Symmetrization map, Casimir elements and Sugawara operators

Alexander Molev

University of Sydney

The affine Kac–Moody algebra $\,\,\widehat{\mathfrak{g}}\,$ is defined by

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}D$

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is defined by

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}D$

Fix a triangular decomposition $\widehat{\mathfrak{g}} = \widehat{\mathfrak{n}}_{-} \oplus \widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_{+}$ and consider the Verma modules $M(\lambda)$ with $\lambda \in \widehat{\mathfrak{h}}^*$.

The affine Kac–Moody algebra $\,\,\widehat{\mathfrak{g}}\,$ is defined by

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}D$

Fix a triangular decomposition $\widehat{\mathfrak{g}} = \widehat{\mathfrak{n}}_{-} \oplus \widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_{+}$ and consider the Verma modules $M(\lambda)$ with $\lambda \in \widehat{\mathfrak{h}}^*$.

We have an isomorphism of vector spaces

 $M(\lambda) \cong \mathrm{U}(\widehat{\mathfrak{n}}_{-}) \mathbb{1}_{\lambda}.$

$$\operatorname{ch} M(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_+^{\operatorname{re}}} (1 - e^{-\alpha})^{-1} \prod_{r=1}^{\infty} (1 - e^{-r\delta})^{-n}.$$

$$\operatorname{ch} M(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_{+}^{\operatorname{re}}} (1 - e^{-\alpha})^{-1} \prod_{r=1}^{\infty} (1 - e^{-r\delta})^{-n}.$$

Suppose that λ is a generic critical weight, $\langle \lambda, K \rangle = -h^{\vee}$.

$$\operatorname{ch} M(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_+^{\operatorname{re}}} (1 - e^{-\alpha})^{-1} \prod_{r=1}^{\infty} (1 - e^{-r\delta})^{-n}.$$

Suppose that λ is a generic critical weight, $\langle \lambda, K \rangle = -h^{\vee}$.

By the Kac-Kazhdan conjecture (1979),

$$\operatorname{ch} L(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_+^{\operatorname{re}}} (1 - e^{-\alpha})^{-1}.$$

$$\operatorname{ch} M(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_+^{\operatorname{re}}} (1 - e^{-\alpha})^{-1} \prod_{r=1}^{\infty} (1 - e^{-r\delta})^{-n}.$$

Suppose that λ is a generic critical weight, $\langle \lambda, K \rangle = -h^{\vee}$.

By the Kac-Kazhdan conjecture (1979),

$$\operatorname{ch} L(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta^{\operatorname{re}}_+} (1 - e^{-\alpha})^{-1}.$$

The singular vectors are generated by the Sugawara operators

$$M(\lambda)^{\widehat{\mathfrak{n}}_+} \cong \mathbb{C}[S_{1(r)}, \dots, S_{n(r)} \mid r \ge 1];$$

$$\operatorname{ch} M(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_+^{\operatorname{re}}} (1 - e^{-\alpha})^{-1} \prod_{r=1}^{\infty} (1 - e^{-r\delta})^{-n}.$$

Suppose that λ is a generic critical weight, $\langle \lambda, K \rangle = -h^{\vee}$.

By the Kac-Kazhdan conjecture (1979),

$$\operatorname{ch} L(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_+^{\operatorname{re}}} (1 - e^{-\alpha})^{-1}.$$

The singular vectors are generated by the Sugawara operators

$$M(\lambda)^{\widehat{\mathfrak{n}}_+} \cong \mathbb{C}[S_{1(r)}, \dots, S_{n(r)} \mid r \ge 1];$$

[Hayashi 1988, Goodman–Wallach 1989, Feigin–Frenkel 1992].

► The operators S_{1(r)},..., S_{n(r)} with r ∈ Z are topological generators of the center of the completed algebra U_{cri}(g).

► The operators S_{1(r)},..., S_{n(r)} with r ∈ Z are topological generators of the center of the completed algebra Ũ_{cri}(ĝ).

► The operators are obtained from generators S₁,..., S_n of a commutative subalgebra 3(g) of U(t⁻¹g[t⁻¹]) by using a vertex algebra structure.

The operators S_{1(r)},..., S_{n(r)} with r ∈ Z are topological generators of the center of the completed algebra Ũ_{cri}(ĝ).

- ► The operators are obtained from generators S₁,..., S_n of a commutative subalgebra 3(ŷ) of U(t⁻¹g[t⁻¹]) by using a vertex algebra structure.
- The subalgebra 3(g) (the Feigin–Frenkel center) gives rise to higher order Hamiltonians in the Gaudin model.

The operators S_{1(r)},..., S_{n(r)} with r ∈ Z are topological generators of the center of the completed algebra Ũ_{cri}(ĝ).

- ► The operators are obtained from generators S₁,..., S_n of a commutative subalgebra 3(ŷ) of U(t⁻¹g[t⁻¹]) by using a vertex algebra structure.
- The subalgebra 3(g) (the Feigin–Frenkel center) gives rise to higher order Hamiltonians in the Gaudin model.
- ► Applying homomorphisms U(t⁻¹g[t⁻¹]) → U(g) one gets commutative subalgebras of U(g) thus solving Vinberg's quantization problem.

Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C} .

Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C} . The linear map

 $\varpi: \mathbf{S}(\mathfrak{g}) \xrightarrow{\sim} \mathbf{U}(\mathfrak{g}), \qquad x^n \mapsto x^n \qquad \text{for} \quad x \in \mathfrak{g},$

is a \mathfrak{g} -module isomorphism known as the symmetrization map.

Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C} . The linear map

 $\varpi: \mathbf{S}(\mathfrak{g}) \xrightarrow{\sim} \mathbf{U}(\mathfrak{g}), \qquad x^n \mapsto x^n \qquad \text{for} \quad x \in \mathfrak{g},$

is a \mathfrak{g} -module isomorphism known as the symmetrization map.

Equivalently,

$$\varpi: x_1 \ldots x_n \mapsto \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} x_{\sigma(1)} \ldots x_{\sigma(n)}, \qquad x_i \in \mathfrak{g}.$$

 $\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} Z(\mathfrak{g}).$

 $\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} Z(\mathfrak{g}).$

Let \mathfrak{g} be simple with a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.

 $\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} Z(\mathfrak{g}).$

Let \mathfrak{g} be simple with a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. Chevalley isomorphism with the Weyl group invariants:

 $S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} S(\mathfrak{h})^W, \qquad S(\mathfrak{g})^{\mathfrak{g}} \cong \mathbb{C}[P_1, \dots, P_n].$

 $\varpi: S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} Z(\mathfrak{g}).$

Let \mathfrak{g} be simple with a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. Chevalley isomorphism with the Weyl group invariants:

$$S(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} S(\mathfrak{h})^W, \qquad S(\mathfrak{g})^{\mathfrak{g}} \cong \mathbb{C}[P_1, \dots, P_n].$$

Harish-Chandra isomorphism (use the shifted action of W):

$$\chi : \mathbf{Z}(\mathfrak{g}) \xrightarrow{\sim} \mathbb{C}[\mathfrak{h}^*]^{W'}, \qquad w \cdot \lambda = w(\lambda + \rho) - \rho.$$

Type A

The general linear Lie algebra \mathfrak{gl}_N has basis elements

 $E_{ij}, i,j=1,\ldots,N,$

Type A

The general linear Lie algebra \mathfrak{gl}_N has basis elements

 E_{ij} , i, j = 1, ..., N, with the commutation relations

$$\left[E_{ij}, E_{kl}\right] = \delta_{kj} E_{il} - \delta_{il} E_{kj}.$$

Type A

The general linear Lie algebra \mathfrak{gl}_N has basis elements

 E_{ij} , i, j = 1, ..., N, with the commutation relations

$$\left[E_{ij}, E_{kl}\right] = \delta_{kj} E_{il} - \delta_{il} E_{kj}.$$

Consider the matrix

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & \dots & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

with entries in the symmetric algebra $S(\mathfrak{gl}_N)$.

$$\det(u+E) = u^N + \Delta_1 u^{N-1} + \dots + \Delta_N$$

$$\det(u+E) = u^N + \Delta_1 u^{N-1} + \dots + \Delta_N$$

and

$$\det(1 - qE)^{-1} = 1 + \sum_{k=1}^{\infty} \Phi_k q^k.$$

$$\det(u+E) = u^N + \Delta_1 u^{N-1} + \dots + \Delta_N$$

and

$$\det(1 - qE)^{-1} = 1 + \sum_{k=1}^{\infty} \Phi_k q^k.$$

We have

$$\mathbf{S}(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[\Delta_1, \dots, \Delta_N] = \mathbb{C}[\Phi_1, \dots, \Phi_N].$$

$$\det(u+E) = u^N + \Delta_1 u^{N-1} + \dots + \Delta_N$$

and

$$\det(1 - qE)^{-1} = 1 + \sum_{k=1}^{\infty} \Phi_k q^k.$$

We have

$$S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[\Delta_1, \dots, \Delta_N] = \mathbb{C}[\Phi_1, \dots, \Phi_N].$$

This implies

$$Z(\mathfrak{gl}_N) = \mathbb{C}\left[\varpi(\Delta_1), \dots, \varpi(\Delta_N)\right] = \mathbb{C}\left[\varpi(\Phi_1), \dots, \varpi(\Phi_N)\right].$$

$$\varpi(\Delta_m) = \frac{1}{m!} \sum_{i_1,\ldots,i_m=1}^N \sum_{\sigma \in \mathfrak{S}_m} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)}i_1} \ldots E_{i_{\sigma(m)}i_m}$$

$$\varpi(\Delta_m) = \frac{1}{m!} \sum_{i_1,\dots,i_m=1}^N \sum_{\sigma \in \mathfrak{S}_m} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)}i_1} \dots E_{i_{\sigma(m)}i_m}$$

and

$$\varpi(\Phi_m) = \frac{1}{m!} \sum_{i_1,\ldots,i_m=1}^N \sum_{\sigma \in \mathfrak{S}_m} E_{i_{\sigma(1)}i_1} \ldots E_{i_{\sigma(m)}i_m}.$$

$$\varpi(\Delta_m) = \frac{1}{m!} \sum_{i_1,\ldots,i_m=1}^N \sum_{\sigma \in \mathfrak{S}_m} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)}i_1} \ldots E_{i_{\sigma(m)}i_m}$$

and

$$\varpi(\Phi_m) = \frac{1}{m!} \sum_{i_1,\ldots,i_m=1}^N \sum_{\sigma \in \mathfrak{S}_m} E_{i_{\sigma(1)}i_1} \ldots E_{i_{\sigma(m)}i_m}.$$

Remark. The traces tr E^m with m = 1, ..., N are also algebraically independent generators of $S(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$.

$$\varpi(\Delta_m) = \frac{1}{m!} \sum_{i_1,\ldots,i_m=1}^N \sum_{\sigma \in \mathfrak{S}_m} \operatorname{sgn} \sigma \cdot E_{i_{\sigma(1)}i_1} \ldots E_{i_{\sigma(m)}i_m}$$

and

$$\varpi(\Phi_m) = \frac{1}{m!} \sum_{i_1,\ldots,i_m=1}^N \sum_{\sigma \in \mathfrak{S}_m} E_{i_{\sigma(1)}i_1} \ldots E_{i_{\sigma(m)}i_m}$$

Remark. The traces tr E^m with m = 1, ..., N are also algebraically independent generators of $S(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$. Their images $\varpi(\operatorname{tr} E^m)$ are free generators of $Z(\mathfrak{gl}_N)$. Given an *N*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_N)$, the

corresponding irreducible highest weight representation $L(\lambda)$ of

 \mathfrak{gl}_N is generated by a nonzero vector $\xi \in L(\lambda)$

Given an *N*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_N)$, the corresponding irreducible highest weight representation $L(\lambda)$ of \mathfrak{gl}_N is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $E_{ij} \xi = 0$ for $1 \le i < j \le N$, and $E_{ii} \xi = \lambda_i \xi$ for $1 \le i \le N$.
Given an *N*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_N)$, the corresponding irreducible highest weight representation $L(\lambda)$ of \mathfrak{gl}_N is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $E_{ij} \xi = 0$ for $1 \le i < j \le N$, and $E_{ii} \xi = \lambda_i \xi$ for $1 \le i \le N$.

Any element $z \in \mathbb{Z}(\mathfrak{gl}_N)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. Given an *N*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_N)$, the corresponding irreducible highest weight representation $L(\lambda)$ of \mathfrak{gl}_N is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $E_{ij}\xi = 0$ for $1 \le i < j \le N$, and $E_{ii}\xi = \lambda_i\xi$ for $1 \le i \le N$.

Any element $z \in \mathbb{Z}(\mathfrak{gl}_N)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. As a function of the highest weight, $\chi(z)$ is a shifted symmetric polynomial in the variables $\lambda_1, \ldots, \lambda_N$. Given an *N*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_N)$, the corresponding irreducible highest weight representation $L(\lambda)$ of \mathfrak{gl}_N is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $E_{ij} \xi = 0$ for $1 \le i < j \le N$, and $E_{ii} \xi = \lambda_i \xi$ for $1 \le i \le N$.

Any element $z \in Z(\mathfrak{gl}_N)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. As a function of the highest weight, $\chi(z)$ is a shifted symmetric polynomial in the variables $\lambda_1, \ldots, \lambda_N$. It is symmetric in the shifted variables $\lambda_1, \lambda_2 - 1, \ldots, \lambda_N - N + 1$. Elementary shifted symmetric polynomials:

$$e_m^*(\lambda_1,\ldots,\lambda_N) = \sum_{i_1<\cdots< i_m} \lambda_{i_1}(\lambda_{i_2}-1)\ldots(\lambda_{i_m}-m+1).$$

Elementary shifted symmetric polynomials:

$$e_m^*(\lambda_1,\ldots,\lambda_N) = \sum_{i_1<\cdots< i_m} \lambda_{i_1}(\lambda_{i_2}-1)\ldots(\lambda_{i_m}-m+1).$$

Complete shifted symmetric polynomials:

$$h_m^*(\lambda_1,\ldots,\lambda_N) = \sum_{i_1\leqslant\cdots\leqslant i_m} \lambda_{i_1}(\lambda_{i_2}+1)\ldots(\lambda_{i_m}+m-1).$$

Elementary shifted symmetric polynomials:

$$e_m^*(\lambda_1,\ldots,\lambda_N) = \sum_{i_1<\cdots< i_m} \lambda_{i_1}(\lambda_{i_2}-1)\ldots(\lambda_{i_m}-m+1).$$

Complete shifted symmetric polynomials:

$$h_m^*(\lambda_1,\ldots,\lambda_N)=\sum_{i_1\leqslant\cdots\leqslant i_m}\lambda_{i_1}(\lambda_{i_2}+1)\ldots(\lambda_{i_m}+m-1).$$

Remark. The shifted Schur polynomials [OO, 1998] are:

$$s^*_{\mu}(\lambda_1,\ldots,\lambda_N) = \sum_{\mathrm{sh}(T)=\mu} \prod_{\alpha\in\mu} (\lambda_{T(\alpha)} + c(\alpha)).$$

The Stirling number of the second kind $\binom{m}{k}$ counts the number

of partitions of the set $\{1, \ldots, m\}$ into k nonempty subsets.

The Stirling number of the second kind $\binom{m}{k}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into *k* nonempty subsets.

Theorem. For the Harish-Chandra images we have

$$\chi: \varpi(\Delta_m) \mapsto \sum_{k=1}^m {m \atop k} {N \choose m} {N \choose k}^{-1} e_k^*(\lambda_1, \dots, \lambda_N)$$

The Stirling number of the second kind $\binom{m}{k}$ counts the number of partitions of the set $\{1, \ldots, m\}$ into *k* nonempty subsets.

Theorem. For the Harish-Chandra images we have

$$\chi: \varpi(\Delta_m) \mapsto \sum_{k=1}^m {m \choose k} {N \choose m} {N \choose k}^{-1} e_k^*(\lambda_1, \dots, \lambda_N)$$

and

$$\chi: \varpi(\Phi_m) \mapsto \sum_{k=1}^m {m \choose k} {-N \choose m} {-N \choose k}^{-1} h_k^*(\lambda_1, \dots, \lambda_N).$$

Types *B*, *C* and *D*

Types *B*, *C* and *D*

The orthogonal Lie algebra \mathfrak{o}_N with N = 2n or N = 2n + 1is the subalgebra of \mathfrak{gl}_N spanned by the elements

 $F_{ij} = E_{ij} - E_{j'i'},$

where i' = N - i + 1.

Types *B*, *C* and *D*

The orthogonal Lie algebra \mathfrak{o}_N with N = 2n or N = 2n + 1is the subalgebra of \mathfrak{gl}_N spanned by the elements

 $F_{ij} = E_{ij} - E_{j'i'},$

where i' = N - i + 1.

The symplectic Lie algebra \mathfrak{sp}_N with N = 2n is spanned by

$$F_{ij} = E_{ij} - \varepsilon_i \,\varepsilon_j \, E_{j'i'},$$

where $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \ldots, n$.

Consider the matrix

$$F = \begin{bmatrix} F_{11} & \dots & F_{1N} \\ \vdots & \dots & \vdots \\ F_{N1} & \dots & F_{NN} \end{bmatrix}$$

with entries in $S(\mathfrak{g})$ for $\mathfrak{g} = \mathfrak{o}_N$ or $\mathfrak{g} = \mathfrak{sp}_N$.

Consider the matrix

$$F = \begin{bmatrix} F_{11} & \dots & F_{1N} \\ \vdots & \dots & \vdots \\ F_{N1} & \dots & F_{NN} \end{bmatrix}$$

with entries in $S(\mathfrak{g})$ for $\mathfrak{g} = \mathfrak{o}_N$ or $\mathfrak{g} = \mathfrak{sp}_N$. Write

$$\det(u+F) = u^{2n} + \Delta_2 u^{2n-2} + \dots + \Delta_{2n} \quad \text{for} \quad \mathfrak{g} = \mathfrak{sp}_{2n},$$

Consider the matrix

$$F = \begin{bmatrix} F_{11} & \dots & F_{1N} \\ \vdots & \dots & \vdots \\ F_{N1} & \dots & F_{NN} \end{bmatrix}$$

with entries in $S(\mathfrak{g})$ for $\mathfrak{g} = \mathfrak{o}_N$ or $\mathfrak{g} = \mathfrak{sp}_N$. Write

$$\det(u+F) = u^{2n} + \Delta_2 u^{2n-2} + \dots + \Delta_{2n} \quad \text{for} \quad \mathfrak{g} = \mathfrak{sp}_{2n},$$

and

$$\det(1-qF)^{-1} = 1 + \sum_{k=1}^{\infty} \Phi_{2k} q^{2k} \quad \text{for} \quad \mathfrak{g} = \mathfrak{o}_N.$$

Given any *n*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra g is generated by a nonzero vector $\xi \in L(\lambda)$

Given any *n*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra g is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $F_{ij}\xi = 0$ for $1 \le i < j \le N$, and $F_{ii}\xi = \lambda_i \xi$ for $1 \le i \le n$. Given any *n*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra g is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $F_{ij} \xi = 0$ for $1 \le i < j \le N$, and $F_{ii} \xi = \lambda_i \xi$ for $1 \le i \le n$.

Any element $z \in Z(\mathfrak{g})$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. Given any *n*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra g is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $F_{ij} \xi = 0$ for $1 \le i < j \le N$, and $F_{ii} \xi = \lambda_i \xi$ for $1 \le i \le n$.

Any element $z \in Z(\mathfrak{g})$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. As a function of the highest weight, $\chi(z)$ is a shifted invariant polynomial in the variables $\lambda_1, \ldots, \lambda_n$. Theorem. (i) For $\mathfrak{g} = \mathfrak{sp}_{2n}$ the Harish-Chandra images are

$$\chi: \varpi(\Delta_m) \mapsto \sum_{k=1}^m {m \choose k} {2n+1 \choose m} {2n+1 \choose k}^{-1}$$

 $\times e_k^*(\lambda_1,\ldots,\lambda_n,0,-\lambda_n,\ldots,-\lambda_1).$

Theorem. (i) For $\mathfrak{g} = \mathfrak{sp}_{2n}$ the Harish-Chandra images are

$$\chi: \varpi(\Delta_m) \mapsto \sum_{k=1}^m {m \\ k} {2n+1 \choose m} {2n+1 \choose k}^{-1} \times e_k^*(\lambda_1, \dots, \lambda_n, 0, -\lambda_n, \dots, -\lambda_1).$$

(ii) For $\mathfrak{g} = \mathfrak{o}_{2n+1}$ the Harish-Chandra images are

$$\chi: \varpi(\Phi_m) \mapsto \sum_{k=1}^m {m \\ k} {\binom{-2n}{m}} {\binom{-2n}{k}}^{-1} \times h_k^*(\lambda_1, \dots, \lambda_n, -\lambda_n, \dots, -\lambda_1).$$

(iii) For $\mathfrak{g} = \mathfrak{o}_{2n}$ the Harish-Chandra images are

$$\chi : \varpi(\Phi_m) \mapsto \sum_{k=1}^m {m \choose k} {-2n+1 \choose m} {-2n+1 \choose k}^{-1} \\ \times \left(\frac{1}{2} h_k^*(\lambda_1, \dots, \lambda_{n-1}, -\lambda_n, \dots, -\lambda_1) \right. \\ \left. + \frac{1}{2} h_k^*(\lambda_1, \dots, \lambda_n, -\lambda_{n-1}, \dots, -\lambda_1) \right).$$

(iii) For $\mathfrak{g} = \mathfrak{o}_{2n}$ the Harish-Chandra images are

$$\chi : \varpi(\Phi_m) \mapsto \sum_{k=1}^m {m \choose k} {-2n+1 \choose m} {-2n+1 \choose k}^{-1}$$
$$\times \left(\frac{1}{2} h_k^*(\lambda_1, \dots, \lambda_{n-1}, -\lambda_n, \dots, -\lambda_1) + \frac{1}{2} h_k^*(\lambda_1, \dots, \lambda_n, -\lambda_{n-1}, \dots, -\lambda_1)\right).$$

Remark. If *m* is odd, then the elements Δ_m , Φ_m and their images are zero.

Regard the matrix $E = [E_{ij}]$ as the element

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{gl}_{N}).$$

Regard the matrix $E = [E_{ij}]$ as the element

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{gl}_{N}).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N)$$

Regard the matrix $E = [E_{ij}]$ as the element

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^N \otimes \mathrm{U}(\mathfrak{gl}_N).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N)$$

and for $a = 1, \ldots, m$ set

$$E_a = \sum_{i,j=1}^N \underbrace{1 \otimes \ldots \otimes 1}_{a-1} \otimes e_{ij} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{m-a} \otimes E_{ij}.$$

The symmetric group \mathfrak{S}_m acts on the tensor product space

by permutations of tensor factors.

The symmetric group \mathfrak{S}_m acts on the tensor product space

by permutations of tensor factors.

Denote by $H^{(m)}$ and $A^{(m)}$ the respective images of the

symmetrizer and anti-symmetrizer

$$\frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} \sigma$$
 and $\frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} \operatorname{sgn} \sigma \cdot \sigma$.

The symmetric group \mathfrak{S}_m acts on the tensor product space

by permutations of tensor factors.

Denote by $H^{(m)}$ and $A^{(m)}$ the respective images of the

symmetrizer and anti-symmetrizer

$$\frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} \sigma$$
 and $\frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} \operatorname{sgn} \sigma \cdot \sigma$

We regard $H^{(m)}$ and $A^{(m)}$ as elements of the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{\mathbb{C}^N}.$$

$$\varpi(\Delta_m) = \operatorname{tr} A^{(m)} E_1 \dots E_m$$

$$\varpi(\Delta_m) = \operatorname{tr} A^{(m)} E_1 \dots E_m$$

and

$$\varpi(\Phi_m) = \operatorname{tr} H^{(m)} E_1 \dots E_m.$$

$$\varpi(\Delta_m) = \operatorname{tr} A^{(m)} E_1 \dots E_m$$

and

$$\varpi(\Phi_m) = \operatorname{tr} H^{(m)} E_1 \dots E_m.$$

On the other hand, it is well-known that

$$\chi: \operatorname{tr} A^{(m)} E_1(E_2-1) \dots (E_m-m+1) \mapsto e_m^*(\lambda_1, \dots, \lambda_N)$$

$$\varpi(\Delta_m) = \operatorname{tr} A^{(m)} E_1 \dots E_m$$

and

$$\varpi(\Phi_m) = \operatorname{tr} H^{(m)} E_1 \dots E_m.$$

On the other hand, it is well-known that

$$\chi: \operatorname{tr} A^{(m)} E_1(E_2-1) \dots (E_m-m+1) \mapsto e_m^*(\lambda_1, \dots, \lambda_N)$$

and

$$\chi: \operatorname{tr} H^{(m)}E_1(E_2+1)\ldots(E_m+m-1)\mapsto h_m^*(\lambda_1,\ldots,\lambda_N).$$

Using the identities

$$x^{m} = \sum_{k=1}^{m} {m \\ k} x(x-1) \dots (x-k+1),$$

Using the identities

$$x^m = \sum_{k=1}^m {m \\ k} x(x-1) \dots (x-k+1),$$

we derive

tr
$$A^{(m)}E_1...E_m = \text{tr } A^{(m)} \sum_{k=1}^m {m \choose k} E_1(E_2-1)...(E_k-k+1).$$
Using the identities

$$x^m = \sum_{k=1}^m {m \\ k} x(x-1) \dots (x-k+1),$$

we derive

$$\operatorname{tr} A^{(m)} E_1 \dots E_m = \operatorname{tr} A^{(m)} \sum_{k=1}^m {m \choose k} E_1(E_2 - 1) \dots (E_k - k + 1).$$

The result for $\varpi(\Delta_m)$ now follows by calculating the partial traces over the spaces End \mathbb{C}^N labelled by $k + 1, \ldots, m$, as

$$\operatorname{tr}_m A^{(m)} = \frac{N-m+1}{m} A^{(m-1)}.$$

- Replace S(g) by the symmetric algebra $S(t^{-1}g[t^{-1}])$.
- Replace $S(\mathfrak{g})^{\mathfrak{g}}$ by the subalgebra $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

- Replace S(g) by the symmetric algebra $S(t^{-1}g[t^{-1}])$.
- Replace $S(\mathfrak{g})^{\mathfrak{g}}$ by the subalgebra $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

We regard $t^{-1}\mathfrak{g}[t^{-1}] \cong \mathfrak{g}[t, t^{-1}]/\mathfrak{g}[t]$ as the adjoint $\mathfrak{g}[t]$ -module.

- Replace S(g) by the symmetric algebra $S(t^{-1}g[t^{-1}])$.
- Replace $S(\mathfrak{g})^{\mathfrak{g}}$ by the subalgebra $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

We regard $t^{-1}\mathfrak{g}[t^{-1}] \cong \mathfrak{g}[t, t^{-1}]/\mathfrak{g}[t]$ as the adjoint $\mathfrak{g}[t]$ -module.

Note that T = -d/dt is a derivation of the symmetric algebra.

An embedding $S(\mathfrak{g}) \hookrightarrow S(t^{-1}\mathfrak{g}[t^{-1}])$ is defined by $X \mapsto X[-1]$.

An embedding $S(\mathfrak{g}) \hookrightarrow S(t^{-1}\mathfrak{g}[t^{-1}])$ is defined by $X \mapsto X[-1]$.

The image of any element $P \in S(\mathfrak{g})$ is denoted by P[-1].

An embedding $S(\mathfrak{g}) \hookrightarrow S(t^{-1}\mathfrak{g}[t^{-1}])$ is defined by $X \mapsto X[-1]$.

The image of any element $P \in S(\mathfrak{g})$ is denoted by P[-1].

Theorem [Raïs–Tauvel 1992, Beilinson–Drinfeld 1997]. If P_1, \ldots, P_n are algebraically independent generators of $S(\mathfrak{g})^\mathfrak{g}$, then the elements $T^r P_1[-1], \ldots, T^r P_n[-1]$ with $r \ge 0$ are algebraically independent generators of $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$. Define an invariant bilinear form on \mathfrak{g} by

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

Define an invariant bilinear form on \mathfrak{g} by

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K$

Define an invariant bilinear form on \mathfrak{g} by

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r,-s} \langle X, Y \rangle \, K.$$

 $V(\mathfrak{g}) = \mathrm{U}(\widehat{\mathfrak{g}})/\mathrm{I},$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K + h^{\vee}$.

 $V(\mathfrak{g}) = \mathrm{U}(\widehat{\mathfrak{g}})/\mathrm{I},$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K + h^{\vee}$.

The Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is defined by

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

 $V(\mathfrak{g}) = \mathrm{U}(\widehat{\mathfrak{g}})/\mathrm{I},$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K + h^{\vee}$.

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is defined by

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

We have $V(\mathfrak{g}) \cong U(t^{-1}\mathfrak{g}[t^{-1}])$ as vector spaces,

 $V(\mathfrak{g}) = \mathbf{U}(\widehat{\mathfrak{g}})/\mathbf{I},$

where the left ideal I is generated by $\mathfrak{g}[t]$ and $K + h^{\vee}$.

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is defined by

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t]v = 0 \}.$$

We have $V(\mathfrak{g}) \cong U(t^{-1}\mathfrak{g}[t^{-1}])$ as vector spaces, and

 $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a *T*-invariant commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

where $n = \operatorname{rank} \mathfrak{g}$, such that

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

where $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

where $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

where $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

Note that the symmetrization map

$$\varpi: \mathbf{S}(t^{-1}\mathfrak{g}[t^{-1}]) \to \mathbf{U}(t^{-1}\mathfrak{g}[t^{-1}])$$

is not a $\mathfrak{g}[t]$ -module homomorphism.

Theorem. Each family of elements

$$\phi_m = \sum_{k=1}^m \binom{N-k}{m-k} \varpi \left(T^{m-k} \Delta_k [-1] \right) \mathbf{1}$$

Theorem. Each family of elements

$$\phi_m = \sum_{k=1}^m \binom{N-k}{m-k} \varpi \left(T^{m-k} \Delta_k[-1] \right) 1$$

and

$$\psi_m = \sum_{k=1}^m \binom{N+m-1}{m-k} \varpi \left(T^{m-k} \Phi_k[-1] \right) 1,$$

Theorem. Each family of elements

$$\phi_m = \sum_{k=1}^m \binom{N-k}{m-k} \varpi \left(T^{m-k} \Delta_k[-1] \right) 1$$

and

$$\psi_m = \sum_{k=1}^m \binom{N+m-1}{m-k} \varpi (T^{m-k} \Phi_k[-1]) 1,$$

where m = 1, ..., N, is a complete set of Segal–Sugawara

vectors for \mathfrak{gl}_N

Theorem. Each family of elements

$$\phi_m = \sum_{k=1}^m \binom{N-k}{m-k} \varpi \left(T^{m-k} \Delta_k[-1] \right) 1$$

and

$$\psi_m = \sum_{k=1}^m \binom{N+m-1}{m-k} \varpi \left(T^{m-k} \Phi_k[-1] \right) 1,$$

where m = 1, ..., N, is a complete set of Segal–Sugawara vectors for \mathfrak{gl}_N [Chervov–Talalaev 2006, Chervov–M. 2009].

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\widehat{\mathfrak{gl}}_N)$$

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\widehat{\mathfrak{gl}}_N)$$

we can write

$$\phi_m = \operatorname{tr} A^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1,$$

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\widehat{\mathfrak{gl}}_N)$$

we can write

$$\phi_m = \operatorname{tr} A^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1,$$

$$\psi_m = \operatorname{tr} H^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1,$$

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\widehat{\mathfrak{gl}}_N)$$

we can write

$$\phi_m = \operatorname{tr} A^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1,$$

$$\psi_m = \operatorname{tr} H^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1,$$

where

$$E[-1] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\widehat{\mathfrak{gl}}_{N}).$$

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\widehat{\mathfrak{gl}}_N)$$

we can write

$$\phi_m = \operatorname{tr} A^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1,$$

$$\psi_m = \operatorname{tr} H^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1,$$

where

$$E[-1] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\widehat{\mathfrak{gl}}_{N}).$$

Remark. Another family: tr $(T + E[-1])^m 1$.

Eliminate T to get

$$\phi_m = \operatorname{tr} A^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1$$
$$= \sum_{\lambda \vdash m} c_\lambda \operatorname{tr} A^{(m)} E_1[-\lambda_1] \dots E_\ell[-\lambda_\ell],$$

Eliminate T to get

$$\phi_m = \operatorname{tr} A^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1$$
$$= \sum_{\lambda \vdash m} c_\lambda \operatorname{tr} A^{(m)} E_1[-\lambda_1] \dots E_\ell[-\lambda_\ell],$$

where the parts of partitions λ are $\lambda_1 \ge \cdots \ge \lambda_\ell > 0$ and

Eliminate T to get

$$\phi_m = \operatorname{tr} A^{(m)} \left(T + E_1[-1] \right) \dots \left(T + E_m[-1] \right) 1$$
$$= \sum_{\lambda \vdash m} c_\lambda \operatorname{tr} A^{(m)} E_1[-\lambda_1] \dots E_\ell[-\lambda_\ell],$$

where the parts of partitions λ are $\lambda_1 \geqslant \cdots \geqslant \lambda_\ell > 0$ and

 c_{λ} is the number of permutations of $\{1, \ldots, m\}$ of cycle type λ ,

$$c_{\lambda} = \frac{m!}{1^{k_1}k_1!\dots m^{k_m}k_m!}, \qquad \lambda = (1^{k_1}2^{k_2}\dots m^{k_m}).$$

Theorem. We have the Segal–Sugawara vectors

$$\phi_m^{\circ} = \sum_{\lambda \vdash m} \binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_1[-\lambda_1] \dots E_{\ell}[-\lambda_{\ell}]$$

Theorem. We have the Segal–Sugawara vectors

$$\phi_m^{\circ} = \sum_{\lambda \vdash m} \binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_1[-\lambda_1] \dots E_{\ell}[-\lambda_{\ell}]$$

and

$$\psi_m^{\circ} = \sum_{\lambda \vdash m} \binom{N+\ell-1}{\ell}^{-1} c_{\lambda} \operatorname{tr} H^{(\ell)} E_1[-\lambda_1] \dots E_\ell[-\lambda_\ell].$$
Theorem. We have the Segal–Sugawara vectors

$$\phi_m^{\circ} = \sum_{\lambda \vdash m} \binom{N}{\ell}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} E_1[-\lambda_1] \dots E_{\ell}[-\lambda_{\ell}]$$

and

$$\psi_m^{\circ} = \sum_{\lambda \vdash m} \binom{N+\ell-1}{\ell}^{-1} c_{\lambda} \operatorname{tr} H^{(\ell)} E_1[-\lambda_1] \dots E_\ell[-\lambda_\ell].$$

For proofs and relations between the families, including MacMahon Master Theorem and Newton Identity, see [Sugawara operators for classical Lie algebras, AMS, 2018], Russian edition is available on the MCCME web site.

Theorem. (i) The family

$$\phi_{2k} = \sum_{l=1}^{k} \binom{2n-2l+1}{2k-2l} \varpi \left(T^{2k-2l} \Delta_{2l} [-1] \right) 1$$

with k = 1, ..., n, is a complete set of Segal–Sugawara vectors for $g = \mathfrak{sp}_{2n}$.

Theorem. (i) The family

$$\phi_{2k} = \sum_{l=1}^{k} \binom{2n-2l+1}{2k-2l} \varpi \left(T^{2k-2l} \Delta_{2l} [-1] \right) 1$$

with k = 1, ..., n, is a complete set of Segal–Sugawara vectors

for $\mathfrak{g} = \mathfrak{sp}_{2n}$. (ii) The family

$$\psi_{2k} = \sum_{l=1}^{k} \binom{N+2k-2}{2k-2l} \varpi \left(T^{2k-2l} \Phi_{2l}[-1] \right) 1$$

with k = 1, ..., n, is a complete set of Segal–Sugawara vectors

for $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1.

(iii) The family ψ_{2k} with k = 1, ..., n - 1 together with

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

is a complete set of Segal-Sugawara vectors

for $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n.

(iii) The family ψ_{2k} with k = 1, ..., n - 1 together with

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

is a complete set of Segal-Sugawara vectors

for $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n.

[Yakimova 2019, M. 2013, 2020].

(iii) The family ψ_{2k} with k = 1, ..., n - 1 together with

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

is a complete set of Segal-Sugawara vectors

for $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n.

[Yakimova 2019, M. 2013, 2020].

Remark. These results imply the Feigin–Frenkel theorem for the classical types. Formulas for type G_2 are also known by [M.–Ragoucy–Rozhkovskaya 2016, Yakimova 2019].

Theorem. We have the Segal–Sugawara vectors for even m

$$\phi_m^{\circ} = \sum_{\lambda \vdash m} {\binom{2n+1}{\ell}}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} F_1[-\lambda_1] \dots F_{\ell}[-\lambda_{\ell}]$$

for $\mathfrak{g} = \mathfrak{sp}_{2n}$,

Theorem. We have the Segal–Sugawara vectors for even m

$$\phi_m^{\circ} = \sum_{\lambda \vdash m} {\binom{2n+1}{\ell}}^{-1} c_{\lambda} \operatorname{tr} A^{(\ell)} F_1[-\lambda_1] \dots F_{\ell}[-\lambda_{\ell}]$$

for $\mathfrak{g} = \mathfrak{sp}_{2n}$,

and

$$\psi_m^{\circ} = \sum_{\lambda \vdash m} \binom{N+\ell-2}{\ell}^{-1} c_{\lambda} \operatorname{tr} H^{(\ell)} F_1[-\lambda_1] \dots F_\ell[-\lambda_\ell]$$

for $\mathfrak{g} = \mathfrak{o}_N$.

The Feigin–Frenkel theorem (1992) provides an isomorphism

 $\mathfrak{f}:\mathfrak{z}(\widehat{\mathfrak{g}})\xrightarrow{\sim}\mathcal{W}({}^{L}\mathfrak{g}),$

The Feigin–Frenkel theorem (1992) provides an isomorphism

 $\mathfrak{f}:\mathfrak{z}(\widehat{\mathfrak{g}})\xrightarrow{\sim}\mathcal{W}({}^{L}\mathfrak{g}),$

where the classical W-algebra $W({}^{L}\mathfrak{g})$ is associated with the Langlands dual Lie algebra ${}^{L}\mathfrak{g}$.

The Feigin–Frenkel theorem (1992) provides an isomorphism

 $\mathfrak{f}:\mathfrak{z}(\widehat{\mathfrak{g}})\xrightarrow{\sim}\mathcal{W}({}^{L}\mathfrak{g}),$

where the classical W-algebra $W({}^{L}\mathfrak{g})$ is associated with the Langlands dual Lie algebra ${}^{L}\mathfrak{g}$. It is obtained by restriction of the affine Harish-Chandra homomorphism

 $\mathfrak{f}: \mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$

The Feigin–Frenkel theorem (1992) provides an isomorphism

 $\mathfrak{f}:\mathfrak{z}(\widehat{\mathfrak{g}})\xrightarrow{\sim}\mathcal{W}({}^{L}\mathfrak{g}),$

where the classical W-algebra $W({}^{L}\mathfrak{g})$ is associated with the Langlands dual Lie algebra ${}^{L}\mathfrak{g}$. It is obtained by restriction of the affine Harish-Chandra homomorphism

$$\mathfrak{f}: \mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_{-}[t^{-1}]$.

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} .

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

$$\mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \ldots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$$

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

$$\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \dots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$$

The classical \mathcal{W} -algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \{ P \in \mathcal{P}_n \mid V_i P = 0, \quad i = 1, \dots, n \},\$$

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

$$\mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \ldots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$$

The classical \mathcal{W} -algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \{ P \in \mathcal{P}_n \mid V_i P = 0, \quad i = 1, \dots, n \},\$$

the V_i are the screening operators.

Introduce the noncommutative elementary symmetric functions

$$e_m(x_1,\ldots,x_p)=\sum_{i_1>\cdots>i_m}x_{i_1}\ldots x_{i_m}$$

Introduce the noncommutative elementary symmetric functions

$$e_m(x_1,\ldots,x_p)=\sum_{i_1>\cdots>i_m}x_{i_1}\ldots x_{i_m}$$

and the noncommutative complete symmetric functions

$$h_m(x_1,\ldots,x_p) = \sum_{i_1 \leqslant \cdots \leqslant i_m} x_{i_1}\ldots x_{i_m}$$

Theorem.

The Harish-Chandra images of

the Segal–Sugawara vectors $\phi_m, \psi_m \in \mathfrak{z}(\widehat{\mathfrak{gl}}_N)$ are given by

Theorem.

The Harish-Chandra images of the Segal–Sugawara vectors $\phi_m, \psi_m \in \mathfrak{z}(\widehat{\mathfrak{gl}}_N)$ are given by

$$\mathfrak{f}:\phi_m\mapsto e_mig(T+\mu_1[-1],\ldots,T+\mu_N[-1]ig)$$
 1

Theorem.

The Harish-Chandra images of the Segal–Sugawara vectors $\phi_m, \psi_m \in \mathfrak{z}(\widehat{\mathfrak{gl}}_N)$ are given by

$$\mathfrak{f}: \phi_m \mapsto e_m (T + \mu_1[-1], \dots, T + \mu_N[-1])$$

and

$$\mathfrak{f}: \psi_m \mapsto h_m (T + \mu_1[-1], \dots, T + \mu_N[-1]) 1.$$

Theorem.

The Harish-Chandra images of the Segal–Sugawara vectors $\phi_m, \psi_m \in \mathfrak{z}(\widehat{\mathfrak{gl}}_N)$ are given by

$$\mathfrak{f}: \phi_m \mapsto e_m (T + \mu_1[-1], \dots, T + \mu_N[-1])$$

and

$$\mathfrak{f}: \psi_m \mapsto h_m \big(T + \mu_1[-1], \dots, T + \mu_N[-1]\big) \, 1.$$

[Chervov-M. 2009].

Theorem. (i) If $\mathfrak{g} = \mathfrak{sp}_{2n}$ then the image of ϕ_{2k} under \mathfrak{f} is

$$e_{2k}(T + \mu_1[-1], \dots, T + \mu_n[-1], T, T - \mu_n[-1], \dots, T - \mu_1[-1])$$
 1.

Theorem. (i) If $\mathfrak{g} = \mathfrak{sp}_{2n}$ then the image of ϕ_{2k} under \mathfrak{f} is

$$e_{2k}(T + \mu_1[-1], \dots, T + \mu_n[-1], T, T - \mu_n[-1], \dots, T - \mu_1[-1])$$
 1.

(ii) If $\mathfrak{g} = \mathfrak{o}_{2n+1}$ then the image of ψ_{2k} under \mathfrak{f} is

 $h_{2k}(T + \mu_1[-1], \dots, T + \mu_n[-1], T - \mu_n[-1], \dots, T - \mu_1[-1])$ 1.

(iii) If $\mathfrak{g} = \mathfrak{o}_{2n}$ then the image of ψ_{2k} under \mathfrak{f} is

-

$$\frac{1}{2}h_{2k}(T+\mu_1[-1],\ldots,T+\mu_{n-1}[-1],T-\mu_n[-1],\ldots,T-\mu_1[-1]) 1$$

+ $\frac{1}{2}h_{2k}(T+\mu_1[-1],\ldots,T+\mu_n[-1],T-\mu_{n-1}[-1],\ldots,T-\mu_1[-1]) 1.$

(iii) If $\mathfrak{g} = \mathfrak{o}_{2n}$ then the image of ψ_{2k} under \mathfrak{f} is

$$\frac{1}{2}h_{2k}(T+\mu_1[-1],\ldots,T+\mu_{n-1}[-1],T-\mu_n[-1],\ldots,T-\mu_1[-1]) 1$$

+ $\frac{1}{2}h_{2k}(T+\mu_1[-1],\ldots,T+\mu_n[-1],T-\mu_{n-1}[-1],\ldots,T-\mu_1[-1]) 1.$

Moreover,

$$\mathfrak{f}: \operatorname{Pf} F[-1] \mapsto (\mu_1[-1] - T) \dots (\mu_n[-1] - T) 1.$$

(iii) If $\mathfrak{g} = \mathfrak{o}_{2n}$ then the image of ψ_{2k} under \mathfrak{f} is

$$\frac{1}{2}h_{2k}(T+\mu_1[-1],\ldots,T+\mu_{n-1}[-1],T-\mu_n[-1],\ldots,T-\mu_1[-1]) 1$$

+ $\frac{1}{2}h_{2k}(T+\mu_1[-1],\ldots,T+\mu_n[-1],T-\mu_{n-1}[-1],\ldots,T-\mu_1[-1]) 1$

Moreover,

$$\mathfrak{f}: \operatorname{Pf} F[-1] \mapsto \left(\mu_1[-1] - T\right) \dots \left(\mu_n[-1] - T\right) 1.$$

[M.-Mukhin 2014, Rozhkovskaya 2014].

For $\mathcal{W}(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

For $\mathcal{W}(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

$$V_{i} = \sum_{r=0}^{\infty} V_{ir} \left(\frac{\partial}{\partial \mu_{i}[-r-1]} - \frac{\partial}{\partial \mu_{i+1}[-r-1]} \right)$$

For $\mathcal{W}(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

$$V_{i} = \sum_{r=0}^{\infty} V_{ir} \left(\frac{\partial}{\partial \mu_{i}[-r-1]} - \frac{\partial}{\partial \mu_{i+1}[-r-1]} \right)$$

with

$$\sum_{r=0}^{\infty} V_{ir} z^r = \exp \sum_{m=1}^{\infty} \frac{\mu_i [-m] - \mu_{i+1} [-m]}{m} z^m.$$

For $\mathcal{W}(\mathfrak{o}_N)$ and $\mathcal{W}(\mathfrak{sp}_{2n})$ the operators V_1, \ldots, V_{n-1} are given by the above formulas, while
For $\mathcal{W}(\mathfrak{o}_N)$ and $\mathcal{W}(\mathfrak{sp}_{2n})$ the operators V_1, \ldots, V_{n-1} are given by the above formulas, while

$$V_n = \sum_{r=0}^{\infty} V_{nr} \frac{\partial}{\partial \mu_n [-r-1]}$$

For $\mathcal{W}(\mathfrak{o}_N)$ and $\mathcal{W}(\mathfrak{sp}_{2n})$ the operators V_1, \ldots, V_{n-1} are given by the above formulas, while

$$V_n = \sum_{r=0}^{\infty} V_{nr} \frac{\partial}{\partial \mu_n [-r-1]}$$

with

$$\sum_{r=0}^{\infty} V_{nr} z^r = \exp \sum_{m=1}^{\infty} \frac{\mu_n[-m]}{m} z^m$$

for type B_n , and by similar formulas in types C_n and D_n .