Tutorial 12

1. Let A be an $n \times n$ matrix whose rank is less than n. Prove that 0 is an eigenvalue of A.

2. Let V be a vector space and S and T subspaces of V such that $V = S \oplus T$. Prove or disprove the following assertion:

 If U is any subspace of V then $U = (U \cap S) \oplus (U \cap T)$.

3. (i) Let A, B and C be $n \times n$ matrices, and suppose that the column space of B equals the column space of C. Prove that the column space of AB equals that of AC. (Hint: Use Proposition 7.16 of the text.)

 (ii) Let A be an $n \times n$ matrix and suppose that the rank of A^4 is the same as the rank of A^3. Prove that A^5 and all higher powers of A also have this same rank. (Hint: Apply Part (i) with $B = A^3$ and $C = A^4$.)

4. Let V and W be vector spaces over the field F and let $b = (v_1, v_2, \ldots, v_n)$ and $c = (w_1, w_2, \ldots, w_m)$ be bases of V and W respectively. Let $L(V, W)$ be the set of all linear transformations from V to W, and let $\text{Mat}(m \times n, F)$ be the set of all $m \times n$ matrices over F. We know that $\text{Mat}(m \times n, F)$ is a vector space over F, and we have seen in Question 3 of Tutorial 5 that $L(V, W)$ is too. Let $\Omega: L(V, W) \rightarrow \text{Mat}(m \times n, F)$ be the function defined by $\Omega(\theta) = \text{M}_{cb}(\theta)$ for all $\theta \in L(V, W)$.

 (i) Prove that Ω is a linear transformation. (Hint: The task is to prove that $\text{M}_{cb}(\phi + \theta) = \text{M}_{cb}(\phi) + \text{M}_{cb}(\theta)$ and $\text{M}_{cb}(\lambda \phi) = \lambda \text{M}_{cb}(\phi)$. Now the j^{th} column of $\text{M}_{cb}(\phi + \theta)$ is $cv_c((\phi + \theta)(v_j))$ while the j^{th} columns of $\text{M}_{cb}(\phi)$ and $\text{M}_{cb}(\theta)$ are $cv_c(\phi(v_j))$ and $cv_c(\theta(v_j))$. Use the definition of $\phi + \theta$ and fact that $x \mapsto cv_c(x)$ is linear to prove that the j^{th} column of $\text{M}_{cb}(\phi + \theta)$ is the sum of the j^{th} columns of $\text{M}_{cb}(\phi)$ and $\text{M}_{cb}(\theta)$.)

 (ii) Prove that the kernel of Ω is $\{z\}$, where $z: V \rightarrow W$ is the zero function.

 (iii) Prove that Ω is a vector space isomorphism. (Hint: By the first two parts we know that Ω is linear and injective; so surjectivity is all that remains. That is, given a $m \times n$ matrix M we must show that there is a linear transformation θ from V to W having M as its matrix. Now the coefficients of M determine what $\theta(v_i)$ has to be for each i, and Theorem 4.18 guarantees that such a linear transformation exists.)

 (iv) Find a basis for $L(V, W)$. (Hint: (Find a basis of $\text{Mat}(m \times n, F)$ first. The corresponding linear transformations will give the desired basis of $L(V, W)$.)