Symmetrization map, Casimir elements and

Sugawara operators

Alexander Molev

University of Sydney

Kac-Kazhdan conjecture

Kac-Kazhdan conjecture

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is defined by

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K \oplus \mathbb{C} D
$$

Kac-Kazhdan conjecture

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is defined by

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K \oplus \mathbb{C} D
$$

Fix a triangular decomposition $\widehat{\mathfrak{g}}=\widehat{\mathfrak{n}}_{-} \oplus \widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_{+}$and consider the Verma modules $M(\lambda)$ with $\lambda \in \widehat{\mathfrak{h}}^{*}$.

Kac-Kazhdan conjecture

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is defined by

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K \oplus \mathbb{C} D
$$

Fix a triangular decomposition $\widehat{\mathfrak{g}}=\widehat{\mathfrak{n}}_{-} \oplus \widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_{+}$and consider the Verma modules $M(\lambda)$ with $\lambda \in \widehat{\mathfrak{h}}^{*}$.

We have an isomorphism of vector spaces

$$
M(\lambda) \cong \mathrm{U}\left(\widehat{\mathfrak{n}}_{-}\right) 1_{\lambda} .
$$

Hence the character is found by

$$
\operatorname{ch} M(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\mathrm{re}}}\left(1-e^{-\alpha}\right)^{-1} \prod_{r=1}^{\infty}\left(1-e^{-r \delta}\right)^{-n}
$$

Hence the character is found by

$$
\operatorname{ch} M(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\mathrm{r}}}\left(1-e^{-\alpha}\right)^{-1} \prod_{r=1}^{\infty}\left(1-e^{-r \delta}\right)^{-n}
$$

Suppose that λ is a generic critical weight, $\langle\lambda, K\rangle=-h^{\vee}$.

Hence the character is found by

$$
\operatorname{ch} M(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\text {re }}}\left(1-e^{-\alpha}\right)^{-1} \prod_{r=1}^{\infty}\left(1-e^{-r \delta}\right)^{-n}
$$

Suppose that λ is a generic critical weight, $\langle\lambda, K\rangle=-h^{\vee}$.
By the Kac-Kazhdan conjecture (1979),

$$
\operatorname{ch} L(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\mathrm{re}}}\left(1-e^{-\alpha}\right)^{-1} .
$$

Hence the character is found by

$$
\operatorname{ch} M(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{r e}}\left(1-e^{-\alpha}\right)^{-1} \prod_{r=1}^{\infty}\left(1-e^{-r \delta}\right)^{-n}
$$

Suppose that λ is a generic critical weight, $\langle\lambda, K\rangle=-h^{\vee}$.
By the Kac-Kazhdan conjecture (1979),

$$
\operatorname{ch} L(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\mathrm{re}}}\left(1-e^{-\alpha}\right)^{-1}
$$

The singular vectors are generated by the Sugawara operators

$$
M(\lambda)^{\widehat{\mathfrak{n}}_{+}} \cong \mathbb{C}\left[S_{1(r)}, \ldots, S_{n(r)} \mid r \geqslant 1\right] ;
$$

Hence the character is found by

$$
\operatorname{ch} M(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\text {re }}}\left(1-e^{-\alpha}\right)^{-1} \prod_{r=1}^{\infty}\left(1-e^{-r \delta}\right)^{-n}
$$

Suppose that λ is a generic critical weight, $\langle\lambda, K\rangle=-h^{\vee}$.
By the Kac-Kazhdan conjecture (1979),

$$
\operatorname{ch} L(\lambda)=e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\mathrm{re}}}\left(1-e^{-\alpha}\right)^{-1}
$$

The singular vectors are generated by the Sugawara operators

$$
M(\lambda)^{\widehat{\mathfrak{n}}_{+}} \cong \mathbb{C}\left[S_{1(r)}, \ldots, S_{n(r)} \mid r \geqslant 1\right] ;
$$

[Hayashi 1988, Goodman-Wallach 1989, Feigin-Frenkel 1992].

- The operators $S_{1(r)}, \ldots, S_{n(r)}$ with $r \in \mathbb{Z}$ are topological generators of the center of the completed algebra $\widetilde{\mathrm{U}}_{\text {cri }}(\widehat{\mathfrak{g}})$.
- The operators $S_{1(r)}, \ldots, S_{n(r)}$ with $r \in \mathbb{Z}$ are topological generators of the center of the completed algebra $\widetilde{\mathrm{U}}_{\text {cri }}(\widehat{\mathfrak{g}})$.
- The operators are obtained from generators S_{1}, \ldots, S_{n} of a commutative subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ by using a vertex algebra structure.
- The operators $S_{1(r)}, \ldots, S_{n(r)}$ with $r \in \mathbb{Z}$ are topological generators of the center of the completed algebra $\widetilde{U}_{c r i}(\widehat{\mathfrak{g}})$.
- The operators are obtained from generators S_{1}, \ldots, S_{n} of a commutative subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ by using a vertex algebra structure.
- The subalgebra $\mathfrak{z}(\hat{\mathfrak{g}})$ (the Feigin-Frenkel center) gives rise to higher order Hamiltonians in the Gaudin model.
- The operators $S_{1(r)}, \ldots, S_{n(r)}$ with $r \in \mathbb{Z}$ are topological generators of the center of the completed algebra $\widetilde{U}_{c r i}(\widehat{\mathfrak{g}})$.
- The operators are obtained from generators S_{1}, \ldots, S_{n} of a commutative subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ by using a vertex algebra structure.
- The subalgebra $\mathfrak{z}(\hat{\mathfrak{g}})$ (the Feigin-Frenkel center) gives rise to higher order Hamiltonians in the Gaudin model.
- Applying homomorphisms $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})$ one gets commutative subalgebras of $\mathrm{U}(\mathfrak{g})$ thus solving

Vinberg's quantization problem.

Symmetrization map

Symmetrization map

Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C}.

Symmetrization map

Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C}.
The linear map

$$
\varpi: \mathrm{S}(\mathfrak{g}) \xrightarrow{\sim} \mathrm{U}(\mathfrak{g}), \quad x^{n} \mapsto x^{n} \quad \text { for } \quad x \in \mathfrak{g},
$$

is a \mathfrak{g}-module isomorphism known as the symmetrization map.

Symmetrization map

Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C}.
The linear map

$$
\varpi: \mathrm{S}(\mathfrak{g}) \xrightarrow{\sim} \mathrm{U}(\mathfrak{g}), \quad x^{n} \mapsto x^{n} \quad \text { for } \quad x \in \mathfrak{g},
$$

is a \mathfrak{g}-module isomorphism known as the symmetrization map.

Equivalently,

$$
\varpi: x_{1} \ldots x_{n} \mapsto \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} x_{\sigma(1)} \ldots x_{\sigma(n)}, \quad x_{i} \in \mathfrak{g}
$$

Hence we have a vector space isomorphism

$$
\varpi: \mathrm{S}(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} \mathrm{Z}(\mathfrak{g}) .
$$

Hence we have a vector space isomorphism

$$
\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} \mathrm{Z}(\mathfrak{g}) .
$$

Let \mathfrak{g} be simple with a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.

Hence we have a vector space isomorphism

$$
\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} \mathrm{Z}(\mathfrak{g}) .
$$

Let \mathfrak{g} be simple with a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.
Chevalley isomorphism with the Weyl group invariants:

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}} \stackrel{\sim}{\rightarrow} \mathrm{S}(\mathfrak{h})^{W}, \quad \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}} \cong \mathbb{C}\left[P_{1}, \ldots, P_{n}\right] .
$$

Hence we have a vector space isomorphism

$$
\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} \mathrm{Z}(\mathfrak{g}) .
$$

Let \mathfrak{g} be simple with a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.
Chevalley isomorphism with the Weyl group invariants:

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}} \stackrel{\sim}{\rightarrow} \mathrm{S}(\mathfrak{h})^{W}, \quad \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}} \cong \mathbb{C}\left[P_{1}, \ldots, P_{n}\right] .
$$

Harish-Chandra isomorphism (use the shifted action of W):

$$
\chi: \mathrm{Z}(\mathfrak{g}) \xrightarrow{\sim} \mathbb{C}\left[\mathfrak{h}^{*}\right]^{W^{*}}, \quad w \cdot \lambda=w(\lambda+\rho)-\rho .
$$

Type A

Type A

The general linear Lie algebra $\mathfrak{g l}_{N}$ has basis elements
$E_{i j}, \quad i, j=1, \ldots, N$,

Type A

The general linear Lie algebra $\mathfrak{g l}_{N}$ has basis elements
$E_{i j}, \quad i, j=1, \ldots, N$, with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j} .
$$

Type A

The general linear Lie algebra $\mathfrak{g l}_{N}$ has basis elements
$E_{i j}, \quad i, j=1, \ldots, N$, with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j} .
$$

Consider the matrix

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & \ldots & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

with entries in the symmetric algebra $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$.

Write

$$
\operatorname{det}(u+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N}
$$

Write

$$
\operatorname{det}(u+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N}
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{k} q^{k}
$$

Write

$$
\operatorname{det}(u+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N}
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{k} q^{k}
$$

We have

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Delta_{1}, \ldots, \Delta_{N}\right]=\mathbb{C}\left[\Phi_{1}, \ldots, \Phi_{N}\right] .
$$

Write

$$
\operatorname{det}(u+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N}
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{k} q^{k}
$$

We have

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Delta_{1}, \ldots, \Delta_{N}\right]=\mathbb{C}\left[\Phi_{1}, \ldots, \Phi_{N}\right] .
$$

This implies

$$
\mathrm{Z}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[\varpi\left(\Delta_{1}\right), \ldots, \varpi\left(\Delta_{N}\right)\right]=\mathbb{C}\left[\varpi\left(\Phi_{1}\right), \ldots, \varpi\left(\Phi_{N}\right)\right] .
$$

Explicitly,

$$
\varpi\left(\Delta_{m}\right)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}}
$$

Explicitly,

$$
\varpi\left(\Delta_{m}\right)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}}
$$

and

$$
\varpi\left(\Phi_{m}\right)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}} .
$$

Explicitly,

$$
\varpi\left(\Delta_{m}\right)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}}
$$

and

$$
\varpi\left(\Phi_{m}\right)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}} .
$$

Remark. The traces $\operatorname{tr} E^{m}$ with $m=1, \ldots, N$ are also algebraically independent generators of $S\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}$.

Explicitly,

$$
\varpi\left(\Delta_{m}\right)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}}
$$

and

$$
\varpi\left(\Phi_{m}\right)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} E_{i_{\sigma(1)} i_{1}} \ldots E_{i_{\sigma(m)} i_{m}} .
$$

Remark. The traces $\operatorname{tr} E^{m}$ with $m=1, \ldots, N$ are also algebraically independent generators of $S\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}$.

Their images $\varpi\left(\operatorname{tr} E^{m}\right)$ are free generators of $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of $\mathfrak{g l}_{N}$ is generated by a nonzero vector $\xi \in L(\lambda)$

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of $\mathfrak{g l}_{N}$ is generated by a nonzero vector $\xi \in L(\lambda)$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of $\mathfrak{g l}_{N}$ is generated by a nonzero vector $\xi \in L(\lambda)$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of $\mathfrak{g l}_{N}$ is generated by a nonzero vector $\xi \in L(\lambda)$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. As a function of the highest weight, $\chi(z)$ is a shifted symmetric polynomial in the variables $\lambda_{1}, \ldots, \lambda_{N}$.

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of $\mathfrak{g l}_{N}$ is generated by a nonzero vector $\xi \in L(\lambda)$ such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. As a function of the highest weight, $\chi(z)$ is a shifted symmetric polynomial in the variables $\lambda_{1}, \ldots, \lambda_{N}$.

It is symmetric in the shifted variables $\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{N}-N+1$.

Elementary shifted symmetric polynomials:

$$
e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1}<\cdots<i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}-1\right) \ldots\left(\lambda_{i_{m}}-m+1\right) .
$$

Elementary shifted symmetric polynomials:

$$
e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1}<\cdots<i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}-1\right) \ldots\left(\lambda_{i_{m}}-m+1\right) .
$$

Complete shifted symmetric polynomials:

$$
h_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}+1\right) \ldots\left(\lambda_{i_{m}}+m-1\right) .
$$

Elementary shifted symmetric polynomials:

$$
e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1}<\cdots<i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}-1\right) \ldots\left(\lambda_{i_{m}}-m+1\right) .
$$

Complete shifted symmetric polynomials:

$$
h_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} \lambda_{i_{1}}\left(\lambda_{i_{2}}+1\right) \ldots\left(\lambda_{i_{m}}+m-1\right) .
$$

Remark. The shifted Schur polynomials [OO, 1998] are:

$$
s_{\mu}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{\operatorname{sh}(T)=\mu} \prod_{\alpha \in \mu}\left(\lambda_{T(\alpha)}+c(\alpha)\right) .
$$

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\}\binom{N}{m}\binom{N}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

The Stirling number of the second kind $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

Theorem. For the Harish-Chandra images we have

$$
\chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{N}{m}\binom{N}{k}^{-1} e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

and

$$
\chi: \varpi\left(\Phi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-N}{m}\binom{-N}{k}^{-1} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right) .
$$

Types B, C and D

Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ or $N=2 n+1$ is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}},
$$

where $i^{\prime}=N-i+1$.

Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ or $N=2 n+1$ is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}
$$

where $i^{\prime}=N-i+1$.
The symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ is spanned by

$$
F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

where $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$.

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$.

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$. Write

$$
\operatorname{det}(u+F)=u^{2 n}+\Delta_{2} u^{2 n-2}+\cdots+\Delta_{2 n} \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n},
$$

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$. Write

$$
\operatorname{det}(u+F)=u^{2 n}+\Delta_{2} u^{2 n-2}+\cdots+\Delta_{2 n} \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n},
$$

and

$$
\operatorname{det}(1-q F)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{2 k} q^{2 k} \quad \text { for } \quad \mathfrak{g}=\mathfrak{o}_{N}
$$

Given any n-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra \mathfrak{g} is generated by a nonzero vector $\xi \in L(\lambda)$

Given any n-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra \mathfrak{g} is generated by a nonzero vector $\xi \in L(\lambda)$ such that

$$
\begin{array}{lll}
F_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
F_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n .
\end{array}
$$

Given any n-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra \mathfrak{g} is generated by a nonzero vector $\xi \in L(\lambda)$ such that

$$
\begin{array}{lll}
F_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
F_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n .
\end{array}
$$

Any element $z \in \mathrm{Z}(\mathfrak{g})$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

Given any n-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra \mathfrak{g} is generated by a nonzero vector $\xi \in L(\lambda)$ such that

$$
\begin{array}{lll}
F_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
F_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant n .
\end{array}
$$

Any element $z \in \mathrm{Z}(\mathfrak{g})$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. As a function of the highest weight, $\chi(z)$ is a shifted invariant polynomial in the variables $\lambda_{1}, \ldots, \lambda_{n}$.

Theorem. (i) For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ the Harish-Chandra images are

$$
\begin{aligned}
& \chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{2 n+1}{m}\binom{2 n+1}{k}^{-1} \\
& \quad \times e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}, 0,-\lambda_{n}, \ldots,-\lambda_{1}\right)
\end{aligned}
$$

Theorem. (i) For $\mathfrak{g}=\mathfrak{s p}_{2 n}$ the Harish-Chandra images are

$$
\begin{aligned}
& \chi: \varpi\left(\Delta_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\}\binom{2 n+1}{m}\binom{2 n+1}{k}^{-1} \\
& \quad \times e_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}, 0,-\lambda_{n}, \ldots,-\lambda_{1}\right)
\end{aligned}
$$

(ii) For $\mathfrak{g}=\mathfrak{o}_{2 n+1}$ the Harish-Chandra images are

$$
\begin{aligned}
\chi: \varpi\left(\Phi_{m}\right) \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-2 n}{m} & \binom{-2 n}{k}^{-1} \\
& \times h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{n}, \ldots,-\lambda_{1}\right) .
\end{aligned}
$$

(iii) For $\mathfrak{g}=\mathfrak{o}_{2 n}$ the Harish-Chandra images are

$$
\begin{aligned}
\chi: \varpi\left(\Phi_{m}\right) & \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-2 n+1}{m}\binom{-2 n+1}{k}^{-1} \\
& \times\left(\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n-1},-\lambda_{n}, \ldots,-\lambda_{1}\right)\right. \\
& \left.+\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right)\right)
\end{aligned}
$$

(iii) For $\mathfrak{g}=\mathfrak{o}_{2 n}$ the Harish-Chandra images are

$$
\begin{aligned}
\chi: \varpi\left(\Phi_{m}\right) & \mapsto \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\binom{-2 n+1}{m}\binom{-2 n+1}{k}^{-1} \\
& \times\left(\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n-1},-\lambda_{n}, \ldots,-\lambda_{1}\right)\right. \\
& \left.\quad+\frac{1}{2} h_{k}^{*}\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right)\right) .
\end{aligned}
$$

Remark. If m is odd, then the elements Δ_{m}, Φ_{m} and their images are zero.

Proving the theorems

Proving the theorems

Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \text { End } \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

Proving the theorems

Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right) .
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

Proving the theorems

Regard the matrix $E=\left[E_{i j}\right]$ as the element

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right) .
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

and for $a=1, \ldots, m$ set

$$
E_{a}=\sum_{i, j=1}^{N} \underbrace{1 \otimes \ldots \otimes 1}_{a-1} \otimes e_{i j} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{m-a} \otimes E_{i j}
$$

The symmetric group \mathfrak{S}_{m} acts on the tensor product space

by permutations of tensor factors.

The symmetric group \mathfrak{S}_{m} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by permutations of tensor factors.

Denote by $H^{(m)}$ and $A^{(m)}$ the respective images of the symmetrizer and anti-symmetrizer

$$
\frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} \sigma \quad \text { and } \quad \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot \sigma
$$

The symmetric group \mathfrak{S}_{m} acts on the tensor product space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by permutations of tensor factors.

Denote by $H^{(m)}$ and $A^{(m)}$ the respective images of the
symmetrizer and anti-symmetrizer

$$
\frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} \sigma \quad \text { and } \quad \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot \sigma
$$

We regard $H^{(m)}$ and $A^{(m)}$ as elements of the algebra

Observe that

$$
\varpi\left(\Delta_{m}\right)=\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}
$$

Observe that

$$
\varpi\left(\Delta_{m}\right)=\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}
$$

and

$$
\varpi\left(\Phi_{m}\right)=\operatorname{tr} H^{(m)} E_{1} \ldots E_{m}
$$

Observe that

$$
\varpi\left(\Delta_{m}\right)=\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}
$$

and

$$
\varpi\left(\Phi_{m}\right)=\operatorname{tr} H^{(m)} E_{1} \ldots E_{m}
$$

On the other hand, it is well-known that

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

Observe that

$$
\varpi\left(\Delta_{m}\right)=\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}
$$

and

$$
\varpi\left(\Phi_{m}\right)=\operatorname{tr} H^{(m)} E_{1} \ldots E_{m} .
$$

On the other hand, it is well-known that

$$
\chi: \operatorname{tr} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right) \mapsto e_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

and

$$
\chi: \operatorname{tr} H^{(m)} E_{1}\left(E_{2}+1\right) \ldots\left(E_{m}+m-1\right) \mapsto h_{m}^{*}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

Using the identities

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

Using the identities

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

we derive

$$
\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}=\operatorname{tr} A^{(m)} \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} E_{1}\left(E_{2}-1\right) \ldots\left(E_{k}-k+1\right) .
$$

Using the identities

$$
x^{m}=\sum_{k=1}^{m}\left\{\begin{array}{l}
m \\
k
\end{array}\right\} x(x-1) \ldots(x-k+1)
$$

we derive

$$
\operatorname{tr} A^{(m)} E_{1} \ldots E_{m}=\operatorname{tr} A^{(m)} \sum_{k=1}^{m}\left\{\begin{array}{c}
m \\
k
\end{array}\right\} E_{1}\left(E_{2}-1\right) \ldots\left(E_{k}-k+1\right) .
$$

The result for $\varpi\left(\Delta_{m}\right)$ now follows by calculating the partial traces over the spaces End \mathbb{C}^{N} labelled by $k+1, \ldots, m$, as

$$
\operatorname{tr}_{m} A^{(m)}=\frac{N-m+1}{m} A^{(m-1)}
$$

Affine Kac-Moody algebras

Affine Kac-Moody algebras

- Replace $\mathrm{S}(\mathfrak{g})$ by the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Affine Kac-Moody algebras

- Replace $\mathrm{S}(\mathfrak{g})$ by the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.
- Replace $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ by the subalgebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{g}[t]}$.

Affine Kac-Moody algebras

- Replace $\mathrm{S}(\mathfrak{g})$ by the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.
- Replace $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ by the subalgebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \mathfrak{g}^{\mathfrak{g}[t]}$.

We regard $t^{-1} \mathfrak{g}\left[t^{-1}\right] \cong \mathfrak{g}\left[t, t^{-1}\right] / \mathfrak{g}[t]$ as the adjoint $\mathfrak{g}[t]$-module.

Affine Kac-Moody algebras

- Replace $\mathrm{S}(\mathfrak{g})$ by the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.
- Replace $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ by the subalgebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \mathfrak{g}^{\mathfrak{g}[t]}$.

We regard $t^{-1} \mathfrak{g}\left[t^{-1}\right] \cong \mathfrak{g}\left[t, t^{-1}\right] / \mathfrak{g}[t]$ as the adjoint $\mathfrak{g}[t]$-module.

Note that $T=-d / d t$ is a derivation of the symmetric algebra.

Notation: $X[r]=X t^{r}$ for $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

Notation: $X[r]=X t^{r}$ for $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

An embedding $\mathrm{S}(\mathfrak{g}) \hookrightarrow \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is defined by $X \mapsto X[-1]$.

Notation: $X[r]=X t^{r}$ for $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

An embedding $\mathrm{S}(\mathfrak{g}) \hookrightarrow \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is defined by $X \mapsto X[-1]$.
The image of any element $P \in \mathrm{~S}(\mathfrak{g})$ is denoted by $P[-1]$.

Notation: $X[r]=X t^{r}$ for $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

An embedding $\mathrm{S}(\mathfrak{g}) \hookrightarrow \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is defined by $X \mapsto X[-1]$.
The image of any element $P \in \mathrm{~S}(\mathfrak{g})$ is denoted by $P[-1]$.

Theorem [Raïs-Tauvel 1992, Beilinson-Drinfeld 1997].
If P_{1}, \ldots, P_{n} are algebraically independent generators of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$,
then the elements $T^{r} P_{1}[-1], \ldots, T^{r} P_{n}[-1]$ with $r \geqslant 0$ are algebraically independent generators of $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{g}[t]}$.

Define an invariant bilinear form on \mathfrak{g} by

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.

Define an invariant bilinear form on \mathfrak{g} by

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

Define an invariant bilinear form on \mathfrak{g} by

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K .
$$

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

We have $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as vector spaces,

Consider the vacuum module at the critical level over $\widehat{\mathfrak{g}}$,

$$
V(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{I},
$$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

We have $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as vector spaces, and
$\mathfrak{z}(\widehat{\mathfrak{g}})$ is a T-invariant commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Theorem [Feigin-Frenkel 1992].
There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$,
where $n=\operatorname{rank} \mathfrak{g}$, such that

Theorem [Feigin-Frenkel 1992].
There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$,
where $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Theorem [Feigin-Frenkel 1992].

There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$,
where $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Theorem [Feigin-Frenkel 1992].

There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$,
where $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Note that the symmetrization map

$$
\varpi: \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)
$$

is not $\mathfrak{a} \mathfrak{g}[t]$-module homomorphism.

Type A

Type A

Theorem. Each family of elements

$$
\phi_{m}=\sum_{k=1}^{m}\binom{N-k}{m-k} \varpi\left(T^{m-k} \Delta_{k}[-1]\right) 1
$$

Type A

Theorem. Each family of elements

$$
\phi_{m}=\sum_{k=1}^{m}\binom{N-k}{m-k} \varpi\left(T^{m-k} \Delta_{k}[-1]\right) 1
$$

and

$$
\psi_{m}=\sum_{k=1}^{m}\binom{N+m-1}{m-k} \varpi\left(T^{m-k} \Phi_{k}[-1]\right) 1
$$

Type A

Theorem. Each family of elements

$$
\phi_{m}=\sum_{k=1}^{m}\binom{N-k}{m-k} \varpi\left(T^{m-k} \Delta_{k}[-1]\right) 1
$$

and

$$
\psi_{m}=\sum_{k=1}^{m}\binom{N+m-1}{m-k} \varpi\left(T^{m-k} \Phi_{k}[-1]\right) 1
$$

where $m=1, \ldots, N$, is a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$

Type A

Theorem. Each family of elements

$$
\phi_{m}=\sum_{k=1}^{m}\binom{N-k}{m-k} \varpi\left(T^{m-k} \Delta_{k}[-1]\right) 1
$$

and

$$
\psi_{m}=\sum_{k=1}^{m}\binom{N+m-1}{m-k} \varpi\left(T^{m-k} \Phi_{k}[-1]\right) 1
$$

where $m=1, \ldots, N$, is a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$ [Chervov-Talalaev 2006, Chervov-M. 2009].

Working in the algebra

Working in the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\hat{\mathfrak{g l}}_{N}\right)
$$

we can write

$$
\phi_{m}=\operatorname{tr} A^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1,
$$

Working in the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\hat{\mathfrak{g l}}_{N}\right)
$$

we can write

$$
\begin{aligned}
& \phi_{m}=\operatorname{tr} A^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1 \\
& \psi_{m}=\operatorname{tr} H^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1
\end{aligned}
$$

Working in the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\hat{\mathfrak{g l}}_{N}\right)
$$

we can write

$$
\begin{aligned}
& \phi_{m}=\operatorname{tr} A^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1 \\
& \psi_{m}=\operatorname{tr} H^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1
\end{aligned}
$$

where

$$
E[-1]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)
$$

Working in the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\hat{\mathfrak{g l}}_{N}\right)
$$

we can write

$$
\begin{aligned}
& \phi_{m}=\operatorname{tr} A^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1 \\
& \psi_{m}=\operatorname{tr} H^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1
\end{aligned}
$$

where

$$
E[-1]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right)
$$

Remark. Another family: $\operatorname{tr}(T+E[-1])^{m} 1$.

Eliminate T to get

$$
\begin{aligned}
\phi_{m}=\operatorname{tr} A^{(m)}\left(T+E_{1}[-1]\right) & \ldots\left(T+E_{m}[-1]\right) 1 \\
& =\sum_{\lambda \vdash m} c_{\lambda} \operatorname{tr} A^{(m)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right]
\end{aligned}
$$

Eliminate T to get

$$
\phi_{m}=\operatorname{tr} A^{(m)}\left(T+E_{1}[-1]\right) \ldots\left(T+E_{m}[-1]\right) 1
$$

$$
=\sum_{\lambda \vdash m} c_{\lambda} \operatorname{tr} A^{(m)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right],
$$

where the parts of partitions λ are $\lambda_{1} \geqslant \cdots \geqslant \lambda_{\ell}>0$ and

Eliminate T to get

$$
\begin{aligned}
\phi_{m}=\operatorname{tr} A^{(m)}\left(T+E_{1}[-1]\right) \ldots & \ldots\left(T+E_{m}[-1]\right) 1 \\
& =\sum_{\lambda \vdash m} c_{\lambda} \operatorname{tr} A^{(m)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right],
\end{aligned}
$$

where the parts of partitions λ are $\lambda_{1} \geqslant \cdots \geqslant \lambda_{\ell}>0$ and
c_{λ} is the number of permutations of $\{1, \ldots, m\}$ of cycle type λ,

$$
c_{\lambda}=\frac{m!}{1^{k_{1}} k_{1}!\ldots m^{k_{m}} k_{m}!}, \quad \lambda=\left(1^{k_{1}} 2^{k_{2}} \ldots m^{k_{m}}\right)
$$

Theorem. We have the Segal-Sugawara vectors

$$
\phi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right]
$$

Theorem. We have the Segal-Sugawara vectors

$$
\phi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right]
$$

and

$$
\psi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{N+\ell-1}{\ell}^{-1} c_{\lambda} \operatorname{tr} H^{(\ell)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right] .
$$

Theorem. We have the Segal-Sugawara vectors

$$
\phi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right]
$$

and

$$
\psi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{N+\ell-1}{\ell}^{-1} c_{\lambda} \operatorname{tr} H^{(\ell)} E_{1}\left[-\lambda_{1}\right] \ldots E_{\ell}\left[-\lambda_{\ell}\right] .
$$

For proofs and relations between the families, including
MacMahon Master Theorem and Newton Identity, see
[Sugawara operators for classical Lie algebras, AMS, 2018],
Russian edition is available on the MCCME web site.

Types B, C and D

Types B, C and D

Theorem. (i) The family

$$
\phi_{2 k}=\sum_{l=1}^{k}\binom{2 n-2 l+1}{2 k-2 l} \varpi\left(T^{2 k-2 l} \Delta_{2 l}[-1]\right) 1
$$

with $k=1, \ldots, n$, is a complete set of Segal-Sugawara vectors for $\mathfrak{g}=\mathfrak{s p}_{2 n}$.

Types B, C and D

Theorem. (i) The family

$$
\phi_{2 k}=\sum_{l=1}^{k}\binom{2 n-2 l+1}{2 k-2 l} \varpi\left(T^{2 k-2 l} \Delta_{2 l}[-1]\right) 1
$$

with $k=1, \ldots, n$, is a complete set of Segal-Sugawara vectors for $\mathfrak{g}=\mathfrak{s p}_{2 n}$. \quad (ii) The family

$$
\psi_{2 k}=\sum_{l=1}^{k}\binom{N+2 k-2}{2 k-2 l} \varpi\left(T^{2 k-2 l} \Phi_{2 l}[-1]\right) 1
$$

with $k=1, \ldots, n$, is a complete set of Segal-Sugawara vectors for $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n+1$.
(iii) The family $\psi_{2 k}$ with $k=1, \ldots, n-1$ together with

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{G}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is a complete set of Segal-Sugawara vectors
for $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n$.
(iii) The family $\psi_{2 k}$ with $k=1, \ldots, n-1$ together with

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is a complete set of Segal-Sugawara vectors
for $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n$.
[Yakimova 2019, M. 2013, 2020].
(iii) The family $\psi_{2 k}$ with $k=1, \ldots, n-1$ together with

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{G}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is a complete set of Segal-Sugawara vectors for $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n$.
[Yakimova 2019, M. 2013, 2020].

Remark. These results imply the Feigin-Frenkel theorem for the classical types. Formulas for type G_{2} are also known by [M.-Ragoucy-Rozhkovskaya 2016, Yakimova 2019].

Theorem. We have the Segal-Sugawara vectors for even m

$$
\phi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{2 n+1}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} F_{1}\left[-\lambda_{1}\right] \ldots F_{\ell}\left[-\lambda_{\ell}\right]
$$

for $\mathfrak{g}=\mathfrak{s p}_{2 n}$,

Theorem. We have the Segal-Sugawara vectors for even m

$$
\phi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{2 n+1}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} F_{1}\left[-\lambda_{1}\right] \ldots F_{\ell}\left[-\lambda_{\ell}\right]
$$

for $\mathfrak{g}=\mathfrak{s p}_{2 n}$,
and

$$
\psi_{m}^{\circ}=\sum_{\lambda \vdash m}\binom{N+\ell-2}{\ell}^{-1} c_{\lambda} \operatorname{tr} H^{(\ell)} F_{1}\left[-\lambda_{1}\right] \ldots F_{\ell}\left[-\lambda_{\ell}\right]
$$

for $\mathfrak{g}=\mathfrak{o}_{N}$.

Affine Harish-Chandra isomorphism

Affine Harish-Chandra isomorphism

The Feigin-Frenkel theorem (1992) provides an isomorphism

$$
\mathfrak{f}: \mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} \mathcal{W}\left({ }^{L} \mathfrak{g}\right),
$$

Affine Harish-Chandra isomorphism

The Feigin-Frenkel theorem (1992) provides an isomorphism

$$
\mathfrak{f}: \mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} \mathcal{W}\left({ }^{L} \mathfrak{g}\right),
$$

where the classical \mathcal{W}-algebra $\mathcal{W}\left({ }^{L} \mathfrak{g}\right)$ is associated with the Langlands dual Lie algebra ${ }^{L} \mathfrak{g}$.

Affine Harish-Chandra isomorphism

The Feigin-Frenkel theorem (1992) provides an isomorphism

$$
\mathfrak{f}: \mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} \mathcal{W}\left({ }^{L} \mathfrak{g}\right),
$$

where the classical \mathcal{W}-algebra $\mathcal{W}\left({ }^{L} \mathfrak{g}\right)$ is associated with
the Langlands dual Lie algebra ${ }^{L} \mathfrak{g}$. It is obtained by restriction of the affine Harish-Chandra homomorphism

$$
\mathfrak{f}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

Affine Harish-Chandra isomorphism

The Feigin-Frenkel theorem (1992) provides an isomorphism

$$
\mathfrak{f}: \mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} \mathcal{W}\left({ }^{L} \mathfrak{g}\right),
$$

where the classical \mathcal{W}-algebra $\mathcal{W}\left({ }^{L} \mathfrak{g}\right)$ is associated with
the Langlands dual Lie algebra ${ }^{L} \mathfrak{g}$. It is obtained by restriction of the affine Harish-Chandra homomorphism

$$
\mathfrak{f}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{-}\left[t^{-1}\right]$.

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

the V_{i} are the screening operators.

Introduce the noncommutative elementary symmetric functions

$$
e_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1}>\cdots>i_{m}} x_{i_{1}} \ldots x_{i_{m}}
$$

Introduce the noncommutative elementary symmetric functions

$$
e_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1}>\cdots>i_{m}} x_{i_{1}} \ldots x_{i_{m}}
$$

and the noncommutative complete symmetric functions

$$
h_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} x_{i_{1}} \ldots x_{i_{m}}
$$

Type A

Type A

Theorem.
The Harish-Chandra images of the Segal-Sugawara vectors $\phi_{m}, \psi_{m} \in \mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$ are given by

Type A

Theorem.

The Harish-Chandra images of the Segal-Sugawara vectors $\phi_{m}, \psi_{m} \in \mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$ are given by

$$
\mathfrak{f}: \phi_{m} \mapsto e_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

Type A

Theorem.

The Harish-Chandra images of
the Segal-Sugawara vectors $\phi_{m}, \psi_{m} \in \mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$ are given by

$$
\mathfrak{f}: \phi_{m} \mapsto e_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

and

$$
\mathfrak{f}: \psi_{m} \mapsto h_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

Type A

Theorem.

The Harish-Chandra images of
the Segal-Sugawara vectors $\phi_{m}, \psi_{m} \in \mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$ are given by

$$
\mathfrak{f}: \phi_{m} \mapsto e_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

and

$$
\mathfrak{f}: \psi_{m} \mapsto h_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1 .
$$

[Chervov-M. 2009].

Types B, C and D

Types B, C and D

Theorem. (i) If $\mathfrak{g}=\mathfrak{s p}_{2 n}$ then the image of $\phi_{2 k}$ under \mathfrak{f} is

$$
e_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n}[-1], T, T-\mu_{n}[-1], \ldots, T-\mu_{1}[-1]\right) 1 .
$$

Types B, C and D

Theorem. (i) If $\mathfrak{g}=\mathfrak{s p}_{2 n}$ then the image of $\phi_{2 k}$ under \mathfrak{f} is

$$
e_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n}[-1], T, T-\mu_{n}[-1], \ldots, T-\mu_{1}[-1]\right) 1
$$

(ii) If $\mathfrak{g}=\mathfrak{o}_{2 n+1}$ then the image of $\psi_{2 k}$ under \mathfrak{f} is

$$
h_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n}[-1], T-\mu_{n}[-1], \ldots, T-\mu_{1}[-1]\right) 1
$$

(iii) If $\mathfrak{g}=\mathfrak{o}_{2 n}$ then the image of $\psi_{2 k}$ under \mathfrak{f} is

$$
\begin{aligned}
& \frac{1}{2} h_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n-1}[-1], T-\mu_{n}[-1], \ldots, T-\mu_{1}[-1]\right) 1 \\
+ & \frac{1}{2} h_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n}[-1], T-\mu_{n-1}[-1], \ldots, T-\mu_{1}[-1]\right) 1
\end{aligned}
$$

(iii) If $\mathfrak{g}=\mathfrak{o}_{2 n}$ then the image of $\psi_{2 k}$ under \mathfrak{f} is

$$
\begin{aligned}
& \frac{1}{2} h_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n-1}[-1], T-\mu_{n}[-1], \ldots, T-\mu_{1}[-1]\right) 1 \\
+ & \frac{1}{2} h_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n}[-1], T-\mu_{n-1}[-1], \ldots, T-\mu_{1}[-1]\right) 1
\end{aligned}
$$

Moreover,

$$
\mathfrak{f}: \operatorname{Pf} F[-1] \mapsto\left(\mu_{1}[-1]-T\right) \ldots\left(\mu_{n}[-1]-T\right) 1
$$

(iii) If $\mathfrak{g}=\mathfrak{o}_{2 n}$ then the image of $\psi_{2 k}$ under \mathfrak{f} is

$$
\begin{aligned}
& \frac{1}{2} h_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n-1}[-1], T-\mu_{n}[-1], \ldots, T-\mu_{1}[-1]\right) 1 \\
+ & \frac{1}{2} h_{2 k}\left(T+\mu_{1}[-1], \ldots, T+\mu_{n}[-1], T-\mu_{n-1}[-1], \ldots, T-\mu_{1}[-1]\right) 1
\end{aligned}
$$

Moreover,

$$
\mathfrak{f}: \operatorname{Pf} F[-1] \mapsto\left(\mu_{1}[-1]-T\right) \ldots\left(\mu_{n}[-1]-T\right) 1
$$

[M.-Mukhin 2014, Rozhkovskaya 2014].

Screening operators

Screening operators

For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

Screening operators

For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
V_{i}=\sum_{r=0}^{\infty} V_{i r}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right)
$$

Screening operators

For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
V_{i}=\sum_{r=0}^{\infty} V_{i r}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right)
$$

with

$$
\sum_{r=0}^{\infty} V_{i r} z^{r}=\exp \sum_{m=1}^{\infty} \frac{\mu_{i}[-m]-\mu_{i+1}[-m]}{m} z^{m}
$$

For $\mathcal{W}\left(\mathfrak{o}_{N}\right)$ and $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$ the operators V_{1}, \ldots, V_{n-1}
are given by the above formulas, while

For $\mathcal{W}\left(\mathfrak{o}_{N}\right)$ and $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$ the operators V_{1}, \ldots, V_{n-1} are given by the above formulas, while

$$
V_{n}=\sum_{r=0}^{\infty} V_{n r} \frac{\partial}{\partial \mu_{n}[-r-1]}
$$

For $\mathcal{W}\left(\mathfrak{o}_{N}\right)$ and $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$ the operators V_{1}, \ldots, V_{n-1} are given by the above formulas, while

$$
V_{n}=\sum_{r=0}^{\infty} V_{n r} \frac{\partial}{\partial \mu_{n}[-r-1]}
$$

with

$$
\sum_{r=0}^{\infty} V_{n r} z^{r}=\exp \sum_{m=1}^{\infty} \frac{\mu_{n}[-m]}{m} z^{m}
$$

for type B_{n}, and by similar formulas in types C_{n} and D_{n}.

