Chevalley groups and finite geometry

By Jon Xu (University of Melbourne)

PhD thesis supervised by A. Ram (Unimelb) and J. Bamberg (UWA) (expected 2015)

Acknowledge AustMS Student Support Scheme, and the Melbourne Research Support Scheme for funding to attend this conference.

Theis problem: Is there an avoid in the finite Hermitian variety \(H(5, q^2) \)?

No for \(q=2 \) [de Beule - Metsch 2006]

Unknown for \(q > 2 \).

Idea: Craft a hammer

\[
\text{Big words: using Schur faith, Chevalley groups, Steinberg presentations, sheaf cohomology, intersection cohomology}
\]
Incidence geometries

An incidence geometry \(G \) is a triple \((P, L, I) \) where \(P \) and \(L \) are sets and \(I \subseteq P \times L \).

Example

Quadrangle:

\[
\begin{array}{ccc}
| & l_1 & P_2 \\
\hline
l_4 & b_1 & b_2 \\
P_4 & b_3 & b_4 \\
\end{array}
\]

\[P = \{p_1, p_2, p_3, p_4\}\]
\[L = \{l_1, l_2, l_3, l_4\}\]
\[I = \{(p_1, l_1), (p_2, l_4), (p_3, l_1), \ldots\}\]

An **ovoid** in \(G \) is a set of points \(O \subseteq P \) such that every line \(L \in L \) is incident with \(O \) exactly once.

Example For \(G \) = quadrangle, \(O = \{p_1, p_3\} \) and \(O = \{p_2, p_4\} \) are ovoids.

The finite Hermitian variety \(H(3, q^2) \)

\[H_{q^2} = \text{a finite field with } q^2 \text{ elements, } q \text{ a prime power.}\]
\[V = H_{q^2}^4, \text{ a vector space over } H_{q^2}.\]
The Frobenius automorphism is
\[\Phi : \mathbb{F}_q^2 \rightarrow \mathbb{F}_q^2, \quad c \mapsto c^q \]

The Hermitian form is
\[\beta : V \times V \rightarrow \mathbb{F}_q \]
\[\beta(v, w) = v_1 \overline{w}_1 + v_2 \overline{w}_2 + v_3 \overline{w}_3 + v_4 \overline{w}_4. \]

A subspace \(W \subseteq V \) is \textit{totally isotropic} if
\[\beta(w, w) = 0 \]
for all \(w, w \in W \).

The finite Hermitian variety \(H(3, q^2) \) is the incidence geometry \(g = (P, L, X) \) with
\[P = \{ 1 \text{-dimensional totally isotropic subspace of } V \} \]
\[L = \{ 2 \text{-dimensional totally isotropic subspace of } V \} \]
\[X = \{ (p, l) \in P \times L | p \subseteq l \}. \]

Example of an avoid
\[\Theta = \{ <v_1, v_2, v_3, 0> | v_1, v_2, v_3 \in \mathbb{F}_q \} \land \mathcal{P} \]

is an avoid in \(H(3, q) \).
Fact: Overods exist in $H(3,q^2)$ for $q \geq 2$.

Recall: (Tham's problem) Is there an overod in $H(5,q^2)$ for $q \geq 2$?

Conversion to Chevalley group world

Studying $H(3,q^2) = $ Studying the Chevalley group $U_4(J_{q^2})$.

Overods in $U_4(J_{q^2})$

Let $G = U_4(J_{q^2})$ and let P_1 and P_2 be certain parabolic subgroups of G. A set of P_1 cosets $O = \{g_1P_1, g_2P_1, \ldots, g_kP_1\}$ is an overod if

$$U \left< e_1, e_2, \ldots, e_3 g_iP_1P_2 = G \right.$$

and the union is disjoint.

Analogously, let:

Studying words in $H(5,q^2) = $ Studying words in $U_6(J_{q^2})$.

Let $G = U_6(J_{q^2})$ and let P_1 and P_2 be certain parabolic subgroups of G. A set of P_1 cosets $O = \{g_1P_1, g_2P_1, \ldots, g_kP_1\}$ is an overod if

$$U \left< e_i, e_2, \ldots, e_5 g_iP_1P_2P_3 = G \right.$$

and the union is disjoint.
Current task: Find 'good' generators and relations for $U_4(\mathbb{F}_2)$.

[Steinberg, 'Notes on Chevalley groups', 1967... off by a minus sign!]

Future tasks: Find 'good' generators and relations for $U_6(\mathbb{F}_2)$, $Sp_4(\mathbb{F}_2)$.

related to other to be determined