Spaces of holomorphic maps from Stein manifolds to Oka manifolds

Finnur Lárusson

University of Adelaide

September 2013
Deforming continuous maps to holomorphic maps

Let X and Y be complex manifolds. Can every continuous map $X \to Y$ be deformed to a holomorphic map?
Deforming continuous maps to holomorphic maps

Let X and Y be complex manifolds. Can every continuous map $X \to Y$ be deformed to a holomorphic map?

- $\mathbb{C}^* \to \mathbb{D}^*$: every holomorphic map is constant (Liouville), so the only winding number realised by holomorphic maps is 0.
Deforming continuous maps to holomorphic maps

Let X and Y be complex manifolds. Can every continuous map $X \to Y$ be deformed to a holomorphic map?

- $\mathbb{C}^* \to \mathbb{D}^*$: every holomorphic map is constant (Liouville), so the only winding number realised by holomorphic maps is 0.
- $\mathbb{D}^* \to \mathbb{D}^*$: holomorphic maps only realise nonnegative winding numbers.

In all three examples, if the target \mathbb{D}^* is replaced by \mathbb{C}^*, then every continuous map can be deformed to a holomorphic map.
Deforming continuous maps to holomorphic maps

Let X and Y be complex manifolds. Can every continuous map $X \to Y$ be deformed to a holomorphic map?

- $\mathbb{C}^* \to \mathbb{D}^*$: every holomorphic map is constant (Liouville), so the only winding number realised by holomorphic maps is 0.

- $\mathbb{D}^* \to \mathbb{D}^*$: holomorphic maps only realise nonnegative winding numbers.

- $\mathbb{C} \setminus \{1, \frac{1}{2}, \frac{1}{3}, \ldots, 0\} \to \mathbb{D}^*$: there are uncountably many homotopy classes of continuous maps, but only countably many classes of holomorphic maps.
Let X and Y be complex manifolds. Can every continuous map $X \to Y$ be deformed to a holomorphic map?

- $\mathbb{C}^* \to \mathbb{D}^*$: every holomorphic map is constant (Liouville), so the only winding number realised by holomorphic maps is 0.
- $\mathbb{D}^* \to \mathbb{D}^*$: holomorphic maps only realise nonnegative winding numbers.
- $\mathbb{C} \setminus \{1, \frac{1}{2}, \frac{1}{3}, \ldots, 0\} \to \mathbb{D}^*$: there are uncountably many homotopy classes of continuous maps, but only countably many classes of holomorphic maps.

In all three examples, if the target \mathbb{D}^* is replaced by \mathbb{C}^*, then every continuous map can be deformed to a holomorphic map.
Gromov’s theorem

Theorem. If S is a Stein manifold and X is an Oka manifold, then every continuous map $S \to X$ can be deformed to a holomorphic map.
Gromov’s theorem

Theorem. If S is a Stein manifold and X is an Oka manifold, then every continuous map $S \to X$ can be deformed to a holomorphic map.

A *Stein manifold* has many holomorphic maps into \mathbb{C}.

More precisely: A closed complex submanifold of \mathbb{C}^n for some n. There are many nontrivially equivalent characterisations.
Gromov’s theorem

Theorem. If S is a Stein manifold and X is an Oka manifold, then every continuous map $S \to X$ can be deformed to a holomorphic map.

A *Stein manifold* has many holomorphic maps into \mathbb{C}. More precisely: A closed complex submanifold of \mathbb{C}^n for some n. There are many nontrivially equivalent characterisations. Every domain in \mathbb{C} and every convex domain in \mathbb{C}^n is Stein.
Gromov’s theorem

Theorem. If S is a Stein manifold and X is an Oka manifold, then every continuous map $S \to X$ can be deformed to a holomorphic map.

A *Stein manifold* has many holomorphic maps into \mathbb{C}. More precisely: A closed complex submanifold of \mathbb{C}^n for some n. There are many nontrivially equivalent characterisations.

Every domain in \mathbb{C} and every convex domain in \mathbb{C}^n is Stein.

An *Oka manifold* X has many holomorphic maps from \mathbb{C}. A little more precisely: The Runge approximation theorem holds for holomorphic maps $\mathbb{C}^n \to X$. There are even more nontrivially equivalent characterisations!
Gromov’s theorem

Theorem. If S is a Stein manifold and X is an Oka manifold, then every continuous map $S \to X$ can be deformed to a holomorphic map.

A *Stein manifold* has many holomorphic maps into \mathbb{C}. More precisely: A closed complex submanifold of \mathbb{C}^n for some n. There are many nontrivially equivalent characterisations.

Every domain in \mathbb{C} and every convex domain in \mathbb{C}^n is Stein.

An *Oka manifold* X has many holomorphic maps from \mathbb{C}. A little more precisely: The Runge approximation theorem holds for holomorphic maps $\mathbb{C}^n \to X$. There are even more nontrivially equivalent characterisations!

All complex Lie groups and their homogeneous spaces are Oka.
Gromov’s theorem

Theorem. If \(S \) is a Stein manifold and \(X \) is an Oka manifold, then every continuous map \(S \to X \) can be deformed to a holomorphic map.

A **Stein manifold** has many holomorphic maps into \(\mathbb{C} \).
More precisely: A closed complex submanifold of \(\mathbb{C}^n \) for some \(n \).
There are many nontrivially equivalent characterisations.
Every domain in \(\mathbb{C} \) and every convex domain in \(\mathbb{C}^n \) is Stein.

An **Oka manifold** \(X \) has many holomorphic maps from \(\mathbb{C} \).
A little more precisely: The Runge approximation theorem holds for holomorphic maps \(\mathbb{C}^n \to X \).
There are even more nontrivially equivalent characterisations!
All complex Lie groups and their homogeneous spaces are Oka.
\(\mathbb{C}^* \) is Oka but \(\mathbb{D}^* \) is not.
The problem

Every continuous map f from a Stein manifold S to an Oka manifold X can be deformed to a holomorphic map.
The problem

Every continuous map f from a Stein manifold S to an Oka manifold X can be deformed to a holomorphic map.

Can it be done for all f at once, in a way that depends continuously on f and leaves f fixed if it is holomorphic to begin with?

Parametrised versions of Gromov’s theorem are known for ‘small’ parameter spaces: Euclidean compacts, e.g. finite polyhedra. Hence also for CW complexes (FL 2004). But C and O are CW complexes only in trivial cases. They are metrisable, but a metrisable CW complex is locally compact. Using homotopy theory and infinite-dimensional topology, we can solve the problem for reasonable S and arbitrary X.
The problem

Every continuous map f from a Stein manifold S to an Oka manifold X can be deformed to a holomorphic map.

Can it be done for all f at once, in a way that depends continuously on f and leaves f fixed if it is holomorphic to begin with?

In other words, is $\mathcal{O}(S, X)$ a deformation retract of $\mathcal{C}(S, X)$?
The problem

Every continuous map f from a Stein manifold S to an Oka manifold X can be deformed to a holomorphic map.

Can it be done for all f at once, in a way that depends continuously on f and leaves f fixed if it is holomorphic to begin with?

In other words, is $\mathcal{O}(S, X)$ a deformation retract of $\mathcal{C}(S, X)$?

Parametrised versions of Gromov’s theorem are known for ‘small’ parameter spaces: Euclidean compacts, e.g. finite polyhedra.
The problem

Every continuous map f from a Stein manifold S to an Oka manifold X can be deformed to a holomorphic map.

Can it be done for all f at once, in a way that depends continuously on f and leaves f fixed if it is holomorphic to begin with?

In other words, is $\mathcal{O}(S, X)$ a deformation retract of $\mathcal{C}(S, X)$?

Parametrised versions of Gromov’s theorem are known for ‘small’ parameter spaces: Euclidean compacts, e.g. finite polyhedra. Hence also for CW complexes (FL 2004).
The problem

Every continuous map f from a Stein manifold S to an Oka manifold X can be deformed to a holomorphic map.

Can it be done for all f at once, in a way that depends continuously on f and leaves f fixed if it is holomorphic to begin with?

In other words, is $\mathcal{O}(S, X)$ a deformation retract of $\mathcal{C}(S, X)$?

Parametrised versions of Gromov’s theorem are known for ‘small’ parameter spaces: Euclidean compacts, e.g. finite polyhedra. Hence also for CW complexes (FL 2004).

But \mathcal{C} and \mathcal{O} are CW complexes only in trivial cases. They are metrisable, but a metrisable CW complex is locally compact.
The problem

Every continuous map f from a Stein manifold S to an Oka manifold X can be deformed to a holomorphic map.

Can it be done for all f at once, in a way that depends continuously on f and leaves f fixed if it is holomorphic to begin with?

In other words, is $\mathcal{O}(S, X)$ a deformation retract of $\mathcal{C}(S, X)$?

Parametrised versions of Gromov’s theorem are known for ‘small’ parameter spaces: Euclidean compacts, e.g. finite polyhedra. Hence also for CW complexes (FL 2004).

But \mathcal{C} and \mathcal{O} are CW complexes only in trivial cases. They are metrisable, but a metrisable CW complex is locally compact.

Using homotopy theory and infinite-dimensional topology, we can solve the problem for reasonable S and arbitrary X.
Reformulate the problem

By basic algebraic topology, the following are equivalent.

(i) $\mathcal{O}(S, X)$ is a deformation retract of $\mathcal{C}(S, X)$.

(ii) The inclusion $\iota : \mathcal{O}(S, X) \hookrightarrow \mathcal{C}(S, X)$ is a homotopy equivalence and has the homotopy extension property.
By basic algebraic topology, the following are equivalent.

(i) \(O(S, X) \) is a deformation retract of \(C(S, X) \).

(ii) The inclusion \(\iota : O(S, X) \hookrightarrow C(S, X) \) is a homotopy equivalence and has the homotopy extension property. That is, \(\iota \) is an acyclic cofibration in the h-structure on \(\text{Top} \).
Reformulate the problem

By basic algebraic topology, the following are equivalent.

(i) \(O(S, X) \) is a deformation retract of \(C(S, X) \).

(ii) The inclusion \(\iota : O(S, X) \hookrightarrow C(S, X) \) is a homotopy equivalence and has the homotopy extension property. That is, \(\iota \) is an acyclic cofibration in the \(h \)-structure on Top.

The \(h \)-structure (\(h \) for Hurewicz) is one of the two classical frameworks for standard homotopy theory. The other is the \(q \)-structure (\(q \) for Quillen).
Reformulate the problem

By basic algebraic topology, the following are equivalent.

(i) \(\mathcal{O}(S, X) \) is a deformation retract of \(\mathcal{C}(S, X) \).

(ii) The inclusion \(\iota : \mathcal{O}(S, X) \hookrightarrow \mathcal{C}(S, X) \) is a homotopy equivalence and has the homotopy extension property. That is, \(\iota \) is an acyclic cofibration in the h-structure on \(\text{Top} \).

The h-structure (\(h \) for Hurewicz) is one of the two classical frameworks for standard homotopy theory. The other is the \(q \)-structure (\(q \) for Quillen).

A parametrised version of Gromov’s theorem for finite polyhedra implies that \(\iota \) is a weak homotopy equivalence. How can we bridge the gap?
ANRs and the mixed structure on Top

Two main topological ingredients:
The brand new m-structure \((m\ \text{for} \ \text{mixed})\), due to Cole (2006): a third framework for standard homotopy theory.
The theory of ANRs (absolute neighbourhood retracts for metric spaces).
ANRs and the mixed structure on Top

Two main topological ingredients:

The brand new m-structure (m for mixed), due to Cole (2006): a third framework for standard homotopy theory.

The theory of ANRs (absolute neighbourhood retracts for metric spaces).

To cut a long story short:

Theorem (FL). Suppose $C(S, X)$ is ANR. Then $O(S, X)$ is a deformation retract of $C(S, X)$ if and only if $O(S, X)$ is ANR.

Theorem (Milnor 1959, Smrekar-Yamashita 2009). $C(S, X)$ is ANR if S is finitely dominated.

We need a good sufficient condition for $O(S, X)$ to be ANR.
ANRs and the mixed structure on Top

Two main topological ingredients:

The brand new m-structure (m for mixed), due to Cole (2006): a third framework for standard homotopy theory.

The theory of ANRs (absolute neighbourhood retracts for metric spaces).

To cut a long story short:

Theorem (FL). Suppose $C(S, X)$ is ANR. Then $O(S, X)$ is a deformation retract of $C(S, X)$ if and only if $O(S, X)$ is ANR.

Theorem (Milnor 1959, Smrekar-Yamashita 2009). $C(S, X)$ is ANR if S is finitely dominated.
ANRs and the mixed structure on \textbf{Top}

Two main topological ingredients:
The brand new \textit{m}-structure (\textit{m} for \textit{mixed}), due to Cole (2006):
a third framework for standard homotopy theory.
The theory of ANRs (absolute neighbourhood retracts for metric spaces).

To cut a long story short:

\textbf{Theorem} (FL). Suppose \(C(S,X) \) is ANR. Then \(O(S,X) \) is a
deformation retract of \(C(S,X) \) if and only if \(O(S,X) \) is ANR.

\textbf{Theorem} (Milnor 1959, Smrekar-Yamashita 2009). \(C(S,X) \) is
ANR if \(S \) is \textit{finitely dominated}.

We need a good sufficient condition for \(O(S,X) \) to be ANR.
Absolute neighbourhood retracts

A metrisable space A is ANR if whenever A is embedded as a closed subspace of a metric space B, some neighbourhood of A in B retracts onto A.

There are several other characterisations, including a 'combinatorial' one (Dugundji-Lefschetz) that we use.

ANRs have many nice properties. Being ANR is a local property. Every ANR is locally contractible (and conversely for finite-dimensional spaces).

A CW complex is ANR if and only if it is locally finite.

ANRs and CW complexes have the same homotopy types.

A metrisable space A is ANR if and only if every open subset has the homotopy type of a CW complex (Cauty 1994).
Absolute neighbourhood retracts

A metrisable space A is ANR if whenever A is embedded as a closed subspace of a metric space B, some neighbourhood of A in B retracts onto A.

There are several other characterisations, including a ‘combinatorial’ one (Dugundji-Lefschetz) that we use.
Absolute neighbourhood retracts

A metrisable space A is ANR if whenever A is embedded as a closed subspace of a metric space B, some neighbourhood of A in B retracts onto A.

There are several other characterisations, including a ‘combinatorial’ one (Dugundji-Lefschetz) that we use.

ANRs have many nice properties. Being ANR is a local property. Every ANR is locally contractible (and conversely for finite-dimensional spaces).
Absolute neighbourhood retracts

A metrisable space A is ANR if whenever A is embedded as a closed subspace of a metric space B, some neighbourhood of A in B retracts onto A.

There are several other characterisations, including a ‘combinatorial’ one (Dugundji-Lefschetz) that we use.

ANRs have many nice properties. Being ANR is a local property. Every ANR is locally contractible (and conversely for finite-dimensional spaces).

A CW complex is ANR if and only if it is locally finite. ANRs and CW complexes have the same homotopy types.
Absolute neighbourhood retracts

A metrisable space A is ANR if whenever A is embedded as a closed subspace of a metric space B, some neighbourhood of A in B retracts onto A.

There are several other characterisations, including a ‘combinatorial’ one (Dugundji-Lefschetz) that we use.

ANRs have many nice properties. Being ANR is a local property. Every ANR is locally contractible (and conversely for finite-dimensional spaces).

A CW complex is ANR if and only if it is locally finite. ANRs and CW complexes have the same homotopy types.

A metrisable space is ANR if and only if every open subset has the homotopy type of a CW complex (Cauty 1994).
The main result

Theorem. Let X be an Oka manifold and let S be a Stein manifold with a strictly plurisubharmonic Morse exhaustion with finitely many critical points, e.g. an affine algebraic manifold. Then $\mathcal{O}(S, X)$ is a deformation retract of $\mathcal{C}(S, X)$.

The main result

Theorem. Let X be an Oka manifold and let S be a Stein manifold with a strictly plurisubharmonic Morse exhaustion with finitely many critical points, e.g. an affine algebraic manifold. Then $\mathcal{O}(S, X)$ is a deformation retract of $\mathcal{C}(S, X)$.

The hypothesis on S is not necessary, but I do not know whether it can be omitted. For example:

- $\mathcal{O}(S, \mathbb{C}^n)$ is a deformation retract of $\mathcal{C}(S, \mathbb{C}^n)$.
- $\mathcal{O}(C \setminus N, \mathbb{C}^*)$ is a deformation retract of $\mathcal{C}(C \setminus N, \mathbb{C}^*)$.

Still, \mathcal{C} and \mathcal{O} are not ANR: they are not semilocally contractible, so they do not even have the homotopy type of an ANR (or of a CW complex).
The main result

Theorem. Let X be an Oka manifold and let S be a Stein manifold with a strictly plurisubharmonic Morse exhaustion with finitely many critical points, e.g. an affine algebraic manifold. Then $\mathcal{O}(S, X)$ is a deformation retract of $\mathcal{C}(S, X)$.

The hypothesis on S is not necessary, but I do not know whether it can be omitted. For example:

- For arbitrary S, $\mathcal{O}(S, \mathbb{C}^n)$ is a deformation retract of $\mathcal{C}(S, \mathbb{C}^n)$.

Paper on the arXiv and on my webpage.
The main result

Theorem. Let X be an Oka manifold and let S be a Stein manifold with a strictly plurisubharmonic Morse exhaustion with finitely many critical points, e.g. an affine algebraic manifold. Then $\mathcal{O}(S, X)$ is a deformation retract of $\mathcal{C}(S, X)$.

The hypothesis on S is not necessary, but I do not know whether it can be omitted. For example:

- For arbitrary S, $\mathcal{O}(S, \mathbb{C}^n)$ is a deformation retract of $\mathcal{C}(S, \mathbb{C}^n)$.
- $\mathcal{O}(\mathbb{C} \setminus \mathbb{N}, \mathbb{C}^*)$ is a deformation retract of $\mathcal{C}(\mathbb{C} \setminus \mathbb{N}, \mathbb{C}^*)$.

Still, \mathcal{C} and \mathcal{O} are not ANR: they are not semilocally contractible, so they do not even have the homotopy type of an ANR (or of a CW complex).
The main result

Theorem. Let X be an Oka manifold and let S be a Stein manifold with a strictly plurisubharmonic Morse exhaustion with finitely many critical points, e.g. an affine algebraic manifold. Then $O(S, X)$ is a deformation retract of $C(S, X)$.

The hypothesis on S is not necessary, but I do not know whether it can be omitted. For example:

- For arbitrary S, $O(S, \mathbb{C}^n)$ is a deformation retract of $C(S, \mathbb{C}^n)$.
- $O(\mathbb{C} \setminus \mathbb{N}, \mathbb{C}^*)$ is a deformation retract of $C(\mathbb{C} \setminus \mathbb{N}, \mathbb{C}^*)$.

Still, C and O are not ANR: they are not semilocally contractible, so they do not even have the homotopy type of an ANR (or of a CW complex).

Paper on the arXiv and on my webpage.