Lecture 3

## Lecture 3

Key points from the last lecture.

## Lecture 3

Key points from the last lecture.

- The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u),
$$

## Lecture 3

Key points from the last lecture.

- The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

the antipode

$$
\mathrm{S}: T(u) \mapsto T^{-1}(u)
$$

## Lecture 3

Key points from the last lecture.

- The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

the antipode

$$
\mathrm{S}: T(u) \mapsto T^{-1}(u)
$$

and the counit $\varepsilon: T(u) \mapsto 1$.

- The coefficients $d_{1}, d_{2}, \ldots$ of the quantum determinant

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

The coefficients $d_{1}, d_{2}, \ldots$ of the quantum determinant

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

defined by

$$
\operatorname{qdet} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

- The coefficients $d_{1}, d_{2}, \ldots$ of the quantum determinant

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

defined by

$$
\operatorname{qdet} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

are algebraically independent and generate the center
$\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

- The coefficients $d_{1}, d_{2}, \ldots$ of the quantum determinant

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

defined by

$$
\operatorname{qdet} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

are algebraically independent and generate the center
$\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

- Under the coproduct we have

$$
\Delta: \operatorname{qdet} T(u) \mapsto \operatorname{qdet} T(u) \otimes \operatorname{qdet} T(u) .
$$

Yangian for $\mathfrak{s l}_{N}$

## Yangian for $\mathfrak{s l}_{N}$

Recall the automorphisms of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
\mu_{f}: T(u) \mapsto f(u) T(u),
$$

## Yangian for $\mathfrak{s l}_{N}$

Recall the automorphisms of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
\mu_{f}: T(u) \mapsto f(u) T(u)
$$

where

$$
f(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right] .
$$

## Yangian for $\mathfrak{s l}_{N}$

Recall the automorphisms of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
\mu_{f}: T(u) \mapsto f(u) T(u)
$$

where

$$
f(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right] .
$$

Definition. The Yangian for $\mathfrak{s l}_{N}$ is the subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ of
$\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ which consists of the elements stable under all automorphisms $\mu_{f}$.

Theorem. We have the isomorphism

$$
\mathrm{Y}\left(\mathfrak{g l}_{N}\right)=\mathrm{ZY}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{N}\right)
$$

In particular, the center of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is trivial.

Theorem. We have the isomorphism

$$
\mathrm{Y}\left(\mathfrak{g l}_{N}\right)=\mathrm{ZY}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{N}\right)
$$

In particular, the center of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is trivial.

Proof. There exists a unique formal power series

$$
\tilde{d}(u)=1+\tilde{d}_{1} u^{-1}+\tilde{d}_{2} u^{-2}+\cdots \in \mathrm{ZY}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

Theorem. We have the isomorphism

$$
\mathrm{Y}\left(\mathfrak{g l}_{N}\right)=\mathrm{ZY}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{N}\right)
$$

In particular, the center of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is trivial.

Proof. There exists a unique formal power series

$$
\tilde{d}(u)=1+\tilde{d}_{1} u^{-1}+\tilde{d}_{2} u^{-2}+\cdots \in \mathrm{ZY}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

which satisfies

$$
\tilde{d}(u) \tilde{d}(u-1) \ldots \tilde{d}(u-N+1)=\operatorname{qdet} T(u)
$$

Since

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

Since

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

we have

$$
\mu_{f}: q \operatorname{det} T(u) \mapsto f(u) f(u-1) \ldots f(u-N+1) \operatorname{qdet} T(u) .
$$

Since

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{G}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

we have

$$
\mu_{f}: q \operatorname{det} T(u) \mapsto f(u) f(u-1) \ldots f(u-N+1) q \operatorname{det} T(u) .
$$

Hence,

$$
\mu_{f}: \widetilde{d}(u) \mapsto f(u) \widetilde{d}(u)
$$

Since

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

we have

$$
\mu_{f}: q \operatorname{det} T(u) \mapsto f(u) f(u-1) \ldots f(u-N+1) \operatorname{qdet} T(u) .
$$

Hence,

$$
\mu_{f}: \widetilde{d}(u) \mapsto f(u) \widetilde{d}(u)
$$

This implies that all coefficients of the series

$$
\widetilde{t}_{i j}(u)=\widetilde{d}(u)^{-1} t_{i j}(u)
$$

belong to $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

Now observe that $t_{i j}(u)=\widetilde{d}(u) \widetilde{t}_{i j}(u)$.

Now observe that $t_{i j}(u)=\widetilde{d}(u) \widetilde{t}_{i j}(u)$. This implies that every element of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be presented as a polynomial in $\widetilde{d}_{1}, \widetilde{d}_{2}, \ldots$ with coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

Now observe that $t_{i j}(u)=\widetilde{d}(u) \widetilde{t}_{i j}(u)$. This implies that every element of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be presented as a polynomial in $\widetilde{d}_{1}, \widetilde{d}_{2}, \ldots$ with coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

To show that such presentation is unique, suppose on the contrary, that for some minimal positive integer $n$ there exists a nonzero polynomial $B$ with the coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ such that

$$
B\left(\widetilde{d}_{1}, \ldots, \widetilde{d}_{n}\right)=0 .
$$

Now observe that $t_{i j}(u)=\widetilde{d}(u) \widetilde{t}_{i j}(u)$. This implies that every element of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be presented as a polynomial in $\widetilde{d}_{1}, \widetilde{d}_{2}, \ldots$ with coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

To show that such presentation is unique, suppose on the contrary, that for some minimal positive integer $n$ there exists a nonzero polynomial $B$ with the coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ such that

$$
B\left(\widetilde{d}_{1}, \ldots, \widetilde{d}_{n}\right)=0 .
$$

Act by the automorphism $\mu_{f}$, where $f(u)=1+c u^{-n}$ and $c \in \mathbb{C}$ :

Now observe that $t_{i j}(u)=\widetilde{d}(u) \widetilde{t}_{i j}(u)$. This implies that every element of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be presented as a polynomial in $\widetilde{d}_{1}, \widetilde{d}_{2}, \ldots$ with coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

To show that such presentation is unique, suppose on the contrary, that for some minimal positive integer $n$ there exists a nonzero polynomial $B$ with the coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ such that

$$
B\left(\widetilde{d}_{1}, \ldots, \widetilde{d}_{n}\right)=0 .
$$

Act by the automorphism $\mu_{f}$, where $f(u)=1+c u^{-n}$ and $c \in \mathbb{C}$ :

$$
B\left(\widetilde{d}_{1}, \ldots, \widetilde{d}_{n}+c\right)=0
$$

for every $c \in \mathbb{C}$, contradiction.

Corollary. The algebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is isomorphic to the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the ideal generated by the elements $d_{1}, d_{2}, \ldots$, i.e.,

$$
\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \cong \mathrm{Y}\left(\mathfrak{g l}_{N}\right) /(\operatorname{qdet} T(u)=1)
$$

Corollary. The algebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is isomorphic to the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the ideal generated by the elements $d_{1}, d_{2}, \ldots$, i.e.,

$$
\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \cong \mathrm{Y}\left(\mathfrak{g l}_{N}\right) /(\operatorname{qdet} T(u)=1)
$$

Proof. Let I be the ideal of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by the coefficients $d_{1}, d_{2}, \ldots$ of $\operatorname{qdet} T(u)$.

Corollary. The algebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is isomorphic to the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the ideal generated by the elements $d_{1}, d_{2}, \ldots$, i.e.,

$$
\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \cong \mathrm{Y}\left(\mathfrak{g l}_{N}\right) /(\operatorname{qdet} T(u)=1) .
$$

Proof. Let I be the ideal of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by the coefficients $d_{1}, d_{2}, \ldots$ of $q \operatorname{det} T(u)$.

The theorem implies the decomposition

$$
\mathrm{Y}\left(\mathfrak{g l}_{N}\right)=\mathrm{I} \oplus \mathrm{Y}\left(\mathfrak{s l}_{N}\right),
$$

which proves the claim.

Proposition. The subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra whose coproduct, antipode and counit are obtained by restricting those from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proposition. The subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra whose coproduct, antipode and counit are obtained by restricting those from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proof. As we proved before,

$$
\Delta: \operatorname{qdet} T(u) \mapsto \operatorname{qdet} T(u) \otimes \operatorname{qdet} T(u) .
$$

Proposition. The subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra whose coproduct, antipode and counit are obtained by restricting those from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proof. As we proved before,

$$
\Delta: \operatorname{qdet} T(u) \mapsto \operatorname{qdet} T(u) \otimes \operatorname{qdet} T(u) .
$$

Hence,

$$
\Delta: \widetilde{d}(u) \mapsto \widetilde{d}(u) \otimes \widetilde{d}(u)
$$

Therefore,

$$
\begin{aligned}
\Delta: \widetilde{d}(u)^{-1} t_{i j}(u) & \mapsto \sum_{k=1}^{N} \widetilde{d}(u)^{-1} t_{i k}(u) \otimes \widetilde{d}(u)^{-1} t_{k j}(u) \\
& =\sum_{k=1}^{N} \widetilde{t}_{i k}(u) \otimes \widetilde{t}_{k j}(u) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Delta: \widetilde{d}(u)^{-1} t_{i j}(u) & \mapsto \sum_{k=1}^{N} \widetilde{d}(u)^{-1} t_{i k}(u) \otimes \widetilde{d}(u)^{-1} t_{k j}(u) \\
& =\sum_{k=1}^{N} \widetilde{t}_{i k}(u) \otimes \widetilde{t}_{k j}(u) .
\end{aligned}
$$

This proves that the image of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ under the coproduct on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is contained in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

Therefore,

$$
\begin{aligned}
\Delta: \widetilde{d}(u)^{-1} t_{i j}(u) & \mapsto \sum_{k=1}^{N} \widetilde{d}(u)^{-1} t_{i k}(u) \otimes \widetilde{d}(u)^{-1} t_{k j}(u) \\
& =\sum_{k=1}^{N} \widetilde{t}_{i k}(u) \otimes \widetilde{t}_{k j}(u) .
\end{aligned}
$$

This proves that the image of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ under the coproduct on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is contained in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

The image of $q \operatorname{det} T(u)$ under the antipode S is $(\mathrm{qdet} T(u))^{-1}$,

Therefore,

$$
\begin{aligned}
\Delta: \widetilde{d}(u)^{-1} t_{i j}(u) & \mapsto \sum_{k=1}^{N} \widetilde{d}(u)^{-1} t_{i k}(u) \otimes \widetilde{d}(u)^{-1} t_{k j}(u) \\
& =\sum_{k=1}^{N} \widetilde{t}_{i k}(u) \otimes \widetilde{t}_{k j}(u) .
\end{aligned}
$$

This proves that the image of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ under the coproduct on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is contained in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{N}\right)$.

The image of $q \operatorname{det} T(u)$ under the antipode S is $(\mathrm{qdet} T(u))^{-1}$, and so

$$
\mathrm{S}: \widetilde{d}(u)^{-1} T(u) \mapsto \widetilde{d}(u) T^{-1}(u)
$$

## Drinfeld presentation

## Drinfeld presentation

Consider the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ first.

## Drinfeld presentation

Consider the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ first.
Apply the Gauss decomposition to the matrix $T(u)$,

## Drinfeld presentation

Consider the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ first.
Apply the Gauss decomposition to the matrix $T(u)$,

$$
\left[\begin{array}{cc}
t_{11}(u) & t_{12}(u) \\
t_{21}(u) & t_{22}(u)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
f(u) & 1
\end{array}\right]\left[\begin{array}{cc}
h_{1}(u) & 0 \\
0 & h_{2}(u)
\end{array}\right]\left[\begin{array}{cc}
1 & e(u) \\
0 & 1
\end{array}\right] .
$$

## Drinfeld presentation

Consider the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ first.
Apply the Gauss decomposition to the matrix $T(u)$,

$$
\left[\begin{array}{cc}
t_{11}(u) & t_{12}(u) \\
t_{21}(u) & t_{22}(u)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
f(u) & 1
\end{array}\right]\left[\begin{array}{cc}
h_{1}(u) & 0 \\
0 & h_{2}(u)
\end{array}\right]\left[\begin{array}{cc}
1 & e(u) \\
0 & 1
\end{array}\right] .
$$

This reads

$$
\begin{aligned}
& t_{11}(u)=h_{1}(u) \\
& t_{12}(u)=h_{1}(u) e(u), \\
& t_{21}(u)=f(u) h_{1}(u), \\
& t_{22}(u)=h_{2}(u)+f(u) h_{1}(u) e(u) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
h_{1}(u) & =t_{11}(u) \\
e(u) & =t_{11}(u)^{-1} t_{12}(u) \\
f(u) & =t_{21}(u) t_{11}(u)^{-1} \\
h_{2}(u) & =t_{22}(u)-t_{21}(u) t_{11}(u)^{-1} t_{12}(u)
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
h_{1}(u) & =t_{11}(u) \\
e(u) & =t_{11}(u)^{-1} t_{12}(u) \\
f(u) & =t_{21}(u) t_{11}(u)^{-1} \\
h_{2}(u) & =t_{22}(u)-t_{21}(u) t_{11}(u)^{-1} t_{12}(u)
\end{aligned}
$$

Proposition. The coefficients of the series $e(u), f(u)$ and $k(u)=h_{1}(u)^{-1} h_{2}(u)$ belong to the subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ and generate this subalgebra.

Proof. It suffices to show that the coefficients of the series $e(u), f(u)$ and $k(u)$ together with the coefficients of $q \operatorname{det} T(u)$ generate $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$.

Proof. It suffices to show that the coefficients of the series
$e(u), f(u)$ and $k(u)$ together with the coefficients of qdet $T(u)$ generate $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$.

This is because every element $y \in \mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ has a unique presentation $y=1 \otimes y$ in the decomposition

$$
\mathrm{Y}\left(\mathfrak{g l}_{2}\right)=\mathrm{ZY}\left(\mathfrak{g l}_{2}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{2}\right)
$$

Proof. It suffices to show that the coefficients of the series $e(u), f(u)$ and $k(u)$ together with the coefficients of qdet $T(u)$ generate $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$.

This is because every element $y \in \mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ has a unique presentation $y=1 \otimes y$ in the decomposition

$$
\mathrm{Y}\left(\mathfrak{g l}_{2}\right)=\mathrm{ZY}\left(\mathfrak{g l}_{2}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{2}\right)
$$

We have the relation

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1)
$$

Indeed,
$h_{1}(u) h_{2}(u-1)=t_{11}(u)\left(t_{22}(u-1)-t_{21}(u-1) t_{11}(u-1)^{-1} t_{12}(u-1)\right)$,
so that the relation follows from

$$
t_{11}(u) t_{21}(u-1)=t_{21}(u) t_{11}(u-1)
$$

Indeed,
$h_{1}(u) h_{2}(u-1)=t_{11}(u)\left(t_{22}(u-1)-t_{21}(u-1) t_{11}(u-1)^{-1} t_{12}(u-1)\right)$,
so that the relation follows from

$$
t_{11}(u) t_{21}(u-1)=t_{21}(u) t_{11}(u-1)
$$

Hence,

$$
h_{1}(u) h_{1}(u-1) k(u-1)=q \operatorname{det} T(u) .
$$

This shows that the coefficients of the series $h_{1}(u)$ and $h_{2}(u)$ can be expressed in terms of those of $k(u)$ and qdet $T(u)$.

Introduce the coefficients of the series by

$$
e(u)=\sum_{r=0}^{\infty} e_{r} u^{-r-1}
$$

Introduce the coefficients of the series by

$$
\begin{aligned}
& e(u)=\sum_{r=0}^{\infty} e_{r} u^{-r-1} \\
& f(u)=\sum_{r=0}^{\infty} f_{r} u^{-r-1}
\end{aligned}
$$

Introduce the coefficients of the series by

$$
\begin{aligned}
& e(u)=\sum_{r=0}^{\infty} e_{r} u^{-r-1} \\
& f(u)=\sum_{r=0}^{\infty} f_{r} u^{-r-1}
\end{aligned}
$$

and

$$
k(u)=1+\sum_{r=0}^{\infty} k_{r} u^{-r-1}
$$

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the algebra with generators $e_{r}, f_{r}$ and $k_{r}$ with $r \geqslant 0$ subject to the defining relations

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the algebra with generators $e_{r}, f_{r}$ and $k_{r}$ with $r \geqslant 0$ subject to the defining relations

$$
\left[k_{r}, k_{s}\right]=0, \quad\left[e_{r}, f_{s}\right]=k_{r+s}, \quad\left[k_{0}, e_{r}\right]=-2 e_{r}, \quad\left[k_{0}, f_{r}\right]=2 f_{r},
$$

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the algebra with generators $e_{r}, f_{r}$ and $k_{r}$ with $r \geqslant 0$ subject to the defining relations

$$
\begin{gathered}
{\left[k_{r}, k_{s}\right]=0, \quad\left[e_{r}, f_{s}\right]=k_{r+s}, \quad\left[k_{0}, e_{r}\right]=-2 e_{r}, \quad\left[k_{0}, f_{r}\right]=2 f_{r}} \\
{\left[e_{r+1}, e_{s}\right]-\left[e_{r}, e_{s+1}\right]=-e_{r} e_{s}-e_{s} e_{r}} \\
{\left[f_{r+1}, f_{s}\right]-\left[f_{r}, f_{s+1}\right]=f_{r} f_{s}+f_{s} f_{r}} \\
{\left[k_{r+1}, e_{s}\right]-\left[k_{r}, e_{s+1}\right]=-k_{r} e_{s}-e_{s} k_{r}} \\
{\left[k_{r+1}, f_{s}\right]-\left[k_{r}, f_{s+1}\right]=k_{r} f_{s}+f_{s} k_{r}}
\end{gathered}
$$

Proof. The first step is to derive the relations for the series $e(u)$, $f(u)$ and $k(u)$.

Proof. The first step is to derive the relations for the series $e(u)$, $f(u)$ and $k(u)$. They have the form

$$
[k(u), k(v)]=0, \quad[e(u), f(v)]=\frac{k(u)-k(v)}{u-v}
$$

Proof. The first step is to derive the relations for the series $e(u)$, $f(u)$ and $k(u)$. They have the form

$$
[k(u), k(v)]=0, \quad[e(u), f(v)]=\frac{k(u)-k(v)}{u-v}
$$

and

$$
\begin{aligned}
& {[e(u), e(v)]=\frac{(e(u)-e(v))^{2}}{u-v}} \\
& {[f(u), f(v)]=-\frac{(f(u)-f(v))^{2}}{u-v}} \\
& {[k(u), e(v)]=\frac{\{k(u), e(u)-e(v)\}}{u-v},} \\
& {[k(u), f(v)]=-\frac{\{k(u), f(u)-f(v)\}}{u-v},}
\end{aligned}
$$

Proof. The first step is to derive the relations for the series $e(u)$, $f(u)$ and $k(u)$. They have the form

$$
[k(u), k(v)]=0, \quad[e(u), f(v)]=\frac{k(u)-k(v)}{u-v}
$$

and

$$
\begin{aligned}
& {[e(u), e(v)]=\frac{(e(u)-e(v))^{2}}{u-v}} \\
& {[f(u), f(v)]=-\frac{(f(u)-f(v))^{2}}{u-v},} \\
& {[k(u), e(v)]=\frac{\{k(u), e(u)-e(v)\}}{u-v},} \\
& {[k(u), f(v)]=-\frac{\{k(u), f(u)-f(v)\}}{u-v},}
\end{aligned}
$$

where we used the notation $\{a, b\}=a b+b a$.

Since

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1)
$$

Since

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1)
$$

and

$$
\left[h_{1}(u), h_{1}(v)\right]=\left[t_{11}(u), t_{11}(v)\right]=0,
$$

Since

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1)
$$

and

$$
\left[h_{1}(u), h_{1}(v)\right]=\left[t_{11}(u), t_{11}(v)\right]=0,
$$

the coefficients of the series $h_{1}(u)$ and $h_{2}(u)$ pairwise commute.

Since

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1)
$$

and

$$
\left[h_{1}(u), h_{1}(v)\right]=\left[t_{11}(u), t_{11}(v)\right]=0
$$

the coefficients of the series $h_{1}(u)$ and $h_{2}(u)$ pairwise commute.

This proves

$$
[k(u), k(v)]=0 .
$$

Furthermore, by the defining relations,

$$
\left[t_{12}(u), t_{12}(v)\right]=0
$$

Furthermore, by the defining relations,

$$
\left[t_{12}(u), t_{12}(v)\right]=0
$$

and

$$
(u-v)\left[t_{11}(u), t_{12}(v)\right]=t_{11}(u) t_{12}(v)-t_{11}(v) t_{12}(u)
$$

Furthermore, by the defining relations,

$$
\left[t_{12}(u), t_{12}(v)\right]=0
$$

and

$$
(u-v)\left[t_{11}(u), t_{12}(v)\right]=t_{11}(u) t_{12}(v)-t_{11}(v) t_{12}(u)
$$

Therefore,

$$
\begin{aligned}
(u-v)\left[t_{11}(u)^{-1}\right. & \left., t_{12}(v)\right] \\
& =t_{11}(u)^{-1} t_{11}(v) t_{12}(u) t_{11}(u)^{-1}-t_{12}(v) t_{11}(u)^{-1}
\end{aligned}
$$

Hence, by calculating

$$
[e(u), e(v)]=\left[t_{11}(u)^{-1} t_{12}(u), t_{11}(v)^{-1} t_{12}(v)\right]
$$

Hence, by calculating

$$
[e(u), e(v)]=\left[t_{11}(u)^{-1} t_{12}(u), t_{11}(v)^{-1} t_{12}(v)\right]
$$

we derive

$$
[e(u), e(v)]=\frac{(e(u)-e(v))^{2}}{u-v}
$$

Hence, by calculating

$$
[e(u), e(v)]=\left[t_{11}(u)^{-1} t_{12}(u), t_{11}(v)^{-1} t_{12}(v)\right]
$$

we derive

$$
[e(u), e(v)]=\frac{(e(u)-e(v))^{2}}{u-v}
$$

Use the observation that under the anti-automorphism
$t: T(u) \mapsto T^{t}(u)$ we have

$$
t: e(u) \mapsto f(u), \quad f(u) \mapsto e(u), \quad h_{i}(u) \mapsto h_{i}(u)
$$

for $i=1,2$.

Proposition. Under the coproduct map $\Delta$, we have

$$
\begin{aligned}
& \Delta: e(u) \mapsto 1 \otimes e(u)+\sum_{r=0}^{\infty}(-1)^{r} e(u)^{r+1} \otimes k(u) f(u+1)^{r} \\
& \Delta: f(u) \mapsto f(u) \otimes 1+\sum_{r=0}^{\infty}(-1)^{r} e(u+1)^{r} k(u) \otimes f(u)^{r+1} \\
& \Delta: k(u) \mapsto \sum_{r=0}^{\infty}(-1)^{r}(r+1) e(u+1)^{r} k(u) \otimes k(u) f(u+1)^{r}
\end{aligned}
$$

Proposition. Under the coproduct map $\Delta$, we have

$$
\begin{aligned}
& \Delta: e(u) \mapsto 1 \otimes e(u)+\sum_{r=0}^{\infty}(-1)^{r} e(u)^{r+1} \otimes k(u) f(u+1)^{r}, \\
& \Delta: f(u) \mapsto f(u) \otimes 1+\sum_{r=0}^{\infty}(-1)^{r} e(u+1)^{r} k(u) \otimes f(u)^{r+1} \\
& \Delta: k(u) \mapsto \sum_{r=0}^{\infty}(-1)^{r}(r+1) e(u+1)^{r} k(u) \otimes k(u) f(u+1)^{r} .
\end{aligned}
$$

Proof. Recall that $e(u)=t_{11}(u)^{-1} t_{12}(u)$.

Proposition. Under the coproduct map $\Delta$, we have

$$
\begin{aligned}
& \Delta: e(u) \mapsto 1 \otimes e(u)+\sum_{r=0}^{\infty}(-1)^{r} e(u)^{r+1} \otimes k(u) f(u+1)^{r}, \\
& \Delta: f(u) \mapsto f(u) \otimes 1+\sum_{r=0}^{\infty}(-1)^{r} e(u+1)^{r} k(u) \otimes f(u)^{r+1}, \\
& \Delta: k(u) \mapsto \sum_{r=0}^{\infty}(-1)^{r}(r+1) e(u+1)^{r} k(u) \otimes k(u) f(u+1)^{r} .
\end{aligned}
$$

Proof. Recall that $e(u)=t_{11}(u)^{-1} t_{12}(u)$. We have

$$
\begin{aligned}
\Delta: t_{11}(u)^{-1} t_{12}(u) \mapsto\left(t_{11}(u)\right. & \left.\otimes t_{11}(u)+t_{12}(u) \otimes t_{21}(u)\right)^{-1} \\
& \times\left(t_{11}(u) \otimes t_{12}(u)+t_{12}(u) \otimes t_{22}(u)\right)
\end{aligned}
$$

Write

$$
\begin{aligned}
t_{11}(u) \otimes t_{11}(u)+t_{12}(u) & \otimes t_{21}(u) \\
& =\left(t_{11}(u) \otimes t_{11}(u)\right)(1+e(u) \otimes f(u-1))
\end{aligned}
$$

Write

$$
\begin{aligned}
t_{11}(u) \otimes t_{11}(u)+t_{12}(u) & \otimes t_{21}(u) \\
& =\left(t_{11}(u) \otimes t_{11}(u)\right)(1+e(u) \otimes f(u-1))
\end{aligned}
$$

where we used the relation

$$
t_{11}(u)^{-1} t_{21}(u)=t_{21}(u-1) t_{11}(u-1)^{-1}=f(u-1)
$$

Write

$$
\begin{aligned}
t_{11}(u) \otimes t_{11}(u)+t_{12}(u) & \otimes t_{21}(u) \\
& =\left(t_{11}(u) \otimes t_{11}(u)\right)(1+e(u) \otimes f(u-1))
\end{aligned}
$$

where we used the relation

$$
t_{11}(u)^{-1} t_{21}(u)=t_{21}(u-1) t_{11}(u-1)^{-1}=f(u-1)
$$

Hence,

$$
\begin{aligned}
\Delta: e(u) \mapsto(1+e(u) \otimes & f(u-1))^{-1} \\
& \times\left(1 \otimes e(u)+e(u) \otimes t_{11}(u)^{-1} t_{22}(u)\right) .
\end{aligned}
$$

We have

$$
t_{11}(u)^{-1} t_{22}(u)=k(u)+f(u-1) e(u)
$$

We have

$$
t_{11}(u)^{-1} t_{22}(u)=k(u)+f(u-1) e(u)
$$

and so

$$
\begin{aligned}
\Delta: e(u) \mapsto & (1+e(u) \otimes f(u-1))^{-1} \\
& \times(1 \otimes e(u)+e(u) \otimes f(u-1) e(u)+e(u) \otimes k(u))
\end{aligned}
$$

We have

$$
t_{11}(u)^{-1} t_{22}(u)=k(u)+f(u-1) e(u)
$$

and so

$$
\begin{aligned}
\Delta: e(u) \mapsto & (1+e(u) \otimes f(u-1))^{-1} \\
& \times(1 \otimes e(u)+e(u) \otimes f(u-1) e(u)+e(u) \otimes k(u))
\end{aligned}
$$

which equals

$$
1 \otimes e(u)+\sum_{r=0}^{\infty}(-1)^{r} e(u)^{r+1} \otimes f(u-1)^{r} k(u) .
$$

We have

$$
t_{11}(u)^{-1} t_{22}(u)=k(u)+f(u-1) e(u)
$$

and so

$$
\begin{aligned}
\Delta: e(u) \mapsto & (1+e(u) \otimes f(u-1))^{-1} \\
& \times(1 \otimes e(u)+e(u) \otimes f(u-1) e(u)+e(u) \otimes k(u))
\end{aligned}
$$

which equals

$$
1 \otimes e(u)+\sum_{r=0}^{\infty}(-1)^{r} e(u)^{r+1} \otimes f(u-1)^{r} k(u) .
$$

Finally, note that

$$
f(u-1) k(u)=k(u) f(u+1)
$$

## $J$-presentation

## $J$-presentation

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the Hopf algebra with six generators $e, f, h, J(e), J(f), J(h)$ subject to the defining relations

## $J$-presentation

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the Hopf algebra with six generators $e, f, h, J(e), J(f), J(h)$ subject to the defining relations

$$
\begin{aligned}
{[e, f] } & =h, \quad[h, e]=2 e, \quad[h, f]=-2 f, \\
{[x, J(y)] } & =J([x, y]), \quad J(a x)=a J(x)
\end{aligned}
$$

## $J$-presentation

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the Hopf algebra with six generators $e, f, h, J(e), J(f), J(h)$ subject to the defining relations

$$
\begin{aligned}
{[e, f] } & =h, \quad[h, e]=2 e, \quad[h, f]=-2 f, \\
{[x, J(y)] } & =J([x, y]), \quad J(a x)=a J(x)
\end{aligned}
$$

where $x, y \in\{e, f, h\}, a \in \mathbb{C}$, and

$$
[[J(e), J(f)], J(h)]=(J(e) f-e J(f)) h
$$

## The Hopf algebra structure is defined by

$$
\begin{aligned}
& \Delta: \quad x \mapsto x \otimes 1+1 \otimes x, \quad J(x) \mapsto J(x) \otimes 1+1 \otimes J(x)+\frac{1}{2}[x \otimes 1, C], \\
& \mathrm{S}: \quad x \mapsto-x, \quad J(x) \mapsto-J(x)+x, \\
& \varepsilon: \quad x \mapsto 0, \quad J(x) \mapsto 0,
\end{aligned}
$$

## The Hopf algebra structure is defined by

$$
\begin{array}{lll}
\Delta: & x \mapsto x \otimes 1+1 \otimes x, & J(x) \mapsto J(x) \otimes 1+1 \otimes J(x)+\frac{1}{2}[x \otimes 1, C], \\
\mathrm{S}: & x \mapsto-x, & J(x) \mapsto-J(x)+x, \\
\varepsilon: & x \mapsto 0, & J(x) \mapsto 0,
\end{array}
$$

where

$$
C=e \otimes f+f \otimes e+\frac{1}{2} h \otimes h .
$$

Proof. Verify that the following map is a homomorphism:

Proof. Verify that the following map is a homomorphism:

$$
e \mapsto f_{0}, \quad f \mapsto e_{0}, \quad h \mapsto h_{0},
$$

## Proof. Verify that the following map is a homomorphism:

$$
e \mapsto f_{0}, \quad f \mapsto e_{0}, \quad h \mapsto h_{0},
$$

and

$$
\begin{aligned}
J(e) & \mapsto f_{1}-\frac{1}{4}\left(f_{0} h_{0}+h_{0} f_{0}\right), \\
J(f) & \mapsto e_{1}-\frac{1}{4}\left(e_{0} h_{0}+h_{0} e_{0}\right), \\
J(h) & \mapsto h_{1}+\frac{1}{2}\left(e_{0} f_{0}+f_{0} e_{0}-h_{0}^{2}\right) .
\end{aligned}
$$

Proof. Verify that the following map is a homomorphism:

$$
e \mapsto f_{0}, \quad f \mapsto e_{0}, \quad h \mapsto h_{0}
$$

and

$$
\begin{aligned}
J(e) & \mapsto f_{1}-\frac{1}{4}\left(f_{0} h_{0}+h_{0} f_{0}\right), \\
J(f) & \mapsto e_{1}-\frac{1}{4}\left(e_{0} h_{0}+h_{0} e_{0}\right), \\
J(h) & \mapsto h_{1}+\frac{1}{2}\left(e_{0} f_{0}+f_{0} e_{0}-h_{0}^{2}\right) .
\end{aligned}
$$

To prove the kernel is trivial, use the associated graded algebras $\operatorname{grY}\left(\mathfrak{F l}_{2}\right) \cong \mathrm{U}\left(\mathfrak{s l}_{2}[x]\right)$.

## Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

## Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Apply the Gauss decomposition to the matrix

$$
T(u)=\left[\begin{array}{cccc}
t_{11}(u) & t_{12}(u) & \ldots & t_{1 N}(u) \\
t_{21}(u) & t_{22}(u) & \ldots & t_{2 N}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{N 1}(u) & t_{N 2}(u) & \ldots & t_{N N}(u)
\end{array}\right],
$$

## Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Apply the Gauss decomposition to the matrix

$$
T(u)=\left[\begin{array}{cccc}
t_{11}(u) & t_{12}(u) & \ldots & t_{1 N}(u) \\
t_{21}(u) & t_{22}(u) & \ldots & t_{2 N}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{N 1}(u) & t_{N 2}(u) & \ldots & t_{N N}(u)
\end{array}\right]
$$

to write

$$
T(u)=F(u) H(u) E(u)
$$

for lower-triangular, diagonal and upper-triangular matrices.

These are uniquely determined matrices of the form

$$
F(u)=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
f_{21}(u) & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
f_{N 1}(u) & f_{N 2}(u) & \ldots & 1
\end{array}\right],
$$

These are uniquely determined matrices of the form

$$
\begin{aligned}
& F(u)=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
f_{21}(u) & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
f_{N 1}(u) & f_{N 2}(u) & \ldots & 1
\end{array}\right], \\
& E(u)=\left[\begin{array}{cccc}
1 & e_{12}(u) & \ldots & e_{1 N}(u) \\
0 & 1 & \ldots & e_{2 N}(u) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right],
\end{aligned}
$$

These are uniquely determined matrices of the form

$$
\begin{aligned}
& F(u)=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
f_{21}(u) & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
f_{N 1}(u) & f_{N 2}(u) & \ldots & 1
\end{array}\right], \\
& E(u)=\left[\begin{array}{cccc}
1 & e_{12}(u) & \ldots & e_{1 N}(u) \\
0 & 1 & \ldots & e_{2 N}(u) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right],
\end{aligned}
$$

and $H(u)=\operatorname{diag}\left[h_{1}(u), \ldots, h_{N}(u)\right]$.

Set

$$
e_{i}(u)=e_{i+1}(u) \quad \text { and } \quad f_{i}(u)=f_{i+1 i}(u)
$$

for $i=1, \ldots, N-1$.

Set

$$
e_{i}(u)=e_{i+1}(u) \quad \text { and } \quad f_{i}(u)=f_{i+1 i}(u)
$$

for $i=1, \ldots, N-1$.

Introduce the coefficients of the series by

$$
e_{i}(u)=\sum_{r=1}^{\infty} e_{i}^{(r)} u^{-r} \quad \text { and } \quad f_{i}(u)=\sum_{r=1}^{\infty} f_{i}^{(r)} u^{-r}
$$

Set

$$
e_{i}(u)=e_{i+1}(u) \quad \text { and } \quad f_{i}(u)=f_{i+1 i}(u)
$$

for $i=1, \ldots, N-1$.

Introduce the coefficients of the series by

$$
e_{i}(u)=\sum_{r=1}^{\infty} e_{i}^{(r)} u^{-r} \quad \text { and } \quad f_{i}(u)=\sum_{r=1}^{\infty} f_{i}^{(r)} u^{-r}
$$

Also set

$$
e_{i}^{\circ}(u)=\sum_{r=2}^{\infty} e_{i}^{(r)} u^{-r} \quad \text { and } \quad f_{i}^{\circ}(u)=\sum_{r=2}^{\infty} f_{i}^{(r)} u^{-r}
$$

Introduce the root data associated with the Lie algebra $\mathfrak{s l}_{N}$.

Introduce the root data associated with the Lie algebra $\mathfrak{s l}_{N}$.

Let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be an orthonormal basis of an Euclidean vector space with the inner product (, ).

Introduce the root data associated with the Lie algebra $\mathfrak{s l}_{N}$.

Let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be an orthonormal basis of an Euclidean vector space with the inner product (, ).

The simple roots are the vectors $\alpha_{1}, \ldots, \alpha_{N-1}$,

$$
\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}
$$

Introduce the root data associated with the Lie algebra $\mathfrak{s l}_{N}$.

Let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be an orthonormal basis of an Euclidean vector space with the inner product (, ).

The simple roots are the vectors $\alpha_{1}, \ldots, \alpha_{N-1}$,

$$
\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}
$$

The Cartan matrix $C=\left[c_{i j}\right]$ is defined by $c_{i j}=\left(\alpha_{i}, \alpha_{j}\right)$.

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the series $h_{i}(u)$ for $i=1, \ldots, N$, and $e_{i}(u), f_{i}(u)$ for $i=1, \ldots, N-1$, subject only to the following relations:

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the series $h_{i}(u)$ for $i=1, \ldots, N$, and $e_{i}(u), f_{i}(u)$ for $i=1, \ldots, N-1$, subject only to the following relations:

$$
\begin{aligned}
{\left[h_{i}(u), h_{j}(v)\right] } & =0 \\
{\left[e_{i}(u), f_{j}(v)\right] } & =\delta_{i j} \frac{h_{i}(u)^{-1} h_{i+1}(u)-h_{i}(v)^{-1} h_{i+1}(v)}{u-v}
\end{aligned}
$$

Theorem. The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the series $h_{i}(u)$ for $i=1, \ldots, N$, and $e_{i}(u), f_{i}(u)$ for $i=1, \ldots, N-1$, subject only to the following relations:

$$
\begin{aligned}
{\left[h_{i}(u), h_{j}(v)\right] } & =0 \\
{\left[e_{i}(u), f_{j}(v)\right] } & =\delta_{i j} \frac{h_{i}(u)^{-1} h_{i+1}(u)-h_{i}(v)^{-1} h_{i+1}(v)}{u-v}
\end{aligned}
$$

$$
\left[h_{i}(u), e_{j}(v)\right]=-\left(\varepsilon_{i}, \alpha_{j}\right) \frac{h_{i}(u)\left(e_{j}(u)-e_{j}(v)\right)}{u-v}
$$

$$
\left[h_{i}(u), f_{j}(v)\right]=\left(\varepsilon_{i}, \alpha_{j}\right) \frac{\left(f_{j}(u)-f_{j}(v)\right) h_{i}(u)}{u-v}
$$

Moreover,

$$
\begin{aligned}
& {\left[e_{i}(u), e_{i}(v)\right]=\frac{\left(e_{i}(u)-e_{i}(v)\right)^{2}}{u-v}} \\
& {\left[f_{i}(u), f_{i}(v)\right]=-\frac{\left(f_{i}(u)-f_{i}(v)\right)^{2}}{u-v}}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& {\left[e_{i}(u), e_{i}(v)\right]=\frac{\left(e_{i}(u)-e_{i}(v)\right)^{2}}{u-v}} \\
& {\left[f_{i}(u), f_{i}(v)\right]=-\frac{\left(f_{i}(u)-f_{i}(v)\right)^{2}}{u-v}}
\end{aligned}
$$

and for $i<j$ we have

$$
\begin{aligned}
u\left[e_{i}^{\circ}(u), e_{j}(v)\right]-v\left[e_{i}(u), e_{j}^{\circ}(v)\right] & =-\left(\alpha_{i}, \alpha_{j}\right) e_{i}(u) e_{j}(v), \\
u\left[f_{i}^{\circ}(u), f_{j}(v)\right]-v\left[f_{i}(u), f_{j}^{\circ}(v)\right] & =\left(\alpha_{i}, \alpha_{j}\right) f_{j}(v) f_{i}(u) .
\end{aligned}
$$

Finally, we have the Serre relations

$$
\begin{aligned}
& \sum_{\sigma \in \mathfrak{S}_{k}}\left[e_{i}\left(u_{\sigma(1)}\right),\left[e_{i}\left(u_{\sigma(2)}\right), \ldots,\left[e_{i}\left(u_{\sigma(k)}\right), e_{j}(v)\right] \ldots\right]\right]=0 \\
& \sum_{\sigma \in \mathfrak{S}_{k}}\left[f_{i}\left(u_{\sigma(1)}\right),\left[f_{i}\left(u_{\sigma(2)}\right), \ldots,\left[f_{i}\left(u_{\sigma(k)}\right), f_{j}(v)\right] \ldots\right]\right]=0
\end{aligned}
$$

for $i \neq j$ with $k=1-c_{i j}$.

Proof. The argument is split into three steps:

Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series $h_{i}(u), e_{i}(u)$ and $f_{i}(u)$ generate the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series $h_{i}(u), e_{i}(u)$ and $f_{i}(u)$ generate the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Step 2. Show that all the relations hold in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series $h_{i}(u), e_{i}(u)$ and $f_{i}(u)$ generate the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Step 2. Show that all the relations hold in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$. This will imply that there is an epimorphism $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ from the abstract algebra defined in the theorem.

Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series $h_{i}(u), e_{i}(u)$ and $f_{i}(u)$ generate the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Step 2. Show that all the relations hold in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$. This will imply that there is an epimorphism $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ from the abstract algebra defined in the theorem.

Step 3. Show that the epimorphism is injective.

Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series $h_{i}(u), e_{i}(u)$ and $f_{i}(u)$ generate the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Step 2. Show that all the relations hold in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$. This will imply that there is an epimorphism $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ from the abstract algebra defined in the theorem.

Step 3. Show that the epimorphism is injective. This will imply that there are no other relations.

## Step 1

## Step 1

Use quasideterminants of matrices over an arbitrary ring.

## Step 1

Use quasideterminants of matrices over an arbitrary ring.
The $i j$-th quasideterminant $|A|_{i j}$ of an $N \times N$ matrix $A$ is denoted by boxing the entry $a_{i j}$,

$$
|A|_{i j}=\left|\begin{array}{ccccc}
a_{11} & \ldots & a_{1 j} & \ldots & a_{1 N} \\
& \ldots & & \ldots & \\
a_{i 1} & \ldots & \boxed{a_{i j}} & \ldots & a_{i N} \\
& \ldots & & \ldots & \\
a_{N 1} & \ldots & a_{N j} & \ldots & a_{N N}
\end{array}\right|
$$

If the matrix $A$ is invertible and the $(j, i)$ entry of $A^{-1}$ is invertible, then the quasideterminant is found by

$$
|A|_{i j}=\left(\left(A^{-1}\right)_{j i}\right)^{-1} .
$$

If the matrix $A$ is invertible and the $(j, i)$ entry of $A^{-1}$ is invertible, then the quasideterminant is found by

$$
|A|_{i j}=\left(\left(A^{-1}\right)_{j i}\right)^{-1} .
$$

In particular,

$$
|A|_{N N}=a_{N N}-\sum_{i, j=1}^{N-1} a_{N i}\left[\bar{A}^{-1}\right]_{i j} a_{j N}
$$

If the matrix $A$ is invertible and the $(j, i)$ entry of $A^{-1}$ is invertible, then the quasideterminant is found by

$$
|A|_{i j}=\left(\left(A^{-1}\right)_{j i}\right)^{-1} .
$$

In particular,

$$
|A|_{N N}=a_{N N}-\sum_{i, j=1}^{N-1} a_{N i}\left[\bar{A}^{-1}\right]_{i j} a_{j N}
$$

where $\bar{A}=\left[a_{i j}\right]_{i, j=1}^{N-1}$.

If the matrix $A$ is invertible and the $(j, i)$ entry of $A^{-1}$ is invertible, then the quasideterminant is found by

$$
|A|_{i j}=\left(\left(A^{-1}\right)_{j i}\right)^{-1} .
$$

In particular,

$$
|A|_{N N}=a_{N N}-\sum_{i, j=1}^{N-1} a_{N i}\left[\bar{A}^{-1}\right]_{i j} a_{j N}
$$

where $\bar{A}=\left[a_{i j}\right]_{i, j=1}^{N-1}$.

The quasideterminants are stable under permutations of rows or columns.

Example. We have

$$
\left|\begin{array}{cc}
a & b \\
c & \boxed{d}
\end{array}\right|=\left|\begin{array}{cc}
c & \boxed{d} \\
a & b
\end{array}\right|=\left|\begin{array}{|cc}
\boxed{d} & c \\
b & a
\end{array}\right|=\left|\begin{array}{cc}
b & a \\
\boxed{d} & c
\end{array}\right|=d-c a^{-1} b
$$

Example. We have

$$
\left|\begin{array}{cc}
a & b \\
c & \boxed{d}
\end{array}\right|=\left|\begin{array}{cc}
c & \boxed{d} \\
a & b
\end{array}\right|=\left|\begin{array}{cc}
\boxed{d} & c \\
b & a
\end{array}\right|=\left|\begin{array}{cc}
b & a \\
\boxed{d} & c
\end{array}\right|=d-c a^{-1} b
$$

Indeed, if

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]
$$

Example. We have

$$
\left|\begin{array}{cc}
a & b \\
c & \boxed{d}
\end{array}\right|=\left|\begin{array}{cc}
c & \boxed{d} \\
a & b
\end{array}\right|=\left|\begin{array}{cc}
\boxed{d} & c \\
b & a
\end{array}\right|=\left|\begin{array}{cc}
b & a \\
\boxed{d} & c
\end{array}\right|=d-c a^{-1} b
$$

Indeed, if

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]
$$

then

$$
a b^{\prime}+b d^{\prime}=0 \quad \text { and } \quad c b^{\prime}+d d^{\prime}=1
$$

Example. We have

$$
\left|\begin{array}{cc}
a & b \\
c & \boxed{d}
\end{array}\right|=\left|\begin{array}{cc}
c & \boxed{d} \\
a & b
\end{array}\right|=\left|\begin{array}{cc}
\boxed{d} & c \\
b & a
\end{array}\right|=\left|\begin{array}{cc}
b & a \\
\boxed{d} & c
\end{array}\right|=d-c a^{-1} b
$$

Indeed, if

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]
$$

then

$$
a b^{\prime}+b d^{\prime}=0 \quad \text { and } \quad c b^{\prime}+d d^{\prime}=1
$$

Hence

$$
\left(d-c a^{-1} b\right) d^{\prime}=1
$$

## Lemma. For any $\ell<N$ the map

$$
\psi_{\ell}: t_{i j}^{\circ}(u) \mapsto\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 \ell}(u) & t_{1 j}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{\ell 1}(u) & \ldots & t_{\ell \ell}(u) & t_{\ell j}(u) \\
t_{i 1}(u) & \ldots & t_{i \ell}(u) & t_{i j}(u)
\end{array}\right|, \quad \ell+1 \leqslant i, j \leqslant N
$$

## Lemma. For any $\ell<N$ the map

$$
\psi_{\ell}: t_{i j}^{\circ}(u) \mapsto\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 \ell}(u) & t_{1 j}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{\ell 1}(u) & \ldots & t_{\ell \ell}(u) & t_{\ell j}(u) \\
t_{i 1}(u) & \ldots & t_{i \ell}(u) & t_{i j}(u)
\end{array}\right|, \quad \ell+1 \leqslant i, j \leqslant N
$$

defines an injective homomorphism

$$
\mathrm{Y}^{\circ}\left(\mathfrak{g l}_{N-\ell}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

## Lemma. For any $\ell<N$ the map

$$
\psi_{\ell}: t_{i j}^{\circ}(u) \mapsto\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 \ell}(u) & t_{1 j}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{\ell 1}(u) & \ldots & t_{\ell \ell}(u) & t_{\ell j}(u) \\
t_{i 1}(u) & \ldots & t_{i \ell}(u) & t_{i j}(u)
\end{array}\right|, \quad \ell+1 \leqslant i, j \leqslant N
$$

defines an injective homomorphism

$$
\mathrm{Y}^{\circ}\left(\mathfrak{g l}_{N-\ell}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

where the $t_{i j}^{\circ}(u)$ denote the generating series of $\mathrm{Y}^{\circ}\left(\mathfrak{g l}_{N-\ell}\right) \cong \mathrm{Y}\left(\mathfrak{g l}_{N-\ell}\right)$.

Proof. Recall that the map $\omega: T(u) \mapsto T^{-1}(-u)$ defines an automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proof. Recall that the map $\omega: T(u) \mapsto T^{-1}(-u)$ defines an automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Write the block partition

$$
T(u)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

according to the split $N=\ell+(N-\ell)$ of the row and column numbers.

Proof. Recall that the map $\omega: T(u) \mapsto T^{-1}(-u)$ defines an automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Write the block partition

$$
T(u)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

according to the split $N=\ell+(N-\ell)$ of the row and column numbers. Hence,

$$
T^{-1}(u)=\left[\begin{array}{cc}
* & * \\
* & \left(d-c a^{-1} b\right)^{-1}
\end{array}\right] .
$$

Now apply $\omega$ to the $(N-\ell) \times(N-\ell)$ submatrix to conclude that the matrix elements of the matrix $d-c a^{-1} b$ satisfy the Yangian defining relations.

Now apply $\omega$ to the $(N-\ell) \times(N-\ell)$ submatrix to conclude that the matrix elements of the matrix $d-c a^{-1} b$ satisfy the Yangian defining relations.

However, its $(i, j)$ entry coincides with $\psi_{\ell}\left(t_{i j}^{\circ}(u)\right)$.

Now apply $\omega$ to the $(N-\ell) \times(N-\ell)$ submatrix to conclude that the matrix elements of the matrix $d-c a^{-1} b$ satisfy the Yangian defining relations.

However, its $(i, j)$ entry coincides with $\psi_{\ell}\left(t_{i j}^{\circ}(u)\right)$.

The injectivity is verified by passing to the associated graded algebras, where the ascending filtrations on the extended Yangians are defined by setting $\operatorname{deg} t_{i j}^{(r)}=r-1$.

Lemma. We have the formulas for the Gaussian generators in terms of quasideterminants:

Lemma. We have the formulas for the Gaussian generators in terms of quasideterminants:

$$
h_{i}(u)=\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 i}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 i}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i i}(u)
\end{array}\right|
$$

for $i=1, \ldots, N$.

Moreover,

$$
e_{i j}(u)=h_{i}(u)^{-1}\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 j}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 j}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i j}(u)
\end{array}\right|
$$

Moreover,

$$
e_{i j}(u)=h_{i}(u)^{-1}\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 j}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 j}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i j}(u)
\end{array}\right|
$$

and

$$
f_{j i}(u)=\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 i}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 i}(u) \\
t_{j 1}(u) & \ldots & t_{j i-1}(u) & t_{j i}(u)
\end{array}\right| h_{i}(u)^{-1}
$$

Moreover,

$$
e_{i j}(u)=h_{i}(u)^{-1}\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 j}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 j}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i j}(u)
\end{array}\right|
$$

and

$$
f_{j i}(u)=\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 i}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 i}(u) \\
t_{j 1}(u) & \ldots & t_{j i-1}(u) & t_{j i}(u)
\end{array}\right| h_{i}(u)^{-1}
$$

for $1 \leqslant i<j \leqslant N$.

Lemma. Under the anti-automorphism $t$ we have

$$
t: e_{i j}(u) \mapsto f_{j i}(u), \quad f_{j i}(u) \mapsto e_{i j}(u)
$$

for $i<j$,

Lemma. Under the anti-automorphism $t$ we have

$$
t: e_{i j}(u) \mapsto f_{j i}(u), \quad f_{j i}(u) \mapsto e_{i j}(u)
$$

for $i<j$, while $h_{i}(u) \mapsto h_{i}(u)$ for all $i$.

Lemma. Under the anti-automorphism $t$ we have

$$
t: e_{i j}(u) \mapsto f_{j i}(u), \quad f_{j i}(u) \mapsto e_{i j}(u)
$$

for $i<j$, while $h_{i}(u) \mapsto h_{i}(u)$ for all $i$.
It follows from the Gauss decomposition that the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the series $h_{i}(u)$ for $i=1, \ldots, N$ together with $e_{i j}(u)$ and $f_{j i}(u)$ for $1 \leqslant i<j \leqslant N$.

Lemma. Under the anti-automorphism $t$ we have

$$
t: e_{i j}(u) \mapsto f_{j i}(u), \quad f_{j i}(u) \mapsto e_{i j}(u)
$$

for $i<j$, while $h_{i}(u) \mapsto h_{i}(u)$ for all $i$.
It follows from the Gauss decomposition that the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the series $h_{i}(u)$ for $i=1, \ldots, N$ together with $e_{i j}(u)$ and $f_{j i}(u)$ for $1 \leqslant i<j \leqslant N$.

On the other hand, by the lemma above,

$$
e_{i}^{(1)}=t_{i, i+1}^{(1)} \quad \text { and } \quad f_{i}^{(1)}=t_{i+1, i}^{(1)} .
$$

Lemma. Under the anti-automorphism $t$ we have

$$
t: e_{i j}(u) \mapsto f_{j i}(u), \quad f_{j i}(u) \mapsto e_{i j}(u)
$$

for $i<j$, while $h_{i}(u) \mapsto h_{i}(u)$ for all $i$.
It follows from the Gauss decomposition that the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the series $h_{i}(u)$ for $i=1, \ldots, N$ together with $e_{i j}(u)$ and $f_{j i}(u)$ for $1 \leqslant i<j \leqslant N$.

On the other hand, by the lemma above,

$$
e_{i}^{(1)}=t_{i, i+1}^{(1)} \quad \text { and } \quad f_{i}^{(1)}=t_{i+1, i}^{(1)} .
$$

Therefore, Step 1 is completed by noting that for any $i<j$,

$$
e_{i, j+1}(u)=\left[e_{i j}(u), e_{j}^{(1)}\right] \quad \text { and } \quad f_{j+1, i}(u)=\left[f_{j}^{(1)}, f_{j i}(u)\right]
$$

## Step 2

## Step 2

The quantum comatrix $\widehat{T}(u)$ is defined by

$$
\widehat{T}(u) T(u-N+1)=q \operatorname{det} T(u) .
$$

## Step 2

The quantum comatrix $\widehat{T}(u)$ is defined by

$$
\widehat{T}(u) T(u-N+1)=q \operatorname{det} T(u) .
$$

Proposition. The entries $\widehat{t i j}_{i j}(u)$ of the matrix $\widehat{T}(u)$ are given by

$$
\widehat{t}_{i j}(u)=(-1)^{i+j_{j}} t_{1 \ldots \hat{j} \ldots N}^{1 \ldots \ldots}(u),
$$

where the hats on the right hand side indicate the indices to be omitted.

## Proof. By definition,

$$
A_{N} T_{1}(u) \ldots T_{N-1}(u-N+2) T_{N}(u-N+1)=A_{N} q \operatorname{det} T(u)
$$

Proof. By definition,

$$
A_{N} T_{1}(u) \ldots T_{N-1}(u-N+2) T_{N}(u-N+1)=A_{N} q \operatorname{det} T(u)
$$

Hence

$$
A_{N} T_{1}(u) \ldots T_{N-1}(u-N+2)=A_{N} \widehat{T}_{N}(u)
$$

Taking the matrix elements we obtain the formula for $\widehat{t}_{i j}(u)$.

## By definition,

$$
h_{N}(u)=\left[T^{-1}(u)_{N N}\right]^{-1} .
$$

## By definition,

$$
h_{N}(u)=\left[T^{-1}(u)_{N N}\right]^{-1} .
$$

Since

$$
\widehat{T}(u) T(u-N+1)=\mathrm{q} \operatorname{det} T(u),
$$

## By definition,

$$
h_{N}(u)=\left[T^{-1}(u)_{N N}\right]^{-1} .
$$

## Since

$$
\widehat{T}(u) T(u-N+1)=q \operatorname{det} T(u),
$$

we have

$$
T^{-1}(u)=\widehat{T}(u+N-1)(\operatorname{qdet} T(u+N-1))^{-1} .
$$

## By definition,

$$
h_{N}(u)=\left[T^{-1}(u)_{N N}\right]^{-1} .
$$

Since

$$
\widehat{T}(u) T(u-N+1)=q \operatorname{det} T(u),
$$

we have

$$
T^{-1}(u)=\widehat{T}(u+N-1)(\operatorname{qdet} T(u+N-1))^{-1} .
$$

By taking the $(N, N)$ entry, we get

$$
h_{N}(u)=t_{1 \ldots N-1}^{1 \ldots N-1}(u+N-1)^{-1} t_{1 \ldots N}^{1 \ldots N}(u+N-1) .
$$

Similarly,

$$
\begin{aligned}
& h_{i}(u)=\left(t_{1 \ldots i-1}^{1 \ldots i-1}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i}^{1 \ldots i}(u+i-1) \\
& f_{i}(u)=t_{1 \ldots i}^{1 \ldots i-1, i+1}(u+i-1) \cdot\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1} \\
& e_{i}(u)=\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i-1, i+1}^{1 \ldots i}(u+i-1)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& h_{i}(u)=\left(t_{1 \ldots i-1}^{1 \ldots i-1}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i}^{1 \ldots i}(u+i-1) \\
& f_{i}(u)=t_{1 \ldots i}^{1 \ldots i-1, i+1}(u+i-1) \cdot\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1} \\
& e_{i}(u)=\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i-1, i+1}^{1 \ldots i}(u+i-1)
\end{aligned}
$$

Proposition. We have the decomposition

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1) \ldots h_{N}(u-N+1)
$$

Similarly,

$$
\begin{aligned}
& h_{i}(u)=\left(t_{1 \ldots i-1}^{1 \ldots i-1}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i}^{1 \ldots i}(u+i-1) \\
& f_{i}(u)=t_{1 \ldots i}^{1 \ldots i-1, i+1}(u+i-1) \cdot\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1} \\
& e_{i}(u)=\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i-1, i+1}^{1 \ldots i}(u+i-1)
\end{aligned}
$$

Proposition. We have the decomposition

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1) \ldots h_{N}(u-N+1)
$$

The coefficients of all series $h_{i}(u)$ for $i=1, \ldots, N$ commute.

Similarly,

$$
\begin{aligned}
& h_{i}(u)=\left(t_{1 \ldots i-1}^{1 \ldots i-1}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i}^{1 \ldots i}(u+i-1), \\
& f_{i}(u)=t_{1 \ldots i}^{1 \ldots i-1, i+1}(u+i-1) \cdot\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1}, \\
& e_{i}(u)=\left(t_{1 \ldots i}^{1 \ldots i}(u+i-1)\right)^{-1} \cdot t_{1 \ldots i-1, i+1}^{1 \ldots i}(u+i-1) .
\end{aligned}
$$

Proposition. We have the decomposition

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1) \ldots h_{N}(u-N+1) .
$$

The coefficients of all series $h_{i}(u)$ for $i=1, \ldots, N$ commute.

By employing the homomorphism $\psi_{\ell}$, checking the remaining relations reduces to two particular cases: $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ and $\mathrm{Y}\left(\mathfrak{g l}_{3}\right)$.

## Step 3

## Step 3

Prove that the epimorphism $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is injective.

## Step 3

Prove that the epimorphism $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is injective.
We claim that the set of ordered monomials in $h_{i}^{(r)}$ and $e_{i j}^{(r)}, f_{j i}^{(r)}$
(with $i<j$ ) is linearly independent in the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

## Step 3

Prove that the epimorphism $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is injective.
We claim that the set of ordered monomials in $h_{i}^{(r)}$ and $e_{i j}^{(r)}, f_{j i}^{(r)}$ (with $i<j$ ) is linearly independent in the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Indeed, the images of the elements $h_{i}^{(r)}, e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ in the $(r-1)$-th component of the graded algebra $\operatorname{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ respectively correspond to the elements

$$
E_{i i} x^{r-1}, \quad E_{i j} x^{r-1} \quad \text { and } \quad E_{j i} x^{r-1}
$$

of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$.

## Step 3

Prove that the epimorphism $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is injective.
We claim that the set of ordered monomials in $h_{i}^{(r)}$ and $e_{i j}^{(r)}, f_{j i}^{(r)}$ (with $i<j$ ) is linearly independent in the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Indeed, the images of the elements $h_{i}^{(r)}, e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ in the $(r-1)$-th component of the graded algebra $\operatorname{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ respectively correspond to the elements

$$
E_{i i} x^{r-1}, \quad E_{i j} x^{r-1} \quad \text { and } \quad E_{j i} x^{r-1}
$$

of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$.
Hence the claim follows from the PBW theorem for $\mathrm{U}\left(\mathfrak{g l}_{N}[x]\right)$.

For any $1 \leqslant i<j \leqslant N$ define elements $e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ of $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ inductively by the relations $e_{i, i+1}^{(r)}=e_{i}^{(r)}, f_{i+1, i}^{(r)}=f_{i}^{(r)}$ and

$$
e_{i, j+1}^{(r)}=\left[e_{i j}^{(r)}, e_{j}^{(1)}\right], \quad f_{j+1, i}^{(r)}=\left[f_{j}^{(1)}, f_{j i}^{(r)}\right], \quad \text { for } \quad j>i .
$$

For any $1 \leqslant i<j \leqslant N$ define elements $e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ of $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ inductively by the relations $e_{i, i+1}^{(r)}=e_{i}^{(r)}, f_{i+1, i}^{(r)}=f_{i}^{(r)}$ and

$$
e_{i, j+1}^{(r)}=\left[e_{i j}^{(r)}, e_{j}^{(1)}\right], \quad f_{j+1, i}^{(r)}=\left[f_{j}^{(1)}, f_{j i}^{(r)}\right], \quad \text { for } \quad j>i .
$$

It is enough to prove that the algebra $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ is spanned by the monomials in $h_{i}^{(r)}, e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ taken in some fixed order.

For any $1 \leqslant i<j \leqslant N$ define elements $e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ of $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ inductively by the relations $e_{i, i+1}^{(r)}=e_{i}^{(r)}, f_{i+1, i}^{(r)}=f_{i}^{(r)}$ and

$$
e_{i, j+1}^{(r)}=\left[e_{i j}^{(r)}, e_{j}^{(1)}\right], \quad f_{j+1, i}^{(r)}=\left[f_{j}^{(1)}, f_{j i}^{(r)}\right], \quad \text { for } \quad j>i .
$$

It is enough to prove that the algebra $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ is spanned by the monomials in $h_{i}^{(r)}, e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ taken in some fixed order.

Let $\bar{e}_{i j}^{(r)}$ be the image of $e_{i j}^{(r)}$ in the $(r-1)$-th component of the graded algebra $\operatorname{gr}^{\prime} \widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$.

For any $1 \leqslant i<j \leqslant N$ define elements $e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ of $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ inductively by the relations $e_{i, i+1}^{(r)}=e_{i}^{(r)}, f_{i+1, i}^{(r)}=f_{i}^{(r)}$ and

$$
e_{i, j+1}^{(r)}=\left[e_{i j}^{(r)}, e_{j}^{(1)}\right], \quad f_{j+1, i}^{(r)}=\left[f_{j}^{(1)}, f_{j i}^{(r)}\right], \quad \text { for } \quad j>i .
$$

It is enough to prove that the algebra $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ is spanned by the monomials in $h_{i}^{(r)}, e_{i j}^{(r)}$ and $f_{j i}^{(r)}$ taken in some fixed order.

Let $\bar{e}_{i j}^{(r)}$ be the image of $e_{i j}^{(r)}$ in the $(r-1)$-th component of the graded algebra $\operatorname{gr}^{\prime} \widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$.

Verify that these images satisfy

$$
\left[\bar{e}_{i j}^{(r)}, \bar{e}_{k l}^{(s)}\right]=\delta_{k j} \bar{e}_{i l}^{(r+s-1)}-\delta_{i l} \bar{e}_{k j}^{(r+s-1)}
$$

## Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$

## Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$

Define the series with coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ by

$$
\kappa_{i}(u)=h_{i}(u-(i-1) / 2)^{-1} h_{i+1}(u-(i-1) / 2)
$$

## Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$

Define the series with coefficients in $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ by

$$
\kappa_{i}(u)=h_{i}(u-(i-1) / 2)^{-1} h_{i+1}(u-(i-1) / 2)
$$

and

$$
\xi_{i}^{+}(u)=f_{i}(u-(i-1) / 2), \quad \xi_{i}^{-}(u)=e_{i}(u-(i-1) / 2)
$$

for $i=1, \ldots, N-1$.

Define the elements $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, N-1$ and $r \geqslant 0$ by the relations

$$
\kappa_{i}(u)=1+\sum_{r \geqslant 0} \kappa_{i r} u^{-r-1},
$$

Define the elements $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, N-1$ and $r \geqslant 0$ by the relations

$$
\kappa_{i}(u)=1+\sum_{r \geqslant 0} \kappa_{i r} u^{-r-1},
$$

and

$$
\xi_{i}^{+}(u)=\sum_{r \geqslant 0} \xi_{i r}^{+} u^{-r-1}, \quad \xi_{i}^{-}(u)=\sum_{r \geqslant 0} \xi_{i r}^{-} u^{-r-1} .
$$

Theorem. The algebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is generated by the elements $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, N-1$ and $r \geqslant 0$, subject only to the relations:

Theorem. The algebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is generated by the elements $\kappa_{\text {ir }}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, N-1$ and $r \geqslant 0$, subject only to the relations:

$$
\begin{gathered}
{\left[\kappa_{i r}, \kappa_{j s}\right]=0,} \\
{\left[\xi_{i r}^{+}, \xi_{j s}^{-}\right]=\delta_{i j} \kappa_{i r+s},} \\
{\left[\kappa_{i 0}, \xi_{j s}^{ \pm}\right]= \pm\left(\alpha_{i}, \alpha_{j}\right) \xi_{j s}^{ \pm},} \\
{\left[\kappa_{i r+1}, \xi_{j s}^{ \pm}\right]-\left[\kappa_{i r}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\kappa_{i r} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \kappa_{i r}\right),} \\
{\left[\xi_{i r+1}^{ \pm}, \xi_{j s}^{ \pm}\right]-\left[\xi_{i r}^{ \pm}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\xi_{i r}^{ \pm} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \xi_{i r}^{ \pm}\right),} \\
\sum_{p \in \mathfrak{S}_{m}}\left[\xi_{i r_{p(1)}}^{ \pm},\left[\xi_{i r_{p(2)}}^{ \pm}, \ldots\left[\xi_{i r_{p(m)}}^{ \pm}, \xi_{j s}^{ \pm}\right] \ldots\right]\right]=0,
\end{gathered}
$$

with $i \neq j$ and $m=1-c_{i j}$ in the last relation.

Proof. The relations are deduced from the Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ in terms of the generating series.

Proof. The relations are deduced from the Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ in terms of the generating series.

This yields an epimorphism from the algebra $\widehat{\mathrm{Y}}\left(\mathfrak{s l}_{N}\right)$ defined in the theorem to the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$, which takes the generators $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$of $\widehat{\mathrm{Y}}\left(\mathfrak{s l}_{N}\right)$ to the elements of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ denoted by the same symbols.

Proof. The relations are deduced from the Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ in terms of the generating series.

This yields an epimorphism from the algebra $\widehat{\mathrm{Y}}\left(\mathfrak{s l}_{N}\right)$ defined in the theorem to the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$, which takes the generators $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$of $\widehat{\mathrm{Y}}\left(\mathfrak{s l}_{N}\right)$ to the elements of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ denoted by the same symbols.

The injectivity of the epimorphism follows from the observation that $\widehat{\mathrm{Y}}\left(\mathfrak{s l}_{N}\right)$ coincides with the subalgebra of $\widehat{\mathrm{Y}}\left(\mathfrak{g l}_{N}\right)$ which consists of the elements stable under all multiplication automorphisms arising from $T(u) \mapsto f(u) T(u)$.

## Yangians in arbitrary types

## Yangians in arbitrary types

Let $\mathfrak{a}$ be a simple Lie algebra over $\mathbb{C}$ of rank $n$.

## Yangians in arbitrary types

Let $\mathfrak{a}$ be a simple Lie algebra over $\mathbb{C}$ of rank $n$.

Let $C=\left[c_{i j}\right]_{i, j=1}^{n}$ be the associated Cartan matrix,

## Yangians in arbitrary types

Let $\mathfrak{a}$ be a simple Lie algebra over $\mathbb{C}$ of rank $n$.

Let $C=\left[c_{i j}\right]_{i, j=1}^{n}$ be the associated Cartan matrix,
and let $\alpha_{1}, \ldots, \alpha_{n}$ be the simple roots. They belong to a
Euclidean space with the inner product (, ).

Definition. The Yangian $\mathrm{Y}(\mathfrak{a})$ is the associative algebra generated by elements $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, n$ and $r \geqslant 0$, subject to the relations:

Definition. The Yangian $\mathrm{Y}(\mathfrak{a})$ is the associative algebra generated by elements $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, n$ and $r \geqslant 0$, subject to the relations:

$$
\begin{gathered}
{\left[\kappa_{i r}, \kappa_{j s}\right]=0,} \\
{\left[\xi_{i r}^{+}, \xi_{j s}^{-}\right]=\delta_{i j} \kappa_{i r+s},} \\
{\left[\kappa_{i 0}, \xi_{j s}^{ \pm}\right]= \pm\left(\alpha_{i}, \alpha_{j}\right) \xi_{j s}^{ \pm},} \\
{\left[\kappa_{i r+1}, \xi_{j s}^{ \pm}\right]-\left[\kappa_{i r}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\kappa_{i r} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \kappa_{i r}\right),} \\
{\left[\xi_{i r+1}^{ \pm}, \xi_{j s}^{ \pm}\right]-\left[\xi_{i r}^{ \pm}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\xi_{i r}^{ \pm} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \xi_{i r}^{ \pm}\right),} \\
\sum_{p \in \mathfrak{S}_{m}}\left[\xi_{i r_{p(1)}}^{ \pm}\left[\xi_{i r_{p(2)}}^{ \pm}, \ldots\left[\xi_{i r_{p(m)}}^{ \pm}, \xi_{j s}^{ \pm}\right] \ldots\right]\right]=0,
\end{gathered}
$$

with $i \neq j$ and $m=1-c_{i j}$ in the last relation.

