1. (i) (a) yes
(b) no
(c) no

(ii) yes

(iii) no

(iv) no

(v) yes

(vi) no

(vii) yes \(a \rightarrow b \rightarrow c \rightarrow g \rightarrow f \rightarrow e \rightarrow d \rightarrow a \)

(viii) (3, 3, 2, 2, 2, 2)

(ix) 3

(X) degree sequence for \(G \): \((5, 4, 4, 3, 3, 3, 2)\)
\[\sum \text{degrees} = 5 + 4 + 4 + 3 + 3 + 3 + 2 \]
\[= 24 \]
no. of edges in \(G \) = 12.
no. of edges in \(K_n \) = \(\frac{7 \times 6}{2} = 21 \).
so, no. of edges in \(\overline{G} \) = 21 - 12 = 9.
2. (i) The graphs are not isomorphic.

\[\text{G:} \]
\[\text{H:} \]

For the graph, G: the two vertices \(a \) and \(b \) of degree 2 are not adjacent; however, for graph, H: the two vertices of degree 2 are adjacent.

(ii) Hand-shaking lemma:

In any graph, the sum of the degrees of the vertices is twice the no. of edges.

In G, suppose that there is an odd no. of vertices with odd degree.

Then \(\sum_{v \in G} \text{degrees} \neq 2 \times \text{no. of edges} \)

Hence there is a contradiction.

Thus, the no. of vertices of odd degree is even.

(iii) If G had an isolated vertex, the most no. of edges that G can have is

\[\binom{v-1}{2} = \frac{(v-1)(v-2)}{2} \]

However, G has more than \(\frac{(v-1)(v-2)}{2} \) edge.

Thus G has no isolated vertices.
3. (i)

(a)

```
   9   3
   |   |
  5   6
  |   |
 10  16
```

vertex: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
degree: 2 3 1 2 1 2 1 1 1 4 2 2 4

```
\{1, 6, 4, 15, 16, 13, 1, 16, 13, 2\}
```

(b) \(\{10, 10, 10, 3, 9, 8, 7, 1, 2\}\).

We want a graph on 11 vertices \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}\). The leaves are 4, 5, 6, 11.

vertex: 1 2 3 4 5 6 7 8 9 10 11
degree: 2 2 2 1 1 1 2 2 2 4 1

```
\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}
```

edge \((10, 4)\) X
edge \((10, 5)\) X
edge \((10, 6)\) X
edge \((3, 10)\) X
edge \((9, 3)\) X
edge \((8, 9)\) X
edge \((7, 8)\) X
edge \((1, 11)\) X
edge \((2, 11)\) X
3. (ii) (a)
\[A = \begin{bmatrix} a & b & g & f \\ a & 0 & 1 & 1 \\ b & 1 & 0 & 1 \\ g & 1 & 1 & 0 \\ f & 0 & 1 & 1 \end{bmatrix} \]

\[\text{trace of } A^3 = 6 \times \text{no. of triangles in } G \]
\[= 6 \times 2 \]
\[= 12. \]

(b) Let \(G \) be a connected simple labelled graph with adjacency matrix \(A \) and degree matrix \(D \).

Then all cofactors of \(M = D - A \) are equal and their common value is the no. of spanning trees of \(G \).

\[D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \]

\[M = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \]

\[\text{cofactor} = (-1)^{4} \begin{vmatrix} -1 & 0 \\ 3 & -1 \end{vmatrix} \begin{vmatrix} -1 & 0 \\ 3 & -1 \end{vmatrix} \begin{vmatrix} -1 & 0 \\ 3 & -1 \end{vmatrix} \]

\[\begin{vmatrix} -1 & 0 \\ 3 & -1 \end{vmatrix} \begin{vmatrix} -1 & 0 \\ 3 & -1 \end{vmatrix} \begin{vmatrix} -1 & 0 \\ 3 & -1 \end{vmatrix} \]
3. (ii) (d) (cont'd)

\[
\begin{vmatrix}
-1 & -1 & 0 \\
4 & -4 & 0 \\
-1 & 3 & -1 \\
\end{vmatrix}
\]

\[R_2 = R_2 - R_3 \]

\[
\begin{vmatrix}
-1 & -1 & 0 \\
4 & -4 & 0 \\
-1 & 3 & -1 \\
\end{vmatrix}
\]

\[= (-1)(-1) \begin{vmatrix} -1 & -1 \\ 4 & -4 \end{vmatrix} \]

\[= (-1)(-1)(4 + 4) = 8. \]

4. (1) Given a connected weighted graph, G, with n vertices.

(i) List the edges in order of increasing weight.

(ii) Construct the tree by first drawing the n vertices (with no edges).

(iii) Add an edge of least weight.

(iv) Continue adding edges of least weight without making a cycle, until we have a spanning tree (i.e., have n-1 edges).

The algorithm is adapted by:

(a) Starting with GEF (whatever its weight is).

(b) Listing the edges in decreasing weight order.

(c) Adding edges of most weight.

<table>
<thead>
<tr>
<th>AB</th>
<th>AC</th>
<th>BD</th>
<th>BC</th>
<th>CD</th>
<th>CE</th>
<th>DE</th>
<th>DF</th>
<th>EF</th>
<th>EG</th>
<th>FG</th>
<th>FH</th>
<th>GH</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>10</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Eight vertices, so need 8 - 1 = 7 edges.
5. (i)
(a) \(v - e + \beta = 2 \)

(b) If every face \(\beta \) of \(G \) is bounded by at least 4 edges, then
\[4\beta \leq 2e \]

[Because, if every face is a 4-cycle, ea. edge of \(G \) is on 2 faces \(\beta \). Each face has 4 edges.]

Substituting into Euler's formula:
\[v - e + \beta = 2 \]
\[4v - 4e + 4\beta = 8 \]
\[4v - 4e = 8 - 4v + 4\beta \leq 2e \]
\[2e \leq 4v - 8 \]
\[e \leq 2v - 4 \]

(c) \(K_{3,3} \) is bipartite, so it has no odd cycles (in part. no 3-cycles). Also \(e = 9 \),
\[+ 2v - 4 = 8 \]. So \(e \neq 2v - 4 \). Hence \(K_{3,3} \) is not planar.
5. (ii) (a) The graph G is connected and has no bridges. Hence, by Robbins' Theorem, it is orientable.

(b) G^* has 3 vertices and 6 faces.

(c)

6. (i) The chromatic number for a graph is the minimum no. of colours needed to properly colour (the vertices of) G.

$P_G(t)$ is the no. of different colourings of a labelled simple graph G from t colours.

(ii) Let G be a simple connected graph with largest degree of G, $\Delta (\geq 3)$.

If G is not a complete graph then G is Δ-colourable.

(iii) $e = uv$

\[
P_G(t) = P_{G-e}(t) - P_{G/e}(t) \quad \text{if } e = uv \text{ exist in } G
\]

$P_{G}(t) = P_{G+e}(t) + P_{G/e}(t) \quad \text{if } u, v \text{ non-adjacent in } G$
6. (iii) (cont'd)

\[P_G(t) = (t-1) \, t \, (t-1)(t-2) - t(t-1)(t-2) \]
\[= t \, (t-1)(t-2) \left[t - 2 \right] \]
\[= t(t-1)(t-2)^2 \]

or

\[P_{G-e}(t) = t(t-1)(t-2)^2. \]
(i) A tree is a connected acyclic graph.

(ii) Let \(P_1 = x_0, x_1, \ldots, x_l \)
\[P_2 = x_0, y_1, \ldots, y_{f} \ldots \] be 2 distinct paths in a tree \(T \).

Let \(i+1 \) be the minimal index s.t.
\[x_{i+1} \neq y_{i+1} \]

Let \(j \) be the minimal index for which
\[j \geq i \] and \(y_{j+1} \) is a vertex of \(P_1 \) (say \(y_{j+1} = x_h \)).

Then \(x_i, x_{i+1}, \ldots, x_h, y_{j}, y_{j-1}, \ldots, y_{j+1} \)
is a cycle in \(T \). A contradiction.

Thus, in \(T \), any 2 distinct vertices are connected
by a unique path.

(iii) No. of edges = \(v-1 \).

(iv) \[\sum_{v \in V(T)} \text{deg}(v) = 2 \times (\text{no. of edges}) = 2(v-1). \]

(v) \[\sum_{v \in V(T)} \text{deg}(v) = p + \sum_{\text{vertices degrees} \geq 2} \text{deg}(v) \geq p + 2(v-p) \]

\[\therefore p + 2(v-p) \geq 2(v-1). \]
or
\[p \geq 2. \]

(vi) \(F \) is a forest, so each component is a tree.
As there are 29 vertices and only 5 components,
no all trees in \(F \) are isolated vertices. Hence,
the chromatic no. of at least one component
is \(2 \) (the chromatic no. of a non-trivial tree is \(2 \)).
Hence the chromatic no. of \(F \) is 7.
8. (i) The minimum k for which a graph is k-edge colourable is its edge chromatic no. (or its chromatic index).

(ii) If G is a simple graph with largest degree Δ, then $\chi'(G) = \Delta$ or $\Delta + 1$.

(iv) Maximum degree = 4. So $\chi'(G) = 4$ or 5.

A 4-edge colouring of G is exhibited above.
9. (i) A tournament T is transitive if whenever uv and vw are arcs in T then uw is also an arc in T.

(ii) A sequence s_1, s_2, \ldots, s_n of non-negative integers is called a score sequence of a tournament if it is a tournament (with n vertices) whose vertices can be labelled v_1, \ldots, v_n such that $\text{outdeg}(v_i) = s_i$ for $i \in \{1, \ldots, n\}$.

(iii) Let T be a transitive tournament (with n vertices).

Let u and w be 2 vertices of T.

We assume (without loss of generality) that uw is an arc of T.

Let $W = \{v : uv$ is an arc of $T\}$

set of vertices adjacent from w such that $\text{outdeg}(w) = |W|$.

For each $v \in W$, uw is an arc of T.

As T is transitive, uv is an arc

\[uv \text{ is an arc, } vw \text{ is an arc, so } uv \text{ is an arc} \]

Thus, $\text{outdeg}(u) \geq |W| + 1$ and hence $\text{outdeg}(u) \neq \text{outdeg}(w)$.

(iv) If there are 2 semi-Hamiltonian paths in a transitive tournament T, then there will be two vertices x and y such in one path x precedes y, and in the other, y precedes x.

By transitivity, T an arc xy and an arc yx in T. This is a contradiction. Thus T a unique semi-Hamiltonian path in T.