THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

4. Uniform boundedness and the Open Mapping Theorem

PM3: Functional Analysis

Semester 1, 2017

Lecturer: Anne Thomas

- 1. (a) Show that a Hamel basis of a Banach space X is either finite or uncountable.
 - (b) Let X be a normed vector space. Show that a subset $E \subseteq X$ is bounded if and only if $\sup_{x \in E} |\varphi(x)| < \infty$ for each $\varphi \in X'$.
 - (c) Let $c_0 = \{(x_i)_{i\geq 1} \mid x_i \in \mathbb{K} \text{ and } \lim_{i\to\infty} x_i = 0\}$. Suppose that $y_1, y_2, \ldots \in \mathbb{K}$ are such that

$$\sum_{i=1}^{\infty} x_i y_i$$

converges for all $(x_i)_{i\geq 1}\in c_0$. Use Uniform Boundedness to show that $(y_i)_{i\geq 1}\in \ell^1$.

- **2.** Let $(T_n)_{n\geq 1}$ be a sequence of operators $T_n \in \mathcal{L}(X,Y)$ where X and Y are Banach spaces. Suppose that for each $x \in X$ the sequence $T_n x$ converges in Y to a limit denoted by Tx. Show that if $x_n \to x$ then $T_n x_n \to Tx$.
- **3.** Let \mathscr{H} be a Hilbert space, and suppose that $T \in \operatorname{Hom}(\mathscr{H}, \mathscr{H})$. Suppose that there exists an operator $\tilde{T} : \mathscr{H} \to \mathscr{H}$ such that

$$\langle Tx, y \rangle = \langle x, \tilde{T}y \rangle$$
 for all $x, y \in \mathscr{H}$.

Show that T is continuous.

- **4.** Let X, Y, Z be Banach, and $T: X \times Y \to Z$ bilinear. Suppose that T is continuous in both variables. Show that there is a constant M > 0 such that $||T(x,y)|| \le M||x|| ||y||$.
- **5.** Let X and Y be Banach spaces. By Corollary 20.3 of the course notes, if $T_n \in \mathcal{L}(X,Y)$ converges pointwise to $T: X \to Y$ then $T \in \mathcal{L}(X,Y)$ with

$$||T|| \le \liminf_{n \to \infty} ||T_n||$$

- (a) Give an example of Banach spaces X and Y and a sequence $T_n \in \mathcal{L}(X,Y)$ such that the inequality is strict.
- (b) Give an example of a normed vector space X, a Banach space Y, and a sequence $T_n \in \mathcal{L}(X,Y)$ such that $\sup_{n\geq 1} \|T_nx\| < \infty$ for all $x\in X$, yet $\sup_{n\geq 1} \|T_n\| = \infty$. (Hence completeness of X is needed for the Principle of Uniform Boundedness).
- **6.** Let X, Y be Banach spaces and let $T \in \text{Hom}(X, Y)$. Give another proof of the Closed Graph Theorem along the following lines. Suppose that $\Gamma(T)$ is closed in $X \times Y$.
 - (a) Show that $\Gamma(T)$ is a Banach space with norm ||(x,Tx)|| = ||x|| + ||Tx||.
 - (b) Let $\pi_1: \Gamma(T) \to X$ and $\pi_2: \Gamma(T) \to Y$ be the natural projection maps. Show that they are linear and continuous, and that π_1 is bijective.
 - (c) Write T in terms of π_1 and π_2 and deduce that T is continuous.

7. The nth Fourier coefficient of $f \in L^1([-\pi, \pi])$ is

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt.$$

The Riemann–Lebesgue Lemma (see Question 8) says that if $f \in L^1([-\pi, \pi])$ then

$$\lim_{|n| \to \infty} \hat{f}(n) = 0.$$

Thus we have a linear map $T: L^1([-\pi, \pi]) \to c_0(\mathbb{Z})$ given by

$$Tf = (\hat{f}(n))_{n \in \mathbb{Z}},$$

where $c_0(\mathbb{Z})$ is the Banach space of all (two sided) sequences $(a_n)_{n\in\mathbb{Z}}$ in \mathbb{K} with $a_n \to 0$ as $|n| \to \infty$ equipped with the sup norm $||(a_n)||_{\infty} = \sup_{n\in\mathbb{Z}} |a_n|$. As we see below, T is continuous and injective. It is natural to ask if T is surjective. The answer (perhaps surprisingly) is no.

- (a) Show that T is continuous and injective.
- (b) Show that T is not surjective.
- 8. One form of the Riemann–Lebesgue Lemma states that if $f \in L^1([a,b])$ and $\lambda \in \mathbb{R}$ then

$$\int_{a}^{b} f(x)e^{i\lambda x} dx \to 0 \quad \text{as } |\lambda| \to \infty.$$

Integrate by parts to prove the Riemann–Lebesgue Lemma under the hypothesis that f(x) has continuous derivative on [a, b], and complete the proof using the Stone–Weierstrass Theorem.