THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

2. Linear operators and the operator norm

PMH3: Functional Analysis

Semester 1, 2017

Lecturer: Anne Thomas

At a later stage a selection of these questions will be chosen for an assignment.

- **1.** Compute the operator norms of the following linear operators. Here, ℓ^p has the norm $\|\cdot\|_p$, for $1 \le p \le \infty$, and $L^2(\mathbb{R})$ has the norm $\|\cdot\|_2$.
 - (a) $T: \ell^1 \to \ell^1$, with $Tx = (x_1, x_2/2, x_3/3, x_4/4, \ldots)$.
 - (b) $T: \ell^2 \to \ell^1$, with $Tx = (x_1, x_2/2, x_3/3, x_4/4, \ldots)$.
 - (c) $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$, with $Tf(x) = \int_{\mathbb{R}} f(x-y)e^{-y^2} dy$.
- **2.** Calculate the operator norm of the following linear operators. Here, ℓ^p has the norm $\|\cdot\|_p$, for $1 \leq p \leq \infty$, and $\mathcal{C}([-1,1])$ has the norm $\|\cdot\|_{\infty}$.
 - (a) $T: \ell^1 \to \ell^{\infty} \text{ with } (x_i)_{i>1} \mapsto (2^{-i}x_i)_{i>1}.$
 - (b) $T: \ell^2 \to \ell^1 \text{ with } (x_i)_{i \ge 1} \mapsto (2^{-i}x_i)_{i \ge 1}.$
 - (c) $T: \mathcal{C}([-1,1]) \to \mathbb{K}$ with $f \mapsto \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} f(1/n)$.
- **3.** Let $(\mathscr{P}([0,1]), \|\cdot\|_{\infty})$ be the normed vector space of all polynomials $p:[0,1]\to\mathbb{K}$.
 - (a) Is $D: \mathcal{P}([0,1]) \to \mathcal{P}([0,1])$, Dp = p' bounded? If so, compute ||D||.
 - (b) Is $T: \mathscr{P}([0,1]) \to \mathscr{P}([0,1])$, $Tf(x) = \int_0^x f(t) dt$ bounded? If so, compute ||T||.
- **4.** Let X and Y be normed vector spaces and let $T \in \mathcal{L}(X,Y)$. Show that if X is a Banach space then $\ker(T)$ is a Banach space.
- **5.** Let X be a normed vector space, let $S \subseteq X$ be a dense subspace of X, and let Y be a Banach space. Show that every continuous linear operator $T: S \to Y$ extends uniquely to a continuous linear operator $\tilde{T}: X \to Y$. Moreover, show that $\|\tilde{T}\| = \|T\|$.
- **6.** Show that the integral operator K on $(\mathcal{C}([0,1]), \|\cdot\|_{\infty})$ defined by

$$Kf(x) = \int_0^1 k(x, y) f(y) \, dy,$$

where $k \in \mathcal{C}([0,1] \times [0,1])$, has norm $||K|| = \max_{0 \le x \le 1} \int_0^1 |k(x,y)| \, dy$. Calculate this explicitly in the case where $k(x,y) = (1+x^2+y^2)^{-1}$.

7. Calculate the operator norm of the bounded linear operator $T: \ell^2 \to \ell^2$ given by

$$T(x_1, x_2, \ldots) = (x_1 + x_2, x_2 + x_3, x_3 + x_4, \ldots).$$

- **8.** Let X and Y be normed vector spaces and let $T \in \text{Hom}(X,Y)$ be bijective. Define the inverse operator $T^{-1}: Y \to X$ by $T^{-1}y = x$ if and only if Tx = y.
 - (a) Show that $T^{-1} \in \text{Hom}(Y, X)$.
 - (b) Show, by way of example, that T^{-1} need not be continuous, even if T is.
 - (c) Suppose there is a constant a > 0 such that $||Tx|| \ge a||x||$ for all $x \in X$. Show that T^{-1} is continuous.
- **9.** Let $\ell^2(\mathbb{Z}) = \{(x_i)_{i \in \mathbb{Z}} \mid \sum_{i=-\infty}^{\infty} |x_i|^2 < \infty \}$. This is a Banach space with the obvious norm. Let p, q > 0. Compute the operator norm of the bounded linear operator

$$P: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z}), \qquad P(x_i)_{i \in \mathbb{Z}} = (px_{i-1} + qx_{i+1})_{i \in \mathbb{Z}}.$$

10. Let $S, T : \mathcal{C}([a,b]) \to \mathcal{C}([a,b])$ be the linear operators

$$Sf(x) = x \int_a^b f(t) dt$$
 and $Tf(x) = xf(x)$ for all $f \in \mathcal{C}([a, b])$.

Do these operators commute? Compute ||S||, ||T||, ||ST|| and ||TS||.

11. Let $A: \mathbb{K}^n \to \mathbb{K}^m$ be a linear operator. We can consider $A = (a_{ij})$ as a matrix relative to the standard bases of \mathbb{K}^n and \mathbb{K}^m . If we put the *p*-norm on \mathbb{K}^n and the *q*-norm on \mathbb{K}^m then the operator norm of A is $||A||_{p,q} = \sup\{||Ax||_q: ||x||_p \leq 1\}$. We write $||A||_p = ||A||_{p,p}$. Show that

(a)
$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$
 (c) $||A||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}|.$

(b)
$$||A||_2 = \sqrt{\lambda_{\max}(A^*A)}$$
. (d) $||A||_2 \le \sqrt{||A||_1 ||A||_{\infty}}$.

Here A^* is conjugate transpose. What can you say about general $||A||_{p,q}$?

- 12. Let X and Y be normed vector spaces over \mathbb{K} .
 - (a) Show that if $\dim(X) < \infty$ then each $T \in \operatorname{Hom}(X,Y)$ is continuous.
 - (b) Suppose that $T \in \text{Hom}(X, X)$ is surjective. Show that if $\dim(X) < \infty$ then T is injective. Is T necessarily injective if $\dim(X) = \infty$?
 - (c) Show that if $\dim(X) = \infty$ then $X^* \backslash X'$ has a linearly independent uncountable subset.
 - (d) Write down a discontinuous linear functional in the case where $X = \mathcal{C}([0,1])$ with norm $\|\cdot\|_1$. Include a proof that your functional is discontinuous, and make your example constructive (independent of Zorn's Lemma).