1. Nilpotent orbits as moduli spaces

Notation:
- \mathfrak{g} is a simple Lie algebra over \mathbb{C},
- G is the corresponding simply connected group,
- $\mathcal{N} \subset \mathfrak{g}$ is the nilpotent cone.

Theorem (Jacobson–Morozov, Kostant)
We have a bijection
$$ \{ G\text{-orbits in } \mathcal{N} \} \longleftrightarrow \text{Hom}(\text{SL}(2), G)/\sim $$
where the equivalence relation on the right is G-conjugacy. Under this bijection, $\varphi \in \text{Hom}(\text{SL}(2), G)$ corresponds to the G-orbit $O_\varphi \subset \mathcal{N}$ containing $d\varphi\left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right)$. Hence we can write
$$ \mathcal{N} = \bigsqcup_{\varphi \in \text{Hom}(\text{SL}(2), G)/\sim} O_\varphi \quad (a \text{ disjoint union}). $$
Let \(X_G = \text{Bun}_G(\mathbb{P}^2; \ell_\infty) \) be the moduli space whose complex points are isomorphism classes of pairs \((\mathcal{F}, \Phi)\) where

- \(\mathcal{F} \) is a principal \(G \)-bundle on \(\mathbb{P}^2 \),
- \(\Phi : \mathcal{F}|_{\ell_\infty} \overset{\sim}{\rightarrow} G \times \ell_\infty \) is a trivialization of \(\mathcal{F} \) on \(\ell_\infty = \mathbb{P}^2 \setminus \mathbb{A}^2 \).

Facts: (e.g. see Braverman–Finkelberg–Gaitsgory)

1. Such a pair \((\mathcal{F}, \Phi)\) has trivial automorphism group.
2. \(X_G \) has the structure of an ind-variety.
3. We have an action of \(G \times \text{GL}(2) \) on \(X_G \), where \(G \) changes the trivialization \(\Phi \) and \(\text{GL}(2) \) acts on the base \(\mathbb{P}^2 \) preserving \(\ell_\infty \).
4. If \(\Gamma \) is a subgroup of \(\text{GL}(2) \), we have a disjoint union
 \[
 X_G^\Gamma = \bigsqcup_{\tau \in \text{Hom}(\Gamma, G)/\sim} X_G^{\Gamma, \tau},
 \]
 since if \([((\mathcal{F}, \Phi))] \in X_G^\Gamma\), then \(\Gamma \) acts on the fibre \(\mathcal{F}_0 \) via some \(\tau \in \text{Hom}(\Gamma, G) \), determined up to \(G \)-conjugacy.
5. If \(\Gamma \) is reductive, this disjoint union is a disconnected union.

Theorem (Kronheimer, reformulated)

There is a \(G \)-equivariant bijective morphism

\[
\Omega : X_G^{\text{SL}(2)} \longrightarrow \mathcal{N}
\]

inducing isomorphisms \(X_G^{\text{SL}(2), \varphi} \overset{\sim}{\rightarrow} \mathcal{O}_\varphi \) for all \(\varphi \in \text{Hom}(\text{SL}(2), G) \).

The pair \((\mathcal{F}, \Phi)\) corresponding to \(d\varphi(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}) \in \mathcal{O}_\varphi \) can be obtained by gluing trivial \(G \)-bundles on the open sets \(\{z_0 \neq 0\}, \{z_1 \neq 0\}, \{z_2 \neq 0\} \) in \(\mathbb{P}^2 \) using the following transition functions:

\[
\varphi(\begin{pmatrix} z_0z_1^{-1} & 0 \\ -z_2z_0^{-1} & z_1z_0^{-1} \end{pmatrix}), \quad \varphi(\begin{pmatrix} 0 & z_0z_2^{-1} \\ -z_2z_0^{-1} & z_1z_0^{-1} \end{pmatrix}), \quad \varphi(\begin{pmatrix} 1 & z_0^2z_1z_2^{-1} \\ 0 & 1 \end{pmatrix}).
\]

Remark

There is a more general moduli-space interpretation of \(S_{\varphi'} \cap \mathcal{O}_\varphi \) where \(S_{\varphi'} \) is the Slodowy slice determined by \(\varphi' \in \text{Hom}(\text{SL}(2), G) \). For this, one uses the \(\text{SL}(2) \)-action on \(X_G \) given by the embedding \((\varphi', \text{id}) : \text{SL}(2) \hookrightarrow G \times \text{GL}(2) \).
2. Pieces of the affine Grassmannian as moduli spaces

Let \(\text{Gr} = G[t, t^{-1}]/G[t] \) be the affine Grassmannian. Since \(G \) is simply connected, \(\text{Gr} \) is a connected ind-variety.

Theorem (a case of Bruhat decomposition)

We have a bijection

\[
\{ G[t]-orbits \text{ in } \text{Gr} \} \longleftrightarrow \text{Hom}(\mathbb{G}_m, G)/\sim
\]

under which \(\lambda \in \text{Hom}(\mathbb{G}_m, G) \) corresponds to the \(G[t] \)-orbit \(\text{Gr}^\lambda \) containing \(t^\lambda G[t]/G[t] \). Hence we can write

\[
\text{Gr} = \bigsqcup_{\lambda \in \text{Hom}(\mathbb{G}_m, G)/\sim} \text{Gr}^\lambda \quad \text{(a disjoint union)}.
\]

Choosing a maximal torus \(T \) and Borel subgroup \(B \) of \(G \), we can identify \(\text{Hom}(\mathbb{G}_m, G)/\sim \) with the set \(\Lambda^+ \) of dominant coweights.

Define

\[
\text{Gr}_0 = \ker(G[t^{-1}] \to G) \quad \text{(first congruence subgroup of } G[t^{-1}]),}
\]

which we identify with the open subset \(G[t^{-1}]G[t]/G[t] \subset \text{Gr} \).

For any \(\lambda \in \Lambda^+ \), let \(\text{Gr}^\lambda_0 = \text{Gr}_0 \cap \text{Gr}^\lambda \), an irreducible variety.

Theorem (Braverman–Finkelberg)

Let \(\mathbb{G}_m \) act on \(X_G \) via its identification with the diagonal subgroup of \(\text{SL}(2) \). There is a \(G \)-equivariant bijective morphism

\[
\Psi : X_G^{\mathbb{G}_m} \longrightarrow \text{Gr}_0
\]

inducing isomorphisms \(X_G^{\mathbb{G}_m, \lambda} \cong \text{Gr}^\lambda_0 \) for all \(\lambda \in \Lambda^+ \).

Remark

Again there is a more general moduli-space interpretation of \(\text{Gr}^\lambda_\mu = \text{Gr}_\mu \cap \text{Gr}^\lambda \) where \(\text{Gr}_\mu \) is a transverse slice to \(\text{Gr}^\mu \).
3. Nilpotent orbits and the affine Grassmannian

The two bijections Ω and Ψ fit into a commutative diagram

$$
\begin{array}{ccc}
N & \xrightarrow{e} & Gr_0 \\
\uparrow & & \uparrow \\
\Omega & & \Psi \\
X_{SL(2)} & \hookrightarrow & X_G^{G_m}
\end{array}
$$

where the bottom embedding is the obvious inclusion and the top is

$$e : N \hookrightarrow Gr_0 : x \mapsto \exp(xt^{-1}).$$

Hence, or by an easy $SL(2)$ computation, we have that

$$e(O_\varphi) \subseteq Gr_0^{G_m} \text{ for all } \varphi \in \Hom(SL(2), G).$$

It is well known that φ is determined up to G-conjugacy by $\varphi|_{G_m}$, so different nilpotent orbits map into different Gr^λ_0's.

Fixing a faithful representation $G \hookrightarrow GL(d)$, we can express elements of Gr_0 in the form

$$1 + x_1 t^{-1} + x_2 t^{-2} + \cdots + x_m t^{-m} \text{ for } x_1, x_2, \cdots, x_m \in \text{Mat}(d).$$

We define $\pi : Gr_0 \rightarrow g$ and the involution $\iota : Gr_0 \rightarrow Gr_0$ by

$$\pi(1 + x_1 t^{-1} + \cdots + x_m t^{-m}) = x_1,$$

$$\iota(1 + x_1 t^{-1} + \cdots + x_m t^{-m}) = (1 - x_1 t^{-1} + \cdots + (-1)^m x_m t^{-m})^{-1}.$$

These are independent of the choice of $G \hookrightarrow GL(d)$. We have

- $\pi \circ e = \text{id}_N$ (that is, e is a section of π over N),
- $\pi \circ \iota = \pi$ (that is, ι preserves each fibre of π),
- $\iota \circ e = e$ (that is, the image of e belongs to $(Gr_0)^\iota$).

It is also easy to see that $\iota(Gr^\lambda_0) = Gr_0^{-w_0^\lambda}$, where w_0 is the longest element of the Weyl group.
Example ($G = SL(2)$)

If $G = SL(2)$, then $Gr_0 = \{1\} \sqcup Gr_0^{\alpha^\vee} \sqcup Gr_0^{2\alpha^\vee} \sqcup Gr_0^{3\alpha^\vee} \sqcup \cdots$, where
\[
Gr_0^{m\alpha^\vee} = \{1 + x_1 t^{-1} + x_2 t^{-2} + \cdots + x_m t^{-m} \mid x_i \in \text{Mat}(2), x_m \neq 0, \det(1 + x_1 t^{-1} + x_2 t^{-2} + \cdots + x_m t^{-m}) = 1\}.
\]
In this case, $e(N) = \{1\} \sqcup Gr_0^{\alpha^\vee}$. The involution ι acts nontrivially on $Gr_0^{m\alpha^\vee}$ for all $m \geq 2$. Exercise: $(Gr_0^{m\alpha^\vee})^\iota$ is empty if m is even.

Theorem (Achar–H.)

For $\lambda \in \Lambda^+$, the following are equivalent:
1. $\pi(Gr_0^\lambda) \subset N$,
2. G acts with finitely many orbits on Gr_0^λ,
3. λ is small, i.e. $\lambda \not\geq \tilde{\alpha}^\vee$ where $\tilde{\alpha}$ is the highest root.
If these hold, then $\pi|_{Gr_0^\lambda \cup Gr_0^{-w_0}^\lambda}$ is a quotient map for $\langle \iota \rangle$.
Moreover, if $\phi|_{G_m}$ is small, then $e(O_{\phi}) = (Gr_0^{\phi|_{G_m}})^\iota$.

4. Moduli-space interpretation of the involution ι

Let $N = N_{SL(2)}(G_m) = \langle G_m, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle$, and let $\Xi = \text{Hom}(N, G) / \sim$.

Theorem (H.)

Under the Braverman–Finkelberg bijection $\Psi : X_G^{G_m} \rightarrow Gr_0$, the involution ι of Gr_0 corresponds to the action of $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ on $X_G^{G_m}$.
Hence we have a commutative diagram

\[
\begin{array}{ccc}
N & \overset{e}{\longrightarrow} & (Gr_0)^\iota \\
\downarrow{\Omega} & & \downarrow{\psi} \\
X_G^{SL(2)} & \overset{\Psi|_{X_G^{G_m}}}{\longrightarrow} & X_G^{G_m}
\end{array}
\]

Corresponding to the disconnected union $X_G^N = \bigsqcup_{\xi \in \Xi} X_G^{N,\xi}$, we have a disjoint union $(Gr_0)^\iota = \bigsqcup_{\xi \in \Xi} (Gr_0)^\iota,\xi$ satisfying
\[
(Gr_0)^\iota,\xi \subseteq Gr_0^{\xi|G_m} \text{ and } e(O_{\varphi}) \subseteq (Gr_0)^\iota,\varphi|_{N}.
\]
Thus, for any $\xi \in \Xi$, we have a locally closed subvariety $(\text{Gr}_0)^{\xi}$ of Gr which is naturally isomorphic to the moduli space $X_G^{\mathbb{N}, \xi}$. There is an “elementary” definition of $(\text{Gr}_0)^{\xi}$:

Proposition (H.)

Let $\lambda \in \Lambda_+^+$ be such that $-w_0 \lambda = \lambda$, and let $\gamma \in (\text{Gr}_0^{\lambda})^\nu$. If we write $\gamma = q_1 t^\lambda q_2$ for $q_1, q_2 \in G[t]$, then

$$\sigma := (t^\lambda(q_2|_{t \to 0})(q_1|_{t \to 0})t^\lambda)|_{t \to 0}$$

is a well-defined element of G satisfying

$$\sigma^2 = \lambda(-1) \quad \text{and} \quad \sigma \lambda(z)\sigma^{-1} = \lambda(z)^{-1} \quad \text{for all} \quad z \in \mathbb{G}_m.$$

We have $\gamma \in (\text{Gr}_0)^{\xi}$ where $\xi : \mathbb{N} \to G$ coincides with λ on \mathbb{G}_m and sends $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ to σ.

Problems

For which $\xi \in \Xi$ is $(\text{Gr}_0)^{\xi}$ nonempty? Is it ever disconnected?

5. **The case $G = \text{SL}(r)$**

In the definition of the moduli space $X_{\text{SL}(r)}$, we can replace the principal $\text{SL}(r)$-bundle \mathcal{F} by a rank-r vector bundle \mathcal{E} on \mathbb{P}^2 (the trivialization on \mathcal{L}_∞ forces it to have trivial determinant bundle). We have a disconnected union $X_{\text{SL}(r)} = \bigsqcup_{n \geq 0} X^n_{\text{SL}(r)}$ where the invariant n is $\dim H^1(\mathbb{P}^2, \mathcal{E}(-1))$, i.e. the second Chern class of \mathcal{E}.

Theorem (Barth, Atiyah–Hitchin, Drinfeld–Manin, Donaldson)

The moduli space $X^n_{\text{SL}(r)}$ can be identified with $\Lambda(n, r)^{sc}/\text{GL}(n)$, where $\Lambda(n, r)^{sc}$ is the space of quadruples (B_1, B_2, i, j) of linear maps $B_1, B_2 : \mathbb{C}^n \to \mathbb{C}^n$, $i : \mathbb{C}^r \to \mathbb{C}^n$, $j : \mathbb{C}^n \to \mathbb{C}^r$ satisfying

1. (ADHM equation) $[B_1, B_2] + ij = 0$;
2. (stability) there is no nonzero B_i-stable subspace of $\ker j$;
3. (costability) no proper B_i-stable subspace of \mathbb{C}^n contains $\text{im} i$.

This is the starting point for Nakajima’s theory of quiver varieties.
In the identification $X_{SL(r)}^n \xrightarrow{\sim} \Lambda(n, r)^{sc}/GL(n)$:

- $[(B_1, B_2, i, j)]$ corresponds to $\mathcal{E} = \ker b/\operatorname{im} a$ where

 $$a = \begin{pmatrix} z_0 B_1 - z_1 \text{id}_V \\ z_0 B_2 - z_2 \text{id}_V \\ z_0 j \end{pmatrix} \in \operatorname{Mat}(2n + r, n),$$

 $$b = \begin{pmatrix} -(z_0 B_2 - z_2 \text{id}_V) \\ z_0 B_1 - z_1 \text{id}_V \\ z_0 i \end{pmatrix} \in \operatorname{Mat}(n, 2n + r).$$

- The $GL(2)$-action on $X_{SL(r)}^n$ corresponds to the action

 $$(\alpha \beta \gamma \delta) \cdot (B_1, B_2, i, j) = (\alpha B_1 + \gamma B_2, \beta B_1 + \delta B_2, (\alpha \delta - \beta \gamma) i, j).$$

If Γ is a subgroup of $GL(2)$, we have a disjoint union

$$X_{SL(r)}^{n, \Gamma} = \bigsqcup_{\rho \in \operatorname{Hom}(\Gamma, GL(n))/\sim} X_{SL(r)}^{n, \Gamma, \rho},$$

where the invariant ρ is the representation of Γ on $H^1(\mathbb{P}^2, \mathcal{E}(-1))$.

If Γ is reductive, this disjoint union is disconnected.

Theorem (Nakajima, and Crawley–Boevey for connectedness)

Let Γ be a reductive subgroup of $SL(2)$, and $\rho \in \operatorname{Hom}(\Gamma, GL(n))$.

1. Under the identification $X_{SL(r)}^n \xrightarrow{\sim} \Lambda(n, r)^{sc}/GL(n)$, the subvariety $X_{SL(r)}^{n, \Gamma, \rho}$ corresponds to $\Lambda(n, r)^{sc, \Gamma, \rho}/Z_{GL(n)}(\rho)$, where $\Lambda(n, r)^{sc, \Gamma, \rho}$ is the Γ-fixed subvariety of $\Lambda(n, r)^{sc}$ for the Γ-action defined via $(\rho, \text{id}) : \Gamma \hookrightarrow GL(n) \times GL(2)$.

2. $X_{SL(r)}^{n, \Gamma, \rho} \neq \emptyset$ if and only if there exists $\tau \in \operatorname{Hom}(\Gamma, G)$ such that

 $$(\mathbb{C}^n, \rho) \oplus (\mathbb{C}^n, \rho) \oplus (\mathbb{C}^r, \tau) \cong \left((\mathbb{C}^n, \rho) \otimes \mathbb{C}^2 \right) \oplus (\mathbb{C}^r, \text{triv})$$

 as representations of Γ. If so, then $X_{SL(r)}^{n, \Gamma, \rho} \subseteq X_{SL(r)}^{\Gamma, \tau}$.

3. When $X_{SL(r)}^{n, \Gamma, \rho}$ is nonempty, it is connected of dimension

 $$\dim \operatorname{Hom}_\Gamma \left(((\mathbb{C}^n, \rho), (\mathbb{C}^r, \tau)) \right) + \dim \operatorname{Hom}_\Gamma \left(((\mathbb{C}^n, \rho), (\mathbb{C}^r, \text{triv})) \right).$$
Corollary (H.)

Let \(G = \text{SL}(r) \), and let \(\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_r) \in \Lambda^+ \) be such that

\[-w_0 \lambda = \lambda, \text{ i.e. } \lambda_{r+1-i} = -\lambda_i.\]

Let \(m_0 \) be the number of zero entries in \(\lambda \), i.e. \(\dim(\mathbb{C}^r)^{\lambda(\mathbb{G}_m)} \).

Let \(v_0 \) be the sum of the positive entries in \(\lambda \), and define

\[v_1 = v_0 - \frac{1}{2}(r - m_0). \]

Suppose that \(\xi \in \text{Hom}(N, \text{SL}(r)) \) restricts to \(\lambda \in \Lambda^+ \), and let \((m_{0,+}, m_{0,-}) \) be the signature of \(\xi(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}) \) on \((\mathbb{C}^r)^{\lambda(\mathbb{G}_m)} \).

1. \((\text{Gr}_0)^{\iota,\xi} \neq \emptyset \) if and only if \(v_1 - m_{0,-} \in 2\mathbb{N} \).

2. When \((\text{Gr}_0)^{\iota,\xi} \) is nonempty, it is connected of dimension

\[\langle \lambda, \rho \rangle + \frac{1}{4}(r^2 - (m_{0,+} - m_{0,-})^2). \]

6. Further questions

- Is the closure of \((\text{Gr}_0)^{\iota,\xi} \) in \(\text{Gr}_0 \) a union of pieces \((\text{Gr}_0)^{\iota,\xi'} \)?
 (This is known when \(G = \text{SL}(r) \) by Nakajima’s results.)

- If so, what partial order on \(\Xi \) describes the closure ordering?

- What is the intersection cohomology of the closure of \((\text{Gr}_0)^{\iota,\xi} \)? Does it have a representation-theoretic meaning?

- Braverman–Finkelberg have studied a “double affine” version of \(\text{Gr}_\mu^\lambda \cong X_{\mathbb{G}_m,\lambda} \) defined by replacing \(\mathbb{G}_m \) with a finite cyclic subgroup of \(\text{SL}(2) \) (i.e. type \(A_k \) instead of type \(A_\infty \)).
 What can one say about the analogous “double affine” version of \((\text{Gr}_0)^{\iota,\xi} \), obtained by replacing \(N \) with a binary dihedral subgroup of \(\text{SL}(2) \) (i.e. type \(D_k \) instead of type \(D_\infty \))?