Manin matrices

Alexander Molev

University of Sydney

Plan of lectures

Plan of lectures

- Origins and motivations.

Plan of lectures

- Origins and motivations.
- Basic properties of Manin matrices.

Plan of lectures

- Origins and motivations.
- Basic properties of Manin matrices.
- Examples and applications to Casimir elements.

Plan of lectures

- Origins and motivations.
- Basic properties of Manin matrices.
- Examples and applications to Casimir elements.
- Generalizations: q-Manin and super-Manin matrices.

References

References

A. Chervov, G. Falqui and V. Rubtsov, Algebraic properties of Manin matrices 1, Adv. Appl. Math. 43 (2009), 239-315.

References

A. Chervov, G. Falqui and V. Rubtsov, Algebraic properties of Manin matrices 1, Adv. Appl. Math. 43 (2009), 239-315.
A. Molev, Sugawara operators for classical Lie algebras, AMS, 2018; Chapter 3.

Quantum groups

Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985), the universal enveloping algebra $U(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g} admits a deformation $\mathrm{U}_{q}(\mathfrak{g})$ in the class of Hopf algebras.

Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985), the universal enveloping algebra $U(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g} admits a deformation $\mathrm{U}_{q}(\mathfrak{g})$ in the class of Hopf algebras.

The dual Hopf algebras are quantized algebras of functions
$\operatorname{Fun}_{q}(G)$ on the associated Lie group G
[N. Reshetikhin, L. Takhtajan and L. Faddeev 1990].

Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985), the universal enveloping algebra $U(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g} admits a deformation $\mathrm{U}_{q}(\mathfrak{g})$ in the class of Hopf algebras.

The dual Hopf algebras are quantized algebras of functions
$\operatorname{Fun}_{q}(G)$ on the associated Lie group G
[N. Reshetikhin, L. Takhtajan and L. Faddeev 1990].

A detailed review of the theory and applications:
V. Chari and A. Pressley, A guide to quantum groups, 1994.

Basic example

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d,
understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d, understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

$$
b a=q a b, \quad d c=q c d, \quad c a=q a c, \quad d b=q b d,
$$

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d, understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

$$
b a=q a b, \quad d c=q c d, \quad c a=q a c, \quad d b=q b d,
$$

and

$$
b c=c b, \quad a d-d a+\left(q-q^{-1}\right) b c=0 .
$$

Basic example

The algebra $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$ is generated by four elements a, b, c, d, understood as the entries of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that

$$
b a=q a b, \quad d c=q c d, \quad c a=q a c, \quad d b=q b d,
$$

and

$$
b c=c b, \quad a d-d a+\left(q-q^{-1}\right) b c=0 .
$$

[L. Faddeev and L. Takhtajan 1986].

As observed by Yu. Manin (1988), the relations are recovered via a "coaction" on the quantum plane, - the algebra with generators x, y and the relation $y x=q x y$.

As observed by Yu. Manin (1988), the relations are recovered via a "coaction" on the quantum plane, - the algebra with generators x, y and the relation $y x=q x y$.

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$.

As observed by Yu. Manin (1988), the relations are recovered via a "coaction" on the quantum plane, - the algebra with generators x, y and the relation $y x=q x y$.

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$. The defining relations for $\operatorname{Fun}_{q}\left(\mathrm{Mat}_{2}\right)$
are equivalent to the conditions that the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
and its transpose are q-Manin matrices.

Manin matrices $(q=1)$

Manin matrices $(q=1)$

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.

Manin matrices $(q=1)$

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.
Look for 2×2 matrices over \mathcal{A} such that x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

commute.

Manin matrices $(q=1)$

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.
Look for 2×2 matrices over \mathcal{A} such that x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

commute. We have

$$
[a x+b y, c x+d y]=[a, c] x^{2}+([a, d]+[b, c]) x y+[b, d] y^{2} .
$$

Manin matrices $(q=1)$

Consider the tensor product algebra $\mathcal{A} \otimes \mathbb{C}[x, y]$.
Look for 2×2 matrices over \mathcal{A} such that x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

commute. We have

$$
[a x+b y, c x+d y]=[a, c] x^{2}+([a, d]+[b, c]) x y+[b, d] y^{2}
$$

This leads to the definition of Manin matrices:

$$
[a, c]=[b, d]=0 \quad \text { and } \quad[a, d]=[c, b]
$$

Exercise. Derive defining relations for the general case.

Exercise. Derive defining relations for the general case.
Suppose x_{1}, \ldots, x_{n} pairwise commute.

Exercise. Derive defining relations for the general case.
Suppose x_{1}, \ldots, x_{n} pairwise commute.

Look for $n \times n$ matrices $M=\left[M_{i j}\right]$ over an associative algebra \mathcal{A}, such that $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ defined by

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
M_{11} & \ldots & M_{1 n} \\
\vdots & \vdots & \vdots \\
M_{n 1} & \ldots & M_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right],
$$

commute.

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Equivalently, elements in each column of M pairwise commute,

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Equivalently, elements in each column of M pairwise commute, whereas for any submatrix

$$
\left[\begin{array}{ll}
M_{i j} & M_{i l} \\
M_{k j} & M_{k l}
\end{array}\right]
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a Manin matrix if all its 2×2 submatrices are Manin matrices:

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Equivalently, elements in each column of M pairwise commute, whereas for any submatrix

$$
\left[\begin{array}{ll}
M_{i j} & M_{i l} \\
M_{k j} & M_{k l}
\end{array}\right]
$$

we have

$$
M_{i j} M_{k l}-M_{k j} M_{i l}=M_{k l} M_{i j}-M_{i l} M_{k j}
$$

Alternative viewpoint

Alternative viewpoint

Consider the associative algebra \mathcal{M}_{n} with n^{2} generators $M_{i j}$ and the defining relations

Alternative viewpoint

Consider the associative algebra \mathcal{M}_{n} with n^{2} generators $M_{i j}$ and the defining relations

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

Alternative viewpoint

Consider the associative algebra \mathcal{M}_{n} with n^{2} generators $M_{i j}$ and the defining relations

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

The algebra is graded:

$$
\mathcal{M}_{n}=\bigoplus_{N=0}^{\infty} \mathcal{M}_{n}^{N}
$$

Alternative viewpoint

Consider the associative algebra \mathcal{M}_{n} with n^{2} generators $M_{i j}$ and the defining relations

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

The algebra is graded:

$$
\mathcal{M}_{n}=\bigoplus_{N=0}^{\infty} \mathcal{M}_{n}^{N}
$$

Exercise. Construct a basis of \mathcal{M}_{n}. What is $\operatorname{dim} \mathcal{M}_{n}^{N}$?

Alternative viewpoint

Consider the associative algebra \mathcal{M}_{n} with n^{2} generators $M_{i j}$ and the defining relations

$$
\left[M_{i j}, M_{k l}\right]=\left[M_{k j}, M_{i l}\right], \quad i, j, k, l \in\{1, \ldots, n\} .
$$

The algebra is graded:

$$
\mathcal{M}_{n}=\bigoplus_{N=0}^{\infty} \mathcal{M}_{n}^{N}
$$

Exercise. Construct a basis of \mathcal{M}_{n}. What is $\operatorname{dim} \mathcal{M}_{n}^{N}$?
[Open question in the super case.]

Determinants

Determinants

Introduce the column-determinant of a matrix M by

$$
\operatorname{cdet} M=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n}
$$

Determinants

Introduce the column-determinant of a matrix M by

$$
\operatorname{cdet} M=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n} .
$$

Exercise. Suppose that M is a Manin matrix. Verify that $\operatorname{cdet} M$ possesses usual properties of determinant: it changes sign if two rows or two columns are swapped.

Tensor techniques

Tensor techniques

By taking a canonical basis of \mathbb{C}^{n}, the endomorphism algebra
End \mathbb{C}^{n} acquires the basis of matrix units $e_{i j}$.

Tensor techniques

By taking a canonical basis of \mathbb{C}^{n}, the endomorphism algebra
End \mathbb{C}^{n} acquires the basis of matrix units $e_{i j}$.

For any associative algebra \mathcal{A} we have an algebra isomorphism

$$
\operatorname{Mat}_{n}(\mathcal{A}) \cong \operatorname{End} \mathbb{C}^{n} \otimes \mathcal{A} .
$$

Tensor techniques

By taking a canonical basis of \mathbb{C}^{n}, the endomorphism algebra
End \mathbb{C}^{n} acquires the basis of matrix units $e_{i j}$.

For any associative algebra \mathcal{A} we have an algebra isomorphism

$$
\operatorname{Mat}_{n}(\mathcal{A}) \cong \operatorname{End} \mathbb{C}^{n} \otimes \mathcal{A} .
$$

We may regard the matrix M over \mathcal{A} as the element

$$
M=\sum_{i, j=1}^{n} e_{i j} \otimes M_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathcal{A}
$$

Consider the algebra
$\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{k} \otimes \mathcal{A}$

Consider the algebra

$\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{k} \otimes \mathcal{A}$

and for $a=1, \ldots, k$ set

$$
M_{a}=\sum_{i, j=1}^{n} \underbrace{1 \otimes \ldots \otimes 1}_{a-1} \otimes e_{i j} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{k-a} \otimes M_{i j},
$$

where 1 is the identity matrix.

The symmetric group \mathfrak{S}_{k} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n}}_{k}
$$

by permutations of tensor factors.

The symmetric group \mathfrak{S}_{k} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n}}_{k}
$$

by permutations of tensor factors.

In particular, we have the permutation operator

$$
P \in \operatorname{End}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right) \cong \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n}
$$

such that

The symmetric group \mathfrak{S}_{k} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n}}_{k}
$$

by permutations of tensor factors.

In particular, we have the permutation operator

$$
P \in \operatorname{End}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right) \cong \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n}
$$

such that

$$
P: \xi \otimes \eta \mapsto \eta \otimes \xi
$$

The symmetric group \mathfrak{S}_{k} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n}}_{k}
$$

by permutations of tensor factors.

In particular, we have the permutation operator

$$
P \in \operatorname{End}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right) \cong \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n}
$$

such that

$$
P: \xi \otimes \eta \mapsto \eta \otimes \xi
$$

Exercise. Verify that P is given by

$$
P=\sum_{i, j=1}^{n} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n}
$$

In general, for the transposition $(a b) \in \mathfrak{S}_{k}$ we have $(a b) \mapsto P_{a b}$, where

$$
P_{a b}=\sum_{i, j=1}^{n} \underbrace{1 \otimes \ldots \otimes 1}_{a-1} \otimes e_{i j} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{b-a-1} \otimes e_{j i} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{k-b} .
$$

In general, for the transposition $(a b) \in \mathfrak{S}_{k}$ we have $(a b) \mapsto P_{a b}$, where

$$
P_{a b}=\sum_{i, j=1}^{n} \underbrace{1 \otimes \ldots \otimes 1}_{a-1} \otimes e_{i j} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{b-a-1} \otimes e_{j i} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{k-b} .
$$

Elements of the group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ are then represented as operators in $\left(\mathbb{C}^{n}\right)^{\otimes k}$; that is, as elements of the algebra

$$
\operatorname{End}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right) \cong \underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{k}
$$

Exercise. Verify the relations in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$:

$$
P_{a b} M_{a}=M_{b} P_{a b}
$$

Exercise. Verify the relations in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$:

$$
P_{a b} M_{a}=M_{b} P_{a b}
$$

More generally, for any $\sigma \in \mathfrak{S}_{k}$ let P_{σ} denote its image under the action on the tensor product space $\left(\mathbb{C}^{n}\right)^{\otimes k}$.

Exercise. Verify the relations in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$:

$$
P_{a b} M_{a}=M_{b} P_{a b}
$$

More generally, for any $\sigma \in \mathfrak{S}_{k}$ let P_{σ} denote its image under the action on the tensor product space $\left(\mathbb{C}^{n}\right)^{\otimes k}$.

Show that

$$
P_{\sigma} M_{a}=M_{\sigma(a)} P_{\sigma}
$$

Key Lemma

Key Lemma

Consider the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathcal{A}
$$

Key Lemma

Consider the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \text { End } \mathbb{C}^{n} \otimes \mathcal{A}
$$

Lemma. Each of following relations provides an equivalent definition of Manin matrices:

$$
\begin{gathered}
(1-P) M_{1} M_{2}(1+P)=0, \\
(1-P)\left(M_{1} M_{2}-M_{2} M_{1}\right)=0, \\
\left(M_{1} M_{2}-M_{2} M_{1}\right)(1+P)=0 .
\end{gathered}
$$

Proof. The relations are equivalent to each other by the
Exercise. We have

Proof. The relations are equivalent to each other by the

Exercise. We have

$$
M_{1} M_{2}=\sum_{i, j, k, l=1}^{n} e_{i j} \otimes e_{k l} \otimes M_{i j} M_{k l}
$$

Proof. The relations are equivalent to each other by the
Exercise. We have

$$
M_{1} M_{2}=\sum_{i, j, k, l=1}^{n} e_{i j} \otimes e_{k l} \otimes M_{i j} M_{k l}
$$

Hence, using the formula for P we get

$$
\begin{aligned}
P M_{1} M_{2} & =\sum_{i, j, k, l=1}^{n} e_{k j} \otimes e_{i l} \otimes M_{i j} M_{k l}, \\
M_{1} M_{2} P & =\sum_{i, j, k, l=1}^{n} e_{i l} \otimes e_{k j} \otimes M_{i j} M_{k l},
\end{aligned}
$$

Proof. The relations are equivalent to each other by the
Exercise. We have

$$
M_{1} M_{2}=\sum_{i, j, k, l=1}^{n} e_{i j} \otimes e_{k l} \otimes M_{i j} M_{k l}
$$

Hence, using the formula for P we get

$$
\begin{aligned}
P M_{1} M_{2} & =\sum_{i, j, k, l=1}^{n} e_{k j} \otimes e_{i l} \otimes M_{i j} M_{k l}, \\
M_{1} M_{2} P & =\sum_{i, j, k, l=1}^{n} e_{i l} \otimes e_{k j} \otimes M_{i j} M_{k l},
\end{aligned}
$$

and

$$
P M_{1} M_{2} P=\sum_{i, j, k, l=1}^{n} e_{k l} \otimes e_{i j} \otimes M_{i j} M_{k l}
$$

Therefore, taking the coefficient of the basis vector $e_{i j} \otimes e_{k l}$ on the left hand side of
$(1-P) M_{1} M_{2}(1+P)$

$$
=M_{1} M_{2}-P M_{1} M_{2}+M_{1} M_{2} P-P M_{1} M_{2} P
$$

Therefore, taking the coefficient of the basis vector $e_{i j} \otimes e_{k l}$ on the left hand side of

$$
\begin{aligned}
& (1-P) M_{1} M_{2}(1+P) \\
& \quad=M_{1} M_{2}-P M_{1} M_{2}+M_{1} M_{2} P-P M_{1} M_{2} P
\end{aligned}
$$

we find that the first relation is equivalent to the defining relations for Manin matrices.

Remark on a new Hecke-type algebra

Remark on a new Hecke-type algebra

The Key Lemma suggests a definition of new algebra generated by $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ and abstract elements M_{1}, \ldots, M_{k}.

Remark on a new Hecke-type algebra

The Key Lemma suggests a definition of new algebra generated by $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ and abstract elements M_{1}, \ldots, M_{k}.

The defining relations are

$$
\sigma M_{a}=M_{\sigma(a)} \sigma, \quad \sigma \in \mathfrak{S}_{k},
$$

Remark on a new Hecke-type algebra

The Key Lemma suggests a definition of new algebra generated by $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ and abstract elements M_{1}, \ldots, M_{k}.

The defining relations are

$$
\sigma M_{a}=M_{\sigma(a)} \sigma, \quad \sigma \in \mathfrak{S}_{k},
$$

together with

$$
(1-(a b))\left(M_{a} M_{b}-M_{b} M_{a}\right)=0, \quad a<b
$$

Remark on a new Hecke-type algebra

The Key Lemma suggests a definition of new algebra generated by $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ and abstract elements M_{1}, \ldots, M_{k}.

The defining relations are

$$
\sigma M_{a}=M_{\sigma(a)} \sigma, \quad \sigma \in \mathfrak{S}_{k}
$$

together with

$$
(1-(a b))\left(M_{a} M_{b}-M_{b} M_{a}\right)=0, \quad a<b
$$

Open problem: understand this "Hecke-Manin" algebra.

Denote by $H^{(k)}$ and $A^{(k)}$ the respective images of the symmetrizer and anti-symmetrizer

$$
\frac{1}{k!} \sum_{\sigma \in \mathfrak{G}_{k}} \sigma \quad \text { and } \quad \frac{1}{k!} \sum_{\sigma \in \mathfrak{G}_{k}} \operatorname{sgn} \sigma \cdot \sigma .
$$

Denote by $H^{(k)}$ and $A^{(k)}$ the respective images of the

symmetrizer and anti-symmetrizer

$$
\frac{1}{k!} \sum_{\sigma \in \mathfrak{G}_{k}} \sigma \quad \text { and } \quad \frac{1}{k!} \sum_{\sigma \in \mathfrak{G}_{k}} \operatorname{sgn} \sigma \cdot \sigma .
$$

We regard $H^{(k)}$ and $A^{(k)}$ as elements of the algebra

Denote by $H^{(k)}$ and $A^{(k)}$ the respective images of the symmetrizer and anti-symmetrizer

$$
\frac{1}{k!} \sum_{\sigma \in \mathfrak{F}_{k}} \sigma \quad \text { and } \quad \frac{1}{k!} \sum_{\sigma \in \mathfrak{F}_{k}} \operatorname{sgn} \sigma \cdot \sigma .
$$

We regard $H^{(k)}$ and $A^{(k)}$ as elements of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{n} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{n}}_{k} .
$$

Example.

$$
H^{(2)}=\frac{1}{2}(1+P), \quad A^{(2)}=\frac{1}{2}(1-P) .
$$

We point out some useful recurrence formulas for the symmetrizer and anti-symmetrizer.

We point out some useful recurrence formulas for the symmetrizer and anti-symmetrizer.

Lemma. We get the formulas

$$
A^{(k)}=\frac{1}{k} A^{(k-1)}-\frac{k-1}{k} A^{(k-1)} P_{k-1 k} A^{(k-1)}
$$

We point out some useful recurrence formulas for the symmetrizer and anti-symmetrizer.
Lemma. We get the formulas

$$
A^{(k)}=\frac{1}{k} A^{(k-1)}-\frac{k-1}{k} A^{(k-1)} P_{k-1} A^{(k-1)}
$$

and

$$
H^{(k)}=\frac{1}{k} H^{(k-1)}+\frac{k-1}{k} H^{(k-1)} P_{k-1 k} H^{(k-1)} .
$$

Proof. We have (verify!)

$$
A^{(k)}=\frac{1}{k} A^{(k-1)}\left(1-P_{1 k}-\cdots-P_{k-1 k}\right)
$$

Proof. We have (verify!)

$$
A^{(k)}=\frac{1}{k} A^{(k-1)}\left(1-P_{1 k}-\cdots-P_{k-1 k}\right) .
$$

Multiply both sides by $A^{(k-1)}$ from the right and use the relations

$$
A^{(k)} A^{(k-1)}=A^{(k)}
$$

Proof. We have (verify!)

$$
A^{(k)}=\frac{1}{k} A^{(k-1)}\left(1-P_{1 k}-\cdots-P_{k-1 k}\right) .
$$

Multiply both sides by $A^{(k-1)}$ from the right and use the relations

$$
A^{(k)} A^{(k-1)}=A^{(k)}
$$

and

$$
A^{(k-1)} P_{a k} A^{(k-1)}=A^{(k-1)} P_{k-1 k} A^{(k-1)}
$$

for $1 \leqslant a<k$.

Proposition.

If M is a Manin matrix, then we have the identities in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$:

Proposition.

If M is a Manin matrix, then we have the identities in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$:

$$
A^{(k)} M_{1} \ldots M_{k} A^{(k)}=A^{(k)} M_{1} \ldots M_{k}
$$

Proposition.

If M is a Manin matrix, then we have the identities in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$:

$$
A^{(k)} M_{1} \ldots M_{k} A^{(k)}=A^{(k)} M_{1} \ldots M_{k}
$$

and

$$
H^{(k)} M_{1} \ldots M_{k} H^{(k)}=M_{1} \ldots M_{k} H^{(k)} .
$$

Proposition.

If M is a Manin matrix, then we have the identities in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$:

$$
A^{(k)} M_{1} \ldots M_{k} A^{(k)}=A^{(k)} M_{1} \ldots M_{k}
$$

and

$$
H^{(k)} M_{1} \ldots M_{k} H^{(k)}=M_{1} \ldots M_{k} H^{(k)} .
$$

Moreover,

$$
A^{(n)} M_{1} \ldots M_{n}=A^{(n)} \operatorname{cdet} M
$$

Proof. To prove the first relation it suffices to show that for any element $\sigma \in \mathfrak{S}_{k}$ we have

$$
A^{(k)} M_{1} \ldots M_{k} P_{\sigma}=\operatorname{sgn} \sigma \cdot A^{(k)} M_{1} \ldots M_{k}
$$

where P_{σ} is the image of $\sigma \in \mathfrak{S}_{k}$.

Proof. To prove the first relation it suffices to show that for any element $\sigma \in \mathfrak{S}_{k}$ we have

$$
A^{(k)} M_{1} \ldots M_{k} P_{\sigma}=\operatorname{sgn} \sigma \cdot A^{(k)} M_{1} \ldots M_{k},
$$

where P_{σ} is the image of $\sigma \in \mathfrak{S}_{k}$.

Since the group \mathfrak{S}_{k} is generated by the adjacent transpositions, it is enough to verify the relation for the elements $\sigma=(a a+1)$ with $a=1, \ldots, k-1$.

Hence we only need to consider the case $k=2$. However, the relation with $\sigma=(12)$ reads

$$
\frac{1-P}{2} M_{1} M_{2} P=-\frac{1-P}{2} M_{1} M_{2}
$$

which an equivalent form of the defining relations.

Hence we only need to consider the case $k=2$. However, the relation with $\sigma=(12)$ reads

$$
\frac{1-P}{2} M_{1} M_{2} P=-\frac{1-P}{2} M_{1} M_{2}
$$

which an equivalent form of the defining relations.

The proof of the second relation reduces to checking that for any $\sigma \in \mathfrak{S}_{k}$

$$
P_{\sigma} M_{1} \ldots M_{k} H^{(k)}=M_{1} \ldots M_{k} H^{(k)}
$$

This follows again from the defining relations written in the form

$$
P M_{1} M_{2} \frac{1+P}{2}=M_{1} M_{2} \frac{1+P}{2} .
$$

By the trace we will mean the linear map

$$
\operatorname{tr}: \operatorname{End} \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad e_{i j} \mapsto \delta_{i j}
$$

By the trace we will mean the linear map

$$
\operatorname{tr}: \operatorname{End} \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad e_{i j} \mapsto \delta_{i j}
$$

Furthermore, for any $a \in\{1, \ldots, k\}$ the partial trace tr_{a} will be understood as the linear map

$$
\operatorname{tr}_{a}: \operatorname{End}\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow \operatorname{End}\left(\mathbb{C}^{n}\right)^{\otimes(k-1)}
$$

which acts as the trace map on the a-th copy of End \mathbb{C}^{n} and is the identity map on all the remaining copies.

By the trace we will mean the linear map

$$
\operatorname{tr}: \operatorname{End} \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad e_{i j} \mapsto \delta_{i j}
$$

Furthermore, for any $a \in\{1, \ldots, k\}$ the partial trace tr_{a} will be understood as the linear map

$$
\operatorname{tr}_{a}: \operatorname{End}\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow \operatorname{End}\left(\mathbb{C}^{n}\right)^{\otimes(k-1)}
$$

which acts as the trace map on the a-th copy of End \mathbb{C}^{n} and is the identity map on all the remaining copies.

The full trace $\operatorname{tr}=\operatorname{tr}_{1, \ldots, k}$ is the composition $\operatorname{tr}_{1} \circ \cdots \circ \operatorname{tr}_{k}$.

Exercises. Show that

$$
\operatorname{tr}_{k} A^{(k)}=\frac{n-k+1}{k} A^{(k-1)}
$$

Exercises. Show that

$$
\operatorname{tr}_{k} A^{(k)}=\frac{n-k+1}{k} A^{(k-1)}
$$

and

$$
\operatorname{tr} A^{(k)}=\binom{n}{k} .
$$

Exercises. Show that

$$
\operatorname{tr}_{k} A^{(k)}=\frac{n-k+1}{k} A^{(k-1)}
$$

and

$$
\operatorname{tr} A^{(k)}=\binom{n}{k} .
$$

Similarly,

$$
\operatorname{tr}_{k} H^{(k)}=\frac{n+k-1}{k} H^{(k-1)}
$$

Exercises. Show that

$$
\operatorname{tr}_{k} A^{(k)}=\frac{n-k+1}{k} A^{(k-1)}
$$

and

$$
\operatorname{tr} A^{(k)}=\binom{n}{k}
$$

Similarly,

$$
\operatorname{tr}_{k} H^{(k)}=\frac{n+k-1}{k} H^{(k-1)}
$$

and

$$
\operatorname{tr} H^{(k)}=\binom{n+k-1}{k}
$$

Cyclic property of trace

Cyclic property of trace

Lemma. Suppose that two elements

$$
\begin{aligned}
X & =\sum e_{i_{1} j_{1}} \otimes \ldots \otimes e_{i_{k} j_{k}} \otimes X_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}} \quad \text { and } \\
Y & =\sum e_{i_{1} j_{1}} \otimes \ldots \otimes e_{i_{k} j_{k}} \otimes Y_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}
\end{aligned}
$$

of the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$ satisfy the property

Cyclic property of trace

Lemma. Suppose that two elements

$$
\begin{aligned}
X & =\sum e_{i_{1} j_{1}} \otimes \ldots \otimes e_{i j_{k}} \otimes X_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}} \quad \text { and } \\
Y & =\sum e_{i_{1} j_{1}} \otimes \ldots \otimes e_{i_{k} j_{k}} \otimes Y_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}
\end{aligned}
$$

of the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$ satisfy the property

$$
X_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}} Y_{l_{1} \ldots l_{k}}^{m_{1} \ldots m_{k}}=Y_{l_{1} \ldots l_{k}}^{m_{1} \ldots m_{k}} X_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}
$$

for all values of the indices.

Cyclic property of trace

Lemma. Suppose that two elements

$$
\begin{aligned}
X & =\sum e_{i_{1} j_{1}} \otimes \ldots \otimes e_{i j_{k}} \otimes X_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}} \quad \text { and } \\
Y & =\sum e_{i_{1} j_{1}} \otimes \ldots \otimes e_{i_{k} j_{k}} \otimes Y_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}
\end{aligned}
$$

of the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$ satisfy the property

$$
X_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}} Y_{l_{1} \ldots l_{k}}^{m_{1} \ldots m_{k}}=Y_{l_{1} \ldots l_{k}}^{m_{1} \ldots m_{k}} X_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}
$$

for all values of the indices. Then

$$
\operatorname{tr} X Y=\operatorname{tr} Y X
$$

MacMahon Master Theorem

MacMahon Master Theorem

For any $n \times n$ matrix M over an associative algebra \mathcal{A} set

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{n}(-1)^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k} \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k} .
\end{aligned}
$$

MacMahon Master Theorem

For any $n \times n$ matrix M over an associative algebra \mathcal{A} set

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{n}(-1)^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k} \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k} .
\end{aligned}
$$

Theorem [Garoufalidis-Lê-Zeilberger 2006].
If M is a Manin matrix, then

$$
\text { Bos } \times \text { Ferm }=1
$$

Proof.

It is sufficient to show that for any integer $1 \leqslant k \leqslant N$ we have the identity in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$

$$
\begin{aligned}
& \sum_{r=0}^{k}(-1)^{k-r} \operatorname{tr}_{1, \ldots, r} H^{(r)} M_{1} \ldots M_{r} \\
& \times \operatorname{tr}_{r+1, \ldots, k} A^{\{r+1, \ldots, k\}} M_{r+1} \ldots M_{k}=0
\end{aligned}
$$

Proof.

It is sufficient to show that for any integer $1 \leqslant k \leqslant N$ we have the identity in the algebra End $\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes \mathcal{A}$

$$
\begin{aligned}
\sum_{r=0}^{k}(-1)^{k-r} \operatorname{tr}_{1, \ldots, r} H^{(r)} M_{1} \ldots & M_{r} \\
& \times \operatorname{tr}_{r+1, \ldots, k} A^{\{r+1, \ldots, k\}} M_{r+1} \ldots M_{k}=0
\end{aligned}
$$

where $A^{\{r+1, \ldots, k\}}$ denotes the anti-symmetrizer over the copies of End \mathbb{C}^{n} labeled by $r+1, \ldots, k$ (with the identity components in the first r copies).

The identity can be written as

$$
\begin{equation*}
\sum_{r=0}^{k}(-1)^{r} \operatorname{tr}_{1, \ldots, k} H^{(r)} A^{\{r+1, \ldots, k\}} M_{1} \ldots M_{k}=0 \tag{1}
\end{equation*}
$$

The identity can be written as

$$
\begin{equation*}
\sum_{r=0}^{k}(-1)^{r} \operatorname{tr}_{1, \ldots, k} H^{(r)} A^{\{r+1, \ldots, k\}} M_{1} \ldots M_{k}=0 \tag{1}
\end{equation*}
$$

We will show that the left hand side of (1) remains unchanged after the replacement of the product of the symmetrizer and anti-symmetrizer $H^{(r)} A^{\{r+1, \ldots, k\}}$ by

$$
\frac{r(k-r+1)}{k} H^{(r)} A^{\{r, \ldots, k\}}+\frac{(r+1)(k-r)}{k} H^{(r+1)} A^{\{r+1, \ldots, k\}}
$$

The identity can be written as

$$
\begin{equation*}
\sum_{r=0}^{k}(-1)^{r} \operatorname{tr}_{1, \ldots, k} H^{(r)} A^{\{r+1, \ldots, k\}} M_{1} \ldots M_{k}=0 \tag{1}
\end{equation*}
$$

We will show that the left hand side of (1) remains unchanged after the replacement of the product of the symmetrizer and anti-symmetrizer $H^{(r)} A^{\{r+1, \ldots, k\}}$ by

$$
\frac{r(k-r+1)}{k} H^{(r)} A^{\{r, \ldots, k\}}+\frac{(r+1)(k-r)}{k} H^{(r+1)} A^{\{r+1, \ldots, k\}}
$$

If this is true, then (1) vanishes after the replacement since we get a telescoping sum equal to zero.

Working with $H^{(r+1)} A^{\{r+1, \ldots, k\}}$, use the recurrence relation

$$
H^{(r+1)}=\frac{1}{r+1} H^{(r)}+\frac{r}{r+1} H^{(r)} P_{r r+1} H^{(r)} .
$$

Working with $H^{(r+1)} A^{\{r+1, \ldots, k\}}$, use the recurrence relation

$$
H^{(r+1)}=\frac{1}{r+1} H^{(r)}+\frac{r}{r+1} H^{(r)} P_{r r+1} H^{(r)} .
$$

By the cyclic property of the trace, we get

$$
\begin{aligned}
& \operatorname{tr} H^{(r)} P_{r r+1} H^{(r)} A^{\{r+1, \ldots, k\}} M_{1} \ldots M_{k} \\
&=\operatorname{tr} P_{r r+1} A^{\{r+1, \ldots, k\}} H^{(r)} M_{1} \ldots M_{k} H^{(r)} .
\end{aligned}
$$

Working with $H^{(r+1)} A^{\{r+1, \ldots, k\}}$, use the recurrence relation

$$
H^{(r+1)}=\frac{1}{r+1} H^{(r)}+\frac{r}{r+1} H^{(r)} P_{r r+1} H^{(r)} .
$$

By the cyclic property of the trace, we get

$$
\begin{aligned}
\operatorname{tr} H^{(r)} P_{r r+1} H^{(r)} A^{\{r+1, \ldots, k\}} & M_{1} \ldots M_{k} \\
& =\operatorname{tr} P_{r r+1} A^{\{r+1, \ldots, k\}} H^{(r)} M_{1} \ldots M_{k} H^{(r)} .
\end{aligned}
$$

Hence, by the second identity in the Proposition, this equals

$$
\begin{aligned}
\operatorname{tr} P_{r r+1} A^{\{r+1, \ldots, k\}} M_{1} \ldots M_{k} H^{(r)} & \\
& =\operatorname{tr} H^{(r)} P_{r r+1} A^{\{r+1, \ldots, k\}} M_{1} \ldots M_{k}
\end{aligned}
$$

Reminder from Lecture 1

Reminder from Lecture 1

An $n \times n$ matrix M over an associative algebra \mathcal{A} is
a Manin matrix if elements in each column of M pairwise commute,

Reminder from Lecture 1

An $n \times n$ matrix M over an associative algebra \mathcal{A} is
a Manin matrix if elements in each column of M pairwise commute, whereas for any submatrix

$$
\left[\begin{array}{ll}
M_{i j} & M_{i l} \\
M_{k j} & M_{k l}
\end{array}\right]
$$

Reminder from Lecture 1

An $n \times n$ matrix M over an associative algebra \mathcal{A} is
a Manin matrix if elements in each column of M pairwise commute, whereas for any submatrix

$$
\left[\begin{array}{ll}
M_{i j} & M_{i l} \\
M_{k j} & M_{k l}
\end{array}\right]
$$

we have

$$
M_{i j} M_{k l}-M_{k j} M_{i l}=M_{k l} M_{i j}-M_{i l} M_{k j}
$$

Equivalently, M is a Manin matrix, if and only if in the product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \text { End } \mathbb{C}^{n} \otimes \mathcal{A}
$$

we have

$$
(1-P)\left(M_{1} M_{2}-M_{2} M_{1}\right)=0
$$

Equivalently, M is a Manin matrix, if and only if in the product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathcal{A}
$$

we have

$$
(1-P)\left(M_{1} M_{2}-M_{2} M_{1}\right)=0
$$

where

$$
M_{1}=\sum_{i, j=1}^{n} e_{i j} \otimes 1 \otimes M_{i j}
$$

and

$$
M_{2}=\sum_{i, j=1}^{n} 1 \otimes e_{i j} \otimes M_{i j}
$$

Noncommutative characteristic polynomial

Noncommutative characteristic polynomial

Proposition. If M is a Manin matrix, then

$$
\begin{aligned}
\operatorname{cdet}(1+t M) & =\sum_{k=0}^{n} t^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k} \\
{[\operatorname{cdet}(1-t M)]^{-1} } & =\sum_{k=0}^{\infty} t^{k} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k}
\end{aligned}
$$

Noncommutative characteristic polynomial

Proposition. If M is a Manin matrix, then

$$
\begin{aligned}
\operatorname{cdet}(1+t M) & =\sum_{k=0}^{n} t^{k} \operatorname{tr} A^{(k)} M_{1} \ldots M_{k}, \\
{[\operatorname{cdet}(1-t M)]^{-1} } & =\sum_{k=0}^{\infty} t^{k} \operatorname{tr} H^{(k)} M_{1} \ldots M_{k} .
\end{aligned}
$$

Proof. Write

$$
A^{(k)} M_{1} \ldots M_{k}=\sum_{I, J} e_{i_{1} j_{1}} \otimes \ldots \otimes e_{i_{k j} j_{k}} \otimes M_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}
$$

summed over all k-tuples of indices $I=\left(i_{1}, \ldots, i_{k}\right)$ and

$$
J=\left(j_{1}, \ldots, j_{k}\right) \text { from }\{1, \ldots, n\}, \text { where } M_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}} \in \mathcal{A}
$$

For each $a=1, \ldots, k-1$ we have

$$
P_{a a+1} A^{(k)} M_{1} \ldots M_{k}=-A^{(k)} M_{1} \ldots M_{k}=A^{(k)} M_{1} \ldots M_{k} P_{a a+1}
$$

For each $a=1, \ldots, k-1$ we have

$$
P_{a a+1} A^{(k)} M_{1} \ldots M_{k}=-A^{(k)} M_{1} \ldots M_{k}=A^{(k)} M_{1} \ldots M_{k} P_{a a+1}
$$

This implies that the matrix elements $M_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}$ are skew-symmetric with respect to permutations of the upper indices and of the lower indices.

For each $a=1, \ldots, k-1$ we have

$$
P_{a a+1} A^{(k)} M_{1} \ldots M_{k}=-A^{(k)} M_{1} \ldots M_{k}=A^{(k)} M_{1} \ldots M_{k} P_{a a+1} .
$$

This implies that the matrix elements $M_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}$ are skew-symmetric with respect to permutations of the upper indices and of the lower indices. Hence

$$
\operatorname{tr} A^{(k)} M_{1} \ldots M_{k}=\sum_{I} M_{i_{1} \ldots i_{k}}^{i_{1} \ldots i_{k}}=k!\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} M_{i_{1} \ldots i_{k}}^{i_{1} \ldots i_{k}}
$$

For each $a=1, \ldots, k-1$ we have

$$
P_{a a+1} A^{(k)} M_{1} \ldots M_{k}=-A^{(k)} M_{1} \ldots M_{k}=A^{(k)} M_{1} \ldots M_{k} P_{a a+1} .
$$

This implies that the matrix elements $M_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}$ are skew-symmetric with respect to permutations of the upper indices and of the lower indices. Hence

$$
\operatorname{tr} A^{(k)} M_{1} \ldots M_{k}=\sum_{I} M_{i_{1} \ldots i_{k}}^{i_{1} \ldots i_{k}}=k!\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} M_{i_{1} \ldots i_{k}}^{i_{1} \ldots i_{k}}
$$

which coincides with the coefficient of t^{k} in $\operatorname{cdet}(1+t M)$.

Cayley-Hamilton identity

Cayley-Hamilton identity

Define the comatrix for a Manin matrix M as the matrix \widehat{M} with the entries in the algebra \mathcal{A} defined by

$$
\widehat{M}_{i j}=(-1)^{i+j} \operatorname{cdet} M^{j i}
$$

where $M^{j i}$ is the matrix obtained from M by deleting row j and column i.

Cayley-Hamilton identity

Define the comatrix for a Manin matrix M as the matrix \widehat{M} with the entries in the algebra \mathcal{A} defined by

$$
\widehat{M}_{i j}=(-1)^{i+j} \operatorname{cdet} M^{j i}
$$

where $M^{j i}$ is the matrix obtained from M by deleting row j and column i.

Lemma. We have the relation

$$
\widehat{M} M=(\operatorname{cdet} M) 1
$$

Proof. First observe that the definition of the comatrix can be written equivalently in the matrix form as

$$
A^{(n)} M_{1} \ldots M_{n-1}=A^{(n)} \widehat{M}_{n}
$$

Proof. First observe that the definition of the comatrix can be written equivalently in the matrix form as

$$
A^{(n)} M_{1} \ldots M_{n-1}=A^{(n)} \widehat{M}_{n}
$$

Indeed,

$$
A^{(n)} M_{1} \ldots M_{n-1}=A^{(n)} M_{1} \ldots M_{n-1} A^{(n-1)}
$$

Proof. First observe that the definition of the comatrix can be written equivalently in the matrix form as

$$
A^{(n)} M_{1} \ldots M_{n-1}=A^{(n)} \widehat{M}_{n}
$$

Indeed,

$$
A^{(n)} M_{1} \ldots M_{n-1}=A^{(n)} M_{1} \ldots M_{n-1} A^{(n-1)}
$$

so that the matrix relation is equivalent to the equality of the matrix coefficients corresponding to the basis vectors of the form

$$
e_{1} \otimes \ldots \otimes \widehat{e}_{i} \otimes \ldots \otimes e_{n} \otimes e_{j}, \quad i, j \in\{1, \ldots, n\}
$$

Apply both sides of the matrix relation to such a vector and compare the coefficients of the vector

$$
\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot e_{\sigma(1)} \otimes \ldots \otimes e_{\sigma(n)}
$$

Apply both sides of the matrix relation to such a vector and compare the coefficients of the vector

$$
\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot e_{\sigma(1)} \otimes \ldots \otimes e_{\sigma(n)}
$$

We get the relation

$$
(-1)^{n-j} M_{1 \ldots \hat{i} \ldots n}^{1 \ldots \widehat{j} \ldots n}=(-1)^{n-i} \widehat{M}_{i j}
$$

as required.

Apply both sides of the matrix relation to such a vector and compare the coefficients of the vector

$$
\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot e_{\sigma(1)} \otimes \ldots \otimes e_{\sigma(n)}
$$

We get the relation

$$
(-1)^{n-j} M_{1 \ldots \hat{i} \ldots n}^{1 \ldots \hat{j} \ldots n}=(-1)^{n-i} \widehat{M}_{i j}
$$

as required. Now, by the Proposition,

$$
A^{(n)} \operatorname{cdet} M=A^{(n)} M_{1} \ldots M_{n}=A^{(n)} \widehat{M}_{n} M_{n} .
$$

On applying both sides to the above vectors we get the Lemma.

Theorem.
For a Manin matrix M set

$$
C(u)=\operatorname{cdet}(u 1-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n} .
$$

Theorem.
For a Manin matrix M set

$$
C(u)=\operatorname{cdet}(u 1-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}
$$

Then the Cayley-Hamilton identity holds: $C(M)=0$.

Theorem.

For a Manin matrix M set

$$
C(u)=\operatorname{cdet}(u 1-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}
$$

Then the Cayley-Hamilton identity holds: $C(M)=0$.
Proof. By the Lemma,

$$
(\widehat{u 1-M})(u-M)=C(u) 1 .
$$

Theorem.

For a Manin matrix M set

$$
C(u)=\operatorname{cdet}(u 1-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}
$$

Then the Cayley-Hamilton identity holds: $C(M)=0$.
Proof. By the Lemma,

$$
(\widehat{u 1-M})(u-M)=C(u) 1 .
$$

Substituting $u \rightarrow M$ we get $C(M)=0$.

Theorem.

For a Manin matrix M set

$$
C(u)=\operatorname{cdet}(u 1-M)=u^{n}-\Delta_{1} u^{n-1}+\cdots+(-1)^{n} \Delta_{n}
$$

Then the Cayley-Hamilton identity holds: $C(M)=0$.
Proof. By the Lemma,

$$
(\widehat{u 1-M})(u-M)=C(u) 1 .
$$

Substituting $u \rightarrow M$ we get $C(M)=0$.
[Open problem in the super case.]

Invertibility

Invertibility

Proposition. If a Manin matrix M is invertible and $\operatorname{cdet} M$ is invertible, then M^{-1} is a Manin matrix.

Invertibility

Proposition. If a Manin matrix M is invertible and $\operatorname{cdet} M$ is invertible, then M^{-1} is a Manin matrix.

Proof. Since

$$
A^{(n)} M_{n} \ldots M_{1}=A^{(n)} \operatorname{cdet} M,
$$

Invertibility

Proposition. If a Manin matrix M is invertible and $\operatorname{cdet} M$ is invertible, then M^{-1} is a Manin matrix.

Proof. Since

$$
A^{(n)} M_{n} \ldots M_{1}=A^{(n)} \operatorname{cdet} M,
$$

we have (assuming $n \geqslant 2$)

$$
(\operatorname{cdet} M)^{-1} A^{(n)} M_{n} \ldots M_{3}=A^{(n)} M_{1}^{-1} M_{2}^{-1}
$$

so that the right hand side is unchanged after the multiplication by $-P_{12}$ from the right.

Hence,

$$
A^{(n)}\left(M_{1}^{-1} M_{2}^{-1}-M_{2}^{-1} M_{1}^{-1}\right)=0
$$

Hence,

$$
A^{(n)}\left(M_{1}^{-1} M_{2}^{-1}-M_{2}^{-1} M_{1}^{-1}\right)=0
$$

Taking the partial trace $\operatorname{tr}_{3, \ldots, n}$ we get

$$
A^{(2)}\left(M_{1}^{-1} M_{2}^{-1}-M_{2}^{-1} M_{1}^{-1}\right)=0
$$

so that M^{-1} is a Manin matrix.

Hence,

$$
A^{(n)}\left(M_{1}^{-1} M_{2}^{-1}-M_{2}^{-1} M_{1}^{-1}\right)=0
$$

Taking the partial trace $\operatorname{tr}_{3, \ldots, n}$ we get

$$
A^{(2)}\left(M_{1}^{-1} M_{2}^{-1}-M_{2}^{-1} M_{1}^{-1}\right)=0
$$

so that M^{-1} is a Manin matrix.
[No proof is known in the super case.]

Newton identity

Newton identity

Theorem. If M is a Manin matrix, then

$$
\frac{d}{d t} \operatorname{cdet}(1+t M)=\operatorname{cdet}(1+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}
$$

Newton identity

Theorem. If M is a Manin matrix, then

$$
\frac{d}{d t} \operatorname{cdet}(1+t M)=\operatorname{cdet}(1+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}
$$

Proof. Since $1+t M$ is also a Manin matrix, we have

$$
A^{(n)}\left(1+t M_{1}\right) \ldots\left(1+t M_{n}\right)=A^{(n)} \operatorname{cdet}(1+t M)
$$

Calculate the derivative of both sides over t :

$$
\sum_{a=1}^{n} A^{(n)}\left(1+t M_{1}\right) \ldots M_{a} \ldots\left(1+t M_{n}\right)=A^{(n)} \frac{d}{d t} \operatorname{cdet}(1+t M)
$$

Replace the factor M_{a} by $t^{-1}\left(1+t M_{a}\right)-t^{-1}$, then take the trace of both sides over all n copies of End \mathbb{C}^{n} to get

$$
\begin{aligned}
n t^{-1} \operatorname{cdet}(1+t M)-t^{-1} \sum_{a=1}^{n} \operatorname{tr} A^{(n)}\left(1+t M_{1}\right) \ldots & \left(1+\widehat{+M}_{a}\right) \ldots\left(1+t M_{n}\right) \\
& =\frac{d}{d t} \operatorname{cdet}(1+t M)
\end{aligned}
$$

Replace the factor M_{a} by $t^{-1}\left(1+t M_{a}\right)-t^{-1}$, then take the trace of both sides over all n copies of End \mathbb{C}^{n} to get

$$
\begin{aligned}
& n t^{-1} \operatorname{cdet}(1+t M)-t^{-1} \sum_{a=1}^{n} \operatorname{tr} A^{(n)}\left(1+t M_{1}\right) \ldots\left({\left.\widehat{1+t M_{a}}\right) \ldots\left(1+t M_{n}\right)}^{=} \begin{array}{rl}
d t & \operatorname{det}(1+t M)
\end{array}\right. \\
&
\end{aligned}
$$

Observe that for each value of a the corresponding term in the sum coincides with the term for $a=n$ which equals

$$
\operatorname{tr} A^{(n)}\left(1+t M_{1}\right) \ldots\left(1+t M_{n-1}\right)
$$

The Lemma implies that this equals $\operatorname{cdet}(1+t M) \operatorname{tr}(1+t M)^{-1}$

The Lemma implies that this equals $\operatorname{cdet}(1+t M) \operatorname{tr}(1+t M)^{-1}$ and so we come to the identity

$$
\operatorname{cdet}(1+t M)\left(n t^{-1}-t^{-1} \operatorname{tr}(1+t M)^{-1}\right)=\frac{d}{d t} \operatorname{cdet}(1+t M)
$$

The Lemma implies that this equals $\operatorname{cdet}(1+t M) \operatorname{tr}(1+t M)^{-1}$ and so we come to the identity

$$
\operatorname{cdet}(1+t M)\left(n t^{-1}-t^{-1} \operatorname{tr}(1+t M)^{-1}\right)=\frac{d}{d t} \operatorname{cdet}(1+t M) .
$$

It can be written in the form

$$
\operatorname{cdet}(1+t M) \sum_{k=0}^{\infty}(-t)^{k} \operatorname{tr} M^{k+1}=\frac{d}{d t} \operatorname{cdet}(1+t M),
$$

as required.

Applications: Casimir elements

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

The matrix units $e_{i j}$ form its basis with the commutation relations

$$
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i l}-\delta_{i l} e_{k j} .
$$

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

The matrix units $e_{i j}$ form its basis with the commutation relations

$$
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i l}-\delta_{i l} e_{k j} .
$$

The group GL_{n} acts on $\mathfrak{g l}_{n}$ by conjugation: $X \mapsto g X g^{-1}$,

Applications: Casimir elements

The Lie algebra $\mathfrak{g l}_{n}$ is the vector space End \mathbb{C}^{n} with the bracket

$$
[A, B]=A B-B A
$$

The matrix units $e_{i j}$ form its basis with the commutation relations

$$
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i l}-\delta_{i l} e_{k j} .
$$

The group GL_{n} acts on $\mathfrak{g l}_{n}$ by conjugation: $X \mapsto g X g^{-1}$, and the action extends to the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{n}\right)$ which can be viewed as the algebra of polynomials in n^{2} variables $E_{i j}$.

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 n} \\
\vdots & \vdots & \vdots \\
E_{n 1} & \ldots & E_{n n}
\end{array}\right]
$$

with entries in the symmetric algebra $S\left(\mathfrak{g l}_{n}\right)$.

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 n} \\
\vdots & \vdots & \vdots \\
E_{n 1} & \ldots & E_{n n}
\end{array}\right]
$$

with entries in the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{n}\right)$.
Write

$$
\operatorname{det}(u+E)=u^{n}+\Delta_{1} u^{n-1}+\cdots+\Delta_{n} .
$$

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 n} \\
\vdots & \vdots & \vdots \\
E_{n 1} & \ldots & E_{n n}
\end{array}\right]
$$

with entries in the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{n}\right)$.
Write

$$
\operatorname{det}(u+E)=u^{n}+\Delta_{1} u^{n-1}+\cdots+\Delta_{n} .
$$

We have

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}}=\mathbb{C}\left[\Delta_{1}, \ldots, \Delta_{n}\right] .
$$

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ is the associative algebra with n^{2} generators $E_{i j}$ and the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ is the associative algebra with n^{2} generators $E_{i j}$ and the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

The symmetrization map

$$
\varpi: \mathrm{S}\left(\mathfrak{g l}_{n}\right) \xrightarrow{\sim} \mathrm{U}\left(\mathfrak{g l}_{n}\right),
$$

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ is the associative algebra with n^{2} generators $E_{i j}$ and the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

The symmetrization map

$$
\varpi: \mathrm{S}\left(\mathfrak{g l}_{n}\right) \xrightarrow{\sim} \mathrm{U}\left(\mathfrak{g l}_{n}\right),
$$

is a GL_{n}-module isomorphism, defined by

$$
\varpi: X_{1} \ldots X_{k} \mapsto \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} X_{\sigma(1)} \ldots X_{\sigma(k)}, \quad X_{i} \in \mathfrak{g l}_{n}
$$

[Poincaré-Birkhoff-Witt Theorem].

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right),
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$.

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right)
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$. Hence

$$
\mathrm{Z}\left(\mathfrak{g l}_{n}\right)=\mathbb{C}\left[\varpi\left(\Delta_{1}\right), \ldots, \varpi\left(\Delta_{n}\right)\right] .
$$

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right)
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$. Hence

$$
\mathrm{Z}\left(\mathfrak{g l}_{n}\right)=\mathbb{C}\left[\varpi\left(\Delta_{1}\right), \ldots, \varpi\left(\Delta_{n}\right)\right]
$$

By Schur's Lemma, any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts as scalar multiplication in any finite-dimensional simple $\mathfrak{g l}_{n}$-module.

This implies the isomorphism

$$
\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathrm{GL}_{n}} \cong \mathrm{Z}\left(\mathfrak{g l}_{n}\right)
$$

where $\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ is the center of $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$. Hence

$$
\mathrm{Z}\left(\mathfrak{g l}_{n}\right)=\mathbb{C}\left[\varpi\left(\Delta_{1}\right), \ldots, \varpi\left(\Delta_{n}\right)\right]
$$

By Schur's Lemma, any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts as scalar multiplication in any finite-dimensional simple $\mathfrak{g l}_{n}$-module.

Question: What are the scalars corresponding to $\varpi\left(\Delta_{i}\right)$?

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant n, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n,
\end{array}
$$

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant n, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n,
\end{array}
$$

for certain $\lambda_{i} \in \mathbb{C}$ satisfying the conditions $\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}$.

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant n, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n,
\end{array}
$$

for certain $\lambda_{i} \in \mathbb{C}$ satisfying the conditions $\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts in L by multiplying each vector by a scalar $\chi(z)$.

Any finite-dimensional simple $\mathfrak{g l}_{n}$-module L is generated by a nonzero vector $\xi \in L$ such that

$$
\begin{array}{ll}
E_{i j} \xi=0 & \text { for } \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } \\
1 \leqslant i \leqslant n,
\end{array}
$$

for certain $\lambda_{i} \in \mathbb{C}$ satisfying the conditions $\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ acts in L by multiplying each vector by a scalar $\chi(z)$. As a function of the parameters λ_{i}, the scalar $\chi(z)$ is a shifted symmetric polynomial in the variables $\lambda_{1}, \ldots, \lambda_{n}$.

The polynomial $\chi(z)$ is symmetric in the shifted variables

$$
\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{n}-n+1
$$

The polynomial $\chi(z)$ is symmetric in the shifted variables
$\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{n}-n+1$.
The map χ is the Harish-Chandra isomorphism between
$\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ and the algebra of shifted symmetric polynomials.

The polynomial $\chi(z)$ is symmetric in the shifted variables
$\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{n}-n+1$.
The map χ is the Harish-Chandra isomorphism between
$\mathrm{Z}\left(\mathfrak{g l}_{n}\right)$ and the algebra of shifted symmetric polynomials.

Algebraically independent generators:
elementary shifted symmetric polynomials

$$
e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{i_{1}<\cdots<i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}-1\right) \ldots\left(\lambda_{i_{m}}-m+1\right)
$$

with $m=1, \ldots, n$.

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{n}{m}\binom{n}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{n}{m}\binom{n}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Proof. Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{n} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{n}{m}\binom{n}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Proof. Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{n} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Observe that

$$
\varpi\left(\Delta_{m}\right)=\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}
$$

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

in the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

in the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Introduce the extended algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right) \otimes \mathbb{C}\left[u, e^{ \pm \partial_{u}}\right]$, where the element $e^{\partial_{u}}$ satisfies $e^{\partial_{u}} f(u)=f(u+1) e^{\partial_{u}}$.

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ can be written as

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P
$$

in the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{n}\right)
$$

Introduce the extended algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right) \otimes \mathbb{C}\left[u, e^{ \pm \partial_{u}}\right]$, where the element $e^{\partial_{u}}$ satisfies $e^{\partial_{u}} f(u)=f(u+1) e^{\partial_{u}}$.

Key observation:

$$
M=(u 1+E) e^{-\partial_{u}}
$$

is a Manin matrix.

Hence

$$
\operatorname{cdet} M=\operatorname{tr} A^{(n)} M_{1} \ldots M_{n} .
$$

Hence

$$
\operatorname{cdet} M=\operatorname{tr} A^{(n)} M_{1} \ldots M_{n} .
$$

This implies the relation for the Capelli determinant (1890),

$$
\begin{array}{r}
\operatorname{cdet}\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 n} \\
E_{21} & u+E_{22}-1 & \ldots & E_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
E_{n 1} & \ldots & \ldots & u+E_{n n}-n+1
\end{array}\right] \\
\\
\\
=\operatorname{tr} A^{(n)}\left(u+E_{1}\right)\left(u+E_{2}-1\right) \ldots\left(u+E_{n}-n+1\right)
\end{array}
$$

Hence

$$
\operatorname{cdet} M=\operatorname{tr} A^{(n)} M_{1} \ldots M_{n} .
$$

This implies the relation for the Capelli determinant (1890),

$$
\begin{array}{r}
\operatorname{cdet}\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 n} \\
E_{21} & u+E_{22}-1 & \ldots & E_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
E_{n 1} & \ldots & \ldots & u+E_{n n}-n+1
\end{array}\right] \\
\\
\quad=\operatorname{tr} A^{(n)}\left(u+E_{1}\right)\left(u+E_{2}-1\right) \ldots\left(u+E_{n}-n+1\right) .
\end{array}
$$

The Harish-Chandra image is $\left(u+\lambda_{1}\right) \ldots\left(u+\lambda_{n}-n+1\right)$.

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using the identities for the Stirling numbers

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using the identities for the Stirling numbers

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

we derive

$$
\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}=\operatorname{tr} A^{(m)} \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} E_{1}\left(E_{2}-1\right) \ldots\left(E_{k}-k+1\right) .
$$

Similarly,

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using the identities for the Stirling numbers

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

we derive

$$
\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}=\operatorname{tr} A^{(m)} \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} E_{1}\left(E_{2}-1\right) \ldots\left(E_{k}-k+1\right) .
$$

It remains to calculate the partial traces of $A^{(m)}$.

Further examples

Further examples

Consider the algebra $\mathcal{A}=\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ and let $\tau=-\frac{d}{d t}$.

Further examples

Consider the algebra $\mathcal{A}=\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ and let $\tau=-\frac{d}{d t}$.
Lemma. The matrix $M=\tau 1+E[-1]$ is a Manin matrix.

Further examples

Consider the algebra $\mathcal{A}=\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ and let $\tau=-\frac{d}{d t}$.
Lemma. The matrix $M=\tau 1+E[-1]$ is a Manin matrix.

This fact is essential in the constructions of Sugawara operators for $\mathfrak{g l}_{n}$.

The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ for $\mathfrak{g l}_{n}$ is an associative algebra with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, n$, and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)},
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.

Introduce the $n \times n$ matrix $T(u)$ whose $i j$-th entry is the series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{n}\right)\left[\left[u^{-1}\right]\right]
$$

Introduce the $n \times n$ matrix $T(u)$ whose $i j$-th entry is the series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{n}\right)\left[\left[u^{-1}\right]\right]
$$

We can regard $T(u)$ as an element

$$
T(u)=\sum_{i, j=1}^{n} e_{i j} \otimes t_{i j}(u) \in \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{Y}\left(\mathfrak{g r}_{n}\right)\left[\left[u^{-1}\right]\right]
$$

The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

where

$$
R(u)=1-P u^{-1}
$$

is the Yang R-matrix.

The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

where

$$
R(u)=1-P u^{-1}
$$

is the Yang R-matrix.

Lemma. The matrix $M=T(u) e^{-\partial_{u}}$ is a Manin matrix.

q-Manin matrices

q-Manin matrices

A. Chervov, G. Falqui, V. Rubtsov and A. Silantyev, Algebraic
properties of Manin matrices II: q-analogues and integrable
systems, Adv. in Appl. Math. 60 (2014), 25-89.

q-Manin matrices

A. Chervov, G. Falqui, V. Rubtsov and A. Silantyev, Algebraic
properties of Manin matrices II: q-analogues and integrable
systems, Adv. in Appl. Math. 60 (2014), 25-89.

We will assume that $q \in \mathbb{C}^{\times}$.

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$.

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$.
Using $y x=q x y$, we get

$$
(c x+d y)(a x+b y)=q(a x+b y)(c x+d y) .
$$

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$.
Using $y x=q x y$, we get

$$
(c x+d y)(a x+b y)=q(a x+b y)(c x+d y) .
$$

This leads to the definition of q-Manin matrices:

$$
c a=q a c, \quad d b=q b d,
$$

A 2×2 matrix is q-Manin if the elements x^{\prime} and y^{\prime} defined by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

satisfy $y^{\prime} x^{\prime}=q x^{\prime} y^{\prime}$.
Using $y x=q x y$, we get

$$
(c x+d y)(a x+b y)=q(a x+b y)(c x+d y) .
$$

This leads to the definition of q-Manin matrices:

$$
c a=q a c, \quad d b=q b d,
$$

and

$$
a d-d a=q^{-1} c b-q b c .
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is
a q-Manin matrix if all its 2×2 submatrices are Manin matrices:

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a q-Manin matrix if all its 2×2 submatrices are Manin matrices: elements in each column of M pairwise q-commute,

$$
M_{i j} M_{k j}=q M_{k j} M_{i j}, \quad i>k,
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a q-Manin matrix if all its 2×2 submatrices are Manin matrices: elements in each column of M pairwise q-commute,

$$
M_{i j} M_{k j}=q M_{k j} M_{i j}, \quad i>k,
$$

whereas for any submatrix

$$
\left[\begin{array}{ll}
M_{i j} & M_{i l} \\
M_{k j} & M_{k l}
\end{array}\right]
$$

Definition. An $n \times n$ matrix M over an associative algebra \mathcal{A} is a q-Manin matrix if all its 2×2 submatrices are Manin matrices: elements in each column of M pairwise q-commute,

$$
M_{i j} M_{k j}=q M_{k j} M_{i j}, \quad i>k,
$$

whereas for any submatrix

$$
\left[\begin{array}{ll}
M_{i j} & M_{i l} \\
M_{k j} & M_{k l}
\end{array}\right]
$$

we have

$$
M_{i j} M_{k l}-q^{-1} M_{k j} M_{i l}=M_{k l} M_{i j}-q M_{i l} M_{k j} .
$$

Determinants

Determinants

The q-column-determinant of a q-Manin matrix M is defined by

$$
\operatorname{cdet}_{q} M=\sum_{\sigma \in \mathfrak{S}_{n}}(-q)^{-\ell(\sigma)} \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n},
$$

Determinants

The q-column-determinant of a q-Manin matrix M is defined by

$$
\operatorname{cdet}_{q} M=\sum_{\sigma \in \mathfrak{S}_{n}}(-q)^{-\ell(\sigma)} \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n}
$$

where $\ell(\sigma)$ denotes the length of σ.

Determinants

The q-column-determinant of a q-Manin matrix M is defined by

$$
\operatorname{cdet}_{q} M=\sum_{\sigma \in \mathfrak{S}_{n}}(-q)^{-\ell(\sigma)} \cdot M_{\sigma(1) 1} \ldots M_{\sigma(n) n}
$$

where $\ell(\sigma)$ denotes the length of σ.

In particular,

$$
\operatorname{cdet}_{q}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-q^{-1} c b
$$

q-Deformed action of \mathfrak{S}_{k}

q-Deformed action of \mathfrak{S}_{k}

The action of the symmetric group \mathfrak{S}_{k} on the space $\left(\mathbb{C}^{N}\right)^{\otimes k}$ can be defined by setting $s_{a} \mapsto P_{s_{a}}^{q}:=P_{a a+1}^{q}$, where s_{a} denotes the transposition $(a a+1)$ and P^{q} is the q-permutation operator

$$
P^{q}=\sum_{i} e_{i i} \otimes e_{i i}+q \sum_{i>j} e_{i j} \otimes e_{j i}+q^{-1} \sum_{i<j} e_{i j} \otimes e_{j i} .
$$

q-Deformed action of \mathfrak{S}_{k}

The action of the symmetric group \mathfrak{S}_{k} on the space $\left(\mathbb{C}^{N}\right)^{\otimes k}$ can be defined by setting $s_{a} \mapsto P_{s_{a}}^{q}:=P_{a a+1}^{q}$, where s_{a} denotes the transposition $(a a+1)$ and P^{q} is the q-permutation operator

$$
P^{q}=\sum_{i} e_{i i} \otimes e_{i i}+q \sum_{i>j} e_{i j} \otimes e_{j i}+q^{-1} \sum_{i<j} e_{i j} \otimes e_{j i} .
$$

This operator is an involution: $\left(P^{q}\right)^{2}=1$.

q-Deformed action of \mathfrak{S}_{k}

The action of the symmetric group \mathfrak{S}_{k} on the space $\left(\mathbb{C}^{N}\right)^{\otimes k}$ can be defined by setting $s_{a} \mapsto P_{s_{a}}^{q}:=P_{a a+1}^{q}$, where s_{a} denotes the transposition $(a a+1)$ and P^{q} is the q-permutation operator

$$
P^{q}=\sum_{i} e_{i i} \otimes e_{i i}+q \sum_{i>j} e_{i j} \otimes e_{j i}+q^{-1} \sum_{i<j} e_{i j} \otimes e_{j i} .
$$

This operator is an involution: $\left(P^{q}\right)^{2}=1$. Equivalently,

$$
P^{q}\left(e_{i} \otimes e_{j}\right)= \begin{cases}q e_{j} \otimes e_{i} & \text { if } \quad i<j, \\ q^{-1} e_{j} \otimes e_{i} & \text { if } \quad i>j, \\ e_{j} \otimes e_{i} & \text { if } \quad i=j .\end{cases}
$$

If $s=s_{a_{1}} \ldots s_{a_{l}}$ is a reduced decomposition of an element
$s \in \mathfrak{S}_{k}$, we set $P_{s}^{q}=P_{s_{a_{1}}}^{q} \ldots P_{s_{a_{l}}}^{q}$.

If $s=s_{a_{1}} \ldots s_{a_{l}}$ is a reduced decomposition of an element
$s \in \mathfrak{S}_{k}$, we set $P_{s}^{q}=P_{s_{a_{1}}}^{q} \ldots P_{s_{a_{l}}}^{q}$.

Warning. In general, $\quad P_{(a b)}^{q} \neq P_{a b}^{q}$.

If $s=s_{a_{1}} \ldots s_{a_{l}}$ is a reduced decomposition of an element
$s \in \mathfrak{S}_{k}$, we set $P_{s}^{q}=P_{s_{a_{1}}}^{q} \ldots P_{s_{a_{l}}}^{q}$.

Warning. In general, $\quad P_{(a b)}^{q} \neq P_{a b}^{q}$.

Denote by $H^{(k)}$ and $A^{(k)}$ the q-symmetrizer and q-anti-symmetrizer:

$$
H^{(k)}=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} P_{s}^{q}
$$

If $s=s_{a_{1}} \ldots s_{a_{l}}$ is a reduced decomposition of an element
$s \in \mathfrak{S}_{k}$, we set $P_{s}^{q}=P_{s_{a_{1}}}^{q} \ldots P_{s_{a_{l}}}^{q}$.

Warning. In general, $\quad P_{(a b)}^{q} \neq P_{a b}^{q}$.

Denote by $H^{(k)}$ and $A^{(k)}$ the q-symmetrizer and q-anti-symmetrizer:

$$
H^{(k)}=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} P_{s}^{q}
$$

and

$$
A^{(k)}=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn} s \cdot P_{s}^{q}
$$

Consider the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathcal{A}
$$

Consider the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \text { End } \mathbb{C}^{n} \otimes \mathcal{A}
$$

Key Lemma. $\quad M$ is a q-Manin matrix, if and only if

$$
\left(1-P^{q}\right) M_{1} M_{2}\left(1+P^{q}\right)=0 .
$$

Consider the tensor product algebra

$$
\text { End } \mathbb{C}^{n} \otimes \text { End } \mathbb{C}^{n} \otimes \mathcal{A}
$$

Key Lemma. $\quad M$ is a q-Manin matrix, if and only if

$$
\left(1-P^{q}\right) M_{1} M_{2}\left(1+P^{q}\right)=0 .
$$

Equivalently,

$$
A^{(2)} M_{1} M_{2} H^{(2)}=0 .
$$

Consider the tensor product algebra

$$
\operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \mathcal{A}
$$

Key Lemma. $\quad M$ is a q-Manin matrix, if and only if

$$
\left(1-P^{q}\right) M_{1} M_{2}\left(1+P^{q}\right)=0 .
$$

Equivalently,

$$
A^{(2)} M_{1} M_{2} H^{(2)}=0 .
$$

Claim. All the properties of Manin matrices have their natural q-analogues.

Super-Manin matrices

Super-Manin matrices

P. H. Hai, B. Kriegk and M. Lorenz, N-homogeneous superalgebras, J. Noncommut. Geom. 2 (2008), 1-51.

Super-Manin matrices

P. H. Hai, B. Kriegk and M. Lorenz, N-homogeneous superalgebras, J. Noncommut. Geom. 2 (2008), 1-51.
A. I. Molev and E. Ragoucy, The MacMahon Master Theorem for right quantum superalgebras and higher Sugawara operators for $\widehat{\mathfrak{g}} l_{m \mid n}$, Moscow Math. J. 14 (2014), 83-119.

We let $\mathbb{C}^{m \mid n}$ denote the \mathbb{Z}_{2}-graded vector space with the basis e_{1}, \ldots, e_{m+n} such that the degree (or parity) of e_{i} is 0 for $i=1, \ldots, m$ and is 1 for $i=m+1, \ldots, m+n$.

We let $\mathbb{C}^{m \mid n}$ denote the \mathbb{Z}_{2}-graded vector space with the basis e_{1}, \ldots, e_{m+n} such that the degree (or parity) of e_{i} is 0 for $i=1, \ldots, m$ and is 1 for $i=m+1, \ldots, m+n$.

Set $\bar{\imath}=0$ for $1 \leqslant i \leqslant m$ and $\bar{\imath}=1$ for $m+1 \leqslant i \leqslant m+n$.

We let $\mathbb{C}^{m \mid n}$ denote the \mathbb{Z}_{2}-graded vector space with the basis e_{1}, \ldots, e_{m+n} such that the degree (or parity) of e_{i} is 0 for $i=1, \ldots, m$ and is 1 for $i=m+1, \ldots, m+n$.

Set $\bar{\imath}=0$ for $1 \leqslant i \leqslant m$ and $\bar{\imath}=1$ for $m+1 \leqslant i \leqslant m+n$.
Then the parity of e_{i} is $\bar{\imath}$.

We let $\mathbb{C}^{m \mid n}$ denote the \mathbb{Z}_{2}-graded vector space with the basis e_{1}, \ldots, e_{m+n} such that the degree (or parity) of e_{i} is 0 for $i=1, \ldots, m$ and is 1 for $i=m+1, \ldots, m+n$.

Set $\bar{\imath}=0$ for $1 \leqslant i \leqslant m$ and $\bar{\imath}=1$ for $m+1 \leqslant i \leqslant m+n$.
Then the parity of e_{i} is $\bar{\imath}$.

We will consider superalgebras which are \mathbb{Z}_{2}-graded
(associative) algebras $\mathcal{A}=\mathcal{A}_{0} \oplus \mathcal{A}_{1}$.

In particular, End $\mathbb{C}^{m \mid n}$ is a superalgebra with the \mathbb{Z}_{2}-grading given by setting the parity of $e_{i j}$ to be $\bar{\imath}+\bar{\jmath}$.

In particular, End $\mathbb{C}^{m \mid n}$ is a superalgebra with the \mathbb{Z}_{2}-grading given by setting the parity of $e_{i j}$ to be $\bar{\imath}+\bar{\jmath}$.

We will consider even $(m+n) \times(m+n)$ matrices $Z=\left[z_{i j}\right]$ over a superalgebra \mathcal{A} so that the (i, j) entry $z_{i j}$ of Z has parity $\bar{\imath}+\bar{\jmath}$.

In particular, End $\mathbb{C}^{m \mid n}$ is a superalgebra with the \mathbb{Z}_{2}-grading given by setting the parity of $e_{i j}$ to be $\bar{\imath}+\bar{\jmath}$.

We will consider even $(m+n) \times(m+n)$ matrices $Z=\left[z_{i j}\right]$ over a superalgebra \mathcal{A} so that the (i, j) entry $z_{i j}$ of Z has parity $\bar{\imath}+\bar{\jmath}$.

Such a matrix Z will be identified with the element

$$
Z=\sum_{i, j=1}^{m+n} e_{i j} \otimes z_{i j}(-1)^{\bar{\jmath}+\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{m \mid n} \otimes \mathcal{A}
$$

In particular, End $\mathbb{C}^{m \mid n}$ is a superalgebra with the \mathbb{Z}_{2}-grading given by setting the parity of $e_{i j}$ to be $\bar{\imath}+\bar{\jmath}$.

We will consider even $(m+n) \times(m+n)$ matrices $Z=\left[z_{i j}\right]$ over a superalgebra \mathcal{A} so that the (i, j) entry $z_{i j}$ of Z has parity $\bar{\imath}+\bar{\jmath}$.

Such a matrix Z will be identified with the element

$$
Z=\sum_{i, j=1}^{m+n} e_{i j} \otimes z_{i j}(-1)^{\bar{\jmath}+\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{m \mid n} \otimes \mathcal{A}
$$

The signs are necessary because of the sign rule

$$
(x \otimes y)\left(x^{\prime} \otimes y^{\prime}\right)=\left(x x^{\prime} \otimes y y^{\prime}\right)(-1)^{\operatorname{deg} y \operatorname{deg} x^{\prime}} .
$$

Consider the superalgebra

Consider the superalgebra

For each $a \in\{1, \ldots, k\}$ the element Z_{a} of this superalgebra is defined by the formula

$$
Z_{a}=\sum_{i, j=1}^{m+n} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(k-a)} \otimes z_{i j}(-1)^{\bar{\imath} \bar{\jmath}+\bar{\jmath}}
$$

The supertrace is the linear map

$$
\text { str : End } \mathbb{C}^{m \mid n} \rightarrow \mathbb{C}, \quad e_{i j} \mapsto \delta_{i j}(-1)^{\bar{\imath}}
$$

The supertrace is the linear map

$$
\text { str : End } \mathbb{C}^{m \mid n} \rightarrow \mathbb{C}, \quad e_{i j} \mapsto \delta_{i j}(-1)^{\bar{\imath}}
$$

The partial supertrace str_{a} acts as the supertrace map on the a-th copy of End $\mathbb{C}^{m \mid n}$ and is the identity map on all the remaining copies.

Using the natural action of \mathfrak{S}_{k} on $\left(\mathbb{C}^{m \mid n}\right)^{\otimes k}$ we represent any permutation $\sigma \in \mathfrak{S}_{k}$ as an element P_{σ} of the superalgebra End $\left(\mathbb{C}^{m \mid n}\right)^{\otimes k}$.

Using the natural action of \mathfrak{S}_{k} on $\left(\mathbb{C}^{m \mid n}\right)^{\otimes k}$ we represent any permutation $\sigma \in \mathfrak{S}_{k}$ as an element P_{σ} of the superalgebra
$\operatorname{End}\left(\mathbb{C}^{m \mid n}\right)^{\otimes k}$.

In particular, the transposition $(a b)$ with $a<b$ corresponds to
the element

$$
P_{a b}=\sum_{i, j=1}^{m+n} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{j i} \otimes 1^{\otimes(k-b)}(-1)^{\bar{\jmath}},
$$

which allows one to determine P_{σ} by writing an arbitrary $\sigma \in \mathfrak{S}_{k}$ as a product of transpositions.

Definition. An even matrix $Z=\left[z_{i j}\right]$ with entries in a superalgebra \mathcal{A} is a Manin matrix, if

$$
\left(1-P_{12}\right) Z_{1} Z_{2}\left(1+P_{12}\right)=0
$$

Definition. An even matrix $Z=\left[z_{i j}\right]$ with entries in a superalgebra \mathcal{A} is a Manin matrix, if

$$
\left(1-P_{12}\right) Z_{1} Z_{2}\left(1+P_{12}\right)=0
$$

in the superalgebra

Definition. An even matrix $Z=\left[z_{i j}\right]$ with entries in a superalgebra \mathcal{A} is a Manin matrix, if

$$
\left(1-P_{12}\right) Z_{1} Z_{2}\left(1+P_{12}\right)=0
$$

in the superalgebra

$$
\text { End } \mathbb{C}^{m \mid n} \otimes \text { End } \mathbb{C}^{m \mid n} \otimes \mathcal{A}
$$

Definition. An even matrix $Z=\left[z_{i j}\right]$ with entries in a superalgebra \mathcal{A} is a Manin matrix, if

$$
\left(1-P_{12}\right) Z_{1} Z_{2}\left(1+P_{12}\right)=0
$$

in the superalgebra

$$
\text { End } \mathbb{C}^{m \mid n} \otimes \text { End } \mathbb{C}^{m \mid n} \otimes \mathcal{A}
$$

Explicitly, the relations have the form

$$
\left[z_{i j}, z_{k l}\right]=\left[z_{k j}, z_{i l}\right](-1)^{\bar{\imath}+\bar{\imath} \bar{k}+\bar{\jmath} \bar{k}}
$$

where $[x, y]=x y-y x(-1)^{\operatorname{deg} x \operatorname{deg} y}$ is the super-commutator.

MacMahon Master Theorem

MacMahon Master Theorem

Set

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{\infty}(-1)^{k} \operatorname{tr} A^{(k)} Z_{1} \ldots Z_{k} \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} Z_{1} \ldots Z_{k}
\end{aligned}
$$

MacMahon Master Theorem

Set

$$
\begin{aligned}
& \text { Ferm }=1+\sum_{k=1}^{\infty}(-1)^{k} \operatorname{tr} A^{(k)} Z_{1} \ldots Z_{k}, \\
& \text { Bos }=1+\sum_{k=1}^{\infty} \operatorname{tr} H^{(k)} Z_{1} \ldots Z_{k} .
\end{aligned}
$$

Theorem [MR 2014].
If Z is a Manin matrix, then

$$
\text { Bos } \times \text { Ferm }=1
$$

Berezinian

Berezinian

Suppose that $Z=\left[z_{i j}\right]$ is an even invertible matrix over \mathcal{A} and $Z^{-1}=\left[z_{i j}^{\prime}\right]$ is its inverse.

Berezinian

Suppose that $Z=\left[z_{i j}\right]$ is an even invertible matrix over \mathcal{A} and $Z^{-1}=\left[z_{i j}^{\prime}\right]$ is its inverse.

The Berezinian of Z is defined by the formula

$$
\begin{aligned}
\operatorname{Ber} Z & =\sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot z_{\sigma(1) 1} \cdots z_{\sigma(m) m} \\
& \times \sum_{\tau \in \mathfrak{S}_{n}} \operatorname{sgn} \tau \cdot z_{m+1, m+\tau(1)}^{\prime} \cdots z_{m+n, m+\tau(n)}^{\prime}
\end{aligned}
$$

Berezinian

Suppose that $Z=\left[z_{i j}\right]$ is an even invertible matrix over \mathcal{A} and $Z^{-1}=\left[z_{i j}^{\prime}\right]$ is its inverse.

The Berezinian of Z is defined by the formula

$$
\begin{aligned}
\operatorname{Ber} Z & =\sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot z_{\sigma(1) 1} \ldots z_{\sigma(m) m} \\
& \times \sum_{\tau \in \mathfrak{S}_{n}} \operatorname{sgn} \tau \cdot z_{m+1, m+\tau(1)}^{\prime} \cdots z_{m+n, m+\tau(n)}^{\prime}
\end{aligned}
$$

If \mathcal{A} is supercommutative, then

$$
\operatorname{Ber}(X Y)=\operatorname{Ber} X \cdot \operatorname{Ber} Y
$$

Theorem. If Z is a Manin matrix, then

$$
\begin{aligned}
\operatorname{Ber}(1+u Z) & =\sum_{k=0}^{\infty} u^{k} \operatorname{str} A^{(k)} Z_{1} \ldots Z_{k}, \\
{[\operatorname{Ber}(1-u Z)]^{-1} } & =\sum_{k=0}^{\infty} u^{k} \operatorname{str} H^{(k)} Z_{1} \ldots Z_{k}, \\
\frac{d}{d u} \operatorname{Ber}(1+u Z) & =\operatorname{Ber}(1+u Z) \sum_{k=0}^{\infty}(-u)^{k} \operatorname{str} Z^{k+1} .
\end{aligned}
$$

Theorem. If Z is a Manin matrix, then

$$
\begin{aligned}
\operatorname{Ber}(1+u Z) & =\sum_{k=0}^{\infty} u^{k} \operatorname{str} A^{(k)} Z_{1} \ldots Z_{k}, \\
{[\operatorname{Ber}(1-u Z)]^{-1} } & =\sum_{k=0}^{\infty} u^{k} \operatorname{str} H^{(k)} Z_{1} \ldots Z_{k}, \\
\frac{d}{d u} \operatorname{Ber}(1+u Z) & =\operatorname{Ber}(1+u Z) \sum_{k=0}^{\infty}(-u)^{k} \operatorname{str} Z^{k+1} .
\end{aligned}
$$

The last formula provides the Newton identities.

Problems

Problems

1) Consider the associative algebra $\mathcal{M}_{m \mid n}$ with $(m+n)^{2}$
generators $z_{i j}$ subject to the defining relations

$$
\left[z_{i j}, z_{k l}\right]=\left[z_{k j}, z_{i l}\right](-1)^{\bar{\imath}+\bar{\imath} \bar{k}+\bar{\jmath} \bar{k}}
$$

Problems

1) Consider the associative algebra $\mathcal{M}_{m \mid n}$ with $(m+n)^{2}$
generators $z_{i j}$ subject to the defining relations

$$
\left[z_{i j}, z_{k l}\right]=\left[z_{k j}, z_{i l}\right](-1)^{\bar{\imath}+\bar{\imath} \bar{k}+\bar{\jmath} \bar{k}}
$$

Construct a basis of $\mathcal{M}_{m \mid n}$.

Problems

1) Consider the associative algebra $\mathcal{M}_{m \mid n}$ with $(m+n)^{2}$
generators $z_{i j}$ subject to the defining relations

$$
\left[z_{i j}, z_{k l}\right]=\left[z_{k j}, z_{i l}\right](-1)^{\bar{\imath}+\bar{i} \bar{k}+\bar{\jmath} \bar{k}}
$$

Construct a basis of $\mathcal{M}_{m \mid n}$.
D. Foata and G.-N. Han, A basis for the right quantum algebra and the " $1=q$ " principle, J. Algebraic Combin. 27 (2008), 163-172.
2) Find an analogue of the Cayley-Hamilton identity.
2) Find an analogue of the Cayley-Hamilton identity.
H. M. Khudaverdian and Th. Th. Voronov, Berezinians, exterior powers and recurrent sequences, Lett. Math. Phys. 74 (2005), 201-228.
2) Find an analogue of the Cayley-Hamilton identity.
H. M. Khudaverdian and Th. Th. Voronov, Berezinians, exterior powers and recurrent sequences, Lett. Math. Phys. 74 (2005), 201-228.
3) If Z is an invertible super-Manin matrix, when is Z^{-1} also super-Manin?
2) Find an analogue of the Cayley-Hamilton identity.
H. M. Khudaverdian and Th. Th. Voronov, Berezinians, exterior powers and recurrent sequences, Lett. Math. Phys. 74 (2005), 201-228.
3) If Z is an invertible super-Manin matrix, when is Z^{-1} also super-Manin?
4) Develop the theory of q-super-Manin matrices.

Further generalizations

Further generalizations

- Manin matrices of types B, C, D.
A. Molev, Sugawara operators for classical Lie algebras, AMS, 2018; Sec. 5.6.

Further generalizations

- Manin matrices of types B, C, D.
A. Molev, Sugawara operators for classical Lie algebras, AMS, 2018; Sec. 5.6.
- A. Silantyev, Manin matrices for quadratic algebras, arXiv:2009.05993.

