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I Origins and motivations.

I Basic properties of Manin matrices.

I Examples and applications to Casimir elements.

I Generalizations: q-Manin and super-Manin matrices.
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Quantum groups

By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985),

the universal enveloping algebra U(g) of a simple Lie algebra g

admits a deformation Uq(g) in the class of Hopf algebras.

The dual Hopf algebras are quantized algebras of functions

Funq(G) on the associated Lie group G

[N. Reshetikhin, L. Takhtajan and L. Faddeev 1990].

A detailed review of the theory and applications:

V. Chari and A. Pressley, A guide to quantum groups, 1994.
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Basic example

The algebra Funq(Mat2) is generated by four elements a, b, c, d,

understood as the entries of the matrix

[
a b

c d

]
, such that

ba = qab, dc = qcd, ca = qac, db = qbd,

and

bc = cb, ad − da + (q− q−1)bc = 0.

[L. Faddeev and L. Takhtajan 1986].
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As observed by Yu. Manin (1988), the relations are recovered

via a “coaction” on the quantum plane, – the algebra with

generators x, y and the relation yx = qxy.

A 2× 2 matrix is q-Manin if the elements x ′ and y ′ defined by

[
x ′

y ′

]
=

[
a b

c d

][
x

y

]
,

satisfy y ′x ′ = qx ′y ′. The defining relations for Funq(Mat2)

are equivalent to the conditions that the matrix

[
a b

c d

]
and its transpose are q-Manin matrices.



6

As observed by Yu. Manin (1988), the relations are recovered

via a “coaction” on the quantum plane, – the algebra with

generators x, y and the relation yx = qxy.

A 2× 2 matrix is q-Manin if the elements x ′ and y ′ defined by

[
x ′

y ′

]
=

[
a b

c d

][
x

y

]
,

satisfy y ′x ′ = qx ′y ′.

The defining relations for Funq(Mat2)

are equivalent to the conditions that the matrix

[
a b

c d

]
and its transpose are q-Manin matrices.



6

As observed by Yu. Manin (1988), the relations are recovered

via a “coaction” on the quantum plane, – the algebra with

generators x, y and the relation yx = qxy.

A 2× 2 matrix is q-Manin if the elements x ′ and y ′ defined by

[
x ′

y ′

]
=

[
a b

c d

][
x

y

]
,

satisfy y ′x ′ = qx ′y ′. The defining relations for Funq(Mat2)

are equivalent to the conditions that the matrix

[
a b

c d

]
and its transpose are q-Manin matrices.



7

Manin matrices (q = 1)

Consider the tensor product algebra A⊗ C [x, y].

Look for 2× 2 matrices over A such that x ′ and y ′ defined by[
x ′

y ′

]
=

[
a b

c d

][
x

y

]
,

commute. We have

[ax + by, cx + dy] = [a, c] x2 +
(
[a, d] + [b, c]

)
xy + [b, d] y2.

This leads to the definition of Manin matrices:

[a, c] = [b, d] = 0 and [a, d] = [c, b].
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Exercise. Derive defining relations for the general case.

Suppose x1, . . . , xn pairwise commute.

Look for n× n matrices M = [Mij] over an associative algebra A,

such that x ′1, . . . , x
′
n defined by

x ′1
...

x ′n

 =


M11 . . . M1n

...
...

...

Mn1 . . . Mnn




x1

...

xn

 ,

commute.
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Definition. An n× n matrix M over an associative algebra A is

a Manin matrix if all its 2× 2 submatrices are Manin matrices:

[
Mi j,Mk l

]
=
[
Mk j,Mi l

]
, i, j, k, l ∈ {1, . . . , n}.

Equivalently, elements in each column of M pairwise commute,

whereas for any submatrix

[
Mi j Mi l

Mk j Mk l

]

we have

Mi j Mk l −Mk j Mi l = Mk l Mi j −Mi l Mk j.
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Alternative viewpoint

Consider the associative algebraMn with n2 generators Mij and

the defining relations

[
Mi j,Mk l

]
=
[
Mk j,Mi l

]
, i, j, k, l ∈ {1, . . . , n}.

The algebra is graded:

Mn =

∞⊕
N=0

MN
n .

Exercise. Construct a basis ofMn. What is dimMN
n ?

[Open question in the super case.]
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Determinants

Introduce the column-determinant of a matrix M by

cdet M =
∑
σ∈Sn

sgnσ ·Mσ(1)1 . . .Mσ(n)n.

Exercise. Suppose that M is a Manin matrix. Verify that cdet M

possesses usual properties of determinant: it changes sign if

two rows or two columns are swapped.
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Tensor techniques

By taking a canonical basis of Cn, the endomorphism algebra

EndCn acquires the basis of matrix units eij.

For any associative algebra A we have an algebra isomorphism

Matn(A) ∼= EndCn ⊗A.

We may regard the matrix M over A as the element

M =
n∑

i,j=1

eij ⊗Mij ∈ EndCn ⊗A.
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Consider the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
k

⊗A

and for a = 1, . . . , k set

Ma =

n∑
i,j=1

1⊗ . . .⊗ 1︸ ︷︷ ︸
a−1

⊗ eij ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−a

⊗Mij,

where 1 is the identity matrix.
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The symmetric group Sk acts on the tensor product space

Cn ⊗ . . .⊗ Cn︸ ︷︷ ︸
k

by permutations of tensor factors.

In particular, we have the permutation operator

P ∈ End (Cn ⊗ Cn) ∼= EndCn ⊗ EndCn

such that

P : ξ ⊗ η 7→ η ⊗ ξ.

Exercise. Verify that P is given by

P =
n∑

i,j=1

eij ⊗ eji ∈ EndCn ⊗ EndCn.
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In general, for the transposition (a b) ∈ Sk we have (a b) 7→ Pab,

where

Pab =

n∑
i,j=1

1⊗ . . .⊗ 1︸ ︷︷ ︸
a−1

⊗ eij ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
b−a−1

⊗ eji ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−b

.

Elements of the group algebra C [Sk] are then represented as

operators in (Cn)⊗k; that is, as elements of the algebra

End
(

(Cn)⊗k
)
∼= EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸

k

.
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Exercise. Verify the relations in the algebra End (Cn)⊗k ⊗A:

Pab Ma = Mb Pab.

More generally, for any σ ∈ Sk let Pσ denote its image under

the action on the tensor product space (Cn)⊗k.

Show that

Pσ Ma = Mσ(a) Pσ.
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Key Lemma

Consider the tensor product algebra

EndCn ⊗ EndCn ⊗A.

Lemma. Each of following relations provides an equivalent

definition of Manin matrices:

(1− P)M1 M2 (1 + P) = 0,

(1− P)(M1 M2 −M2 M1) = 0,

(M1 M2 −M2 M1)(1 + P) = 0.
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Proof. The relations are equivalent to each other by the

Exercise. We have

M1 M2 =
n∑

i,j,k,l=1

eij ⊗ ekl ⊗Mij Mkl.

Hence, using the formula for P we get

PM1 M2 =
n∑

i,j,k,l=1

ekj ⊗ eil ⊗Mij Mkl,
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Therefore, taking the coefficient of the basis vector eij ⊗ ekl on

the left hand side of

(1− P) M1 M2 (1 + P)

= M1 M2 − P M1 M2 + M1 M2 P− P M1 M2 P

we find that the first relation is equivalent to the defining

relations for Manin matrices.
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Remark on a new Hecke-type algebra

The Key Lemma suggests a definition of new algebra

generated by C [Sk] and abstract elements M1, . . . ,Mk.

The defining relations are

σMa = Mσ(a) σ, σ ∈ Sk,

together with

(
1− (a b)

)
(Ma Mb −Mb Ma) = 0, a < b.

Open problem: understand this “Hecke–Manin” algebra.
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Denote by H(k) and A(k) the respective images of the

symmetrizer and anti-symmetrizer

1
k !

∑
σ∈Sk

σ and
1
k !

∑
σ∈Sk

sgnσ · σ.

We regard H(k) and A(k) as elements of the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
k

.

Example.

H(2) =
1
2

(1 + P), A(2) =
1
2

(1− P).



21

Denote by H(k) and A(k) the respective images of the

symmetrizer and anti-symmetrizer

1
k !

∑
σ∈Sk

σ and
1
k !

∑
σ∈Sk

sgnσ · σ.

We regard H(k) and A(k) as elements of the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
k

.

Example.

H(2) =
1
2

(1 + P), A(2) =
1
2

(1− P).



21

Denote by H(k) and A(k) the respective images of the

symmetrizer and anti-symmetrizer

1
k !

∑
σ∈Sk

σ and
1
k !

∑
σ∈Sk

sgnσ · σ.

We regard H(k) and A(k) as elements of the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
k

.

Example.

H(2) =
1
2

(1 + P), A(2) =
1
2

(1− P).



22

We point out some useful recurrence formulas for the

symmetrizer and anti-symmetrizer.

Lemma. We get the formulas

A(k) =
1
k

A(k−1) − k − 1
k

A(k−1)Pk−1 k A(k−1)

and

H(k) =
1
k

H(k−1) +
k − 1

k
H(k−1)Pk−1 k H(k−1).
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Proof. We have (verify!)

A(k) =
1
k

A(k−1) (1− P1 k − · · · − Pk−1 k).

Multiply both sides by A(k−1) from the right and use the relations

A(k)A(k−1) = A(k)

and

A(k−1) Pa k A(k−1) = A(k−1) Pk−1 k A(k−1)

for 1 6 a < k.
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Proposition.

If M is a Manin matrix, then we have the identities in the

algebra End (Cn)⊗k ⊗A:

A(k)M1 . . .Mk A(k) = A(k)M1 . . .Mk

and

H(k)M1 . . .Mk H(k) = M1 . . .MkH(k).

Moreover,

A(n)M1 . . .Mn = A(n) cdet M.
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Proof. To prove the first relation it suffices to show that for any

element σ ∈ Sk we have

A(k)M1 . . .Mk Pσ = sgnσ · A(k)M1 . . .Mk,

where Pσ is the image of σ ∈ Sk.

Since the group Sk is generated by the adjacent transpositions,

it is enough to verify the relation for the elements σ = (a a + 1)

with a = 1, . . . , k − 1.
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Hence we only need to consider the case k = 2. However, the

relation with σ = (1 2) reads

1− P
2

M1 M2 P = −1− P
2

M1 M2

which an equivalent form of the defining relations.

The proof of the second relation reduces to checking that for

any σ ∈ Sk

PσM1 . . .Mk H(k) = M1 . . .MkH(k).

This follows again from the defining relations written in the form

P M1 M2
1 + P

2
= M1 M2

1 + P
2

.
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By the trace we will mean the linear map

tr : EndCn → C , eij 7→ δij.

Furthermore, for any a ∈ {1, . . . , k} the partial trace tra will be

understood as the linear map

tra : End (Cn)⊗k → End (Cn)⊗(k−1)

which acts as the trace map on the a-th copy of EndCn and is

the identity map on all the remaining copies.

The full trace tr = tr1,...,k is the composition tr1 ◦ · · · ◦ trk.
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Exercises. Show that

trk A(k) =
n− k + 1

k
A(k−1)

and

tr A(k) =

(
n
k

)
.

Similarly,

trk H(k) =
n + k − 1

k
H(k−1)

and

tr H(k) =

(
n + k − 1

k

)
.
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Cyclic property of trace

Lemma. Suppose that two elements

X =
∑

ei1j1 ⊗ . . .⊗ eikjk ⊗ X i1... ik
j1... jk and

Y =
∑

ei1j1 ⊗ . . .⊗ eikjk ⊗ Y i1... ik
j1... jk

of the algebra End (Cn)⊗k ⊗A satisfy the property

X i1... ik
j1... jk Y m1...mk

l1... lk = Y m1...mk
l1... lk X i1... ik

j1... jk

for all values of the indices. Then

tr XY = tr YX.
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MacMahon Master Theorem

For any n× n matrix M over an associative algebra A set

Ferm = 1 +
n∑

k=1

(−1)k tr A(k)M1 . . .Mk,

Bos = 1 +

∞∑
k=1

tr H(k)M1 . . .Mk.

Theorem [Garoufalidis–Lê–Zeilberger 2006].

If M is a Manin matrix, then

Bos× Ferm = 1.
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Proof.

It is sufficient to show that for any integer 1 6 k 6 N we have

the identity in the algebra End (Cn)⊗k ⊗A

k∑
r=0

(−1)k−rtr1,..., rH
(r)M1 . . .Mr

× trr+1,..., kA{r+1,..., k}Mr+1 . . .Mk = 0,

where A{r+1,..., k} denotes the anti-symmetrizer over the copies

of EndCn labeled by r + 1, . . . , k (with the identity components

in the first r copies).
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The identity can be written as

k∑
r=0

(−1)rtr1,..., kH(r)A{r+1,..., k}M1 . . .Mk = 0. (1)

We will show that the left hand side of (1) remains unchanged

after the replacement of the product of the symmetrizer and

anti-symmetrizer H(r)A{r+1,..., k} by

r(k − r + 1)

k
H(r)A{r,..., k} +

(r + 1)(k − r)

k
H(r+1)A{r+1,..., k}.

If this is true, then (1) vanishes after the replacement since we

get a telescoping sum equal to zero.
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Working with H(r+1)A{r+1,..., k}, use the recurrence relation

H(r+1) =
1

r + 1
H(r) +

r
r + 1

H(r)Pr r+1H(r).

By the cyclic property of the trace, we get

tr H(r)Pr r+1H(r)A{r+1,..., k}M1 . . .Mk

= tr Pr r+1A{r+1,..., k}H(r)M1 . . .MkH(r).

Hence, by the second identity in the Proposition, this equals

tr Pr r+1A{r+1,..., k}M1 . . .MkH(r)

= tr H(r)Pr r+1A{r+1,..., k}M1 . . .Mk.
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Reminder from Lecture 1

An n× n matrix M over an associative algebra A is

a Manin matrix if elements in each column of M pairwise

commute, whereas for any submatrix

[
Mi j Mi l

Mk j Mk l

]

we have

Mi j Mk l −Mk j Mi l = Mk l Mi j −Mi l Mk j.
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Equivalently, M is a Manin matrix, if and only if in the product

algebra

EndCn ⊗ EndCn ⊗A

we have

(1− P)(M1 M2 −M2 M1) = 0,

where

M1 =
n∑

i,j=1

eij ⊗ 1⊗Mij

and

M2 =
n∑

i,j=1

1⊗ eij ⊗Mij.
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eij ⊗ 1⊗Mij

and

M2 =
n∑

i,j=1

1⊗ eij ⊗Mij.
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Noncommutative characteristic polynomial

Proposition. If M is a Manin matrix, then

cdet(1 + tM) =

n∑
k=0

t k tr A(k)M1 . . .Mk,

[
cdet(1− tM)

]−1
=
∞∑

k=0

t k tr H(k)M1 . . .Mk.

Proof. Write

A(k)M1 . . .Mk =
∑
I,J

ei1j1 ⊗ . . .⊗ eikjk ⊗M i1... ik
j1... jk ,

summed over all k-tuples of indices I = (i1, . . . , ik) and

J = (j1, . . . , jk) from {1, . . . , n}, where M i1... ik
j1... jk ∈ A.
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For each a = 1, . . . , k − 1 we have

Pa a+1A(k)M1 . . .Mk = −A(k)M1 . . .Mk = A(k)M1 . . .MkPa a+1.

This implies that the matrix elements M i1... ik
j1... jk are

skew-symmetric with respect to permutations of the upper

indices and of the lower indices. Hence

tr A(k)M1 . . .Mk =
∑

I

M i1... ik
i1... ik = k!

∑
16i1<···<ik6n

M i1... ik
i1... ik

which coincides with the coefficient of tk in cdet(1 + tM).
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Cayley–Hamilton identity

Define the comatrix for a Manin matrix M as the matrix M̂ with

the entries in the algebra A defined by

M̂ij = (−1)i+j cdet Mji,

where Mji is the matrix obtained from M by deleting row j and

column i.

Lemma. We have the relation

M̂ M =
(
cdet M

)
1.



38

Cayley–Hamilton identity

Define the comatrix for a Manin matrix M as the matrix M̂ with

the entries in the algebra A defined by

M̂ij = (−1)i+j cdet Mji,

where Mji is the matrix obtained from M by deleting row j and

column i.

Lemma. We have the relation

M̂ M =
(
cdet M

)
1.



38

Cayley–Hamilton identity

Define the comatrix for a Manin matrix M as the matrix M̂ with

the entries in the algebra A defined by

M̂ij = (−1)i+j cdet Mji,

where Mji is the matrix obtained from M by deleting row j and

column i.

Lemma. We have the relation

M̂ M =
(
cdet M

)
1.



39

Proof. First observe that the definition of the comatrix can be

written equivalently in the matrix form as

A(n)M1 . . .Mn−1 = A(n)M̂n.

Indeed,

A(n)M1 . . .Mn−1 = A(n)M1 . . .Mn−1 A(n−1)

so that the matrix relation is equivalent to the equality of the

matrix coefficients corresponding to the basis vectors of the

form

e1 ⊗ . . .⊗ êi ⊗ . . .⊗ en ⊗ ej, i, j ∈ {1, . . . , n}.
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Apply both sides of the matrix relation to such a vector and

compare the coefficients of the vector

∑
σ∈Sn

sgnσ · eσ(1) ⊗ . . .⊗ eσ(n).

We get the relation

(−1)n−j M 1... ĵ...n
1... î...n

= (−1)n−i M̂ij

as required. Now, by the Proposition,

A(n)cdet M = A(n)M1 . . .Mn = A(n)M̂n Mn.

On applying both sides to the above vectors we get the Lemma.
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Theorem.

For a Manin matrix M set

C(u) = cdet(u1−M) = un −∆1 un−1 + · · ·+ (−1)n∆n.

Then the Cayley–Hamilton identity holds: C(M) = 0.

Proof. By the Lemma,

̂(u1−M)(u−M) = C(u) 1.

Substituting u→ M we get C(M) = 0.

[Open problem in the super case.]
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Invertibility

Proposition. If a Manin matrix M is invertible and cdet M is

invertible, then M−1 is a Manin matrix.

Proof. Since

A(n)Mn . . .M1 = A(n)cdet M,

we have (assuming n > 2)

(cdet M)−1A(n)Mn . . .M3 = A(n)M−1
1 M−1

2

so that the right hand side is unchanged after the multiplication

by −P12 from the right.
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Hence,

A(n)(M−1
1 M−1

2 −M−1
2 M−1

1 ) = 0.

Taking the partial trace tr3,...,n we get

A(2)(M−1
1 M−1

2 −M−1
2 M−1

1 ) = 0

so that M−1 is a Manin matrix.

[No proof is known in the super case.]
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Newton identity

Theorem. If M is a Manin matrix, then

d
dt

cdet(1 + tM) = cdet(1 + tM)

∞∑
k=0

(−t)k tr Mk+1.

Proof. Since 1 + tM is also a Manin matrix, we have

A(n)(1 + tM1) . . . (1 + tMn) = A(n)cdet (1 + tM).

Calculate the derivative of both sides over t:

n∑
a=1

A(n)(1 + tM1) . . .Ma . . . (1 + tMn) = A(n) d
dt

cdet(1 + tM).
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Replace the factor Ma by t−1(1 + tMa)− t−1, then take the trace

of both sides over all n copies of EndCn to get

nt−1 cdet(1+tM)−t−1
n∑

a=1

tr A(n)(1+tM1) . . . ̂(1 + tMa) . . . (1+tMn)

=
d
dt

cdet(1 + tM).

Observe that for each value of a the corresponding term in the

sum coincides with the term for a = n which equals

tr A(n)(1 + tM1) . . . (1 + tMn−1).



45

Replace the factor Ma by t−1(1 + tMa)− t−1, then take the trace

of both sides over all n copies of EndCn to get

nt−1 cdet(1+tM)−t−1
n∑

a=1

tr A(n)(1+tM1) . . . ̂(1 + tMa) . . . (1+tMn)

=
d
dt

cdet(1 + tM).

Observe that for each value of a the corresponding term in the

sum coincides with the term for a = n which equals

tr A(n)(1 + tM1) . . . (1 + tMn−1).



46

The Lemma implies that this equals cdet(1 + tM) tr(1 + tM)−1

and so we come to the identity

cdet(1 + tM)
(
nt−1 − t−1 tr(1 + tM)−1) =

d
dt

cdet(1 + tM).

It can be written in the form

cdet(1 + tM)

∞∑
k=0

(−t)k tr Mk+1 =
d
dt

cdet(1 + tM),

as required.
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Applications: Casimir elements

The Lie algebra gln is the vector space EndCn with the bracket

[
A,B

]
= AB− BA.

The matrix units eij form its basis with the commutation relations

[
eij, ekl

]
= δkj eil − δil ekj.

The group GLn acts on gln by conjugation: X 7→ gX g−1,

and the action extends to the symmetric algebra S(gln) which

can be viewed as the algebra of polynomials in n2 variables Eij.
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Consider the matrix

E =


E11 . . . E1n

...
...

...

En1 . . . Enn


with entries in the symmetric algebra S(gln).

Write

det(u + E) = un + ∆1 un−1 + · · ·+ ∆n.

We have

S(gln)GLn = C [∆1, . . . ,∆n].
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The universal enveloping algebra U(gln) is the associative

algebra with n2 generators Eij and the defining relations

Eij Ekl − Ekl Eij = δkj Eil − δil Ekj.

The symmetrization map

$ : S(gln) ∼→ U(gln),

is a GLn-module isomorphism, defined by

$ : X1 . . .Xk 7→
1
k!

∑
σ∈Sk

Xσ(1) . . .Xσ(k), Xi ∈ gln,

[Poincaré–Birkhoff–Witt Theorem].
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This implies the isomorphism

S(gln)GLn ∼= Z(gln),

where Z(gln) is the center of U(gln).

Hence

Z(gln) = C
[
$(∆1), . . . , $(∆n)

]
.

By Schur’s Lemma, any element z ∈ Z(gln) acts as scalar

multiplication in any finite-dimensional simple gln-module.

Question: What are the scalars corresponding to $(∆i)?
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Any finite-dimensional simple gln-module L is generated

by a nonzero vector ξ ∈ L

such that

Eij ξ = 0 for 1 6 i < j 6 n, and

Eii ξ = λi ξ for 1 6 i 6 n,

for certain λi ∈ C satisfying the conditions λi − λi+1 ∈ Z+.

Any element z ∈ Z(gln) acts in L by multiplying each vector by a

scalar χ(z). As a function of the parameters λi, the scalar χ(z)

is a shifted symmetric polynomial in the variables λ1, . . . , λn.
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for certain λi ∈ C satisfying the conditions λi − λi+1 ∈ Z+.
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The polynomial χ(z) is symmetric in the shifted variables

λ1, λ2 − 1, . . . , λn − n + 1.

The map χ is the Harish-Chandra isomorphism between

Z(gln) and the algebra of shifted symmetric polynomials.

Algebraically independent generators:

elementary shifted symmetric polynomials

e∗m(λ1, . . . , λn) =
∑

i1<···<im

λi1(λi2 − 1) . . . (λim − m + 1)

with m = 1, . . . , n.
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The Stirling number of the second kind
{

m
k

}
counts the number

of partitions of the set {1, . . . ,m} into k nonempty subsets.

Theorem. For the Harish-Chandra images we have

χ : $(∆m) 7→
m∑

k=1

{
m
k

}(
n
m

)(
n
k

)−1

e∗k(λ1, . . . , λn).

Proof. Regard the matrix E =
[
Eij
]

as the element

E =

n∑
i,j=1

eij ⊗ Eij ∈ EndCn ⊗ U
(
gln
)
.

Observe that

$(∆m) = tr A(m)E1 . . .Em.
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The defining relations of the algebra U(gln) can be written as

E1 E2 − E2 E1 = (E1 − E2)P

in the tensor product algebra

EndCn ⊗ EndCn ⊗ U(gln).

Introduce the extended algebra U(gln)⊗ C [u, e±∂u ], where

the element e∂u satisfies e∂u f (u) = f (u + 1)e∂u .

Key observation:

M = (u1 + E)e−∂u

is a Manin matrix.
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Hence

cdet M = tr A(n)M1 . . .Mn.

This implies the relation for the Capelli determinant (1890),

cdet



u + E11 E12 . . . E1n

E21 u + E22 − 1 . . . E2n

...
...

. . .
...

En1 . . . . . . u + Enn − n + 1


= tr A(n)(u + E1)(u + E2 − 1) . . . (u + En − n + 1).

The Harish-Chandra image is (u + λ1) . . . (u + λn − n + 1).
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Similarly,

χ : tr A(m)E1(E2 − 1) . . . (Em − m + 1) 7→ e∗m(λ1, . . . , λn).

Using the identities for the Stirling numbers

xm =
m∑

k=1

{
m
k

}
x(x− 1) . . . (x− k + 1),

we derive

tr A(m)E1 . . .Em = tr A(m)
m∑

k=1

{
m
k

}
E1(E2 − 1) . . . (Ek − k + 1).

It remains to calculate the partial traces of A(m).
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Further examples

Consider the algebra A = U
(
t−1gln[t−1]

)
and let τ = − d

d t
.

Lemma. The matrix M = τ 1 + E[−1] is a Manin matrix.

This fact is essential in the constructions of Sugawara

operators for gln.
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The Yangian Y(gln) for gln is an associative algebra with

countably many generators t(1)
ij , t(2)

ij , . . . where i, j = 1, . . . , n,

and the defining relations

[t(r+1)
ij , t(s)

kl ]− [t(r)
ij , t

(s+1)
kl ] = t(r)

kj t(s)
il − t(s)

kj t(r)
il ,

where r, s = 0, 1, . . . and t(0)
ij = δij.
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Introduce the n× n matrix T(u) whose ij-th entry is the series

tij(u) = δij + t(1)
ij u−1 + t(2)

ij u−2 + · · · ∈ Y(gln)[[u−1]].

We can regard T(u) as an element

T(u) =

n∑
i,j=1

eij ⊗ tij(u) ∈ EndCn ⊗ Y(gln)[[u−1]].
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The defining relations of the algebra Y(gln) can be written in the

equivalent form

R(u− v) T1(u) T2(v) = T2(v) T1(u) R(u− v),

where

R(u) = 1− Pu−1

is the Yang R-matrix.

Lemma. The matrix M = T(u)e−∂u is a Manin matrix.
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q-Manin matrices

A. Chervov, G. Falqui, V. Rubtsov and A. Silantyev, Algebraic

properties of Manin matrices II: q-analogues and integrable

systems, Adv. in Appl. Math. 60 (2014), 25–89.

We will assume that q ∈ C×.
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A 2× 2 matrix is q-Manin if the elements x ′ and y ′ defined by[
x ′

y ′

]
=

[
a b

c d

][
x

y

]
,

satisfy y ′x ′ = qx ′y ′.

Using y x = q x y, we get

(cx + dy)(ax + by) = q (ax + by)(cx + dy).

This leads to the definition of q-Manin matrices:

ca = qac, db = qbd,

and

ad − da = q−1 cb− q bc.
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Definition. An n× n matrix M over an associative algebra A is

a q-Manin matrix if all its 2× 2 submatrices are Manin matrices:

elements in each column of M pairwise q-commute,

Mi j Mk j = q Mk j Mi j, i > k,

whereas for any submatrix[
Mi j Mi l

Mk j Mk l

]

we have

Mi j Mk l − q−1 Mk j Mi l = Mk l Mi j − q Mi l Mk j.
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Determinants

The q-column-determinant of a q-Manin matrix M is defined by

cdetq M =
∑
σ∈Sn

(−q)−`(σ) ·Mσ(1)1 . . .Mσ(n)n,

where `(σ) denotes the length of σ.

In particular,

cdetq

[
a b

c d

]
= ad − q−1 cb.
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q-Deformed action of Sk

The action of the symmetric group Sk on the space (CN)⊗k can

be defined by setting sa 7→ Pq
sa := Pq

a a+1, where sa denotes the

transposition (a a + 1) and Pq is the q-permutation operator

Pq =
∑

i

eii ⊗ eii + q
∑
i>j

eij ⊗ eji + q−1
∑
i<j

eij ⊗ eji.

This operator is an involution: (Pq)2 = 1. Equivalently,

Pq(ei ⊗ ej) =



q ej ⊗ ei if i < j,

q−1 ej ⊗ ei if i > j,

ej ⊗ ei if i = j.
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If s = sa1 . . . sal is a reduced decomposition of an element

s ∈ Sk, we set Pq
s = Pq

sa1
. . .Pq

sal
.

Warning. In general, Pq
(a b) 6= Pq

a b.

Denote by H(k) and A(k) the q-symmetrizer and

q-anti-symmetrizer:

H(k) =
1
k !

∑
s∈Sk

Pq
s

and

A(k) =
1
k !

∑
s∈Sk

sgn s · Pq
s .
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q-anti-symmetrizer:

H(k) =
1
k !

∑
s∈Sk

Pq
s

and

A(k) =
1
k !

∑
s∈Sk

sgn s · Pq
s .
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Consider the tensor product algebra

EndCn ⊗ EndCn ⊗A.

Key Lemma. M is a q-Manin matrix, if and only if

(1− Pq)M1 M2 (1 + Pq) = 0.

Equivalently,

A(2) M1 M2 H(2) = 0.

Claim. All the properties of Manin matrices have their

natural q-analogues.
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Super-Manin matrices
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We let Cm|n denote the Z2-graded vector space with the basis

e1, . . . , em+n such that the degree (or parity) of ei is 0 for

i = 1, . . . ,m and is 1 for i = m + 1, . . . ,m + n.

Set ı̄ = 0 for 1 6 i 6 m and ı̄ = 1 for m + 1 6 i 6 m + n.

Then the parity of ei is ı̄.

We will consider superalgebras which are Z2-graded

(associative) algebras A = A0 ⊕A1.
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In particular, EndCm|n is a superalgebra with the Z2-grading

given by setting the parity of eij to be ı̄+ ̄.

We will consider even (m + n)× (m + n) matrices Z = [zij] over a

superalgebra A so that the (i, j) entry zij of Z has parity ı̄+ ̄.

Such a matrix Z will be identified with the element

Z =

m+n∑
i,j=1

eij ⊗ zij(−1)ı̄ ̄+̄ ∈ EndCm|n ⊗A.

The signs are necessary because of the sign rule

(x⊗ y)(x′ ⊗ y′) = (xx′ ⊗ yy′) (−1)deg y deg x′ .
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Consider the superalgebra

EndCm|n ⊗ . . .⊗ EndCm|n︸ ︷︷ ︸
k

⊗A

For each a ∈ {1, . . . , k} the element Za of this superalgebra is

defined by the formula

Za =
m+n∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(k−a) ⊗ zij (−1)ı̄ ̄+̄.
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The supertrace is the linear map

str : EndCm|n → C , eij 7→ δij(−1)ı̄.

The partial supertrace stra acts as the supertrace map on the

a-th copy of EndCm|n and is the identity map on all the

remaining copies.
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Using the natural action of Sk on (Cm|n)⊗k we represent any

permutation σ ∈ Sk as an element Pσ of the superalgebra

End (Cm|n)⊗k.

In particular, the transposition (a b) with a < b corresponds to

the element

Pab =
m+n∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(k−b) (−1)̄,

which allows one to determine Pσ by writing an arbitrary σ ∈ Sk

as a product of transpositions.
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Definition. An even matrix Z = [zij] with entries in a

superalgebra A is a Manin matrix, if

(1− P12) Z1 Z2 (1 + P12) = 0

in the superalgebra

EndCm|n ⊗ EndCm|n ⊗A.

Explicitly, the relations have the form

[zij, zkl] = [zkj, zil](−1)ı̄̄+ı̄k̄+̄k̄

where [x, y] = xy− yx(−1)deg x deg y is the super-commutator.
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MacMahon Master Theorem

Set

Ferm = 1 +
∞∑

k=1

(−1)k tr A(k)Z1 . . . Zk,

Bos = 1 +

∞∑
k=1

tr H(k)Z1 . . . Zk.

Theorem [MR 2014].

If Z is a Manin matrix, then

Bos× Ferm = 1.
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Berezinian

Suppose that Z = [zij] is an even invertible matrix over A

and Z−1 = [z ′ij] is its inverse.

The Berezinian of Z is defined by the formula

Ber Z =
∑
σ∈Sm

sgnσ · zσ(1)1 . . . zσ(m)m

×
∑
τ∈Sn

sgn τ · z ′m+1,m+τ(1) . . . z
′
m+n,m+τ(n).

If A is supercommutative, then

Ber (XY) = Ber X · Ber Y.
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Theorem. If Z is a Manin matrix, then

Ber (1 + uZ) =

∞∑
k=0

uk str A(k)Z1 . . . Zk,

[
Ber (1− uZ)

]−1
=

∞∑
k=0

uk str H(k)Z1 . . . Zk,

d
du

Ber (1 + uZ) = Ber (1 + uZ)

∞∑
k=0

(−u)k str Zk+1.

The last formula provides the Newton identities.
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Problems

1) Consider the associative algebraMm|n with (m + n)2

generators zij subject to the defining relations

[zij, zkl] = [zkj, zil](−1)ı̄̄+ı̄k̄+̄k̄.

Construct a basis ofMm|n.

D. Foata and G.-N. Han, A basis for the right quantum algebra

and the “1 = q” principle, J. Algebraic Combin. 27 (2008),

163–172.



78

Problems

1) Consider the associative algebraMm|n with (m + n)2

generators zij subject to the defining relations

[zij, zkl] = [zkj, zil](−1)ı̄̄+ı̄k̄+̄k̄.

Construct a basis ofMm|n.

D. Foata and G.-N. Han, A basis for the right quantum algebra

and the “1 = q” principle, J. Algebraic Combin. 27 (2008),

163–172.



78

Problems

1) Consider the associative algebraMm|n with (m + n)2

generators zij subject to the defining relations

[zij, zkl] = [zkj, zil](−1)ı̄̄+ı̄k̄+̄k̄.

Construct a basis ofMm|n.

D. Foata and G.-N. Han, A basis for the right quantum algebra

and the “1 = q” principle, J. Algebraic Combin. 27 (2008),

163–172.



78

Problems

1) Consider the associative algebraMm|n with (m + n)2

generators zij subject to the defining relations

[zij, zkl] = [zkj, zil](−1)ı̄̄+ı̄k̄+̄k̄.

Construct a basis ofMm|n.

D. Foata and G.-N. Han, A basis for the right quantum algebra

and the “1 = q” principle, J. Algebraic Combin. 27 (2008),

163–172.



79

2) Find an analogue of the Cayley–Hamilton identity.

H. M. Khudaverdian and Th. Th. Voronov, Berezinians, exterior

powers and recurrent sequences, Lett. Math. Phys. 74 (2005),

201–228.

3) If Z is an invertible super-Manin matrix, when is Z−1 also

super-Manin?

4) Develop the theory of q-super-Manin matrices.
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Further generalizations

I Manin matrices of types B, C, D.

A. Molev, Sugawara operators for classical Lie algebras,

AMS, 2018; Sec. 5.6.

I A. Silantyev, Manin matrices for quadratic algebras,

arXiv:2009.05993.
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