Lecture 4

Lecture 4

Definition. A representation L of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\zeta \in L$ such that L is generated by ζ

Lecture 4

Definition. A representation L of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector
$\zeta \in L$ such that L is generated by ζ and

$$
\begin{array}{lll}
t_{i j}(u) \zeta=0 & \text { for } & 1 \leqslant i<j \leqslant N \\
t_{i i}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } & 1 \leqslant i \leqslant N
\end{array}
$$

Lecture 4

Definition. A representation L of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector
$\zeta \in L$ such that L is generated by ζ and

$$
\begin{array}{lll}
t_{i j}(u) \zeta=0 & \text { for } & 1 \leqslant i<j \leqslant N \\
t_{i i}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } & 1 \leqslant i \leqslant N
\end{array}
$$

for some formal series

$$
\lambda_{i}(u)=1+\lambda_{i}^{(1)} u^{-1}+\lambda_{i}^{(2)} u^{-2}+\ldots, \quad \lambda_{i}^{(r)} \in \mathbb{C} .
$$

The vector ζ is called the highest vector of L, and the N-tuple $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ is the highest weight of L.

The vector ζ is called the highest vector of L, and the N-tuple $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ is the highest weight of L.

In terms of the Drinfeld presentation, the conditions read

$$
\begin{array}{lll}
e_{i}(u) \zeta=0 & \text { for } & 1 \leqslant i \leqslant N-1, \quad \text { and } \\
h_{i}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

The vector ζ is called the highest vector of L, and the N-tuple $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ is the highest weight of L.

In terms of the Drinfeld presentation, the conditions read

$$
\begin{array}{lll}
e_{i}(u) \zeta=0 & \text { for } & 1 \leqslant i \leqslant N-1, \\
h_{i}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

The equivalence is clear from the formulas for $e_{i}(u)$ and $h_{i}(u)$;

The vector ζ is called the highest vector of L, and the N-tuple $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ is the highest weight of L.

In terms of the Drinfeld presentation, the conditions read

$$
\begin{array}{lll}
e_{i}(u) \zeta=0 & \text { for } & 1 \leqslant i \leqslant N-1, \quad \text { and } \\
h_{i}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

The equivalence is clear from the formulas for $e_{i}(u)$ and $h_{i}(u)$;

$$
h_{i}(u)=\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 i}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 i}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i i}(u)
\end{array}\right|
$$

Definition. Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series.

Definition. Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series.

The Verma module $M(\lambda(u))$ is the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for
$1 \leqslant i<j \leqslant N$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant N$.

Definition. Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series.

The Verma module $M(\lambda(u))$ is the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant N$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant N$.

The Verma module $M(\lambda(u))$ is a universal highest weight representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)$ and the highest vector $1_{\lambda(u)}$ which is the image of the element
$1 \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ in the quotient.

The PBW theorem implies that given any order on the set of generators $t_{j i}^{(r)}$ with $1 \leqslant i<j \leqslant N$ and $r \geqslant 1$, the elements

$$
t_{j_{1} i_{1}}^{\left(r_{1}\right)} \ldots t_{j_{m} i_{m}}^{\left(r_{m}\right)} 1_{\lambda(u)}, \quad m \geqslant 0
$$

with ordered products, form a basis of $M(\lambda(u))$.

The PBW theorem implies that given any order on the set of generators $t_{j i}^{(r)}$ with $1 \leqslant i<j \leqslant N$ and $r \geqslant 1$, the elements

$$
t_{j_{1} i_{1}}^{\left(r_{1}\right)} \ldots t_{j_{m} i_{m}}^{\left(r_{m}\right)} 1_{\lambda(u)}, \quad m \geqslant 0
$$

with ordered products, form a basis of $M(\lambda(u))$.

Proposition. Suppose that L is a highest weight representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$.

The PBW theorem implies that given any order on the set of generators $t_{j i}^{(r)}$ with $1 \leqslant i<j \leqslant N$ and $r \geqslant 1$, the elements

$$
t_{j_{1} i_{1}}^{\left(r_{1}\right)} \ldots t_{j_{m} i_{m}}^{\left(r_{m}\right)} 1_{\lambda(u)}, \quad m \geqslant 0
$$

with ordered products, form a basis of $M(\lambda(u))$.

Proposition. Suppose that L is a highest weight representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$.

Then each coefficient of the quantum determinant qdet $T(u)$ acts on L as multiplication by a scalar determined by

$$
\left.\operatorname{qdet} T(u)\right|_{L}=\lambda_{1}(u) \ldots \lambda_{N}(u-N+1) .
$$

Proof. This is clear from the formula

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{G}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

Proof. This is clear from the formula

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

Identify the elements $E_{i j} \in \mathfrak{g l}_{N}$ with their images $t_{i j}^{(1)}$ in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ under the embedding $\mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Proof. This is clear from the formula

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \ldots t_{p(N) N}(u-N+1)
$$

Identify the elements $E_{i j} \in \mathfrak{g l}_{N}$ with their images $t_{i j}^{(1)}$ in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ under the embedding $\mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ and recall that

$$
\left[E_{i j}, t_{k l}(u)\right]=\delta_{k j} t_{i l}(u)-\delta_{i l} t_{k j}(u)
$$

In particular, we may regard $M(\lambda(u))$ as a $\mathfrak{g l}_{N}$-module.

In particular, we may regard $M(\lambda(u))$ as a $\mathfrak{g l}_{N}$-module.

For any N-tuple $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ of complex numbers, set

$$
M(\lambda(u))_{\mu}=\left\{\eta \in M(\lambda(u)) \mid E_{i i} \eta=\mu_{i} \eta, \quad i=1, \ldots, N\right\} .
$$

In particular, we may regard $M(\lambda(u))$ as a $\mathfrak{g l}_{N}$-module.

For any N-tuple $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ of complex numbers, set

$$
M(\lambda(u))_{\mu}=\left\{\eta \in M(\lambda(u)) \mid E_{i i} \eta=\mu_{i} \eta, \quad i=1, \ldots, N\right\} .
$$

We call μ a weight of $M(\lambda(u))$ if $M(\lambda(u))_{\mu} \neq 0$.

In particular, we may regard $M(\lambda(u))$ as a $\mathfrak{g l}_{N}$-module.

For any N-tuple $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ of complex numbers, set

$$
M(\lambda(u))_{\mu}=\left\{\eta \in M(\lambda(u)) \mid E_{i i} \eta=\mu_{i} \eta, \quad i=1, \ldots, N\right\} .
$$

We call μ a weight of $M(\lambda(u))$ if $M(\lambda(u))_{\mu} \neq 0$.

We will identify μ with the element $\mu_{1} \varepsilon_{1}+\cdots+\mu_{N} \varepsilon_{N} \in \mathfrak{h}^{*}$, with
$\varepsilon_{i}=E_{i i}^{*}$ for the Cartan subalgebra $\mathfrak{h}=\left\langle E_{11}, \ldots, E_{N N}\right\rangle$.

In particular, we may regard $M(\lambda(u))$ as a $\mathfrak{g l}_{N}$-module.

For any N-tuple $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ of complex numbers, set

$$
M(\lambda(u))_{\mu}=\left\{\eta \in M(\lambda(u)) \mid E_{i i} \eta=\mu_{i} \eta, \quad i=1, \ldots, N\right\} .
$$

We call μ a weight of $M(\lambda(u))$ if $M(\lambda(u))_{\mu} \neq 0$.

We will identify μ with the element $\mu_{1} \varepsilon_{1}+\cdots+\mu_{N} \varepsilon_{N} \in \mathfrak{h}^{*}$, with
$\varepsilon_{i}=E_{i i}^{*}$ for the Cartan subalgebra $\mathfrak{h}=\left\langle E_{11}, \ldots, E_{N N}\right\rangle$.

If α and β are two weights, then α precedes β if $\beta-\alpha$ is a
\mathbb{Z}_{+}-linear combination of the N-tuples $\varepsilon_{i}-\varepsilon_{j}$ with $i<j$.

The sum of all proper submodules of the Verma module $M(\lambda(u))$ is the unique maximal proper submodule of $M(\lambda(u))$.

The sum of all proper submodules of the Verma module $M(\lambda(u))$ is the unique maximal proper submodule of $M(\lambda(u))$.

Definition. The irreducible highest weight representation
$L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)$ is the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

The sum of all proper submodules of the Verma module $M(\lambda(u))$ is the unique maximal proper submodule of $M(\lambda(u))$.

Definition. The irreducible highest weight representation
$L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)$ is the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation L of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

Proof. Introduce the following subspace of L,

$$
L^{0}=\left\{\xi \in L \mid t_{i j}(u) \xi=0, \quad 1 \leqslant i<j \leqslant N\right\}
$$

Proof. Introduce the following subspace of L,

$$
L^{0}=\left\{\xi \in L \mid t_{i j}(u) \xi=0, \quad 1 \leqslant i<j \leqslant N\right\} .
$$

We show first that L^{0} is nonzero. Consider the set of weights of L, where L is regarded as a $\mathfrak{g l}_{N}$-module.

Proof. Introduce the following subspace of L,

$$
L^{0}=\left\{\xi \in L \mid t_{i j}(u) \xi=0, \quad 1 \leqslant i<j \leqslant N\right\}
$$

We show first that L^{0} is nonzero. Consider the set of weights of L, where L is regarded as a $\mathfrak{g l}_{N}$-module.

This set is finite and hence contains a maximal weight μ with respect to the partial ordering.

Proof. Introduce the following subspace of L,

$$
L^{0}=\left\{\xi \in L \mid t_{i j}(u) \xi=0, \quad 1 \leqslant i<j \leqslant N\right\}
$$

We show first that L^{0} is nonzero. Consider the set of weights of L, where L is regarded as a $\mathfrak{g l}_{N}$-module.

This set is finite and hence contains a maximal weight μ with respect to the partial ordering.

The corresponding weight vector ξ belongs to L^{0}, because the weight of $t_{i j}(u) \xi$ is $\mu+\varepsilon_{i}-\varepsilon_{j}$. By the maximality of μ, we must have $t_{i j}(u) \xi=0$ for $i<j$.

Next, the subspace L^{0} is invariant with respect to the action of all elements $t_{k k}^{(r)}$.

Next, the subspace L^{0} is invariant with respect to the action of all elements $t_{k k}^{(r)}$.

Moreover, the elements $t_{k k}^{(r)}$ with $k=1, \ldots, N$ and $r \geqslant 1$ act on L^{0} as pairwise commuting operators.

Next, the subspace L^{0} is invariant with respect to the action of all elements $t_{k k}^{(r)}$.

Moreover, the elements $t_{k k}^{(r)}$ with $k=1, \ldots, N$ and $r \geqslant 1$ act on L^{0} as pairwise commuting operators.

Hence, any simultaneous eigenvector $\zeta \in L^{0}$ for these operators is the highest vector.

Evaluation modules

Evaluation modules

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ we will denote by $L(\lambda)$ the irreducible representation of the Lie algebra $\mathfrak{g l}_{N}$ with the highest weight λ.

Evaluation modules

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ we will denote by $L(\lambda)$ the irreducible representation of the Lie algebra $\mathfrak{g l}_{N}$ with the highest weight λ.

So, $L(\lambda)$ is generated by a nonzero vector ζ such that

$$
\begin{array}{lll}
E_{i j} \zeta=0 & \text { for } & 1 \leqslant i<j \leqslant N, \quad \text { and } \\
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

Evaluation modules

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ we will denote by $L(\lambda)$ the irreducible representation of the Lie algebra $\mathfrak{g l}_{N}$ with the highest weight λ.

So, $L(\lambda)$ is generated by a nonzero vector ζ such that

$$
\begin{array}{lll}
E_{i j} \zeta=0 & \text { for } & 1 \leqslant i<j \leqslant N, \quad \text { and } \\
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

The representation $L(\lambda)$ is finite-dimensional if and only if $\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}$for all $i=1, \ldots, N-1$.

The evaluation homomorphism

$$
\mathrm{ev}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

allows us to equip any $L(\lambda)$ with a structure of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module.

The evaluation homomorphism

$$
\mathrm{ev}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

allows us to equip any $L(\lambda)$ with a structure of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module.

We will keep the same notation $L(\lambda)$ for this $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module and call it the evaluation module.

The evaluation homomorphism

$$
\mathrm{ev}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

allows us to equip any $L(\lambda)$ with a structure of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module.

We will keep the same notation $L(\lambda)$ for this $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module and call it the evaluation module.

Note that $L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ, and the components of the highest weight are given by

$$
\lambda_{i}(u)=1+\lambda_{i} u^{-1}, \quad i=1, \ldots, N
$$

Consider tensor product modules of the form

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

Consider tensor product modules of the form

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

where each $L\left(\lambda^{(m)}\right)$ is an evaluation module with
$\lambda^{(m)}=\left(\lambda_{1}^{(m)}, \ldots, \lambda_{N}^{(m)}\right) \in \mathbb{C}^{N}$.

Consider tensor product modules of the form

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

where each $L\left(\lambda^{(m)}\right)$ is an evaluation module with
$\lambda^{(m)}=\left(\lambda_{1}^{(m)}, \ldots, \lambda_{N}^{(m)}\right) \in \mathbb{C}^{N}$.
We let ζ_{m} denote the highest vector of $L\left(\lambda^{(m)}\right)$ and set

$$
\zeta=\zeta_{1} \otimes \ldots \otimes \zeta_{k}
$$

Consider tensor product modules of the form

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

where each $L\left(\lambda^{(m)}\right)$ is an evaluation module with
$\lambda^{(m)}=\left(\lambda_{1}^{(m)}, \ldots, \lambda_{N}^{(m)}\right) \in \mathbb{C}^{N}$.
We let ζ_{m} denote the highest vector of $L\left(\lambda^{(m)}\right)$ and set

$$
\zeta=\zeta_{1} \otimes \ldots \otimes \zeta_{k}
$$

Proposition. The cyclic span $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \zeta$ is a highest weight representation with the highest vector ζ and the highest weight
$\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$,

Consider tensor product modules of the form

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

where each $L\left(\lambda^{(m)}\right)$ is an evaluation module with
$\lambda^{(m)}=\left(\lambda_{1}^{(m)}, \ldots, \lambda_{N}^{(m)}\right) \in \mathbb{C}^{N}$.
We let ζ_{m} denote the highest vector of $L\left(\lambda^{(m)}\right)$ and set

$$
\zeta=\zeta_{1} \otimes \ldots \otimes \zeta_{k}
$$

Proposition. The cyclic span $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \zeta$ is a highest weight representation with the highest vector ζ and the highest weight
$\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$,

$$
\lambda_{i}(u)=\left(1+\lambda_{i}^{(1)} u^{-1}\right)\left(1+\lambda_{i}^{(2)} u^{-1}\right) \ldots\left(1+\lambda_{i}^{(k)} u^{-1}\right)
$$

Proof. We have

$$
\begin{aligned}
t_{i j}(u)\left(\eta_{1} \otimes\right. & \left.\ldots \otimes \eta_{k}\right) \\
& =\sum_{a_{1}, \ldots, a_{k-1}} t_{i a_{1}}(u) \eta_{1} \otimes t_{a_{1} a_{2}}(u) \eta_{2} \otimes \ldots \otimes t_{a_{k-1} j}(u) \eta_{k}
\end{aligned}
$$

summed over $a_{1}, \ldots, a_{k-1} \in\{1, \ldots, N\}$.

Proof. We have

$$
\begin{aligned}
t_{i j}(u)\left(\eta_{1} \otimes\right. & \left.\ldots \otimes \eta_{k}\right) \\
& =\sum_{a_{1}, \ldots, a_{k-1}} t_{i a_{1}}(u) \eta_{1} \otimes t_{a_{1} a_{2}}(u) \eta_{2} \otimes \ldots \otimes t_{a_{k-1} j}(u) \eta_{k}
\end{aligned}
$$

summed over $a_{1}, \ldots, a_{k-1} \in\{1, \ldots, N\}$.

If $i<j$ and for every $m=1, \ldots, k$ we have $\eta_{m}=\zeta_{m}$, then each summand is zero because it contains a factor of the form $t_{k l}(u) \zeta_{m}$ with $k<l$, which is zero.

Proof. We have

$$
\begin{aligned}
t_{i j}(u)\left(\eta_{1} \otimes\right. & \left.\ldots \otimes \eta_{k}\right) \\
& =\sum_{a_{1}, \ldots, a_{k-1}} t_{i a_{1}}(u) \eta_{1} \otimes t_{a_{1} a_{2}}(u) \eta_{2} \otimes \ldots \otimes t_{a_{k-1} j}(u) \eta_{k}
\end{aligned}
$$

summed over $a_{1}, \ldots, a_{k-1} \in\{1, \ldots, N\}$.

If $i<j$ and for every $m=1, \ldots, k$ we have $\eta_{m}=\zeta_{m}$, then each summand is zero because it contains a factor of the form $t_{k l}(u) \zeta_{m}$ with $k<l$, which is zero.

Similarly, if $i=j$, then the only nonzero summand corresponds to the case where each index a_{m} equals i.

Representations of $\mathrm{Y}\left(\mathfrak{g h}_{2}\right)$

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$

Consider the irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ with an arbitrary highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$.

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$

Consider the irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ with an arbitrary highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$.

Proposition. If $\operatorname{dim} L(\lambda(u))<\infty$, then there exists a formal series

$$
f(u)=1+f_{1} u^{-1}+f_{2} u^{-2}+\ldots, \quad f_{r} \in \mathbb{C},
$$

such that $f(u) \lambda_{1}(u)$ and $f(u) \lambda_{2}(u)$ are polynomials in u^{-1}.

Proof. By twisting the action of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ on $L(\lambda(u))$ by the automorphism $T(u) \mapsto f(u) T(u)$ with $f(u)=\lambda_{2}(u)^{-1}$, we obtain a module over $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ which is isomorphic to the irreducible highest weight representation $L(\nu(u), 1)$ with $\nu(u)=\lambda_{1}(u) / \lambda_{2}(u)$.

Proof. By twisting the action of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ on $L(\lambda(u))$ by the automorphism $T(u) \mapsto f(u) T(u)$ with $f(u)=\lambda_{2}(u)^{-1}$, we obtain a module over $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ which is isomorphic to the irreducible highest weight representation $L(\nu(u), 1)$ with $\nu(u)=\lambda_{1}(u) / \lambda_{2}(u)$.

Let ζ denote the highest vector of $L(\nu(u), 1)$. Since this representation is finite-dimensional, there exist coefficients
$c_{i} \in \mathbb{C}$ with $c_{m} \neq 0$ such that

$$
\xi:=\sum_{i=1}^{m} c_{i} t_{21}^{(i)} 1_{\lambda(u)}=0
$$

Then we have $t_{12}^{(r)} \xi=0$ for all $r \geqslant 1$.

Then we have $t_{12}^{(r)} \xi=0$ for all $r \geqslant 1$. Write

$$
\nu(u)=1+\nu^{(1)} u^{-1}+\nu^{(2)} u^{-2}+\ldots, \quad \nu^{(i)} \in \mathbb{C} .
$$

Then we have $t_{12}^{(r)} \xi=0$ for all $r \geqslant 1$. Write

$$
\nu(u)=1+\nu^{(1)} u^{-1}+\nu^{(2)} u^{-2}+\ldots, \quad \nu^{(i)} \in \mathbb{C}
$$

By the defining relations,

$$
\begin{array}{r}
t_{12}^{(r)} t_{21}^{(i)} 1_{\lambda(u)}=\sum_{a=1}^{\min \{r, i\}}\left(t_{22}^{(a-1)} t_{11}^{(r+i-a)}-t_{22}^{(r+i-a)} t_{11}^{(a-1)}\right) 1_{\lambda(u)} \\
=\nu^{(r+i-1)} 1_{\lambda(u)}
\end{array}
$$

Then we have $t_{12}^{(r)} \xi=0$ for all $r \geqslant 1$. Write

$$
\nu(u)=1+\nu^{(1)} u^{-1}+\nu^{(2)} u^{-2}+\ldots, \quad \nu^{(i)} \in \mathbb{C} .
$$

By the defining relations,

$$
\begin{array}{r}
t_{12}^{(r)} t_{21}^{(i)} 1_{\lambda(u)}=\sum_{a=1}^{\min \{r, i\}}\left(t_{22}^{(a-1)} t_{11}^{(r+i-a)}-t_{22}^{(r+i-a)} t_{11}^{(a-1)}\right) 1_{\lambda(u)} \\
=\nu^{(r+i-1)} 1_{\lambda(u)}
\end{array}
$$

Hence, for all $r \geqslant 1$ we have the relations

$$
\sum_{i=1}^{m} c_{i} \nu^{(r+i-1)}=0
$$

Then we have $t_{12}^{(r)} \xi=0$ for all $r \geqslant 1$. Write

$$
\nu(u)=1+\nu^{(1)} u^{-1}+\nu^{(2)} u^{-2}+\ldots, \quad \nu^{(i)} \in \mathbb{C}
$$

By the defining relations,

$$
\begin{array}{r}
t_{12}^{(r)} t_{21}^{(i)} 1_{\lambda(u)}=\sum_{a=1}^{\min \{r, i\}}\left(t_{22}^{(a-1)} t_{11}^{(r+i-a)}-t_{22}^{(r+i-a)} t_{11}^{(a-1)}\right) 1_{\lambda(u)} \\
=\nu^{(r+i-1)} 1_{\lambda(u)}
\end{array}
$$

Hence, for all $r \geqslant 1$ we have the relations

$$
\sum_{i=1}^{m} c_{i} \nu^{(r+i-1)}=0
$$

They imply that for some coefficients $b_{i} \in \mathbb{C}$ we have

$$
\nu(u)\left(c_{1}+c_{2} u+\cdots+c_{m} u^{m-1}\right)=b_{1}+b_{2} u+\cdots+b_{m} u^{m-1}
$$

Thus, $\nu(u)$ is a rational function in u^{-1}, so that taking $f(u)$ to be its denominator, we find that both $f(u) \nu(u)$ and $f(u) 1$ are polynomials in u^{-1}.

Thus, $\nu(u)$ is a rational function in u^{-1}, so that taking $f(u)$ to be its denominator, we find that both $f(u) \nu(u)$ and $f(u) 1$ are polynomials in u^{-1}.

By the proposition, it suffices to understand the representations with the highest weights, whose components $\lambda_{1}(u)$ and $\lambda_{2}(u)$ are polynomials in u^{-1}.

Thus, $\nu(u)$ is a rational function in u^{-1}, so that taking $f(u)$ to be its denominator, we find that both $f(u) \nu(u)$ and $f(u) 1$ are polynomials in u^{-1}.

By the proposition, it suffices to understand the representations with the highest weights, whose components $\lambda_{1}(u)$ and $\lambda_{2}(u)$ are polynomials in u^{-1}.

Write the decompositions

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{k} u^{-1}\right), \\
& \lambda_{2}(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right)
\end{aligned}
$$

Thus, $\nu(u)$ is a rational function in u^{-1}, so that taking $f(u)$ to be its denominator, we find that both $f(u) \nu(u)$ and $f(u) 1$ are polynomials in u^{-1}.

By the proposition, it suffices to understand the representations with the highest weights, whose components $\lambda_{1}(u)$ and $\lambda_{2}(u)$ are polynomials in u^{-1}.

Write the decompositions

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{k} u^{-1}\right), \\
& \lambda_{2}(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right),
\end{aligned}
$$

where the constants α_{i} and β_{i} are complex numbers.

For any $\alpha, \beta \in \mathbb{C}$ consider the irreducible highest weight representation $L(\alpha, \beta)$ of the Lie algebra $\mathfrak{g l}_{2}$ and equip it with a $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module structure.

For any $\alpha, \beta \in \mathbb{C}$ consider the irreducible highest weight representation $L(\alpha, \beta)$ of the Lie algebra $\mathfrak{g l}_{2}$ and equip it with a $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module structure.

Let ζ denote the highest vector of $L(\alpha, \beta)$. Then

$$
E_{11} \zeta=\alpha \zeta, \quad E_{22} \zeta=\beta \zeta, \quad E_{12} \zeta=0
$$

For any $\alpha, \beta \in \mathbb{C}$ consider the irreducible highest weight representation $L(\alpha, \beta)$ of the Lie algebra $\mathfrak{g l}_{2}$ and equip it with a $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module structure.

Let ζ denote the highest vector of $L(\alpha, \beta)$. Then

$$
E_{11} \zeta=\alpha \zeta, \quad E_{22} \zeta=\beta \zeta, \quad E_{12} \zeta=0
$$

If $\alpha-\beta \in \mathbb{Z}_{+}$, then the vectors $\left(E_{21}\right)^{r} \zeta$ with $r=0,1, \ldots, \alpha-\beta$ form a basis of $L(\alpha, \beta)$ so that $\operatorname{dim} L(\alpha, \beta)=\alpha-\beta+1$.

For any $\alpha, \beta \in \mathbb{C}$ consider the irreducible highest weight representation $L(\alpha, \beta)$ of the Lie algebra $\mathfrak{g l}_{2}$ and equip it with a $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module structure.

Let ζ denote the highest vector of $L(\alpha, \beta)$. Then

$$
E_{11} \zeta=\alpha \zeta, \quad E_{22} \zeta=\beta \zeta, \quad E_{12} \zeta=0
$$

If $\alpha-\beta \in \mathbb{Z}_{+}$, then the vectors $\left(E_{21}\right)^{r} \zeta$ with $r=0,1, \ldots, \alpha-\beta$ form a basis of $L(\alpha, \beta)$ so that $\operatorname{dim} L(\alpha, \beta)=\alpha-\beta+1$.

If $\alpha-\beta \notin \mathbb{Z}_{+}$, then a basis of $L(\alpha, \beta)$ is formed by the vectors
$\left(E_{21}\right)^{r} \zeta$, where r runs over all nonnegative integers.

Given the expansions

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{k} u^{-1}\right), \\
& \lambda_{2}(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right)
\end{aligned}
$$

Given the expansions

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{k} u^{-1}\right), \\
& \lambda_{2}(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right),
\end{aligned}
$$

renumber the coefficients, if necessary to satisfy the following condition for every $i=1, \ldots, k-1$:

Given the expansions

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{k} u^{-1}\right), \\
& \lambda_{2}(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right),
\end{aligned}
$$

renumber the coefficients, if necessary to satisfy the following
condition for every $i=1, \ldots, k-1$:
if the multiset

$$
\left\{\alpha_{p}-\beta_{q} \mid i \leqslant p, q \leqslant k\right\}
$$

contains nonnegative integers, then $\alpha_{i}-\beta_{i}$ is minimal amongst them.

Proposition. If the condition holds, then the representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is isomorphic to the tensor product module

$$
L:=L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)
$$

Proposition. If the condition holds, then the representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is isomorphic to the tensor product module

$$
L:=L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)
$$

Proof. Let ζ_{i} be the highest vector of $L\left(\alpha_{i}, \beta_{i}\right)$ for $i=1, \ldots, k$.

Proposition. If the condition holds, then the representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is isomorphic to the tensor product module

$$
L:=L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)
$$

Proof. Let ζ_{i} be the highest vector of $L\left(\alpha_{i}, \beta_{i}\right)$ for $i=1, \ldots, k$.

By the proposition above, the cyclic span $\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ of the vector $\zeta=\zeta_{1} \otimes \ldots \otimes \zeta_{k}$ is a highest weight module with the highest weight $\left(\lambda_{1}(u), \lambda_{2}(u)\right)$.

Proposition. If the condition holds, then the representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is isomorphic to the tensor product module

$$
L:=L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)
$$

Proof. Let ζ_{i} be the highest vector of $L\left(\alpha_{i}, \beta_{i}\right)$ for $i=1, \ldots, k$.

By the proposition above, the cyclic span $\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ of the vector $\zeta=\zeta_{1} \otimes \ldots \otimes \zeta_{k}$ is a highest weight module with the highest weight $\left(\lambda_{1}(u), \lambda_{2}(u)\right)$. Therefore, the proposition will follow if we prove that the tensor product module L is irreducible.

Step 1. Show that any vector $\xi \in L$ satisfying $t_{12}(u) \xi=0$ is proportional to ζ.

Step 1. Show that any vector $\xi \in L$ satisfying $t_{12}(u) \xi=0$ is proportional to ζ. Use induction on k and suppose that $k \geqslant 2$.

Step 1. Show that any vector $\xi \in L$ satisfying $t_{12}(u) \xi=0$ is proportional to ζ. Use induction on k and suppose that $k \geqslant 2$.

Write
$\xi=\sum_{r=0}^{p}\left(E_{21}\right)^{r} \zeta_{1} \otimes \xi_{r}, \quad$ where $\quad \xi_{r} \in L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)$ and $p \leqslant \alpha_{1}-\beta_{1}$ if this difference is in \mathbb{Z}_{+}.

Step 1. Show that any vector $\xi \in L$ satisfying $t_{12}(u) \xi=0$ is proportional to ζ. Use induction on k and suppose that $k \geqslant 2$.

Write
$\xi=\sum_{r=0}^{p}\left(E_{21}\right)^{r} \zeta_{1} \otimes \xi_{r}, \quad$ where $\quad \xi_{r} \in L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)$ and $p \leqslant \alpha_{1}-\beta_{1}$ if this difference is in \mathbb{Z}_{+}.

We have

$$
\sum_{r=0}^{p}\left(t_{11}(u)\left(E_{21}\right)^{r} \zeta_{1} \otimes t_{12}(u) \xi_{r}+t_{12}(u)\left(E_{21}\right)^{r} \zeta_{1} \otimes t_{22}(u) \xi_{r}\right)=0
$$

Taking the coefficient of $\left(E_{21}\right)^{p} \zeta_{1}$ gives

$$
\left(1+\left(\alpha_{1}-p\right) u^{-1}\right) t_{12}(u) \xi_{p}=0
$$

Taking the coefficient of $\left(E_{21}\right)^{p} \zeta_{1}$ gives

$$
\left(1+\left(\alpha_{1}-p\right) u^{-1}\right) t_{12}(u) \xi_{p}=0
$$

implying $t_{12}(u) \xi_{p}=0$.

Taking the coefficient of $\left(E_{21}\right)^{p} \zeta_{1}$ gives

$$
\left(1+\left(\alpha_{1}-p\right) u^{-1}\right) t_{12}(u) \xi_{p}=0
$$

implying $t_{12}(u) \xi_{p}=0$. By the induction hypothesis, the vector ξ_{p} must be proportional to $\zeta_{2} \otimes \ldots \otimes \zeta_{k}$.

Taking the coefficient of $\left(E_{21}\right)^{p} \zeta_{1}$ gives

$$
\left(1+\left(\alpha_{1}-p\right) u^{-1}\right) t_{12}(u) \xi_{p}=0
$$

implying $t_{12}(u) \xi_{p}=0$. By the induction hypothesis, the vector ξ_{p} must be proportional to $\zeta_{2} \otimes \ldots \otimes \zeta_{k}$.

Therefore,

$$
t_{22}(u) \xi_{p}=\left(1+\beta_{2} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right) \xi_{p} .
$$

Taking the coefficient of $\left(E_{21}\right)^{p} \zeta_{1}$ gives

$$
\left(1+\left(\alpha_{1}-p\right) u^{-1}\right) t_{12}(u) \xi_{p}=0
$$

implying $t_{12}(u) \xi_{p}=0$. By the induction hypothesis, the vector ξ_{p} must be proportional to $\zeta_{2} \otimes \ldots \otimes \zeta_{k}$.

Therefore,

$$
t_{22}(u) \xi_{p}=\left(1+\beta_{2} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right) \xi_{p} .
$$

To complete Step 1, we show that p is zero.

Suppose that $p \geqslant 1$. Then taking the coefficient of $\left(E_{21}\right)^{p-1} \zeta_{1}$ in $t_{12}(u) \xi=0$ we derive
$\left(1+\left(\alpha_{1}-p+1\right) u^{-1}\right) t_{12}(u) \xi_{p-1}+u^{-1} p\left(\alpha_{1}-\beta_{1}-p+1\right) t_{22}(u) \xi_{p}=0$.

Suppose that $p \geqslant 1$. Then taking the coefficient of $\left(E_{21}\right)^{p-1} \zeta_{1}$ in $t_{12}(u) \xi=0$ we derive
$\left(1+\left(\alpha_{1}-p+1\right) u^{-1}\right) t_{12}(u) \xi_{p-1}+u^{-1} p\left(\alpha_{1}-\beta_{1}-p+1\right) t_{22}(u) \xi_{p}=0$.
Multiply by u^{k} and set $u=-\alpha_{1}+p-1$ we obtain the relation

$$
p\left(\alpha_{1}-\beta_{1}-p+1\right)\left(\alpha_{1}-\beta_{2}-p+1\right) \ldots\left(\alpha_{1}-\beta_{k}-p+1\right)=0 .
$$

Suppose that $p \geqslant 1$. Then taking the coefficient of $\left(E_{21}\right)^{p-1} \zeta_{1}$ in $t_{12}(u) \xi=0$ we derive
$\left(1+\left(\alpha_{1}-p+1\right) u^{-1}\right) t_{12}(u) \xi_{p-1}+u^{-1} p\left(\alpha_{1}-\beta_{1}-p+1\right) t_{22}(u) \xi_{p}=0$.
Multiply by u^{k} and set $u=-\alpha_{1}+p-1$ we obtain the relation

$$
p\left(\alpha_{1}-\beta_{1}-p+1\right)\left(\alpha_{1}-\beta_{2}-p+1\right) \ldots\left(\alpha_{1}-\beta_{k}-p+1\right)=0 .
$$

But this is impossible due to the conditions on the parameters α_{i} and β_{i}. Thus, $p=0$.

Step 2. If M is a nonzero submodule of L, then M must contain a nonzero vector ξ such that $t_{12}(u) \xi=0$.

Step 2. If M is a nonzero submodule of L, then M must contain a nonzero vector ξ such that $t_{12}(u) \xi=0$.

The above argument shows that M contains the vector ζ. It remains to prove that the cyclic span $K=\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ coincides with L.

Step 2. If M is a nonzero submodule of L, then M must contain a nonzero vector ξ such that $t_{12}(u) \xi=0$.

The above argument shows that M contains the vector ζ. It remains to prove that the cyclic span $K=\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ coincides with L.

Use the dual $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module L^{*} which is defined by

$$
(y \omega)(\eta)=\omega(\varkappa(y) \eta) \quad \text { for } \quad y \in \mathrm{Y}\left(\mathfrak{g l}_{2}\right) \quad \text { and } \quad \omega \in L^{*}, \eta \in L
$$

Step 2. If M is a nonzero submodule of L, then M must contain a nonzero vector ξ such that $t_{12}(u) \xi=0$.

The above argument shows that M contains the vector ζ. It remains to prove that the cyclic span $K=\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ coincides with L.

Use the dual $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module L^{*} which is defined by

$$
(y \omega)(\eta)=\omega(\varkappa(y) \eta) \quad \text { for } \quad y \in \mathrm{Y}\left(\mathfrak{g l}_{2}\right) \quad \text { and } \quad \omega \in L^{*}, \eta \in L
$$

for the anti-automorphism

$$
\varkappa: t_{i j}(u) \mapsto t_{3-i, 3-j}(-u)
$$

The dual module L^{*} is isomorphic to the tensor product

$$
L\left(-\beta_{1},-\alpha_{1}\right) \otimes \ldots \otimes L\left(-\beta_{k},-\alpha_{k}\right)
$$

The dual module L^{*} is isomorphic to the tensor product

$$
L\left(-\beta_{1},-\alpha_{1}\right) \otimes \ldots \otimes L\left(-\beta_{k},-\alpha_{k}\right) .
$$

If the submodule $K=\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ of L is proper,

The dual module L^{*} is isomorphic to the tensor product

$$
L\left(-\beta_{1},-\alpha_{1}\right) \otimes \ldots \otimes L\left(-\beta_{k},-\alpha_{k}\right)
$$

If the submodule $K=\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ of L is proper, then its annihilator

$$
\text { Ann } K=\left\{\omega \in L^{*} \mid \omega(\eta)=0 \quad \text { for all } \quad \eta \in K\right\}
$$

is a nonzero submodule of L^{*}, which does not contain the vector $\zeta_{1}^{*} \otimes \ldots \otimes \zeta_{k}^{*}$.

The dual module L^{*} is isomorphic to the tensor product

$$
L\left(-\beta_{1},-\alpha_{1}\right) \otimes \ldots \otimes L\left(-\beta_{k},-\alpha_{k}\right)
$$

If the submodule $K=\mathrm{Y}\left(\mathfrak{g l}_{2}\right) \zeta$ of L is proper, then its annihilator

$$
\text { Ann } K=\left\{\omega \in L^{*} \mid \omega(\eta)=0 \quad \text { for all } \quad \eta \in K\right\}
$$

is a nonzero submodule of L^{*}, which does not contain the vector $\zeta_{1}^{*} \otimes \ldots \otimes \zeta_{k}^{*}$.

However, this contradicts the claim verified in Step 1.

Theorem. The irreducible highest weight representation
$L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g h}_{2}\right)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{P(u+1)}{P(u)}
$$

Theorem. The irreducible highest weight representation
$L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g h}_{2}\right)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{P(u+1)}{P(u)}
$$

In this case $P(u)$ is unique.

Theorem. The irreducible highest weight representation
$L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{P(u+1)}{P(u)}
$$

In this case $P(u)$ is unique.

Notation. $P(u)$ is called the Drinfeld polynomial.

Theorem. The irreducible highest weight representation
$L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{P(u+1)}{P(u)}
$$

In this case $P(u)$ is unique.

Notation. $P(u)$ is called the Drinfeld polynomial.

Proof. By the propositions, if $\operatorname{dim} L\left(\lambda_{1}(u), \lambda_{2}(u)\right)<\infty$, then

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{\left(u+\alpha_{1}\right) \ldots\left(u+\alpha_{k}\right)}{\left(u+\beta_{1}\right) \ldots\left(u+\beta_{k}\right)}
$$

Theorem. The irreducible highest weight representation
$L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{P(u+1)}{P(u)}
$$

In this case $P(u)$ is unique.

Notation. $P(u)$ is called the Drinfeld polynomial.

Proof. By the propositions, if $\operatorname{dim} L\left(\lambda_{1}(u), \lambda_{2}(u)\right)<\infty$, then

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{\left(u+\alpha_{1}\right) \ldots\left(u+\alpha_{k}\right)}{\left(u+\beta_{1}\right) \ldots\left(u+\beta_{k}\right)}
$$

and $\alpha_{i}-\beta_{i} \in \mathbb{Z}_{+}$for all $i=1, \ldots, k$.

Then $P(u)$ exists and given by

$$
P(u)=\prod_{i=1}^{k}\left(u+\beta_{i}\right)\left(u+\beta_{i}+1\right) \ldots\left(u+\alpha_{i}-1\right) .
$$

Then $P(u)$ exists and given by

$$
P(u)=\prod_{i=1}^{k}\left(u+\beta_{i}\right)\left(u+\beta_{i}+1\right) \ldots\left(u+\alpha_{i}-1\right)
$$

Conversely, if the relation holds for a polynomial

Then $P(u)$ exists and given by

$$
P(u)=\prod_{i=1}^{k}\left(u+\beta_{i}\right)\left(u+\beta_{i}+1\right) \ldots\left(u+\alpha_{i}-1\right) .
$$

Conversely, if the relation holds for a polynomial

$$
P(u)=\left(u+\gamma_{1}\right) \ldots\left(u+\gamma_{p}\right)
$$

Then $P(u)$ exists and given by

$$
P(u)=\prod_{i=1}^{k}\left(u+\beta_{i}\right)\left(u+\beta_{i}+1\right) \ldots\left(u+\alpha_{i}-1\right) .
$$

Conversely, if the relation holds for a polynomial

$$
P(u)=\left(u+\gamma_{1}\right) \ldots\left(u+\gamma_{p}\right),
$$

then set

$$
\begin{aligned}
& \mu_{1}(u)=\left(1+\left(\gamma_{1}+1\right) u^{-1}\right) \ldots\left(1+\left(\gamma_{p}+1\right) u^{-1}\right), \\
& \mu_{2}(u)=\left(1+\gamma_{1} u^{-1}\right) \ldots\left(1+\gamma_{p} u^{-1}\right),
\end{aligned}
$$

Then $P(u)$ exists and given by

$$
P(u)=\prod_{i=1}^{k}\left(u+\beta_{i}\right)\left(u+\beta_{i}+1\right) \ldots\left(u+\alpha_{i}-1\right)
$$

Conversely, if the relation holds for a polynomial

$$
P(u)=\left(u+\gamma_{1}\right) \ldots\left(u+\gamma_{p}\right)
$$

then set

$$
\begin{aligned}
& \mu_{1}(u)=\left(1+\left(\gamma_{1}+1\right) u^{-1}\right) \ldots\left(1+\left(\gamma_{p}+1\right) u^{-1}\right), \\
& \mu_{2}(u)=\left(1+\gamma_{1} u^{-1}\right) \ldots\left(1+\gamma_{p} u^{-1}\right),
\end{aligned}
$$

and consider the tensor product module

$$
L=L\left(\gamma_{1}+1, \gamma_{1}\right) \otimes L\left(\gamma_{2}+1, \gamma_{2}\right) \otimes \ldots \otimes L\left(\gamma_{p}+1, \gamma_{p}\right) .
$$

Corollary. The isomorphism classes of finite-dimensional irreducible representations of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ are parameterized by monic polynomials in u.

Corollary. The isomorphism classes of finite-dimensional irreducible representations of the Yangian $\mathrm{Y}\left(\mathfrak{s t}_{2}\right)$ are parameterized by monic polynomials in u.

Every such representation is isomorphic to the restriction of a $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module of the form

$$
L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right),
$$

where each difference $\alpha_{i}-\beta_{i}$ is a positive integer.

Corollary. The isomorphism classes of finite-dimensional irreducible representations of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ are parameterized by monic polynomials in u.

Every such representation is isomorphic to the restriction of a $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module of the form

$$
L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right),
$$

where each difference $\alpha_{i}-\beta_{i}$ is a positive integer.
Proof. Use the decomposition

$$
\mathrm{Y}\left(\mathfrak{g l}_{2}\right)=\mathrm{ZY}\left(\mathfrak{g l}_{2}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{2}\right) .
$$

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Suppose that $\lambda(u)$ is an N-tuple of formal series in u^{-1},

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)
$$

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Suppose that $\lambda(u)$ is an N-tuple of formal series in u^{-1},

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)
$$

Theorem. The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional if and only if

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1
$$

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Suppose that $\lambda(u)$ is an N-tuple of formal series in u^{-1},

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right) .
$$

Theorem. The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional if and only if

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1,
$$

for certain monic polynomials $P_{1}(u), \ldots, P_{N-1}(u)$ in u.

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Suppose that $\lambda(u)$ is an N-tuple of formal series in u^{-1},

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right) .
$$

Theorem. The irreducible highest weight representation $L(\lambda(u))$
of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional if and only if

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1
$$

for certain monic polynomials $P_{1}(u), \ldots, P_{N-1}(u)$ in u.

Every tuple $\left(P_{1}(u), \ldots, P_{N-1}(u)\right)$ arises in this way.

Notation. The $P_{i}(u)$ are called the Drinfeld polynomials.

Notation. The $P_{i}(u)$ are called the Drinfeld polynomials.

Proof. For $i=1, \ldots, N-1$ let Y_{i} be the subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by the coefficients of the series $t_{k l}(u)$ with
$k, l \in\{i, i+1\}$.

Notation. The $P_{i}(u)$ are called the Drinfeld polynomials.

Proof. For $i=1, \ldots, N-1$ let Y_{i} be the subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by the coefficients of the series $t_{k l}(u)$ with
$k, l \in\{i, i+1\}$.

The cyclic span $\mathrm{Y}_{i} \zeta$ of the highest vector ζ of $L(\lambda(u))$ is a highest weight representation of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ with the highest weight
$\left(\lambda_{i}(u), \lambda_{i+1}(u)\right)$.

Notation. The $P_{i}(u)$ are called the Drinfeld polynomials.

Proof. For $i=1, \ldots, N-1$ let Y_{i} be the subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by the coefficients of the series $t_{k l}(u)$ with
$k, l \in\{i, i+1\}$.

The cyclic span $\mathrm{Y}_{i} \zeta$ of the highest vector ζ of $L(\lambda(u))$ is a highest weight representation of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ with the highest weight $\left(\lambda_{i}(u), \lambda_{i+1}(u)\right)$. Apply the previous theorem for $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$.

For the converse claim, note that if $L(\nu(u))$ and $L(\mu(u))$ are the irreducible highest weight modules with the highest weights

$$
\nu(u)=\left(\nu_{1}(u), \ldots, \nu_{N}(u)\right) \quad \text { and } \quad \mu(u)=\left(\mu_{1}(u), \ldots, \mu_{N}(u)\right),
$$

For the converse claim, note that if $L(\nu(u))$ and $L(\mu(u))$ are the irreducible highest weight modules with the highest weights

$$
\nu(u)=\left(\nu_{1}(u), \ldots, \nu_{N}(u)\right) \quad \text { and } \quad \mu(u)=\left(\mu_{1}(u), \ldots, \mu_{N}(u)\right),
$$

then the cyclic span $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left(\zeta \otimes \zeta^{\prime}\right)$ is a highest weight module with the highest weight $\left(\nu_{1}(u) \mu_{1}(u), \ldots, \nu_{N}(u) \mu_{N}(u)\right)$.

For the converse claim, note that if $L(\nu(u))$ and $L(\mu(u))$ are the irreducible highest weight modules with the highest weights

$$
\nu(u)=\left(\nu_{1}(u), \ldots, \nu_{N}(u)\right) \quad \text { and } \quad \mu(u)=\left(\mu_{1}(u), \ldots, \mu_{N}(u)\right),
$$

then the cyclic span $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left(\zeta \otimes \zeta^{\prime}\right)$ is a highest weight module with the highest weight $\left(\nu_{1}(u) \mu_{1}(u), \ldots, \nu_{N}(u) \mu_{N}(u)\right)$.

The cyclic span corresponds to the set of Drinfeld polynomials $\left(P_{1}(u) Q_{1}(u), \ldots, P_{N-1}(u) Q_{N-1}(u)\right)$, where the $P_{i}(u)$ and $Q_{i}(u)$ are the Drinfeld polynomials for $L(\nu(u))$ and $L(\mu(u))$, respectively.

Therefore, we only need to establish the sufficiency of the conditions for the fundamental representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ associated with the tuples of Drinfeld polynomials

$$
(1, \ldots, 1, u+a, 1, \ldots, 1), \quad a \in \mathbb{C}
$$

Therefore, we only need to establish the sufficiency of the conditions for the fundamental representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ associated with the tuples of Drinfeld polynomials

$$
(1, \ldots, 1, u+a, 1, \ldots, 1), \quad a \in \mathbb{C}
$$

Such a tuple is associated with the evaluation module $L(\lambda)$, where $\lambda=(a+1, \ldots, a+1, a, \ldots, a)$,

Therefore, we only need to establish the sufficiency of the conditions for the fundamental representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ associated with the tuples of Drinfeld polynomials

$$
(1, \ldots, 1, u+a, 1, \ldots, 1), \quad a \in \mathbb{C} .
$$

Such a tuple is associated with the evaluation module $L(\lambda)$, where $\lambda=(a+1, \ldots, a+1, a, \ldots, a)$, since

$$
\lambda_{j}(u)= \begin{cases}1+(a+1) u^{-1} & \text { for } j=1, \ldots, i, \\ 1+a u^{-1} & \text { for } \quad j=i+1, \ldots, N .\end{cases}
$$

Recall the Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$: the generators are $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, N-1$ and $r \geqslant 0$, subject to the defining relations:

Recall the Drinfeld presentation of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$: the generators are $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, N-1$ and $r \geqslant 0$, subject to the defining relations:

$$
\begin{gathered}
{\left[\kappa_{i r}, \kappa_{j s}\right]=0,} \\
{\left[\xi_{i r}^{+}, \xi_{j s}^{-}\right]=\delta_{i j} \kappa_{i r+s},} \\
{\left[\kappa_{i 0}, \xi_{j s}^{ \pm}\right]= \pm\left(\alpha_{i}, \alpha_{j}\right) \xi_{j s}^{ \pm},} \\
{\left[\kappa_{i r+1}, \xi_{j s}^{ \pm}\right]-\left[\kappa_{i r}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\kappa_{i r} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \kappa_{i r}\right),} \\
{\left[\xi_{i r+1}^{ \pm}, \xi_{j s}^{ \pm}\right]-\left[\xi_{i r}^{ \pm}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\xi_{i r}^{ \pm} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \xi_{i r}^{ \pm}\right),} \\
\sum_{p \in \mathfrak{S}_{m}}\left[\xi_{i r_{p(1)}}^{ \pm},\left[\xi_{i r_{p(2)}}^{ \pm}, \ldots\left[\xi_{i r_{p(m)}}^{ \pm}, \xi_{j s}^{ \pm}\right] \ldots\right]\right]=0,
\end{gathered}
$$

with $i \neq j$ and $m=1-c_{i j}$ in the last relation.

Corollary. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ contains a unique, up to a constant factor, vector $\zeta \neq 0$

Corollary. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } \quad i=1, \ldots, N-1 \quad \text { and } \quad r \geqslant 0 .
$$

Corollary. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } \quad i=1, \ldots, N-1 \quad \text { and } \quad r \geqslant 0 .
$$

Moreover, this vector satisfies

$$
\left(1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1}\right) \zeta=\frac{Q_{i}(u+1)}{Q_{i}(u)} \zeta \quad \text { for } \quad i=1, \ldots, N-1,
$$

Corollary. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } \quad i=1, \ldots, N-1 \quad \text { and } \quad r \geqslant 0 .
$$

Moreover, this vector satisfies

$$
\left(1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1}\right) \zeta=\frac{Q_{i}(u+1)}{Q_{i}(u)} \zeta \quad \text { for } \quad i=1, \ldots, N-1,
$$

where each $Q_{i}(u)$ is a monic polynomial in u.

Corollary. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } \quad i=1, \ldots, N-1 \quad \text { and } \quad r \geqslant 0 .
$$

Moreover, this vector satisfies

$$
\left(1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1}\right) \zeta=\frac{Q_{i}(u+1)}{Q_{i}(u)} \zeta \quad \text { for } \quad i=1, \ldots, N-1,
$$

where each $Q_{i}(u)$ is a monic polynomial in u.
The tuple of polynomials $\left(Q_{1}(u), \ldots, Q_{N-1}(u)\right)$ determines the representation up to an isomorphism.

Proof. We have the relations

$$
\kappa_{i}(u)=1+\sum_{r \geqslant 0} \kappa_{i r} u^{-r-1}
$$

Proof. We have the relations

$$
\kappa_{i}(u)=1+\sum_{r \geqslant 0} \kappa_{i r} u^{-r-1}
$$

together with

$$
\xi_{i}^{+}(u)=\sum_{r \geqslant 0} \xi_{i r}^{+} u^{-r-1}, \quad \xi_{i}^{-}(u)=\sum_{r \geqslant 0} \xi_{i r}^{-} u^{-r-1}
$$

Proof. We have the relations

$$
\kappa_{i}(u)=1+\sum_{r \geqslant 0} \kappa_{i r} u^{-r-1}
$$

together with

$$
\xi_{i}^{+}(u)=\sum_{r \geqslant 0} \xi_{i r}^{+} u^{-r-1}, \quad \xi_{i}^{-}(u)=\sum_{r \geqslant 0} \xi_{i r}^{-} u^{-r-1}
$$

where

$$
\kappa_{i}(u)=h_{i}(u-(i-1) / 2)^{-1} h_{i+1}(u-(i-1) / 2)
$$

Proof. We have the relations

$$
\kappa_{i}(u)=1+\sum_{r \geqslant 0} \kappa_{i r} u^{-r-1}
$$

together with

$$
\xi_{i}^{+}(u)=\sum_{r \geqslant 0} \xi_{i r}^{+} u^{-r-1}, \quad \xi_{i}^{-}(u)=\sum_{r \geqslant 0} \xi_{i r}^{-} u^{-r-1}
$$

where

$$
\kappa_{i}(u)=h_{i}(u-(i-1) / 2)^{-1} h_{i+1}(u-(i-1) / 2)
$$

and

$$
\xi_{i}^{+}(u)=f_{i}(u-(i-1) / 2), \quad \xi_{i}^{-}(u)=e_{i}(u-(i-1) / 2)
$$

Hence, on the highest vector ζ of $L(\lambda(u))$ we have

$$
\xi_{i}^{-}(u) \zeta=0
$$

Hence, on the highest vector ζ of $L(\lambda(u))$ we have

$$
\xi_{i}^{-}(u) \zeta=0
$$

and

$$
\kappa_{i}(u+(i-1) / 2) \zeta=\frac{\lambda_{i+1}(u)}{\lambda_{i}(u)} \zeta=\frac{P_{i}(u)}{P_{i}(u+1)} \zeta
$$

for $i=1, \ldots, N-1$.

Hence, on the highest vector ζ of $L(\lambda(u))$ we have

$$
\xi_{i}^{-}(u) \zeta=0
$$

and

$$
\kappa_{i}(u+(i-1) / 2) \zeta=\frac{\lambda_{i+1}(u)}{\lambda_{i}(u)} \zeta=\frac{P_{i}(u)}{P_{i}(u+1)} \zeta
$$

for $i=1, \ldots, N-1$.

Now use the automorphism of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ defined by

$$
\xi_{i}^{+}(u) \mapsto \xi_{i}^{-}(-u), \quad \xi_{i}^{-}(u) \mapsto \xi_{i}^{+}(-u), \quad \kappa_{i}(u) \mapsto \kappa_{i}(-u)
$$

Representations of $\mathrm{Y}(\mathfrak{a})$

Representations of $\mathrm{Y}(\mathfrak{a})$

Recall that the Yangian $\mathrm{Y}(\mathfrak{a})$ is generated by elements $\kappa_{\text {ir }}$ and $\xi_{i r}^{ \pm}$with $i=1, \ldots, n$ and $r \geqslant 0$, subject to the relations:

Representations of $\mathrm{Y}(\mathfrak{a})$

Recall that the Yangian $\mathrm{Y}(\mathfrak{a})$ is generated by elements $\kappa_{\text {ir }}$ and $\xi_{\text {ir }}^{ \pm}$with $i=1, \ldots, n$ and $r \geqslant 0$, subject to the relations:

$$
\begin{gathered}
{\left[\kappa_{i r}, \kappa_{j s}\right]=0,} \\
{\left[\xi_{i r}^{+}, \xi_{j s}^{-}\right]=\delta_{i j} \kappa_{i r+s},} \\
{\left[\kappa_{i 0}, \xi_{j s}^{ \pm}\right]= \pm\left(\alpha_{i}, \alpha_{j}\right) \xi_{j s}^{ \pm},} \\
{\left[\kappa_{i r+1}, \xi_{j s}^{ \pm}\right]-\left[\kappa_{i r}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\kappa_{i r} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \kappa_{i r}\right),} \\
{\left[\xi_{i r+1}^{ \pm}, \xi_{j s}^{ \pm}\right]-\left[\xi_{i r}^{ \pm}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\xi_{i r}^{ \pm} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \xi_{i r}^{ \pm}\right),} \\
\sum_{p \in \mathfrak{G}_{m}}\left[\xi_{i r_{p(1)}}^{ \pm}\left[\xi_{i r_{p(2)}}^{ \pm}, \ldots\left[\xi_{i r_{p(m)}}^{ \pm}, \xi_{j s}^{ \pm}\right] \ldots\right]\right]=0,
\end{gathered}
$$

with $i \neq j$ and $m=1-c_{i j}$ in the last relation.

Note that the subalgebra of $Y(\mathfrak{a})$ generated by the elements $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with a fixed $i \in\{1, \ldots, n\}$ and $r \geqslant 0$, is isomorphic to the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$.

Note that the subalgebra of $Y(\mathfrak{a})$ generated by the elements $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$with a fixed $i \in\{1, \ldots, n\}$ and $r \geqslant 0$, is isomorphic to the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$.

Namely, the coefficients of the series

$$
\kappa_{i}\left(d_{i} u\right), \quad \xi_{i}^{+}\left(d_{i} u\right) \quad \text { and } \quad d_{i}^{-1} \xi_{i}^{-}\left(d_{i} u\right)
$$

with $d_{i}=\left(\alpha_{i}, \alpha_{i}\right) / 2$ satisfy the $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ defining relations.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}(\mathfrak{a})$ contains a unique, up to a constant factor, vector $\zeta \neq 0$

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}(\mathfrak{a})$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } \quad i=1, \ldots, n \quad \text { and } \quad r \geqslant 0
$$

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}(\mathfrak{a})$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } i=1, \ldots, n \quad \text { and } \quad r \geqslant 0
$$

Moreover, this vector satisfies

$$
\left(1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1}\right) \zeta=\frac{Q_{i}\left(u+d_{i}\right)}{Q_{i}(u)} \zeta \quad \text { for } \quad i=1, \ldots, n
$$

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}(\mathfrak{a})$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } i=1, \ldots, n \quad \text { and } \quad r \geqslant 0
$$

Moreover, this vector satisfies

$$
\left(1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1}\right) \zeta=\frac{Q_{i}\left(u+d_{i}\right)}{Q_{i}(u)} \zeta \quad \text { for } \quad i=1, \ldots, n
$$

where each $Q_{i}(u)$ is a monic polynomial in u.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}(\mathfrak{a})$ contains a unique, up to a constant factor, vector $\zeta \neq 0$ such that

$$
\xi_{i r}^{+} \zeta=0 \quad \text { for all } i=1, \ldots, n \quad \text { and } \quad r \geqslant 0
$$

Moreover, this vector satisfies

$$
\left(1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1}\right) \zeta=\frac{Q_{i}\left(u+d_{i}\right)}{Q_{i}(u)} \zeta \quad \text { for } \quad i=1, \ldots, n
$$

where each $Q_{i}(u)$ is a monic polynomial in u.
The tuple of polynomials $\left(Q_{1}(u), \ldots, Q_{n}(u)\right)$ determines the representation up to an isomorphism.

Yangian characters

Yangian characters

Denote by \mathcal{P}_{N} the abelian group whose elements are the tuples $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ where each $\lambda_{i}(u)$ is a formal series in u^{-1} with constant term 1 with respect to the component-wise multiplication.

Yangian characters

Denote by \mathcal{P}_{N} the abelian group whose elements are the tuples $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ where each $\lambda_{i}(u)$ is a formal series in u^{-1} with constant term 1 with respect to the component-wise multiplication.

Consider the group ring $\mathbb{Z}\left[\mathcal{P}_{N}\right]$ of the abelian group \mathcal{P}_{N} whose elements are finite linear combinations of the form
$\sum m_{\lambda(u)}[\lambda(u)]$, where $m_{\lambda(u)} \in \mathbb{Z}$.

Definition. Suppose that V is a finite-dimensional representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Definition. Suppose that V is a finite-dimensional representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

For any $\lambda(u) \in \mathcal{P}_{N}$, the corresponding Gelfand-Tsetlin subspace $V_{\lambda(u)}$ consists of the vectors $v \in V$ with the property that for each $i=1, \ldots, N$ and each $r \geqslant 1$ there exists $p \geqslant 1$ such that $\left(h_{i}^{(r)}-\lambda_{i}^{(r)}\right)^{p} v=0$.

Definition. Suppose that V is a finite-dimensional representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

For any $\lambda(u) \in \mathcal{P}_{N}$, the corresponding Gelfand-Tsetlin subspace $V_{\lambda(u)}$ consists of the vectors $v \in V$ with the property that for each $i=1, \ldots, N$ and each $r \geqslant 1$ there exists $p \geqslant 1$ such that $\left(h_{i}^{(r)}-\lambda_{i}^{(r)}\right)^{p} v=0$.

Then the Gelfand-Tsetlin character of V is the element of
$\mathbb{Z}\left[\mathcal{P}_{N}\right]$ defined by

$$
\operatorname{ch} V=\sum_{\lambda(u) \in \mathcal{P}_{N}}\left(\operatorname{dim} V_{\lambda(u)}\right)[\lambda(u)] .
$$

Multiplicativity property:

$$
\operatorname{ch}(V \otimes W)=\operatorname{ch} V \cdot \operatorname{ch} W
$$

for finite-dimensional representations V and W of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Multiplicativity property:

$$
\operatorname{ch}(V \otimes W)=\operatorname{ch} V \cdot \operatorname{ch} W
$$

for finite-dimensional representations V and W of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

In particular, the character of the tensor product of evaluation modules

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

Multiplicativity property:

$$
\operatorname{ch}(V \otimes W)=\operatorname{ch} V \cdot \operatorname{ch} W
$$

for finite-dimensional representations V and W of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

In particular, the character of the tensor product of evaluation modules

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

equals

$$
\operatorname{ch} L\left(\lambda^{(1)}\right) \cdot \operatorname{ch} L\left(\lambda^{(2)}\right) \cdots \operatorname{ch} L\left(\lambda^{(k)}\right)
$$

Characters of evaluation modules

Characters of evaluation modules

Consider the evaluation module $L(\lambda)$ over $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$, where
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a partition.

Characters of evaluation modules

Consider the evaluation module $L(\lambda)$ over $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a partition.

Identify λ with its Young diagram; for $\lambda=(5,4,4,2)$ we have

Characters of evaluation modules

Consider the evaluation module $L(\lambda)$ over $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a partition.

Identify λ with its Young diagram; for $\lambda=(5,4,4,2)$ we have

The content of the box $\alpha=(i, j)$ is $c(\alpha)=j-i$.

A semistandard λ-tableau \mathcal{T} is obtained by writing the numbers $1, \ldots, N$ into the boxes of the diagram λ in such a way that the elements in each row weakly increase while the elements in each column strictly increase.

A semistandard λ-tableau \mathcal{T} is obtained by writing the numbers $1, \ldots, N$ into the boxes of the diagram λ in such a way that the elements in each row weakly increase while the elements in each column strictly increase.

A semistandard tableau of shape $\lambda=(5,4,4,2)$:

1	1	1	2	2
2	2	3	3	
3	4	5	5	
4	5			

A semistandard λ-tableau \mathcal{T} is obtained by writing the numbers $1, \ldots, N$ into the boxes of the diagram λ in such a way that the elements in each row weakly increase while the elements in each column strictly increase.

A semistandard tableau of shape $\lambda=(5,4,4,2)$:

1	1	1	2	2
2	2	3	3	
3	4	5	5	
4	5			

By $\mathcal{T}(\alpha)$ we denote the entry of \mathcal{T} in the box $\alpha \in \lambda$.

Theorem. The Gelfand-Tsetlin character of the $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module $L(\lambda)$ is given by

$$
\operatorname{ch} L(\lambda)=\sum_{\mathcal{T}} \prod_{\alpha \in \lambda} x_{\mathcal{T}(\alpha), c(\alpha)}
$$

summed over all semistandard λ-tableaux \mathcal{T}, where

Theorem. The Gelfand-Tsetlin character of the $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module $L(\lambda)$ is given by

$$
\operatorname{ch} L(\lambda)=\sum_{\mathcal{T}} \prod_{\alpha \in \lambda} x_{\mathcal{T}(\alpha), c(\alpha)},
$$

summed over all semistandard λ-tableaux \mathcal{T}, where

$$
x_{i, a}=\left[\left(1, \ldots, \frac{u+a+i}{u+a+i-1}, \ldots, 1\right)\right], \quad 1 \leqslant i \leqslant N, \quad a \in \mathbb{C} .
$$

Theorem. The Gelfand-Tsetlin character of the $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module
$L(\lambda)$ is given by

$$
\operatorname{ch} L(\lambda)=\sum_{\mathcal{T}} \prod_{\alpha \in \lambda} x_{\mathcal{T}(\alpha), c(\alpha)}
$$

summed over all semistandard λ-tableaux \mathcal{T}, where

$$
x_{i, a}=\left[\left(1, \ldots, \frac{u+a+i}{u+a+i-1}, \ldots, 1\right)\right], \quad 1 \leqslant i \leqslant N, \quad a \in \mathbb{C} .
$$

Remark. The specialization $x_{i, a} \mapsto x_{i}$ yields
the Schur polynomial to recover the Weyl character formula.

Theorem. The Gelfand-Tsetlin character of the $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module $L(\lambda)$ is given by

$$
\operatorname{ch} L(\lambda)=\sum_{\mathcal{T}} \prod_{\alpha \in \lambda} x_{\mathcal{T}(\alpha), c(\alpha)}
$$

summed over all semistandard λ-tableaux \mathcal{T}, where

$$
x_{i, a}=\left[\left(1, \ldots, \frac{u+a+i}{u+a+i-1}, \ldots, 1\right)\right], \quad 1 \leqslant i \leqslant N, \quad a \in \mathbb{C} .
$$

Remark. The specialization $x_{i, a} \mapsto x_{i}$ yields
the Schur polynomial to recover the Weyl character formula.

Another specialization $x_{i, a} \mapsto x_{i}-b_{i+a}$ produces the factorial Schur polynomial associated with the sequence b_{i}.

Proof. The coefficients of the quantum determinant act on $L(\lambda)$ as scalar operators found from

$$
\left.\operatorname{qdet} T(u)\right|_{L(\lambda)}=\left(1+\lambda_{1} u^{-1}\right) \ldots\left(1+\lambda_{N}(u-N+1)^{-1}\right)
$$

Proof. The coefficients of the quantum determinant act on $L(\lambda)$ as scalar operators found from

$$
\left.\operatorname{qdet} T(u)\right|_{L(\lambda)}=\left(1+\lambda_{1} u^{-1}\right) \ldots\left(1+\lambda_{N}(u-N+1)^{-1}\right) .
$$

Since

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1) \ldots h_{N}(u-N+1)
$$

Proof. The coefficients of the quantum determinant act on $L(\lambda)$ as scalar operators found from

$$
\left.\operatorname{qdet} T(u)\right|_{L(\lambda)}=\left(1+\lambda_{1} u^{-1}\right) \ldots\left(1+\lambda_{N}(u-N+1)^{-1}\right) .
$$

Since

$$
\operatorname{qdet} T(u)=h_{1}(u) h_{2}(u-1) \ldots h_{N}(u-N+1)
$$

we can write

$$
\left.h_{1}(u) h_{2}(u-1) \ldots h_{N}(u-N+1)\right|_{L(\lambda)}=\prod_{\alpha \in \lambda} \frac{u+c(\alpha)+1}{u+c(\alpha)} .
$$

Use the Gelfand-Tsetlin basis of $L(\lambda)$ parameterized by the semistandard λ-tableaux.

Such a tableau \mathcal{T} can be viewed as the sequence of diagrams

$$
\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}=\lambda
$$

where Λ_{k} is the diagram which consists of the boxes occupied by elements $\leqslant k$.

Use the Gelfand-Tsetlin basis of $L(\lambda)$ parameterized by the semistandard λ-tableaux.

Such a tableau \mathcal{T} can be viewed as the sequence of diagrams

$$
\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}=\lambda
$$

where Λ_{k} is the diagram which consists of the boxes occupied by elements $\leqslant k$.

The semistandard λ-tableau \mathcal{T} is obtained by placing the entry
k into each box of $\Lambda_{k} / \Lambda_{k-1}$.

Example. For $\lambda=(5,4,4,2)$ and the tableau

1	1	1	2	2
2	2	3	3	
3	4	5	5	
4	5			

Example. For $\lambda=(5,4,4,2)$ and the tableau

1	1	1	2	2
2	2	3	3	
3	4	5	5	
4	5			

we have the sequence

$$
\Lambda_{1}=(3), \quad \Lambda_{2}=(5,2), \quad \Lambda_{3}=(5,4,1)
$$

$$
\Lambda_{4}=(5,4,2,1), \quad \Lambda_{5}=\lambda
$$

The diagrams Λ_{i} represent the rows of the corresponding Gelfand-Tsetlin pattern:

The diagrams Λ_{i} represent the rows of the corresponding Gelfand-Tsetlin pattern:

5		4		4		2		0
	5		4		2		1	
				4		1		
						2		
			5		2			

3

The diagrams Λ_{i} represent the rows of the corresponding Gelfand-Tsetlin pattern:

5		4		4		2		0
	5		4		2		1	

3
associated with the chain of subalgebras

$$
\mathfrak{g l}_{1} \subset \mathfrak{g l}_{2} \subset \mathfrak{g l}_{3} \subset \mathfrak{g l}_{4} \subset \mathfrak{g l}_{5}
$$

For any basis vector $\zeta_{\mathcal{T}} \in L(\lambda)$ and any $1 \leqslant k \leqslant N$ we have

$$
h_{1}(u) h_{2}(u-1) \ldots h_{k}(u-k+1) \zeta_{\mathcal{T}}=\prod_{\alpha \in \Lambda_{k}} \frac{u+c(\alpha)+1}{u+c(\alpha)} \zeta_{\mathcal{T}} .
$$

For any basis vector $\zeta_{\mathcal{T}} \in L(\lambda)$ and any $1 \leqslant k \leqslant N$ we have

$$
h_{1}(u) h_{2}(u-1) \ldots h_{k}(u-k+1) \zeta_{\mathcal{T}}=\prod_{\alpha \in \Lambda_{k}} \frac{u+c(\alpha)+1}{u+c(\alpha)} \zeta_{\mathcal{T}} .
$$

This implies

$$
h_{k}(u-k+1) \zeta_{\mathcal{T}}=\prod_{\alpha \in \Lambda_{k} / \Lambda_{k-1}} \frac{u+c(\alpha)+1}{u+c(\alpha)} \zeta_{\mathcal{T}}
$$

For any basis vector $\zeta_{\mathcal{T}} \in L(\lambda)$ and any $1 \leqslant k \leqslant N$ we have

$$
h_{1}(u) h_{2}(u-1) \ldots h_{k}(u-k+1) \zeta_{\mathcal{T}}=\prod_{\alpha \in \Lambda_{k}} \frac{u+c(\alpha)+1}{u+c(\alpha)} \zeta_{\mathcal{T}} .
$$

This implies

$$
h_{k}(u-k+1) \zeta_{\mathcal{T}}=\prod_{\alpha \in \Lambda_{k} / \Lambda_{k-1}} \frac{u+c(\alpha)+1}{u+c(\alpha)} \zeta_{\mathcal{T}}
$$

The element of $\mathbb{Z}\left[\mathcal{P}_{N}\right]$ corresponding to the action of $h_{k}(u)$ is

$$
\prod_{\alpha \in \Lambda_{k} / \Lambda_{k-1}} x_{k, c(\alpha)}
$$

which yields the character formula.

References

References

J. Brundan and A. Kleshchev, Representations of shifted

Yangians and finite W-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918.

References

J. Brundan and A. Kleshchev, Representations of shifted

Yangians and finite W-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918.
V. Chari and A. Pressley, Fundamental representations of

Yangians and rational R-matrices, J. Reine Angew. Math. 417 (1991), 87-128.

