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Lecture 3

Key points from the last lecture.

I The Yangian Y(glN) is a Hopf algebra with coproduct

∆ : tij(u) 7→
N∑

k=1

tik(u)⊗ tkj(u),

the antipode

S : T(u) 7→ T−1(u),

and the counit ε : T(u) 7→ 1.
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I The coefficients d1, d2, . . . of the quantum determinant

qdet T(u) =
∑

p∈SN

sgn p · tp(1) 1(u) . . . tp(N)N(u− N + 1)

defined by

qdet T(u) = 1 + d1 u−1 + d2 u−2 + . . .

are algebraically independent and generate the center

ZY(glN) of the Yangian Y(glN).

I Under the coproduct we have

∆ : qdet T(u) 7→ qdet T(u)⊗ qdet T(u).
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Yangian for slN

Recall the automorphisms of Y(glN) defined by

µf : T(u) 7→ f (u) T(u),

where

f (u) ∈ 1 + u−1C [[u−1]].

Definition. The Yangian for slN is the subalgebra Y(slN) of

Y(glN) which consists of the elements stable under all

automorphisms µf .
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Theorem. We have the isomorphism

Y(glN) = ZY(glN)⊗ Y(slN).

In particular, the center of Y(slN) is trivial.

Proof. There exists a unique formal power series

d̃(u) = 1 + d̃1 u−1 + d̃2 u−2 + · · · ∈ ZY(glN)[[u−1]]

which satisfies

d̃(u) d̃(u− 1) . . . d̃(u− N + 1) = qdet T(u).
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Since

qdet T(u) =
∑

p∈SN

sgn p · tp(1) 1(u) . . . tp(N)N(u− N + 1),

we have

µf : qdet T(u) 7→ f (u) f (u− 1) . . . f (u− N + 1) qdet T(u).

Hence,

µf : d̃(u) 7→ f (u) d̃(u).

This implies that all coefficients of the series

t̃ij(u) = d̃(u)−1 tij(u)

belong to Y(slN).
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Now observe that tij(u) = d̃(u) t̃ij(u).

This implies that every

element of the Yangian Y(glN) can be presented as a

polynomial in d̃1, d̃2, . . . with coefficients in Y(slN).

To show that such presentation is unique, suppose on the

contrary, that for some minimal positive integer n there exists a

nonzero polynomial B with the coefficients in Y(slN) such that

B(d̃1, . . . , d̃n) = 0.

Act by the automorphism µf , where f (u) = 1 + cu−n and c ∈ C :

B(d̃1, . . . , d̃n + c) = 0

for every c ∈ C , contradiction.
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Corollary. The algebra Y(slN) is isomorphic to the quotient of

Y(glN) by the ideal generated by the elements d1, d2, . . . , i.e.,

Y(slN) ∼= Y(glN)/(qdet T(u) = 1).

Proof. Let I be the ideal of Y(glN) generated by the coefficients

d1, d2, . . . of qdet T(u).

The theorem implies the decomposition

Y(glN) = I⊕ Y(slN),

which proves the claim.
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Proposition. The subalgebra Y(slN) of Y(glN) is a Hopf algebra

whose coproduct, antipode and counit are obtained by

restricting those from Y(glN).

Proof. As we proved before,

∆ : qdet T(u) 7→ qdet T(u)⊗ qdet T(u).

Hence,

∆ : d̃(u) 7→ d̃(u)⊗ d̃(u).



8

Proposition. The subalgebra Y(slN) of Y(glN) is a Hopf algebra

whose coproduct, antipode and counit are obtained by

restricting those from Y(glN).

Proof. As we proved before,

∆ : qdet T(u) 7→ qdet T(u)⊗ qdet T(u).

Hence,

∆ : d̃(u) 7→ d̃(u)⊗ d̃(u).



8

Proposition. The subalgebra Y(slN) of Y(glN) is a Hopf algebra

whose coproduct, antipode and counit are obtained by

restricting those from Y(glN).

Proof. As we proved before,

∆ : qdet T(u) 7→ qdet T(u)⊗ qdet T(u).

Hence,

∆ : d̃(u) 7→ d̃(u)⊗ d̃(u).



9

Therefore,

∆ : d̃(u)−1tij(u) 7→
N∑

k=1

d̃(u)−1tik(u)⊗ d̃(u)−1tkj(u)

=

N∑
k=1

t̃ik(u)⊗ t̃kj(u).

This proves that the image of Y(slN) under the coproduct on

Y(glN) is contained in Y(slN)⊗ Y(slN).

The image of qdet T(u) under the antipode S is (qdet T(u))−1,

and so

S : d̃(u)−1 T(u) 7→ d̃(u) T−1(u).
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Drinfeld presentation

Consider the Yangian Y(gl2) first.

Apply the Gauss decomposition to the matrix T(u),t11(u) t12(u)

t21(u) t22(u)

 =

 1 0

f (u) 1

 h1(u) 0

0 h2(u)

 1 e(u)

0 1

 .
This reads

t11(u) = h1(u),

t12(u) = h1(u) e(u),

t21(u) = f (u) h1(u),

t22(u) = h2(u) + f (u) h1(u) e(u).
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Conversely,

h1(u) = t11(u),

e(u) = t11(u)−1 t12(u),

f (u) = t21(u) t11(u)−1,

h2(u) = t22(u)− t21(u) t11(u)−1 t12(u).

Proposition. The coefficients of the series e(u), f (u) and

k(u) = h1(u)−1 h2(u) belong to the subalgebra Y(sl2) of Y(gl2)

and generate this subalgebra.
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Proof. It suffices to show that the coefficients of the series

e(u), f (u) and k(u) together with the coefficients of qdet T(u)

generate Y(gl2).

This is because every element y ∈ Y(sl2) has a unique

presentation y = 1⊗ y in the decomposition

Y(gl2) = ZY(gl2)⊗ Y(sl2).

We have the relation

qdet T(u) = h1(u) h2(u− 1).
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Indeed,

h1(u) h2(u−1) = t11(u)
(

t22(u−1)−t21(u−1) t11(u−1)−1 t12(u−1)
)
,

so that the relation follows from

t11(u) t21(u− 1) = t21(u) t11(u− 1).

Hence,

h1(u) h1(u− 1) k(u− 1) = qdet T(u).

This shows that the coefficients of the series h1(u) and h2(u)

can be expressed in terms of those of k(u) and qdet T(u).
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Introduce the coefficients of the series by

e(u) =

∞∑
r=0

er u−r−1,

f (u) =
∞∑

r=0

fr u−r−1,

and

k(u) = 1 +
∞∑

r=0

kr u−r−1.
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Theorem. The Yangian Y(sl2) is isomorphic to the algebra with

generators er, fr and kr with r > 0 subject to the defining

relations

[kr, ks] = 0, [er, fs] = kr+s, [k0, er] = −2er, [k0, fr] = 2fr,

[er+1, es]− [er, es+1] = −er es − es er,

[fr+1, fs]− [fr, fs+1] = fr fs + fs fr,

[kr+1, es]− [kr, es+1] = −kr es − es kr,

[kr+1, fs]− [kr, fs+1] = kr fs + fs kr.



15

Theorem. The Yangian Y(sl2) is isomorphic to the algebra with

generators er, fr and kr with r > 0 subject to the defining

relations

[kr, ks] = 0, [er, fs] = kr+s, [k0, er] = −2er, [k0, fr] = 2fr,

[er+1, es]− [er, es+1] = −er es − es er,

[fr+1, fs]− [fr, fs+1] = fr fs + fs fr,

[kr+1, es]− [kr, es+1] = −kr es − es kr,

[kr+1, fs]− [kr, fs+1] = kr fs + fs kr.



15

Theorem. The Yangian Y(sl2) is isomorphic to the algebra with

generators er, fr and kr with r > 0 subject to the defining

relations

[kr, ks] = 0, [er, fs] = kr+s, [k0, er] = −2er, [k0, fr] = 2fr,

[er+1, es]− [er, es+1] = −er es − es er,

[fr+1, fs]− [fr, fs+1] = fr fs + fs fr,

[kr+1, es]− [kr, es+1] = −kr es − es kr,

[kr+1, fs]− [kr, fs+1] = kr fs + fs kr.



16

Proof. The first step is to derive the relations for the series e(u),

f (u) and k(u).

They have the form

[k(u), k(v)] = 0, [e(u), f (v)] =
k(u)− k(v)

u− v
,

and

[e(u), e(v)] =

(
e(u)− e(v)

)2

u− v
,

[f (u), f (v)] = −
(
f (u)− f (v)

)2

u− v
,

[k(u), e(v)] =

{
k(u), e(u)− e(v)

}
u− v

,

[k(u), f (v)] = −
{

k(u), f (u)− f (v)
}

u− v
,

where we used the notation {a, b} = ab + ba.
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Since

qdet T(u) = h1(u) h2(u− 1)

and

[h1(u), h1(v)] = [t11(u), t11(v)] = 0,

the coefficients of the series h1(u) and h2(u) pairwise commute.

This proves

[k(u), k(v)] = 0.
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Furthermore, by the defining relations,

[
t12(u), t12(v)

]
= 0,

and

(u− v)
[
t11(u), t12(v)

]
= t11(u) t12(v)− t11(v) t12(u).

Therefore,

(u− v)
[
t11(u)−1, t12(v)

]
= t11(u)−1 t11(v) t12(u) t11(u)−1 − t12(v) t11(u)−1.
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Hence, by calculating

[
e(u), e(v)

]
=
[
t11(u)−1 t12(u), t11(v)−1 t12(v)

]

we derive [
e(u), e(v)

]
=

(
e(u)− e(v)

)2

u− v
.

Use the observation that under the anti-automorphism

t : T(u) 7→ T t(u) we have

t : e(u) 7→ f (u), f (u) 7→ e(u), hi(u) 7→ hi(u)

for i = 1, 2.
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Proposition. Under the coproduct map ∆, we have

∆ : e(u) 7→ 1⊗ e(u) +

∞∑
r=0

(−1)re(u)r+1 ⊗ k(u) f (u + 1)r,

∆ : f (u) 7→ f (u)⊗ 1 +

∞∑
r=0

(−1)re(u + 1)r k(u) ⊗ f (u)r+1,

∆ : k(u) 7→
∞∑

r=0

(−1)r(r + 1) e(u + 1)r k(u)⊗ k(u) f (u + 1)r.

Proof. Recall that e(u) = t11(u)−1t12(u). We have

∆ : t11(u)−1t12(u) 7→
(
t11(u)⊗ t11(u) + t12(u)⊗ t21(u)

)−1

×
(
t11(u)⊗ t12(u) + t12(u)⊗ t22(u)

)
.
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Write

t11(u)⊗ t11(u) + t12(u)⊗ t21(u)

=
(
t11(u)⊗ t11(u)

)(
1 + e(u)⊗ f (u− 1)

)
,

where we used the relation

t11(u)−1t21(u) = t21(u− 1) t11(u− 1)−1 = f (u− 1).

Hence,

∆ : e(u) 7→
(
1 + e(u)⊗ f (u− 1)

)−1

×
(
1⊗ e(u) + e(u)⊗ t11(u)−1t22(u)

)
.
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We have

t11(u)−1t22(u) = k(u) + f (u− 1) e(u)

and so

∆ : e(u) 7→
(
1 + e(u)⊗ f (u− 1)

)−1

×
(
1⊗ e(u) + e(u)⊗ f (u− 1) e(u) + e(u)⊗ k(u)

)
which equals

1⊗ e(u) +
∞∑

r=0

(−1)re(u)r+1 ⊗ f (u− 1)r k(u).

Finally, note that

f (u− 1) k(u) = k(u) f (u + 1).
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J-presentation

Theorem. The Yangian Y(sl2) is isomorphic to the Hopf algebra

with six generators e, f , h, J(e), J(f ), J(h) subject to the defining

relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f ,

[x, J(y)] = J([x, y]), J(ax) = aJ(x),

where x, y ∈ {e, f , h}, a ∈ C , and

[
[J(e), J(f )], J(h)

]
=
(
J(e)f − e J(f )

)
h.
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The Hopf algebra structure is defined by

∆ : x 7→ x⊗ 1 + 1⊗ x, J(x) 7→ J(x)⊗ 1 + 1⊗ J(x) +
1
2

[x⊗ 1,C],

S : x 7→ −x, J(x) 7→ −J(x) + x,

ε : x 7→ 0, J(x) 7→ 0,

where

C = e⊗ f + f ⊗ e +
1
2

h⊗ h.
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Proof. Verify that the following map is a homomorphism:

e 7→ f0, f 7→ e0, h 7→ h0,

and
J(e) 7→ f1 −

1
4

(f0 h0 + h0 f0),

J(f ) 7→ e1 −
1
4

(e0 h0 + h0 e0),

J(h) 7→ h1 +
1
2

(e0 f0 + f0 e0 − h2
0).

To prove the kernel is trivial, use the associated graded

algebras gr Y(sl2) ∼= U(sl2[x]).
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Drinfeld presentation of Y(glN)

Apply the Gauss decomposition to the matrix

T(u) =


t11(u) t12(u) . . . t1N(u)

t21(u) t22(u) . . . t2N(u)

. . . . . . . . . . . .

tN1(u) tN2(u) . . . tNN(u)

 ,

to write

T(u) = F(u) H(u) E(u),

for lower-triangular, diagonal and upper-triangular matrices.
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These are uniquely determined matrices of the form

F(u) =


1 0 . . . 0

f21(u) 1 . . . 0
...

...
. . .

...

fN1(u) fN2(u) . . . 1

 ,

E(u) =


1 e12(u) . . . e1N(u)

0 1 . . . e2N(u)
...

...
. . .

...

0 0 . . . 1

 ,

and H(u) = diag
[
h1(u), . . . , hN(u)

]
.
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Set

ei(u) = ei i+1(u) and fi(u) = fi+1 i(u)

for i = 1, . . . ,N − 1.

Introduce the coefficients of the series by

ei(u) =

∞∑
r=1

e(r)i u−r and fi(u) =

∞∑
r=1

f (r)i u−r.

Also set

e◦i (u) =
∞∑

r=2

e(r)i u−r and f ◦i (u) =
∞∑

r=2

f (r)i u−r.
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Introduce the root data associated with the Lie algebra slN .

Let ε1, . . . , εN be an orthonormal basis of an Euclidean vector

space with the inner product ( , ).

The simple roots are the vectors α1, . . . , αN−1,

αi = εi − εi+1.

The Cartan matrix C = [cij] is defined by cij = (αi, αj).
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Theorem. The Yangian Y(glN) is generated by the coefficients

of the series hi(u) for i = 1, . . . ,N, and ei(u), fi(u) for

i = 1, . . . ,N − 1, subject only to the following relations:

[
hi(u), hj(v)

]
= 0,[

ei(u), fj(v)
]

= δi j
hi(u)−1hi+1(u)− hi(v)−1hi+1(v)

u− v
,

[
hi(u), ej(v)

]
= −(εi, αj)

hi(u)
(
ej(u)− ej(v)

)
u− v

,

[
hi(u), fj(v)

]
= (εi, αj)

(
fj(u)− fj(v)

)
hi(u)

u− v
.
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Moreover, [
ei(u), ei(v)

]
=

(
ei(u)− ei(v)

)2

u− v
,

[
fi(u), fi(v)

]
= −

(
fi(u)− fi(v)

)2

u− v
,

and for i < j we have

u
[
e◦i (u), ej(v)

]
− v
[
ei(u), e◦j (v)

]
= −(αi, αj) ei(u)ej(v),

u
[
f ◦i (u), fj(v)

]
− v
[
fi(u), f ◦j (v)

]
= (αi, αj) fj(v) fi(u).
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Finally, we have the Serre relations

∑
σ∈Sk

[
ei(uσ(1)),

[
ei(uσ(2)), . . . ,

[
ei(uσ(k)), ej(v)

]
. . .
]]

= 0,

∑
σ∈Sk

[
fi(uσ(1)),

[
fi(uσ(2)), . . . ,

[
fi(uσ(k)), fj(v)

]
. . .
]]

= 0,

for i 6= j with k = 1− cij.
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Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series hi(u), ei(u) and

fi(u) generate the algebra Y(glN).

Step 2. Show that all the relations hold in Y(glN). This will imply

that there is an epimorphism Ŷ(glN)→ Y(glN) from the abstract

algebra defined in the theorem.

Step 3. Show that the epimorphism is injective. This will imply

that there are no other relations.
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Step 1

Use quasideterminants of matrices over an arbitrary ring.

The ij-th quasideterminant |A|ij of an N × N matrix A is denoted

by boxing the entry aij,

|A|ij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1j . . . a1N

. . . . . .

ai1 . . . aij . . . aiN

. . . . . .

aN1 . . . aNj . . . aNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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If the matrix A is invertible and the (j, i) entry of A−1 is invertible,

then the quasideterminant is found by

|A|ij =
(
(A−1)ji

)−1
.

In particular,

|A|NN = aNN −
N−1∑
i,j=1

aNi
[
Ā−1]

ij ajN ,

where Ā = [aij]
N−1
i,j=1.

The quasideterminants are stable under permutations of rows

or columns.
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Example. We have∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣ =

∣∣∣∣∣∣c d

a b

∣∣∣∣∣∣ =

∣∣∣∣∣∣ d c

b a

∣∣∣∣∣∣ =

∣∣∣∣∣∣ b a

d c

∣∣∣∣∣∣ = d − c a−1b.

Indeed, if a b

c d

−1

=

a′ b′

c′ d ′

 ,
then

ab′ + bd ′ = 0 and cb′ + dd ′ = 1.

Hence

(d − c a−1b) d ′ = 1.
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Lemma. For any ` < N the map

ψ` : t◦ij(u) 7→

∣∣∣∣∣∣∣∣∣∣∣∣

t11(u) . . . t1`(u) t1j(u)

. . . . . . . . . . . .

t`1(u) . . . t``(u) t`j(u)

ti1(u) . . . ti`(u) tij(u)

∣∣∣∣∣∣∣∣∣∣∣∣
, `+ 1 6 i, j 6 N,

defines an injective homomorphism

Y◦(glN−`)→ Y(glN),

where the t◦ij(u) denote the generating series of

Y◦(glN−`) ∼= Y(glN−`).
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Proof. Recall that the map ω : T(u) 7→ T−1(−u) defines an

automorphism of Y(glN).

Write the block partition

T(u) =

a b

c d


according to the split N = `+ (N − `) of the row and column

numbers. Hence,

T−1(u) =

∗ ∗

∗ (d − c a−1b)−1

 .
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Now apply ω to the (N − `)× (N − `) submatrix to conclude that

the matrix elements of the matrix d − c a−1b satisfy the Yangian

defining relations.

However, its (i, j) entry coincides with ψ`
(
t◦ij(u)

)
.

The injectivity is verified by passing to the associated graded

algebras, where the ascending filtrations on the extended

Yangians are defined by setting deg t(r)ij = r − 1.



39

Now apply ω to the (N − `)× (N − `) submatrix to conclude that

the matrix elements of the matrix d − c a−1b satisfy the Yangian

defining relations.

However, its (i, j) entry coincides with ψ`
(
t◦ij(u)

)
.

The injectivity is verified by passing to the associated graded

algebras, where the ascending filtrations on the extended

Yangians are defined by setting deg t(r)ij = r − 1.



39

Now apply ω to the (N − `)× (N − `) submatrix to conclude that

the matrix elements of the matrix d − c a−1b satisfy the Yangian

defining relations.

However, its (i, j) entry coincides with ψ`
(
t◦ij(u)

)
.

The injectivity is verified by passing to the associated graded

algebras, where the ascending filtrations on the extended

Yangians are defined by setting deg t(r)ij = r − 1.



40

Lemma. We have the formulas for the Gaussian generators in

terms of quasideterminants:

hi(u) =

∣∣∣∣∣∣∣∣∣∣∣∣

t11(u) . . . t1 i−1(u) t1 i(u)
...

. . .
...

...

ti−1 1(u) . . . ti−1 i−1(u) ti−1 i(u)

ti1(u) . . . ti i−1(u) ti i(u)

∣∣∣∣∣∣∣∣∣∣∣∣
for i = 1, . . . ,N.
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Moreover,

eij(u) = hi(u)−1

∣∣∣∣∣∣∣∣∣∣∣∣

t11(u) . . . t1 i−1(u) t1 j(u)
...

. . .
...

...

ti−1 1(u) . . . ti−1 i−1(u) ti−1 j(u)

ti 1(u) . . . ti i−1(u) ti j(u)

∣∣∣∣∣∣∣∣∣∣∣∣

and

fji(u) =

∣∣∣∣∣∣∣∣∣∣∣∣

t11(u) . . . t1 i−1(u) t1 i(u)
...

. . .
...

...

ti−1 1(u) . . . ti−1 i−1(u) ti−1 i(u)

tj 1(u) . . . tj i−1(u) tj i(u)

∣∣∣∣∣∣∣∣∣∣∣∣
hi(u)−1

for 1 6 i < j 6 N.
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Lemma. Under the anti-automorphism t we have

t : eij(u) 7→ fji(u), fji(u) 7→ eij(u),

for i < j,

while hi(u) 7→ hi(u) for all i.

It follows from the Gauss decomposition that the algebra Y(glN)

is generated by the coefficients of the series hi(u) for

i = 1, . . . ,N together with eij(u) and fji(u) for 1 6 i < j 6 N.

On the other hand, by the lemma above,

e(1)i = t(1)i,i+1 and f (1)i = t(1)i+1,i.

Therefore, Step 1 is completed by noting that for any i < j,

ei, j+1(u) = [eij(u), e(1)j ] and fj+1,i(u) = [ f (1)j , fji(u)].
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i = 1, . . . ,N together with eij(u) and fji(u) for 1 6 i < j 6 N.

On the other hand, by the lemma above,

e(1)i = t(1)i,i+1 and f (1)i = t(1)i+1,i.

Therefore, Step 1 is completed by noting that for any i < j,

ei, j+1(u) = [eij(u), e(1)j ] and fj+1,i(u) = [ f (1)j , fji(u)].
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Step 2

The quantum comatrix T̂(u) is defined by

T̂(u) T(u− N + 1) = qdet T(u).

Proposition. The entries t̂ij(u) of the matrix T̂(u) are given by

t̂ij(u) = (−1)i+jt 1 ... ĵ ...N
1 ... î ...N

(u),

where the hats on the right hand side indicate the indices to be

omitted.
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Proof. By definition,

AN T1(u) . . . TN−1(u− N + 2) TN(u− N + 1) = AN qdet T(u).

Hence

AN T1(u) . . . TN−1(u− N + 2) = AN T̂N(u).

Taking the matrix elements we obtain the formula for t̂ij(u).
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By definition,

hN(u) =
[
T−1(u)NN

]−1
.

Since

T̂(u) T(u− N + 1) = qdet T(u),

we have

T−1(u) = T̂(u + N − 1)
(
qdet T(u + N − 1)

)−1
.

By taking the (N,N) entry, we get

hN(u) = t 1...N−1
1...N−1 (u + N − 1)−1 t 1...N

1...N(u + N − 1).
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Similarly,

hi(u) =
(

t 1... i−1
1... i−1(u + i− 1)

)−1 · t 1... i
1... i (u + i− 1),

fi(u) = t 1... i−1, i+1
1... i (u + i− 1) ·

(
t 1... i

1... i(u + i− 1)
)−1

,

ei(u) =
(

t 1... i
1... i (u + i− 1)

)−1 · t 1... i
1... i−1, i+1(u + i− 1).

Proposition. We have the decomposition

qdet T(u) = h1(u) h2(u− 1) . . . hN(u− N + 1).

The coefficients of all series hi(u) for i = 1, . . . ,N commute.

By employing the homomorphism ψ`, checking the remaining

relations reduces to two particular cases: Y(gl2) and Y(gl3).
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Step 3

Prove that the epimorphism Ŷ(glN)→ Y(glN) is injective.

We claim that the set of ordered monomials in h(r)i and e(r)ij , f
(r)
ji

(with i < j) is linearly independent in the Yangian Y(glN).

Indeed, the images of the elements h(r)i , e(r)ij and f (r)ji in the

(r − 1)-th component of the graded algebra gr ′Y(glN)

respectively correspond to the elements

Eii xr−1, Eij xr−1 and Eji xr−1

of the universal enveloping algebra U(glN [x]).

Hence the claim follows from the PBW theorem for U(glN [x]).
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For any 1 6 i < j 6 N define elements e(r)ij and f (r)ji of Ŷ(glN)

inductively by the relations e(r)i,i+1 = e(r)i , f (r)i+1,i = f (r)i and

e(r)i, j+1 = [e(r)ij , e(1)j ], f (r)j+1,i = [f (1)j , f (r)ji ], for j > i.

It is enough to prove that the algebra Ŷ(glN) is spanned by the

monomials in h(r)i , e(r)ij and f (r)ji taken in some fixed order.

Let ē (r)
ij be the image of e(r)ij in the (r − 1)-th component of the

graded algebra gr ′ Ŷ(glN).

Verify that these images satisfy

[ē (r)
ij , ē

(s)
kl ] = δkj ē (r+s−1)

il − δil ē (r+s−1)
kj .
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Let ē (r)
ij be the image of e(r)ij in the (r − 1)-th component of the

graded algebra gr ′ Ŷ(glN).
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Drinfeld presentation of Y(slN)

Define the series with coefficients in Y(slN) by

κi(u) = hi
(
u− (i− 1)/2

)−1 hi+1
(
u− (i− 1)/2

)
and

ξ+i (u) = fi
(
u− (i− 1)/2

)
, ξ−i (u) = ei

(
u− (i− 1)/2

)
for i = 1, . . . ,N − 1.
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Define the elements κir and ξ±ir with i = 1, . . . ,N − 1 and r > 0

by the relations

κi(u) = 1 +
∑
r>0

κir u−r−1,

and

ξ+i (u) =
∑
r>0

ξ+ir u−r−1, ξ−i (u) =
∑
r>0

ξ−ir u−r−1.
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Theorem. The algebra Y(slN) is generated by the elements κir

and ξ±ir with i = 1, . . . ,N − 1 and r > 0, subject only to the

relations:

[κi r, κj s] = 0,

[ξ+i r , ξ
−
j s ] = δij κi r+s,

[κi0, ξ
±
j s ] = ± (αi, αj) ξ

±
j s ,

[κi r+1, ξ
±
j s ]− [κi r, ξ

±
j s+1] = ±

(αi, αj)

2
(
κi r ξ

±
j s + ξ±j s κi r

)
,

[ξ±i r+1, ξ
±
j s ]− [ξ±i r , ξ

±
j s+1] = ±

(αi, αj)

2
(
ξ±i r ξ

±
j s + ξ±j s ξ

±
i r

)
,∑

p∈Sm

[ξ±i rp(1)
, [ξ±i rp(2)

, . . .[ξ±i rp(m)
, ξ±j s ] . . . ]] = 0,

with i 6= j and m = 1− cij in the last relation.
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Proof. The relations are deduced from the Drinfeld presentation

of Y(glN) in terms of the generating series.

This yields an epimorphism from the algebra Ŷ(slN) defined in

the theorem to the Yangian Y(slN), which takes the generators

κi r and ξ±i r of Ŷ(slN) to the elements of Y(slN) denoted by the

same symbols.

The injectivity of the epimorphism follows from the observation

that Ŷ(slN) coincides with the subalgebra of Ŷ(glN) which

consists of the elements stable under all multiplication

automorphisms arising from T(u) 7→ f (u)T(u).
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κi r and ξ±i r of Ŷ(slN) to the elements of Y(slN) denoted by the

same symbols.

The injectivity of the epimorphism follows from the observation
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Yangians in arbitrary types

Let a be a simple Lie algebra over C of rank n.

Let C = [cij]
n
i,j=1 be the associated Cartan matrix,

and let α1, . . . , αn be the simple roots. They belong to a

Euclidean space with the inner product ( , ).
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Definition. The Yangian Y(a) is the associative algebra

generated by elements κir and ξ±ir with i = 1, . . . , n and r > 0,

subject to the relations:
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−
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