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Lecture 4

Definition. A representation L of the Yangian Y(glN) is called a

highest weight representation if there exists a nonzero vector

ζ ∈ L such that L is generated by ζ and

tij(u) ζ = 0 for 1 6 i < j 6 N,

tii(u) ζ = λi(u) ζ for 1 6 i 6 N,

for some formal series

λi(u) = 1 + λ
(1)
i u−1 + λ

(2)
i u−2 + . . . , λ

(r)
i ∈ C .
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The vector ζ is called the highest vector of L, and the N-tuple

λ(u) =
(
λ1(u), . . . , λN(u)

)
is the highest weight of L.

In terms of the Drinfeld presentation, the conditions read

ei(u) ζ = 0 for 1 6 i 6 N − 1, and

hi(u) ζ = λi(u) ζ for 1 6 i 6 N.

The equivalence is clear from the formulas for ei(u) and hi(u);

hi(u) =

∣∣∣∣∣∣∣∣∣∣∣∣

t11(u) . . . t1 i−1(u) t1 i(u)
...

. . .
...

...

ti−1 1(u) . . . ti−1 i−1(u) ti−1 i(u)

ti1(u) . . . ti i−1(u) ti i(u)

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Definition. Let λ(u) =
(
λ1(u), . . . , λN(u)

)
be an arbitrary tuple of

formal series.

The Verma module M(λ(u)) is the quotient of Y(glN) by the left

ideal generated by all the coefficients of the series tij(u) for

1 6 i < j 6 N and tii(u)− λi(u) for 1 6 i 6 N.

The Verma module M(λ(u)) is a universal highest weight

representation of Y(glN) with the highest weight λ(u) and the

highest vector 1λ(u) which is the image of the element

1 ∈ Y(glN) in the quotient.
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The PBW theorem implies that given any order on the set of

generators t(r)
ji with 1 6 i < j 6 N and r > 1, the elements

t(r1)
j1i1 . . . t

(rm)
jmim 1λ(u), m > 0,

with ordered products, form a basis of M(λ(u)).

Proposition. Suppose that L is a highest weight representation

of Y(glN) with the highest weight λ(u) =
(
λ1(u), . . . , λN(u)

)
.

Then each coefficient of the quantum determinant qdet T(u)

acts on L as multiplication by a scalar determined by

qdet T(u)|L = λ1(u) . . . λN(u− N + 1).
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Proof. This is clear from the formula

qdet T(u) =
∑

p∈SN

sgn p · tp(1) 1(u) . . . tp(N) N(u− N + 1).

Identify the elements Eij ∈ glN with their images t(1)
ij in Y(glN)

under the embedding U(glN) ↪→ Y(glN)

and recall that

[Eij, tkl(u)] = δkj til(u)− δil tkj(u).
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In particular, we may regard M(λ(u)) as a glN-module.

For any N-tuple µ = (µ1, . . . , µN) of complex numbers, set

M(λ(u))µ = {η ∈ M(λ(u)) | Eii η = µi η, i = 1, . . . ,N}.

We call µ a weight of M(λ(u)) if M(λ(u))µ 6= 0.

We will identify µ with the element µ1ε1 + · · ·+ µNεN ∈ h∗, with

εi = E∗ii for the Cartan subalgebra h = 〈E11, . . . ,ENN〉.

If α and β are two weights, then α precedes β if β − α is a

Z+-linear combination of the N-tuples εi − εj with i < j.
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The sum of all proper submodules of the Verma module

M(λ(u)) is the unique maximal proper submodule of M(λ(u)).

Definition. The irreducible highest weight representation

L(λ(u)) of Y(glN) with the highest weight λ(u) is the quotient of

the Verma module M(λ(u)) by the unique maximal proper

submodule.

Theorem. Every finite-dimensional irreducible representation L

of the Yangian Y(glN) is isomorphic to a unique irreducible

highest weight representation L(λ(u)).
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Proof. Introduce the following subspace of L,

L0 = {ξ ∈ L | tij(u) ξ = 0, 1 6 i < j 6 N}.

We show first that L0 is nonzero. Consider the set of weights of

L, where L is regarded as a glN-module.

This set is finite and hence contains a maximal weight µ with

respect to the partial ordering.

The corresponding weight vector ξ belongs to L0, because the

weight of tij(u) ξ is µ+ εi − εj. By the maximality of µ, we must

have tij(u) ξ = 0 for i < j.
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Next, the subspace L0 is invariant with respect to the action of

all elements t(r)
kk .

Moreover, the elements t(r)
kk with k = 1, . . . ,N and r > 1 act on

L0 as pairwise commuting operators.

Hence, any simultaneous eigenvector ζ ∈ L0 for these

operators is the highest vector.
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Evaluation modules

Given an N-tuple of complex numbers λ = (λ1, . . . , λN) we will

denote by L(λ) the irreducible representation of the Lie algebra

glN with the highest weight λ.

So, L(λ) is generated by a nonzero vector ζ such that

Eij ζ = 0 for 1 6 i < j 6 N, and

Eii ζ = λi ζ for 1 6 i 6 N.

The representation L(λ) is finite-dimensional if and only if

λi − λi+1 ∈ Z+ for all i = 1, . . . ,N − 1.
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The evaluation homomorphism

ev : tij(u) 7→ δij + Eij u−1.

allows us to equip any L(λ) with a structure of Y(glN)-module.

We will keep the same notation L(λ) for this Y(glN)-module and

call it the evaluation module.

Note that L(λ) is a highest weight representation of the Yangian

with the highest vector ζ, and the components of the highest

weight are given by

λi(u) = 1 + λiu−1, i = 1, . . . ,N.
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Consider tensor product modules of the form

L(λ(1))⊗ L(λ(2))⊗ . . .⊗ L(λ(k)),

where each L(λ(m)) is an evaluation module with

λ(m) = (λ
(m)
1 , . . . , λ

(m)
N ) ∈ CN .

We let ζm denote the highest vector of L(λ(m)) and set

ζ = ζ1 ⊗ . . .⊗ ζk .

Proposition. The cyclic span Y(glN)ζ is a highest weight

representation with the highest vector ζ and the highest weight(
λ1(u), . . . , λN(u)

)
,

λi(u) = (1 + λ
(1)
i u−1)(1 + λ

(2)
i u−1) . . . (1 + λ

(k)
i u−1).
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Proof. We have

tij(u)
(
η1 ⊗ . . .⊗ ηk

)
=

∑
a1,..., ak−1

tia1(u) η1 ⊗ ta1a2(u) η2 ⊗ . . .⊗ tak−1j(u) ηk ,

summed over a1, . . . , ak−1 ∈ {1, . . . ,N}.

If i < j and for every m = 1, . . . , k we have ηm = ζm, then each

summand is zero because it contains a factor of the form
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Representations of Y(gl2)

Consider the irreducible highest weight representation L(λ(u))

of Y(gl2) with an arbitrary highest weight λ(u) =
(
λ1(u), λ2(u)

)
.

Proposition. If dim L(λ(u)) <∞, then there exists a formal

series

f (u) = 1 + f1 u−1 + f2 u−2 + . . . , fr ∈ C ,

such that f (u)λ1(u) and f (u)λ2(u) are polynomials in u−1.
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Proof. By twisting the action of Y(gl2) on L(λ(u)) by the

automorphism T(u) 7→ f (u) T(u) with f (u) = λ2(u)−1, we obtain

a module over Y(gl2) which is isomorphic to the irreducible

highest weight representation L(ν(u), 1) with

ν(u) = λ1(u)/λ2(u).

Let ζ denote the highest vector of L(ν(u), 1). Since this

representation is finite-dimensional, there exist coefficients

ci ∈ C with cm 6= 0 such that

ξ :=
m∑

i=1

ci t(i)
21 1λ(u) = 0.
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Then we have t(r)
12 ξ = 0 for all r > 1.

Write

ν(u) = 1 + ν(1)u−1 + ν(2)u−2 + . . . , ν(i) ∈ C .

By the defining relations,

t(r)
12 t(i)

21 1λ(u) =

min{r,i}∑
a=1

(
t(a−1)
22 t(r+i−a)

11 − t(r+i−a)
22 t(a−1)

11

)
1λ(u)

= ν(r+i−1) 1λ(u).

Hence, for all r > 1 we have the relations
m∑

i=1

ciν
(r+i−1) = 0.

They imply that for some coefficients bi ∈ C we have

ν(u)(c1 + c2 u + · · ·+ cm um−1) = b1 + b2 u + · · ·+ bm um−1.
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Thus, ν(u) is a rational function in u−1, so that taking f (u) to be

its denominator, we find that both f (u)ν(u) and f (u)1 are

polynomials in u−1.

By the proposition, it suffices to understand the representations

with the highest weights, whose components λ1(u) and λ2(u)

are polynomials in u−1.

Write the decompositions

λ1(u) = (1 + α1u−1) . . . (1 + αku−1),

λ2(u) = (1 + β1u−1) . . . (1 + βku−1),

where the constants αi and βi are complex numbers.
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For any α, β ∈ C consider the irreducible highest weight

representation L(α, β) of the Lie algebra gl2 and equip it with a

Y(gl2)-module structure.

Let ζ denote the highest vector of L(α, β). Then

E11 ζ = α ζ, E22 ζ = β ζ, E12 ζ = 0.

If α− β ∈ Z+, then the vectors (E21)rζ with r = 0, 1, . . . , α− β

form a basis of L(α, β) so that dim L(α, β) = α− β + 1.

If α− β /∈ Z+, then a basis of L(α, β) is formed by the vectors

(E21)rζ, where r runs over all nonnegative integers.
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Given the expansions

λ1(u) = (1 + α1u−1) . . . (1 + αku−1),

λ2(u) = (1 + β1u−1) . . . (1 + βku−1),

renumber the coefficients, if necessary to satisfy the following

condition for every i = 1, . . . , k − 1:

if the multiset

{αp − βq | i 6 p, q 6 k}

contains nonnegative integers, then αi − βi is minimal amongst

them.
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Proposition. If the condition holds, then the representation

L(λ1(u), λ2(u)) of Y(gl2) is isomorphic to the tensor product

module

L := L(α1, β1)⊗ L(α2, β2)⊗ . . .⊗ L(αk, βk).

Proof. Let ζi be the highest vector of L(αi, βi) for i = 1, . . . , k.

By the proposition above, the cyclic span Y(gl2)ζ of the vector

ζ = ζ1 ⊗ . . .⊗ ζk is a highest weight module with the highest

weight (λ1(u), λ2(u)). Therefore, the proposition will follow if we

prove that the tensor product module L is irreducible.
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Step 1. Show that any vector ξ ∈ L satisfying t12(u)ξ = 0 is

proportional to ζ.

Use induction on k and suppose that k > 2.

Write

ξ =

p∑
r=0

(E21)rζ1 ⊗ ξr, where ξr ∈ L(α2, β2)⊗ . . .⊗ L(αk, βk)

and p 6 α1 − β1 if this difference is in Z+.

We have

p∑
r=0

(
t11(u)(E21)rζ1 ⊗ t12(u)ξr + t12(u)(E21)rζ1 ⊗ t22(u)ξr

)
= 0.
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Taking the coefficient of (E21)pζ1 gives

(1 + (α1 − p)u−1) t12(u)ξp = 0,

implying t12(u)ξp = 0. By the induction hypothesis, the vector ξp

must be proportional to ζ2 ⊗ . . .⊗ ζk .

Therefore,

t22(u)ξp = (1 + β2u−1) . . . (1 + βku−1)ξp.

To complete Step 1, we show that p is zero.
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Suppose that p > 1. Then taking the coefficient of (E21)p−1ζ1 in

t12(u)ξ = 0 we derive

(1+(α1−p+1)u−1) t12(u)ξp−1+u−1 p(α1−β1−p+1) t22(u)ξp = 0.

Multiply by uk and set u = −α1 + p− 1 we obtain the relation

p(α1 − β1 − p + 1)(α1 − β2 − p + 1) . . . (α1 − βk − p + 1) = 0.

But this is impossible due to the conditions on the parameters

αi and βi. Thus, p = 0.
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Step 2. If M is a nonzero submodule of L, then M must contain

a nonzero vector ξ such that t12(u)ξ = 0.

The above argument shows that M contains the vector ζ. It

remains to prove that the cyclic span K = Y(gl2)ζ coincides

with L.

Use the dual Y(gl2)-module L∗ which is defined by

(yω)(η) = ω(κ(y) η) for y ∈ Y(gl2) and ω ∈ L∗, η ∈ L,

for the anti-automorphism

κ : tij(u) 7→ t3−i,3−j(−u).
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The dual module L∗ is isomorphic to the tensor product

L(−β1,−α1)⊗ . . .⊗ L(−βk,−αk).

If the submodule K = Y(gl2)ζ of L is proper, then its annihilator

Ann K = {ω ∈ L∗ | ω(η) = 0 for all η ∈ K}

is a nonzero submodule of L∗, which does not contain the

vector ζ∗1 ⊗ . . .⊗ ζ∗k .

However, this contradicts the claim verified in Step 1.
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Theorem. The irreducible highest weight representation

L(λ1(u), λ2(u)) of Y(gl2) is finite-dimensional if and only if there

exists a monic polynomial P(u) in u such that

λ1(u)

λ2(u)
=

P(u + 1)

P(u)
.

In this case P(u) is unique.

Notation. P(u) is called the Drinfeld polynomial.

Proof. By the propositions, if dim L(λ1(u), λ2(u)) <∞, then

λ1(u)

λ2(u)
=

(u + α1) . . . (u + αk)

(u + β1) . . . (u + βk)
,

and αi − βi ∈ Z+ for all i = 1, . . . , k.
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Then P(u) exists and given by

P(u) =

k∏
i=1

(u + βi)(u + βi + 1) . . . (u + αi − 1).

Conversely, if the relation holds for a polynomial

P(u) = (u + γ1) . . . (u + γp),

then set

µ1(u) = (1 + (γ1 + 1)u−1) . . . (1 + (γp + 1)u−1),

µ2(u) = (1 + γ1u−1) . . . (1 + γpu−1),

and consider the tensor product module

L = L(γ1 + 1, γ1)⊗ L(γ2 + 1, γ2)⊗ . . .⊗ L(γp + 1, γp).
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Corollary. The isomorphism classes of finite-dimensional

irreducible representations of the Yangian Y(sl2) are

parameterized by monic polynomials in u.

Every such representation is isomorphic to the restriction of a

Y(gl2)-module of the form

L(α1, β1)⊗ L(α2, β2)⊗ . . .⊗ L(αk, βk),

where each difference αi − βi is a positive integer.

Proof. Use the decomposition

Y(gl2) = ZY(gl2)⊗ Y(sl2).
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Representations of Y(glN)

Suppose that λ(u) is an N-tuple of formal series in u−1,

λ(u) = (λ1(u), . . . , λN(u)).

Theorem. The irreducible highest weight representation L(λ(u))

of the Yangian Y(glN) is finite-dimensional if and only if

λi(u)

λi+1(u)
=

Pi(u + 1)

Pi(u)
, i = 1, . . . ,N − 1,

for certain monic polynomials P1(u), . . . ,PN−1(u) in u.

Every tuple (P1(u), . . . ,PN−1(u)) arises in this way.
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Notation. The Pi(u) are called the Drinfeld polynomials.

Proof. For i = 1, . . . ,N − 1 let Yi be the subalgebra of Y(glN)

generated by the coefficients of the series tkl(u) with

k, l ∈ {i, i + 1}.

The cyclic span Yi ζ of the highest vector ζ of L(λ(u)) is a

highest weight representation of Y(gl2) with the highest weight

(λi(u), λi+1(u)). Apply the previous theorem for Y(gl2).



30

Notation. The Pi(u) are called the Drinfeld polynomials.

Proof. For i = 1, . . . ,N − 1 let Yi be the subalgebra of Y(glN)

generated by the coefficients of the series tkl(u) with

k, l ∈ {i, i + 1}.

The cyclic span Yi ζ of the highest vector ζ of L(λ(u)) is a

highest weight representation of Y(gl2) with the highest weight

(λi(u), λi+1(u)). Apply the previous theorem for Y(gl2).



30

Notation. The Pi(u) are called the Drinfeld polynomials.

Proof. For i = 1, . . . ,N − 1 let Yi be the subalgebra of Y(glN)

generated by the coefficients of the series tkl(u) with

k, l ∈ {i, i + 1}.

The cyclic span Yi ζ of the highest vector ζ of L(λ(u)) is a

highest weight representation of Y(gl2) with the highest weight

(λi(u), λi+1(u)).

Apply the previous theorem for Y(gl2).



30

Notation. The Pi(u) are called the Drinfeld polynomials.

Proof. For i = 1, . . . ,N − 1 let Yi be the subalgebra of Y(glN)

generated by the coefficients of the series tkl(u) with

k, l ∈ {i, i + 1}.

The cyclic span Yi ζ of the highest vector ζ of L(λ(u)) is a

highest weight representation of Y(gl2) with the highest weight

(λi(u), λi+1(u)). Apply the previous theorem for Y(gl2).



31

For the converse claim, note that if L(ν(u)) and L(µ(u)) are the

irreducible highest weight modules with the highest weights

ν(u) =
(
ν1(u), . . . , νN(u)

)
and µ(u) =

(
µ1(u), . . . , µN(u)

)
,

then the cyclic span Y(glN)(ζ ⊗ ζ ′) is a highest weight module

with the highest weight
(
ν1(u)µ1(u), . . . , νN(u)µN(u)

)
.

The cyclic span corresponds to the set of Drinfeld polynomials(
P1(u)Q1(u), . . . ,PN−1(u)QN−1(u)

)
, where the Pi(u) and Qi(u)

are the Drinfeld polynomials for L(ν(u)) and L(µ(u)),

respectively.
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Therefore, we only need to establish the sufficiency of the

conditions for the fundamental representations of Y(glN)

associated with the tuples of Drinfeld polynomials

(1, . . . , 1, u + a, 1, . . . , 1), a ∈ C .

Such a tuple is associated with the evaluation module L(λ),

where λ = (a + 1, . . . , a + 1, a, . . . , a), since

λj(u) =


1 + (a + 1) u−1 for j = 1, . . . , i,

1 + a u−1 for j = i + 1, . . . ,N.
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Recall the Drinfeld presentation of Y(slN): the generators are

κir and ξ±ir with i = 1, . . . ,N − 1 and r > 0, subject to the

defining relations:

[κi r, κj s] = 0,

[ξ+
i r , ξ

−
j s ] = δij κi r+s,

[κi0, ξ
±
j s ] = ± (αi, αj) ξ

±
j s ,

[κi r+1, ξ
±
j s ]− [κi r, ξ

±
j s+1] = ±

(αi, αj)

2
(
κi r ξ

±
j s + ξ±j s κi r

)
,

[ξ±i r+1, ξ
±
j s ]− [ξ±i r , ξ

±
j s+1] = ±

(αi, αj)

2
(
ξ±i r ξ

±
j s + ξ±j s ξ

±
i r

)
,∑

p∈Sm

[ξ±i rp(1)
, [ξ±i rp(2)

, . . .[ξ±i rp(m)
, ξ±j s ] . . . ]] = 0,

with i 6= j and m = 1− cij in the last relation.
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Corollary. Every finite-dimensional irreducible representation of

the Yangian Y(slN) contains a unique, up to a constant factor,

vector ζ 6= 0

such that

ξ+
i r ζ = 0 for all i = 1, . . . ,N − 1 and r > 0.

Moreover, this vector satisfies(
1 +

∞∑
r=0

κir u−r−1
)
ζ =

Qi(u + 1)

Qi(u)
ζ for i = 1, . . . ,N − 1,

where each Qi(u) is a monic polynomial in u.

The tuple of polynomials
(
Q1(u), . . . ,QN−1(u)

)
determines the

representation up to an isomorphism.
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Proof. We have the relations

κi(u) = 1 +
∑
r>0

κir u−r−1,

together with

ξ+
i (u) =

∑
r>0

ξ+
ir u−r−1, ξ−i (u) =

∑
r>0

ξ−ir u−r−1,

where

κi(u) = hi
(
u− (i− 1)/2

)−1 hi+1
(
u− (i− 1)/2

)
and

ξ+
i (u) = fi

(
u− (i− 1)/2

)
, ξ−i (u) = ei

(
u− (i− 1)/2

)
.
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Hence, on the highest vector ζ of L(λ(u)) we have

ξ−i (u) ζ = 0

and

κi
(
u + (i− 1)/2

)
ζ =

λi+1(u)

λi(u)
ζ =

Pi(u)

Pi(u + 1)
ζ

for i = 1, . . . ,N − 1.

Now use the automorphism of Y(slN) defined by

ξ+
i (u) 7→ ξ−i (−u), ξ−i (u) 7→ ξ+

i (−u), κi(u) 7→ κi(−u).
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Representations of Y(a)

Recall that the Yangian Y(a) is generated by elements κir and

ξ±ir with i = 1, . . . , n and r > 0, subject to the relations:
[κi r, κj s] = 0,

[ξ+
i r , ξ

−
j s ] = δij κi r+s,

[κi0, ξ
±
j s ] = ± (αi, αj) ξ

±
j s ,

[κi r+1, ξ
±
j s ]− [κi r, ξ

±
j s+1] = ±

(αi, αj)

2
(
κi r ξ

±
j s + ξ±j s κi r

)
,

[ξ±i r+1, ξ
±
j s ]− [ξ±i r , ξ

±
j s+1] = ±

(αi, αj)

2
(
ξ±i r ξ

±
j s + ξ±j s ξ

±
i r

)
,∑

p∈Sm

[ξ±i rp(1)
, [ξ±i rp(2)

, . . .[ξ±i rp(m)
, ξ±j s ] . . . ]] = 0,

with i 6= j and m = 1− cij in the last relation.
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Note that the subalgebra of Y(a) generated by the elements

κir and ξ±ir with a fixed i ∈ {1, . . . , n} and r > 0,

is isomorphic to the Yangian Y(sl2).

Namely, the coefficients of the series

κi(di u), ξ+
i (di u) and d−1

i ξ−i (di u)

with di = (αi, αi)/2 satisfy the Y(sl2) defining relations.
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39

Theorem. Every finite-dimensional irreducible representation of

the Yangian Y(a) contains a unique, up to a constant factor,

vector ζ 6= 0

such that

ξ+
i r ζ = 0 for all i = 1, . . . , n and r > 0.

Moreover, this vector satisfies(
1 +

∞∑
r=0

κir u−r−1
)
ζ =

Qi(u + di)

Qi(u)
ζ for i = 1, . . . , n,

where each Qi(u) is a monic polynomial in u.

The tuple of polynomials
(
Q1(u), . . . ,Qn(u)

)
determines the

representation up to an isomorphism.
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Yangian characters

Denote by PN the abelian group whose elements are the tuples

λ(u) =
(
λ1(u), . . . , λN(u)

)
where each λi(u) is a formal series in

u−1 with constant term 1 with respect to the component-wise

multiplication.

Consider the group ring Z [PN ] of the abelian group PN whose

elements are finite linear combinations of the form∑
mλ(u)[λ(u)], where mλ(u) ∈ Z .
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Definition. Suppose that V is a finite-dimensional

representation of the Yangian Y(glN).

For any λ(u) ∈ PN , the corresponding Gelfand–Tsetlin

subspace Vλ(u) consists of the vectors v ∈ V with the property

that for each i = 1, . . . ,N and each r > 1 there exists p > 1 such

that
(
h(r)

i − λ
(r)
i

)p v = 0.

Then the Gelfand–Tsetlin character of V is the element of

Z [PN ] defined by

ch V =
∑

λ(u)∈PN

(
dim Vλ(u)

)
[λ(u)].
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Multiplicativity property:

ch (V ⊗W) = ch V · ch W

for finite-dimensional representations V and W of Y(glN).

In particular, the character of the tensor product of evaluation

modules

L(λ(1))⊗ L(λ(2))⊗ . . .⊗ L(λ(k))

equals

ch L(λ(1)) · ch L(λ(2)) · · · ch L(λ(k)).
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Characters of evaluation modules

Consider the evaluation module L(λ) over Y(glN), where

λ = (λ1, . . . , λN) is a partition.

Identify λ with its Young diagram; for λ = (5, 4, 4, 2) we have

The content of the box α = (i, j) is c(α) = j− i.
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A semistandard λ-tableau T is obtained by writing the numbers

1, . . . ,N into the boxes of the diagram λ in such a way that the

elements in each row weakly increase while the elements in

each column strictly increase.

A semistandard tableau of shape λ = (5, 4, 4, 2):

1 1 1 2 2
2 2 3 3
3 4 5 5
4 5

By T (α) we denote the entry of T in the box α ∈ λ.
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Theorem. The Gelfand–Tsetlin character of the Y(glN)-module

L(λ) is given by

ch L(λ) =
∑
T

∏
α∈λ

xT (α), c(α),

summed over all semistandard λ-tableaux T , where

xi,a =
[(

1, . . . ,
u + a + i

u + a + i− 1
, . . . , 1

)]
, 1 6 i 6 N, a ∈ C .

Remark. The specialization xi,a 7→ xi yields

the Schur polynomial to recover the Weyl character formula.

Another specialization xi,a 7→ xi − bi+a produces

the factorial Schur polynomial associated with the sequence bi.
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Proof. The coefficients of the quantum determinant act on L(λ)

as scalar operators found from

qdet T(u)|L(λ) =
(
1 + λ1 u−1) . . . (1 + λN (u− N + 1)−1).

Since

qdet T(u) = h1(u) h2(u− 1) . . . hN(u− N + 1),

we can write

h1(u) h2(u− 1) . . . hN(u− N + 1)|L(λ) =
∏
α∈λ

u + c(α) + 1
u + c(α)

.
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Use the Gelfand–Tsetlin basis of L(λ) parameterized by the

semistandard λ-tableaux.

Such a tableau T can be viewed as the sequence of diagrams

Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛN = λ,

where Λk is the diagram which consists of the boxes occupied

by elements 6 k.

The semistandard λ-tableau T is obtained by placing the entry

k into each box of Λk/Λk−1.
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Example. For λ = (5, 4, 4, 2) and the tableau

1 1 1 2 2
2 2 3 3
3 4 5 5
4 5

we have the sequence

Λ1 = (3), Λ2 = (5, 2), Λ3 = (5, 4, 1),

Λ4 = (5, 4, 2, 1), Λ5 = λ.
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The diagrams Λi represent the rows of the corresponding

Gelfand–Tsetlin pattern:

5 4 4 2 0

5 4 2 1

5 4 1

5 2

3

associated with the chain of subalgebras

gl1 ⊂ gl2 ⊂ gl3 ⊂ gl4 ⊂ gl5.
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For any basis vector ζT ∈ L(λ) and any 1 6 k 6 N we have

h1(u) h2(u− 1) . . . hk(u− k + 1) ζT =
∏
α∈Λk

u + c(α) + 1
u + c(α)

ζT .

This implies

hk(u− k + 1) ζT =
∏

α∈Λk/Λk−1

u + c(α) + 1
u + c(α)

ζT .

The element of Z [PN ] corresponding to the action of hk(u) is

∏
α∈Λk/Λk−1

xk, c(α),

which yields the character formula.
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