1]}(u-m+1) T_{1[2]}(u) \ldots T_{m[2]}(u-m+1),
$$

Write $A_{m}=\frac{1}{m!} A_{m}^{2}$, and starting from the expression

$$
A_{m} T_{1[1]}(u) \ldots T_{m[1]}(u-m+1) T_{1[2]}(u) \ldots T_{m[2]}(u-m+1),
$$

apply the fundamental relation to get

$$
\frac{1}{m!} A_{m} T_{m[1]}(u-m+1) \ldots T_{1[1]}(u) A_{m} T_{1[2]}(u) \ldots T_{m[2]}(u-m+1)
$$

Write $A_{m}=\frac{1}{m!} A_{m}^{2}$, and starting from the expression

$$
A_{m} T_{1[1]}(u) \ldots T_{m[1]}(u-m+1) T_{1[2]}(u) \ldots T_{m[2]}(u-m+1),
$$

apply the fundamental relation to get

$$
\frac{1}{m!} A_{m} T_{m[1]}(u-m+1) \ldots T_{1[1]}(u) A_{m} T_{1[2]}(u) \ldots T_{m[2]}(u-m+1)
$$

which coincides with

$$
\frac{1}{m!} A_{m} T_{1[1]}(u) \ldots T_{m[1]}(u-m+1) A_{m} T_{1[2]}(u) \ldots T_{m[2]}(u-m+1) .
$$

Write $A_{m}=\frac{1}{m!} A_{m}^{2}$, and starting from the expression

$$
A_{m} T_{1[1]}(u) \ldots T_{m[1]}(u-m+1) T_{1[2]}(u) \ldots T_{m[2]}(u-m+1),
$$

apply the fundamental relation to get

$$
\frac{1}{m!} A_{m} T_{m[1]}(u-m+1) \ldots T_{1[1]}(u) A_{m} T_{1[2]}(u) \ldots T_{m[2]}(u-m+1)
$$

which coincides with

$$
\frac{1}{m!} A_{m} T_{1[1]}(u) \ldots T_{m[1]}(u-m+1) A_{m} T_{1[2]}(u) \ldots T_{m[2]}(u-m+1) .
$$

Taking the matrix elements gives the formula.

Corollary. We have
$\Delta: q \operatorname{det} T(u) \mapsto q \operatorname{det} T(u) \otimes q \operatorname{det} T(u)$.

## Corollary. We have

$$
\Delta: q \operatorname{det} T(u) \mapsto q \operatorname{qdet} T(u) \otimes \operatorname{qdet} T(u) .
$$

Proof. Since

$$
q \operatorname{det} T(u)=t_{1 \ldots N}^{1 \ldots N}(u),
$$

this follows from the proposition.

## Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

## Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Proposition. We have the relations

$$
\begin{aligned}
& (u-v)\left[t_{k l}(u), t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(v)\right] \\
& \quad=\sum_{i=1}^{m} t_{a_{i} l}(u) t_{b_{1} \ldots b_{m}}^{a_{1} \ldots k \ldots a_{m}}(v)-\sum_{i=1}^{m} t_{b_{1} \ldots l \ldots b_{m}}^{a_{1} \ldots a_{m}}(v) t_{k b_{i}}(u)
\end{aligned}
$$

where the indices $k$ and $l$ in the quantum minors replace $a_{i}$ and $b_{i}$, respectively.

## Proof. The fundamental relation yields

$$
\begin{aligned}
& R(u, v, v-1, \ldots, v-m+1) T_{0}(u) T_{1}(v) \ldots T_{m}(v-m+1) \\
& \quad=T_{m}(v-m+1) \ldots T_{1}(v) T_{0}(u) R(u, v, v-1, \ldots, v-m+1)
\end{aligned}
$$

## Proof. The fundamental relation yields

$$
\begin{aligned}
& R(u, v, v-1, \ldots, v-m+1) T_{0}(u) T_{1}(v) \ldots T_{m}(v-m+1) \\
& \quad=T_{m}(v-m+1) \ldots T_{1}(v) T_{0}(u) R(u, v, v-1, \ldots, v-m+1)
\end{aligned}
$$

We have

$$
R(u, v, v-1, \ldots, v-m+1)=A_{m} R_{0 m}(u-v+m-1) \ldots R_{01}(u-v)
$$

Proof. The fundamental relation yields

$$
\begin{aligned}
& R(u, v, v-1, \ldots, v-m+1) T_{0}(u) T_{1}(v) \ldots T_{m}(v-m+1) \\
& \quad=T_{m}(v-m+1) \ldots T_{1}(v) T_{0}(u) R(u, v, v-1, \ldots, v-m+1) .
\end{aligned}
$$

We have

$$
R(u, v, v-1, \ldots, v-m+1)=A_{m} R_{0 m}(u-v+m-1) \ldots R_{01}(u-v) .
$$

The same argument as for the proof of the fusion formula gives

$$
R(u, v, v-1, \ldots, v-m+1)=A_{m}\left(1-\frac{1}{u-v}\left(P_{01}+\cdots+P_{0 m}\right)\right) .
$$

Proof. The fundamental relation yields

$$
\begin{aligned}
& R(u, v, v-1, \ldots, v-m+1) T_{0}(u) T_{1}(v) \ldots T_{m}(v-m+1) \\
& \quad=T_{m}(v-m+1) \ldots T_{1}(v) T_{0}(u) R(u, v, v-1, \ldots, v-m+1)
\end{aligned}
$$

We have

$$
R(u, v, v-1, \ldots, v-m+1)=A_{m} R_{0 m}(u-v+m-1) \ldots R_{01}(u-v)
$$

The same argument as for the proof of the fusion formula gives

$$
R(u, v, v-1, \ldots, v-m+1)=A_{m}\left(1-\frac{1}{u-v}\left(P_{01}+\cdots+P_{0 m}\right)\right) .
$$

Apply both sides to the vector $e_{l} \otimes e_{b_{1}} \otimes \ldots \otimes e_{b_{m}}$ and compare the coefficients of the vector $e_{k} \otimes e_{a_{1}} \otimes \ldots \otimes e_{a_{m}}$.

Corollary. The coefficients $d_{1}, d_{2}, \ldots$ of the series

$$
\operatorname{qdet} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Corollary. The coefficients $d_{1}, d_{2}, \ldots$ of the series

$$
\operatorname{qdet} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proof. The proposition gives

$$
(u-v)\left[t_{k l}(u), t_{1 \ldots N}^{1 \ldots N}(v)\right]=t_{k l}(u) t_{1 \ldots N}^{1 \ldots N}(v)-t_{1 \ldots N}^{1 \ldots N}(v) t_{k l}(u)
$$

Corollary. The coefficients $d_{1}, d_{2}, \ldots$ of the series

$$
\operatorname{qdet} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proof. The proposition gives

$$
(u-v)\left[t_{k l}(u), t_{1 \ldots N}^{1 \ldots N}(v)\right]=t_{k l}(u) t_{1 \ldots N}^{1 \ldots N}(v)-t_{1 \ldots N}^{1 \ldots N}(v) t_{k l}(u)
$$

and so

$$
\left[t_{k l}(u), \operatorname{qdet} T(v)\right]=0
$$

as we wanted.

Theorem. The coefficients $d_{1}, d_{2}, \ldots$ are algebraically independent and generate the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Theorem. The coefficients $d_{1}, d_{2}, \ldots$ are algebraically independent and generate the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$, it will be enough to verify the corresponding claim for this algebra.

Theorem. The coefficients $d_{1}, d_{2}, \ldots$ are algebraically independent and generate the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$, it will be enough to verify the corresponding claim for this algebra.

It will be convenient to use another ascending filtration on
$\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by setting $\operatorname{deg}^{\prime} t_{i j}^{(r)}=r-1$ for every $r \geqslant 1$.

Theorem. The coefficients $d_{1}, d_{2}, \ldots$ are algebraically independent and generate the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$, it will be enough to verify the corresponding claim for this algebra.

It will be convenient to use another ascending filtration on
$\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by setting $\operatorname{deg}^{\prime} t_{i j}^{(r)}=r-1$ for every $r \geqslant 1$.

Denote the corresponding graded algebra by $\mathrm{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Theorem. The coefficients $d_{1}, d_{2}, \ldots$ are algebraically independent and generate the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$, it will be enough to verify the corresponding claim for this algebra.

It will be convenient to use another ascending filtration on
$\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by setting $\operatorname{deg}^{\prime} t_{i j}^{(r)}=r-1$ for every $r \geqslant 1$.

Denote the corresponding graded algebra by $\mathrm{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Let $\widetilde{t}_{i j}^{(r)}$ be the image of $t_{i j}^{(r)}$ in the $(r-1)$ component of $\mathrm{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

## Recalling the defining relations

$$
\left[t_{i j}^{(r)}, t_{k l}^{(s)}\right]=\sum_{a=1}^{\min \{r, s\}}\left(t_{k j}^{(a-1)} t_{i l}^{(r+s-a)}-t_{k j}^{(r+s-a)} t_{i l}^{(a-1)}\right)
$$

## Recalling the defining relations

$$
\left[t_{i j}^{(r)}, t_{k l}^{(s)}\right]=\sum_{a=1}^{\min \{r, s\}}\left(t_{k j}^{(a-1)} t_{i l}^{(r+s-a)}-t_{k j}^{(r+s-a)} t_{i l}^{(a-1)}\right)
$$

we find that

$$
\left[\widetilde{t}_{i j}^{(r)}, \widetilde{t}_{k l}^{(s)}\right]=\delta_{k j} \widetilde{t}_{i l}^{(r+s-1)}-\delta_{i l} \widetilde{t}_{k j}^{(r+s-1)} .
$$

Recalling the defining relations

$$
\left[t_{i j}^{(r)}, t_{k l}^{(s)}\right]=\sum_{a=1}^{\min \{r, s\}}\left(t_{k j}^{(a-1)} t_{i l}^{(r+s-a)}-t_{k j}^{(r+s-a)} t_{i l}^{(a-1)}\right)
$$

we find that

$$
\left[\widetilde{t}_{i j}^{(r)}, \widetilde{t}_{k l}^{(s)}\right]=\delta_{k j} \widetilde{t}_{i l}^{(r+s-1)}-\delta_{i l} \widetilde{t}_{k j}^{(r+s-1)} .
$$

Hence, the mapping

$$
\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right) \rightarrow \operatorname{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right), \quad E_{i j} x^{r-1} \mapsto \widetilde{t}_{i j}^{(r)}
$$

is an isomorphism.

Using the formula

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

Using the formula

$$
q \operatorname{det} T(u)=\sum_{p \in \mathfrak{G}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

we derive that
$d_{r}=t_{11}^{(r)}+\cdots+t_{N N}^{(r)}+$ terms of smaller degree.

Using the formula

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

we derive that

$$
d_{r}=t_{11}^{(r)}+\cdots+t_{N N}^{(r)}+\quad \text { terms of smaller degree. }
$$

Hence, the image of $d_{r}$ in the $(r-1)$-th component of $\mathrm{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be identified with $I x^{r-1}$ where $I=E_{11}+\cdots+E_{N N}$.

Using the formula

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

we derive that

$$
d_{r}=t_{11}^{(r)}+\cdots+t_{N N}^{(r)}+\quad \text { terms of smaller degree. }
$$

Hence, the image of $d_{r}$ in the $(r-1)$-th component of $\mathrm{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$
can be identified with $I x^{r-1}$ where $I=E_{11}+\cdots+E_{N N}$.

However, the elements $I x^{r-1}$ are algebraically independent generators of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$.

