Solution.

(i) Let A have (r,s)-entry $a_{rs} \in \mathbb{C}$. Writing $a_{rs} = \beta_{rs} + i\gamma_{rs}$ with $\beta_{rs}, \gamma_{rs} \in \mathbb{R}$ we see that $A = P + iQ$ where P and Q have (r,s)-entries β_{rs} and γ_{rs} (respectively).

(ii) Since $(P + iQ)^t = (P - iQ)^t = P^t - iQ^t$ we see that $A = P + iQ$ is Hermitian if and only if $P^t = P$ and $Q^t = -Q$.

(iii) Recall that transposing reverses products; that is, $(XY)^t = Y^t X^t$ whenever the left hand side is defined. (Note that this implies that $(A^{-1})^t = (A^t)^{-1}$ whenever A is nonsingular. It is also clear that taking complex conjugates preserves sums and products, and commutes with the maps $A \mapsto A^{-1}$ and $A \mapsto A^t$.) Let v be an arbitrary column vector and let $z = v^t Av$. Since z is a 1×1 matrix we have $v^t = z$, and so

$$z = ([v^t Av])^t = v^t A^t v = v^t Av = z.$$

Thus z is real.

(iv) Suppose that A is positive definite. Note first that since A is Hermitian it must be square (as its transpose is the same shape as itself). Now let v be in the nullspace of A; that is, v is a column vector such that $Av = 0$. Then $v^t Av = 0$, and positive definiteness of A gives $v = 0$. So the nullspace of A is $\{0\}$; this implies that A is nonsingular.

Let A be an arbitrary positive definite $n \times n$ Hermitian matrix. We use induction on n to prove that A has the desired form; note that in the case $n = 1$ the matrix A is simply a positive real number, and we may take $B = \sqrt{A}$. Let e_1 be the 1-th column of the identity matrix (so that e_1, e_2, \ldots, e_n comprise the standard basis of \mathbb{C}^n). The $(1,1)$-entry of A is $\sqrt{a_{11}} a_{11}$, which must be positive since A is positive definite. Thus we can write

$$A = \begin{pmatrix} a & \bar{x}^t \\ x & A' \end{pmatrix},$$

where a is real and positive, $x \in \mathbb{C}^{n-1}$ and A' is some $(n-1) \times (n-1)$ Hermitian matrix. Now set

$$D = \begin{pmatrix} \sqrt{a^{-1}} & 0 \\ -a^{-1} x & 1 \end{pmatrix}$$

and observe that D is nonsingular; indeed, as a row operation matrix the effect of D is to divide the first row by \sqrt{a} and add multiples of the first row to the others. We see that the first column of DA is $(\sqrt{a} e_1)$. Now postmultiplication by D^* performs a corresponding sequence of column operations, and we find that

$$DAD^* = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}.$$
Since A was positive definite, this must be too. Hence A'' is a $(n-1) \times (n-1)$ positive definite matrix. By induction we can write $A'' = \overline{Y}^t Y$, and this gives

$$A = D^{-1} \left(\begin{array}{cc} 1 & 0 \\ 0 & Y \end{array} \right)^t \left(\begin{array}{cc} 1 & 0 \\ 0 & Y \end{array} \right) \overline{D}^{-1} = \overline{B}^t B$$

where $B = \left(\begin{array}{cc} 1 & 0 \\ 0 & Y \end{array} \right) \overline{D}^{-1}$.

(vi) If $A, B \in \text{GL}_n(\mathbb{C})$ are positive definite and $0 \neq v \in \mathbb{C}^n$ then

$$\overline{v} (A + B)v = \overline{v} Av + \overline{v} Bv > 0$$

(since $\overline{v} Av > 0$ and $\overline{v} Bv > 0$).

(vii) We see that $\overline{Y}^t AY = \sum_{X \in G} (\overline{Y} X^t)(XY) = \sum_{Z \in G} \overline{Z}^t Z = A$ (since $Z = XY$ runs through all elements of G as X does).

(viii) By (vii) we can find a positive definite A such that $\overline{Y}^t AY = A$ for all $Y \in G$, and by (v) we can put $A = \overline{D}^t B$. But the equation $\overline{Y}^t B^t BY = \overline{B}^t B$ can be written as $BY^{-1}B^{-1} = (\overline{B}^{-1})^t \overline{B}^t$, or, equivalently,

$$(BYB^{-1})^{-1} = (\overline{B}^tD)^t,$$

showing that BYB^{-1} is unitary for all $Y \in G$.

2. Recall that the dot product on \mathbb{C}^n is defined by $u \cdot v = \overline{v} v$, and that unitary matrices preserve it (in the sense that $(Xu) \cdot (Xv) = u \cdot v$ for all u and v if X is unitary). Recall also that if U is a subspace of \mathbb{C}^n then $\mathbb{C}^n = U \oplus U^\perp$, where

$$U^\perp = \{ v \in \mathbb{C}^n \mid u \cdot v = 0 \text{ for all } u \in U \}$$

(the orthogonal complement of U).

Let G be a finite group of $n \times n$ unitary matrices, and let U be a G-invariant subspace of \mathbb{C}^n. (That is, if $X \in G$ and $u \in U$ then $Xu \in U$.) Prove that the orthogonal complement of U is also G-invariant.

Solution.

Let $v \in U^\perp$ and let $X \in G$. Then for all $u \in U$ we have that $X^{-1}u \in U$ (since $X^{-1} \in G$ and U is G-invariant), and so

$$(Xv) \cdot u = Xv \cdot X(X^{-1}u)$$

$= v \cdot X^{-1}u$ (since X is unitary)

$= 0$ (since $v \in U^\perp$).

Hence $Xv \in U^\perp$, and since this holds for all $X \in G$ and $v \in U^\perp$ we have shown that U^\perp is G-invariant.

3. Let H and N be groups and $\phi : H \to \text{Aut}(N)$ a homomorphism. Define

$$H \ltimes N = \{(h, x) \mid h \in H, x \in N\}$$

with multiplication given by

$$(h, x)(k, y) = (hk, x^{\phi(h)}y)$$

for all $h, k \in H$ and $x, y \in N$. Prove that this makes $H \ltimes N$ into a group. (Such a group is called a semidirect product of N by H. If ϕ is the trivial homomorphism $(h \mapsto 1 \in \text{Aut}(N)$ for all $h \in H$) we get the direct product of N and H.)

Solution.

Since ϕ is a homomorphism we have $\phi(1) = 1$, where the 1 on the left hand side is the identity element of H and the 1 on the right hand side is the identity automorphism of N. Hence our multiplication rule gives

$$(h, x)(1, 1) = (h1, x^{\phi(1)}1) = (h, x).$$

Since all automorphisms of N map 1 to 1 we also find that

$$(1, 1)(h, x) = (1h, 1^{\phi(h)}x) = (h, x).$$

So $H \ltimes N$ has an identity element. The following calculation proves associativity:

$$((h, x)(k, y))(l, z) = (hk, x^{\phi(k)}y)(l, z) = (hkl, (x^{\phi(k)}y)^{\phi(l)}z)$$

$$= (h, x)(kl, y^{\phi(l)}z) = (h, x)((k, y)(l, z)).$$

Let (h, x) be an arbitrary element of $H \ltimes N$, and let $k = h^{-1}$ and $y = (x^{-1})^{\phi(k)}$. Since $(x^{-1})^{\phi(k)} = (x^{\phi(k)})^{-1}$ we see that $(h, x)(k, y) = (hk, x^{\phi(k)}y) = (1, 1)$. Moreover, since $\phi(k)\phi(h) = \phi(hk)$ we also have that $y^{\phi(h)} = x^{-1}$, and $(k, y)(h, x) = (kh, y^{\phi(h)}x) = (1, 1)$, so that (k, y) is definitely the inverse of (h, x).
