Convex Optimization:
from Real-Time Embedded
to Large-Scale Distributed

Stephen Boyd
Neal Parikh, Eric Chu, Yang Wang, Jacob Mattingley

Electrical Engineering Department, Stanford University

AustMS, Sydney, 30/9/2013
Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary
Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary
Convex optimization — Classical form

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- variable \(x \in \mathbb{R}^n \)
- \(f_0, \ldots, f_m \) are convex: for \(\theta \in [0, 1] \),

\[
f_i(\theta x + (1 - \theta)y) \leq \theta f_i(x) + (1 - \theta)f_i(y)
\]

i.e., \(f_i \) have nonnegative (upward) curvature
Convex optimization — Cone form

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad x \in K \\
& \quad Ax = b
\end{align*}
\]

- variable \(x \in \mathbb{R}^n \)
- \(K \subseteq \mathbb{R}^n \) is a proper cone
 - \(K \) nonnegative orthant \(\rightarrow \) LP
 - \(K \) Lorentz cone \(\rightarrow \) SOCP
 - \(K \) positive semidefinite matrices \(\rightarrow \) SDP
- the ‘modern’ canonical form
Why

» beautiful, nearly complete theory
 » duality, optimality conditions, ...
Why

- beautiful, nearly complete theory
 - duality, optimality conditions, …

- effective algorithms, methods (in theory and practice)
 - get **global solution** (and optimality certificate)
 - polynomial complexity
Why

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .

- effective algorithms, methods (in theory and practice)
 - get \textbf{global solution} (and optimality certificate)
 - polynomial complexity

- conceptual unification of many methods
Why

- beautiful, nearly complete theory
 - duality, optimality conditions, ...

- effective algorithms, methods (in theory and practice)
 - get **global solution** (and optimality certificate)
 - polynomial complexity

- conceptual unification of many methods

- **lots of applications** (many more than previously thought)
Application areas

- machine learning, statistics
- finance
- supply chain, revenue management, advertising
- control
- signal and image processing, vision
- networking
- circuit design
- combinatorial optimization
- quantum mechanics
Applications — Machine learning

- parameter estimation for regression and classification
 - least squares, lasso regression
 - logistic, SVM classifiers
 - ML and MAP estimation for exponential families

- modern ℓ_1 and other sparsifying regularizers
 - compressed sensing, total variation reconstruction

- k-means, EM (bi-convex)
Example — Support vector machine

- data \((a_i, b_i), i = 1, \ldots, m\)
 - \(a_i \in \mathbb{R}^n\) feature vectors; \(b_i \in \{-1, 1\}\) Boolean outcomes
- prediction: \(\hat{b} = \text{sign}(w^T a - v)\)
 - \(w \in \mathbb{R}^n\) is weight vector; \(v \in \mathbb{R}\) is offset
Example — Support vector machine

- data \((a_i, b_i), i = 1, \ldots, m\)
 - \(a_i \in \mathbb{R}^n\) feature vectors; \(b_i \in \{-1, 1\}\) Boolean outcomes
- prediction: \(\hat{b} = \text{sign}(w^T a - v)\)
 - \(w \in \mathbb{R}^n\) is weight vector; \(v \in \mathbb{R}\) is offset

- SVM: choose \(w, v\) via (convex) optimization problem

\[
\text{minimize} \quad L + \left(\frac{\lambda}{2}\right)\|w\|^2_2
\]

\[
L = \frac{1}{m} \sum_{i=1}^{m} \left(1 - b_i(w^T a_i - v)\right)_+ \quad \text{is avg. loss}
\]
SVM

\[w^T z - v = 0 \text{ (solid); } \quad |w^T z - v| = 1 \text{ (dashed)} \]
Sparsity via ℓ_1 regularization

- adding ℓ_1-norm regularization

$$\lambda \|x\|_1 = \lambda(|x_1| + |x_2| + \cdots + |x_n|)$$

- to objective results in sparse x

- $\lambda > 0$ controls trade-off of sparsity versus main objective

- preserves convexity, hence tractability

- used for many years, in many fields
 - sparse design
 - feature selection in machine learning (lasso, SVM, ...)
 - total variation reconstruction in signal processing
 - compressed sensing
Example — Lasso

- regression problem with ℓ_1 regularization:

$$\text{minimize} \quad \frac{1}{2} ||Ax - b||^2_2 + \lambda ||x||_1$$

with $A \in \mathbb{R}^{m \times n}$

- useful even when $n \gg m$ (!!); does feature selection
Example — Lasso

- regression problem with ℓ_1 regularization:

$$\text{minimize} \quad (1/2)\|Ax - b\|_2^2 + \lambda\|x\|_1$$

with $A \in \mathbb{R}^{m \times n}$

- useful even when $n \gg m$ (!!); does feature selection

- cf. ℓ_2 regularization (‘ridge regression’):

$$\text{minimize} \quad (1/2)\|Ax - b\|_2^2 + \lambda\|x\|_2^2$$
Example — Lasso

- regression problem with ℓ_1 regularization:

$$\minimize \ (1/2)\|Ax - b\|_2^2 + \lambda \|x\|_1$$

with $A \in \mathbb{R}^{m \times n}$

- useful even when $n \gg m$ (!!); does feature selection

- cf. ℓ_2 regularization (‘ridge regression’):

$$\minimize \ (1/2)\|Ax - b\|_2^2 + \lambda \|x\|_2^2$$

- lasso, ridge regression have same computational cost
Example — Lasso

- $m = 200$ examples, $n = 1000$ features
- examples are noisy linear measurements of true x
- true x is sparse (30 nonzeros)
Example — Lasso

true \mathbf{x}

ℓ_1 (lasso) reconstruction
State of the art — Medium scale solvers

- 1000s–10000s variables, constraints
- reliably solved by interior-point methods on single machine
- exploit problem sparsity
- not quite a technology, but getting there
State of the art — Modeling languages

- (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form
State of the art — Modeling languages

- (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form

- enables rapid prototyping (for small and medium problems)
- ideal for teaching (can do a lot with short scripts)
CVX

- parser/solver written in Matlab (M. Grant, 2005)
- SVM:
 \[
 \text{minimize} \quad L + \left(\frac{\lambda}{2} \right) \| w \|^2_2 \\
 L = \frac{1}{m} \sum_{i=1}^{m} \left(1 - b_i \left(w^T a_i - v \right) \right)_+ \quad \text{is avg. loss}
 \]

- CVX specification:
  ```
  cvx_begin
  variables w(n) v % weight, offset
  L=(1/m)*sum(pos(1-b.*(A*w-v))); % avg. loss
  minimize (L+(lambda/2)*sum_square(w))
  cvx_end
  ```
Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary
Motivation

- in many applications, need to solve the same problem repeatedly with different data
 - control: update actions as sensor signals, goals change
 - finance: rebalance portfolio as prices, predictions change
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading
Motivation

- in many applications, need to solve the same problem repeatedly with different data
 - control: update actions as sensor signals, goals change
 - finance: rebalance portfolio as prices, predictions change
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading

- (using new techniques) can be used for applications with solve times measured in **milliseconds** or **microseconds**
Example — Disk head positioning

- force $F(t)$ moves disk head/arm modeled as 3 masses (2 vibration modes)
- goal: move head to commanded position as quickly as possible, with $|F(t)| \leq 1$
- reduces to a (quasi-) convex problem

Real-Time Embedded Optimization
Optimal force profile

position

force $F(t)$
Embedded solvers — Requirements

- High speed
 - Hard real-time execution limits

- Extreme reliability and robustness
 - No floating point exceptions
 - Must handle poor quality data

- Small footprint
 - No complex libraries
Embedded solvers

- (if a general solver works, use it)
Embedded solvers

- (if a general solver works, use it)
- otherwise, develop custom code
 - by hand
 - automatically via code generation

- can exploit known sparsity pattern, data ranges, required tolerance at solver code development time
Embedded solvers

- (if a general solver works, use it)
- otherwise, develop custom code
 - by hand
 - automatically via code generation
- can exploit known sparsity pattern, data ranges, required tolerance at solver code development time

- typical speed-up over general solver: $100-10000 \times$
Parser/solver vs. code generator

![Diagram showing problem instance processed by parser/solver to find x^*]
Parser/solver vs. code generator

Problem instance \xrightarrow{\text{Parser/solver}} x^*

Problem family description \xrightarrow{\text{Generator}} \text{Source code} \xrightarrow{\text{Compiler}} \text{Custom solver}\

\xrightarrow{\text{Problem instance}} \xrightarrow{\text{Custom solver}} x^*
CVXGEN code generator

- handles small, medium size problems transformable to QP (J. Mattingley, 2010)
- uses primal-dual interior-point method
- generates flat library-free C source
CVXGEN example specification — SVM

dimensions
 m = 50 % training examples
 n = 10 % dimensions
end

parameters
 a[i] (n), i = 1..m % features
 b[i], i = 1..m % outcomes
 lambda positive
end

variables
 w (n) % weights
 v % offset
end

minimize
 (1/m)*sum[i = 1..m](pos(1 - b[i]*(w'*a[i] - v))) +
 (lambda/2)*quad(w)
end
CVXGEN sample solve times

<table>
<thead>
<tr>
<th>problem</th>
<th>SVM</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables</td>
<td>61</td>
<td>590</td>
</tr>
<tr>
<td>constraints</td>
<td>100</td>
<td>742</td>
</tr>
<tr>
<td>CVX, Intel i3</td>
<td>270 ms</td>
<td>2100 ms</td>
</tr>
<tr>
<td>CVXGEN, Intel i3</td>
<td>230 µs</td>
<td>4.8 ms</td>
</tr>
</tbody>
</table>
Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary
Motivation and goal

motivation:

- want to solve *arbitrary-scale* optimization problems
 - machine learning/statistics with huge datasets
 - dynamic optimization on large-scale networks
Motivation and goal

motivation:
- want to solve **arbitrary-scale** optimization problems
 - machine learning/statistics with huge datasets
 - dynamic optimization on large-scale networks

goal:
- ideally, a system that
 - has CVX-like interface
 - targets modern large-scale computing platforms
 - scales arbitrarily

...not there yet, but there’s promising progress
Distributed optimization

- devices/processors/agents coordinate to solve large problem, by passing relatively small messages

- can split variables, constraints, objective terms among processors

- variables that appear in more than one processor called ‘complicating variables’
(same for constraints, objective terms)
Example — Distributed optimization

\[
\text{minimize} \quad f_1(x_1, x_2) + f_2(x_2, x_3) + f_3(x_1, x_3)
\]
Distributed optimization methods

- dual decomposition (Dantzig-Wolfe, 1950s–)
- subgradient consensus
 (Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)
Distributed optimization methods

- dual decomposition (Dantzig-Wolfe, 1950s–)
- subgradient consensus
 (Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)

- alternating direction method of multipliers (1980s–)
 - equivalent to many other methods
 (e.g., Douglas-Rachford splitting)
 - well suited to modern systems and problems
Consensus optimization

- want to solve problem with N objective terms

$$\text{minimize } \sum_{i=1}^{N} f_i(x)$$

e.g., f_i is the loss function for ith block of training data

- consensus form:

$$\text{minimize } \sum_{i=1}^{N} f_i(x_i)$$
$$\text{subject to } x_i - z = 0$$

- x_i are local variables
- z is the global variable
- $x_i - z = 0$ are consistency or consensus constraints
Consensus optimization via ADMM

with $\bar{x}^k = \frac{1}{N} \sum_{i=1}^{N} x_i^k$ (average over local variables)

$$x_{i}^{k+1} := \text{argmin}_{x_i} \left(f_i(x_i) + \frac{\rho}{2} \| x_i - \bar{x}^k + u_i^k \|_2^2 \right)$$

$$u_{i}^{k+1} := u_i^k + (x_{i}^{k+1} - \bar{x}^{k+1})$$

- get **global** minimum, under very general conditions
- u^k is running sum of inconsistencies (PI control)
- minimizations carried out independently and in parallel
- coordination is via averaging of local variables x_i
Statistical interpretation

- f_i is negative log-likelihood (loss) for parameter x given ith data block

- x_i^{k+1} is MAP estimate under prior $\mathcal{N}(\bar{x}_i^k - u_i^k, \rho I)$

- processors only need to support a Gaussian MAP method
 - type or number of data in each block not relevant
 - consensus protocol yields global ML estimate

- **privacy preserving**: agents never reveal data to each other
Example — Consensus SVM

- baby problem with $n = 2$, $m = 400$ to illustrate
- examples split into $N = 20$ groups, in worst possible way: each group contains only positive or negative examples
Iteration 1
Iteration 5
Iteration 40

Large-Scale Distributed Optimization
Example — Distributed lasso

- example with dense $A \in \mathbb{R}^{400000 \times 8000}$ (≈30 GB of data)
 - distributed solver written in C using MPI and GSL
 - no optimization or tuned libraries (like ATLAS, MKL)
 - split into 80 subsystems across 10 (8-core) machines on Amazon EC2

- computation times

 - loading data: 30s
 - factorization (5000×8000 matrices): 5m
 - subsequent ADMM iterations: 0.5–2s
 - total time (about 15 ADMM iterations): 5–6m
Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary
Summary

convex optimization problems

- arise in many applications

- can be solved effectively
 - small problems at microsecond/millisecond time scales
 - medium-scale problems using general purpose methods
 - arbitrary-scale problems using distributed optimization
References

- Convex Optimization (Boyd & Vandenberghe)
- CVX: Matlab software for disciplined convex programming (Grant & Boyd)
- CVXGEN: A code generator for embedded convex optimization (Mattingley & Boyd)
- Distributed optimization and statistical learning via the alternating direction method of multipliers (Boyd, Parikh, Chu, Peleato, & Eckstein)

all available (with code) from stanford.edu/~boyd