Solution.

1. Prove that isomorphic vector spaces have the same dimension.

(Hint: Use Theorem 4.17. This was proved in Exercise 5 of Tutorial 4.)

Solution.

Let V and W be isomorphic vector spaces and let $\theta: V \rightarrow W$ be an isomorphism. That is, θ is a bijective linear transformation. Let v_1, v_2, \ldots, v_n be a basis for V. By 4.17 (ii) the elements $\theta(v_1), \theta(v_2), \ldots, \theta(v_n)$ span W (since θ is surjective), and by 4.17 (i) they are linearly independent (since θ is injective). So these elements form a basis for W, and we see that bases of W have the same number of elements as do bases of V.

2. Is it possible to find subspaces U, V, and W of \mathbb{R}^4 such that

$$\mathbb{R}^4 = U \oplus V = V \oplus W = W \oplus U?$$

Solution.

Yes; for instance, define U, V, and W to be (respectively)

$$\left\{ \begin{pmatrix} \alpha \\ \beta \\ 0 \\ 0 \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}, \left\{ \begin{pmatrix} 0 \\ 0 \\ \alpha \\ \beta \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}, \left\{ \begin{pmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}.$$

Each of these is a subspace of dimension two: it can be seen that

$$b = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad d = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

are bases of U, V, and W, respectively. Now since $U \cap V = \{0\}$ the sum $U + V$ is direct, and its dimension is therefore equal to $\dim U + \dim V = 4$. The only 4-dimensional subspace of \mathbb{R}^4 is \mathbb{R}^4 itself; so we conclude that $U \oplus V = \mathbb{R}^4$. (Indeed, combining the bases b of U and c of V gives the standard basis of \mathbb{R}^4.) Since it is also true that $U \cap W = \{0\}$ and $V \cap W = \{0\}$ it follows that $U \oplus W = V \oplus W = \mathbb{R}^4$ as well.

3. (i) Let V and W be vector spaces over F. Show that the Cartesian product of V and W (see §1b) becomes a vector space if addition and scalar multiplication are defined in the natural way. (This space is called the external direct sum of V and W, and is sometimes denoted by $V + W'$.)

(ii) Show that $V' = \{ (v, 0) \mid v \in V \}$ and $W' = \{ (0, w) \mid w \in W \}$ are subspaces of $V + W$ with $V' \cong V$ and $W' \cong W$, and that $V + W = V' \oplus W'$.

(iii) Prove that $\dim(V + W) = \dim V + \dim W$.

Solution.

(i) Elements of $V + W$ are ordered pairs (v, w) with $v \in V$ and $w \in W$. Addition and scalar multiplication are defined by

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2), \quad \lambda(v_1, w_1) = (\lambda v_1, \lambda w_1)$$

for all $v_1, v_2 \in V$ and $w_1, w_2 \in W$ and all $\lambda \in F$. To prove that this gives a vector space simply a matter of checking the axioms. The zero element of $V + W$ is the ordered pair $(0, 0)$ (where the first 0 is the zero of V and the second the zero of W). The negative of (v, w) is $(-v, -w)$.

For all $\lambda, \mu \in F$ and all $v \in V$ and $w \in W$ we have

$$(\lambda + \mu)(v, w) = ((\lambda + \mu)v, (\lambda + \mu)w) \quad \text{(definition of scalar multiplication)}$$

$$= (\lambda v + \mu v, \lambda w + \mu w) \quad \text{(vector space axioms in } V, W)$$

$$= (\lambda v, \mu w) + (\mu v, \lambda w) \quad \text{(definition of addition)}$$

$$= \lambda(v, w) + \mu(v, w) \quad \text{(definition of scalar multiplication)}$$

proving Axiom (vii) of Definition 2.3. The other axioms can be done similarly, in each case making use of the fact that the axiom in question is satisfied in V and in W (since it is given that V and W are vector spaces).

(ii) Define $\theta: V \rightarrow V + W$ by $\theta(v) = (v, 0)$ for all $v \in V$. Then for all $u, v \in V$ and $\lambda, \mu \in F$ we have

$$\theta(\lambda u + \mu v) = (\lambda u + \mu v, 0) = \lambda(u, 0) + \mu(v, 0) = \lambda \theta(u) + \mu \theta(v).$$

Hence θ is a linear transformation. The kernel of θ consists of all $v \in V$ such that $(v, 0)$ is the zero element of $V + W$. Hence ker $\theta = \{0\}$, and it follows that θ is injective. The image of θ is the subset of $V + W$ consisting of all elements of the form $\theta(v)$ for $v \in V$; thus im $\theta = V'$. By 3.14 we deduce that V' is a subspace of $V + W$.

Define $\theta': V' \rightarrow V'$ by $\theta'(v) = \theta(v)$ for all v. That is, θ' is just θ with its codomain cut down to coincide with its image. This makes θ' surjective, and it is also injective (since θ is). Hence θ' is an isomorphism, and $V' \cong V$.
Virtually identical arguments using the map \(w \mapsto (0, w) \) show that \(W' \) is a subspace and isomorphic to \(W \). Since an arbitrary element of \(V + W \) has the form \((v, w) = (v, 0) + (0, w) \in V' + W' \) we see that \(V + W = V' + W' \), and since \((v, 0) = (0, w) \) implies \(v = w = 0 \) we see that \(V' \cap W' = \{0\} \). Hence \(V + W = V' \oplus W' \).

(iii) Since \(V' \cong V \) and \(W' \cong W \) we deduce that \(\dim V' = \dim V \) and \(\dim W' = \dim W \) (by Exercise 1). But since \(V + W = V' \oplus W' \) Theorem 6.9 gives \(\dim(V + W) = \dim V' + \dim W' \), whence the result.

4. Let \(S \) and \(T \) be subspaces of a vector space \(V \) and let \(U \) be a subspace of \(T \) such that \(T = (S \cap T) \oplus U \). Prove that \(S + T = S \oplus U \) (see Tutorial 3 for the definition of \(S + T \)), and hence deduce that

\[
\dim(S + T) = \dim S + \dim T - \dim(S \cap T).
\]

Solution.

From an earlier tutorial we know that \(S + T \) is a subspace of \(V \). If \(s \in S \) then \(s = s + 0 \in S + T \); so \(S \subseteq S + T \). Similarly \(T \subseteq S + T \), and since \(U \subseteq T \) we have \(U \subseteq S + T \). So \(S \) and \(U \) are subspaces of \(S + T \), and we must show that \(S + U = S + T \) and \(S \cap U = \{0\} \).

Let \(x \in S + T \). Then \(x = s + t \) for some \(s \in S \), \(t \in T \). Since \(T = (S \cap T) \oplus U \) there exist \(r \in S \cap T \), \(u \in U \) with \(t = r + u \). Since \(r \in S \cap T \subseteq S \) and \(s \in S \) we have \(s + r \in S \), and therefore

\[
x = s + (r + u) = (s + r) + u \in S + U.
\]

Since \(x \) was arbitrary we have shown that all elements of \(S + T \) lie in the subspace \(S + U \) of \(S + T \); thus \(S + U = S + T \).

Let \(a \in S \cap U \). Then \(a \in S \) and \(a \in U \subseteq T \); so \(a \in S \cap T \). But \(a \in U \); so \(a \in (S \cap T) \cap U \). Because the sum of \(S \cap T \) and \(U \) is direct we have that \((S \cap T) \cap U = \{0\} \), and therefore \(a = 0 \). But \(a \) was an arbitrary element of \(S \cap U \), and so we have shown that \(S \cap U = \{0\} \), as required.

Alternatively, making use of some easily proved facts about adding subspaces, we have

\[
S + T = S + ((S \cap T) + U) = (S + (S \cap T)) + U = S + U
\]

(where \(S + (S \cap T) = S \) holds since \(S \cap T \subseteq S \)) and

\[
S \cap U = S \cap (T \cap U) = (S \cap T) \cap U = \{0\}
\]

(where \(U = T \cap U \) holds since \(U \subseteq T \)).

Since \(T = (S \cap T) \oplus U \) we have

\[
(1) \quad \dim T = \dim(S \cap T) + \dim U.
\]

Since \(S + T = S \oplus U \) we have

\[
(2) \quad \dim(S + T) = \dim S + \dim U.
\]

Eliminating \(\dim U \) from equations (1) and (2) gives

\[
\dim(S + T) = \dim S + \dim T - \dim(S \cap T).
\]

5. (i) Let \(S \) and \(T \) be subspaces of a vector space \(V \). Prove that \((s, t) \mapsto s + t \) defines a linear transformation from \(S + T \) to \(V \) which has image \(S + T \) and kernel isomorphic to \(S \cap T \).

(ii) The Main Theorem on Linear Transformations (see p. 158 of the book) asserts that if \(V \) is a finitely generated vector space and \(\theta \) a linear transformation from \(V \) to another space \(W \), then the sum of the dimensions of \(\ker \theta \) and \(\im \theta \) equals the dimension of \(V \). Use this and Part (i) to give another proof that \(\dim(S + T) + \dim(S \cap T) = \dim S + \dim T \).

Solution.

Since every element of \(S + T \) is uniquely expressible in the form \((s, t) \) with \(s \in S \) and \(t \in T \), and since \(S \) and \(T \) are subspaces of the vector space \(V \), the formula \(\theta(s, t) = s + t \) defines a function from \(S + T \) to \(V \). Now if \((s, t), (s', t') \in S + T \) and \(\lambda \) is a scalar then

\[
\theta((s, t) + (s', t')) = \theta(s + s', t + t') = (s + s') + (t + t') = (s + t) + (s' + t') = \theta(s, t) + \theta(s', t')
\]

(by definition of \(\theta \), definition of addition in \(S + T \) and properties of addition in the vector space \(V \)), and

\[
\theta(\lambda(s, t)) = \theta(\lambda s, \lambda t) = \lambda s + \lambda t = \lambda(s + t) = \lambda\theta(s, t)
\]

similarly. Hence \(\theta \) is linear.

The image of \(\theta \) is the set of all elements of \(V \) of the form \(\theta(s, t) = s + t \) with \(s \in S \) and \(t \in T \); that is, \(\im \theta = S + T \). The kernel of \(\theta \) consists of all \((s, t) \) such that \(s \in S \), \(t \in T \) and \(s + t = 0 \). For these conditions to be satisfied we must have \(s = -t \in T \), and hence \(s \in S \cap T \). Conversely, if \(x \in S \cap T \) then \((x, -x) \) is in the kernel. So the kernel \(\ker \theta = \{(x, -x) \mid x \in S \cap T \} \). Hence the mapping \(\phi: S \cap T \to \ker \theta \) defined by \(\phi(x) = (x, -x) \) is surjective. It is also injective, since \((x, -x) = (y, -y) \) implies \(x = y \). Finally, \(\phi \) is linear since

\[
\phi(\lambda x + \mu y) = (\lambda x + \mu y, -(\lambda x + \mu y)) = (\lambda x, -\lambda x) + (\mu y, -\mu y)
\]

\[
= \lambda(x, -x) + \mu(y, -y) = \lambda\phi(x) + \mu\phi(y)
\]

for all \(x, y \in S \cap T \) and all scalars \(\lambda \) and \(\mu \). Hence \(\ker \theta \cong S \cap T \).

By the Main Theorem, \(\dim \ker \theta + \dim \im \theta = \dim(S + T) \). Since \(\ker \theta \cong S \cap T \) we know (by Exercise 1) that \(\dim \ker \theta = \dim(S \cap T) \), and by Exercise 3 we know that \(\dim(S + T) = \dim S + \dim T \). Combining all this with \(\im \theta = S + T \) gives \(\dim(S + T) + \dim(S \cap T) = \dim S + \dim T \), as required.