Tutorial 3

1. Which of the following functions are linear transformations?
 (i) \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) defined by \(T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \)
 (ii) \(S: \mathbb{R}^2 \to \mathbb{R}^2 \) defined by \(S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \)
 (iii) \(g: \mathbb{R}^2 \to \mathbb{R}^3 \) defined by \(g \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ y \\ x - y \end{pmatrix} \)
 (iv) \(f: \mathbb{R} \to \mathbb{R}^2 \) defined by \(f(x) = \begin{pmatrix} x \\ x + 1 \end{pmatrix} \)

2. Let \(\mathcal{A} \) be the set of all 2-component column vectors whose entries are differentiable functions from \(\mathbb{R} \) to \(\mathbb{R} \). Thus, for example, if \(h \) and \(k \) are the functions defined by \(h(t) = \cos t \) and \(k(t) = t^2 + 1 \) for all \(x \in \mathbb{R} \) then \(\begin{pmatrix} h \\ k \end{pmatrix} \) is an element of \(\mathcal{A} \).
 (i) How should addition and scalar multiplication be defined so that \(\mathcal{A} \) becomes a vector space over \(\mathbb{R} \)?
 (ii) If \(f \) and \(g \) are real-valued functions on \(\mathbb{R} \) then their pointwise product is the function \(f \cdot g \) defined by \((f \cdot g)(t) = f(t)g(t) \) for all \(t \in \mathbb{R} \). Prove that \(\begin{pmatrix} f \\ g \end{pmatrix} \mapsto h \cdot f + g' \) (where \(h \) is as above and \(g' \) is the derivative of \(g \)) defines a linear transformation from \(\mathcal{A} \) to the space of all real-valued functions on \(\mathbb{R} \).

3. Let \(V \) be a vector space and let \(S \) and \(T \) be subspaces of \(V \).
 (i) Prove that \(S \cap T \) is a subspace of \(V \).
 (ii) Let \(S + T = \{ x + y \mid x \in S \text{ and } y \in T \} \). Prove that \(S + T \) is a subspace of \(V \).

4. Let \(V \) be a vector space over the field \(F \) and let \(v_1, v_2, \ldots, v_n \) be arbitrary elements of \(V \). Prove that the span of \(\{ v_1, v_2, \ldots, v_n \} \)
 \(\text{Span}(v_1, v_2, \ldots, v_n) = \{ \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n \mid \lambda_1, \lambda_2, \ldots, \lambda_n \in F \} \)
 is a subspace of \(V \).

5. Let \(A \) and \(B \) be \(n \times n \) matrices over the field \(F \). We say that \(B \) is similar to \(A \) if there exists a nonsingular matrix \(T \) such that \(B = T^{-1} AT \). Prove
 (i) every \(n \times n \) matrix is similar to itself,
 (ii) if \(B \) is similar to \(A \) then \(A \) is similar to \(B \),
 (iii) if \(C \) is similar to \(B \) and \(B \) is similar to \(A \) then \(C \) is similar to \(A \).