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1
Preliminaries

The topics dealt with in this introductory chapter are of a general mathemat-
ical nature, being just as relevant to other parts of mathematics as they are
to vector space theory. In this course you will be expected to learn several
things about vector spaces (of course!), but, perhaps even more importantly,
you will be expected to acquire the ability to think clearly and express your-
self clearly, for this is what mathematics is really all about. Accordingly, you
are urged to read (or reread) Chapter 1 of “Proofs and Problems in Calculus”
by G. P. Monro; some of the points made there are reiterated below.

§1a Logic and common sense

When reading or writing mathematics you should always remember that the
mathematical symbols which are used are simply abbreviations for words.
Mechanically replacing the symbols by the words they represent should result
in grammatically correct and complete sentences. The meanings of a few
commonly used symbols are given in the following table.

Symbols To be read as

{ . . . | . . . } the set of all . . . such that . . .
= is
∈ in or is in
> greater than or is greater than

Thus, for example, the following sequence of symbols

{x ∈ X | x > a } 6= ∅

is an abbreviated way of writing the sentence

The set of all x in X such that x is greater than a is not the empty set.

1
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When reading mathematics you should mentally translate all symbols in this
fashion, and when writing mathematics you should make sure that what you
write translates into meaningful sentences.

Next, you must learn how to write out proofs. The ability to construct
proofs is probably the most important skill for the student of pure mathe-
matics to acquire. And it must be realized that this ability is nothing more
than an extension of clear thinking. A proof is nothing more nor less than an
explanation of why something is so. When asked to prove something, your
first task is to be quite clear as to what is being asserted, then you must
decide why it is true, then write the reason down, in plain language. There
is never anything wrong with stating the obvious in a proof; likewise, people
who leave out the “obvious” steps often make incorrect deductions.

When trying to prove something, the logical structure of what you are
trying to prove determines the logical structure of the proof; this observation
may seem rather trite, but nonetheless it is often ignored. For instance, it
frequently happens that students who are supposed to proving that a state-
ment p is a consequence of statement q actually write out a proof that q is
a consequence of p. To help you avoid such mistakes we list a few simple
rules to aid in the construction of logically correct proofs, and you are urged,
whenever you think you have successfully proved something, to always check
that your proof has the correct logical structure.

• To prove a statement of the form
If p then q

your first line should be
Assume that p is true

and your last line
Therefore q is true.

• The statement
p if and only if q

is logically equivalent to
If p then q and if q then p.

To prove it you must do two proofs of the kind described in the preced-
ing paragraph.

• Suppose that P (x) is some statement about x. Then to prove
P (x) is true for all x in the set S
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your first line should be

Let x be an arbitrary element of the set S
and your last line

Therefore P (x) holds.

• Statements of the form
There exists an x such that P (x) is true

are proved producing an example of such an x.

Some of the above points are illustrated in the examples #1, #2, #3
and #4 at the end of the next section.

§1b Sets and functions

It has become traditional to base all mathematics on set theory, and we will
assume that the reader has an intuitive familiarity with the basic concepts.
For instance, we write S ⊆ A (S is a subset of A) if every element of S is an
element of A. If S and T are two subsets of A then the union of S and T is
the set

S ∪ T = {x ∈ A | x ∈ S or x ∈ T }

and the intersection of S and T is the set

S ∩ T = {x ∈ A | x ∈ S and x ∈ T }.

(Note that the ‘or’ above is the inclusive ‘or’—that which is sometimes
written as ‘and/or’. In this book ‘or’ will always be used in this sense.)

Given any two sets S and T the Cartesian product S×T of S and T is
the set of all ordered pairs (s, t) with s ∈ S and t ∈ T ; that is,

S × T = { (s, t) | s ∈ S, t ∈ T }.

The Cartesian product of S and T always exists, for any two sets S and T .
This is a fact which we ask the reader to take on trust. This course is
not concerned with the foundations of mathematics, and to delve into formal
treatments of such matters would sidetrack us too far from our main purpose.
Similarly, we will not attempt to give formal definitions of the concepts of
‘function’ and ‘relation’.
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Let A and B be sets. A function f from A to B is to be thought of as a
rule which assigns to every element a of the set A an element f(a) of the set
B. The set A is called the domain of f and B the codomain (or target) of f .
We use the notation ‘f :A→ B’ (read ‘f , from A to B’) to mean that f is a
function with domain A and codomain B.

A map is the same thing as a function. The terms mapping and trans-
formation are also used.

A function f :A→ B is said to be injective (or one-to-one) if and only
if no two distinct elements of A yield the same element of B. In other words,
f is injective if and only if for all a1, a2 ∈ A, if f(a1) = f(a2) then a1 = a2.

A function f :A→ B is said to be surjective (or onto) if and only if for
every element b of B there is an a in A such that f(a) = b.

If a function is both injective and surjective we say that it is bijective
(or a one-to-one correspondence).

The image (or range) of a function f :A → B is the subset of B con-
sisting of all elements obtained by applying f to elements of A. That is,

im f = { f(a) | a ∈ A }.

An alternative notation is ‘f(A)’ instead of ‘im f ’. Clearly, f is surjective
if and only if im f = B. The word ‘image’ is also used in a slightly different
sense: if a ∈ A then the element f(a) ∈ B is sometimes called the image of
a under the function f .

The notation ‘a 7→ b’ means ‘a maps to b’; in other words, the function
involved assigns the element b to the element a. Thus, ‘a 7→ b’ (under the
function f) means exactly the same as ‘f(a) = b’.

If f :A → B is a function and C a subset of B then the inverse image
or preimage of C is the subset of A

f−1(C) = { a ∈ A | f(a) ∈ C }.

(The above sentence reads ‘f inverse of C is the set of all a in A such that
f of a is in C.’ Alternatively, one could say ‘The inverse image of C under
f ’ instead of ‘f inverse of C’.)

Let f :B → C and g:A→ B be functions such that domain of f is the
codomain of g. The composite of f and g is the function fg:A → C given



Chapter One: Preliminaries 5

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics
by (fg)(a) = f(g(a)) for all a in A. It is easily checked that if f and g are
as above and h:D → A is another function then the composites (fg)h and
f(gh) are equal.

Given any set A the identity function on A is the function i:A → A
defined by i(a) = a for all a ∈ A. It is clear that if f is any function with
domain A then fi = f , and likewise if g is any function with codomain A
then ig = g.

If f :B → A and g:A→ B are functions such that the composite fg is
the identity on A then we say that f is a left inverse of g and g is a right
inverse of f . If in addition we have that gf is the identity on B then we say
that f and g are inverse to each other, and we write f = g−1 and g = f−1.
It is easily seen that f :B → A has an inverse if and only if it is bijective, in
which case f−1:A → B satisfies f−1(a) = b if and only if f(b) = a (for all
a ∈ A and b ∈ B).

Suppose that g:A → B and f :B → C are bijective functions, so that
there exist inverse functions g−1:B → A and f−1:C → B. By the properties
stated above we find that

(fg)(g−1f−1) = ((fg)g−1)f−1 = (f(gg−1)f−1 = (fiB)f−1 = ff−1 = iC

(where iB and iC are the identity functions on B and C), and an exactly
similar calculation shows that (g−1f−1)(fg) is the identity on A. Thus fg has
an inverse, and we have proved that the composite of two bijective functions
is necessarily bijective.

Examples

#1 Suppose that you wish to prove that a function λ:X → Y is injective.
Consult the definition of injective. You are trying to prove the following
statement:

For all x1, x2 ∈ X, if λ(x1) = λ(x2) then x1 = x2.

So the first two lines of your proof should be as follows:

Let x1, x2 ∈ X.
Assume that λ(x1) = λ(x2).

Then you will presumably consult the definition of the function λ to derive
consequences of λ(x1) = λ(x2), and eventually you will reach the final line

Therefore x1 = x2.
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#2 Suppose you wish to prove that λ:X → Y is surjective. That is, you
wish to prove

For every y ∈ Y there exists x ∈ X with λ(x) = y.
Your first line must be

Let y be an arbitrary element of Y .
Somewhere in the middle of the proof you will have to somehow define an
element x of the set X (the definition of x is bound to involve y in some
way), and the last line of your proof has to be

Therefore λ(x) = y.

#3 Suppose that A and B are sets, and you wish to prove that A ⊆ B.
By definition the statement ‘A ⊆ B’ is logically equivalent to

All elements of A are elements of B.
So your first line should be

Let x ∈ A

and your last line should be
Therefore x ∈ B.

#4 Suppose that you wish to prove that A = B, where A and B are sets.
The following statements are all logically equivalent to ‘A = B’:

(i) For all x, x ∈ A if and only if x ∈ B.
(ii) (For all x)

(
(if x ∈ A then x ∈ B) and (if x ∈ B then x ∈ A)

)
.

(iii) All elements of A are elements of B and all elements of B are elements
of A.

(iv) A ⊆ B and B ⊆ A.

You must do two proofs of the general form given in #3 above.

#5 Let A = {n ∈ Z | 0 ≤ n ≤ 3 } and B = {n ∈ Z | 0 ≤ n ≤ 2 }. Prove
that if C = {n ∈ Z | 0 ≤ n ≤ 11 } then there is a bijective map f :A×B → C
given by f(a, b) = 3a+ b for all a ∈ A and b ∈ B.

�−−. Observe first that by the definition of the Cartesian product of two
sets, A × B consists of all ordered pairs (a, b), with a ∈ A and b ∈ B. Our
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first task is to show that for every such pair (a, b), and with f as defined
above, f(a, b) ∈ C.

Let (a, b) ∈ A×B. Then a and b are integers, and so 3a+ b is also an
integer. Since 0 ≤ a ≤ 3 we have that 0 ≤ 3a ≤ 9, and since 0 ≤ b ≤ 2 we
deduce that 0 ≤ 3a + b ≤ 11. So 3a + b ∈ {n ∈ Z | 0 ≤ n ≤ 11 } = C, as
required. We have now shown that f , as defined above, is indeed a function
from A×B to C.

We now show that f is injective. Let (a, b), (a′, b′) ∈ A×B, and assume
that f(a, b) = f(a′, b′). Then, by the definition of f , we have 3a+b = 3a′+b′,
and hence b′−b = 3(a−a′). Since a−a′ is an integer, this shows that b′−b is a
multiple of 3. But since b, b′ ∈ B we have that 0 ≤ b′ ≤ 2 and −2 ≤ −b ≤ 0,
and adding these inequalities gives −2 ≤ b′ − b ≤ 2. The only multiple of 3
in this range is 0; hence b′ = b, and the equation 3a + b = 3a′ + b′ becomes
3a = 3a′, giving a = a′. Therefore (a, b) = (a′, b′).

Finally, we must show that f is surjective. Let c be an arbitrary element
of the set C, and let m be the largest multiple of 3 which is not greater than c.
Then m = 3a for some integer a, and 3a+ 3 (which is a multiple of 3 larger
than m) must exceed c; so 3a ≤ c ≤ 3a + 2. Defining b = c − 3a, it follows
that b is an integer satisfying 0 ≤ b ≤ 2; that is, b ∈ B. Note also that since
0 ≤ c ≤ 11, the largest multiple of 3 not exceeding c is at least 0, and less
than 12. That is, 0 ≤ 3a < 12, whence 0 ≤ a < 4, and, since a is an integer,
0 ≤ a ≤ 3. Hence a ∈ A, and so (a, b) ∈ A × B. Now f(a, b) = 3a + b = c,
which is what was to be proved. /−−�

#6 Let f be as defined in #5 above. Find the preimages of the following
subsets of C:

S1 = {5, 11}, S2 = {0, 1, 2}, S3 = {0, 3, 6, 9}.

�−−. They are f−1(S1) = {(1, 2), (3, 2)}, f−1(S2) = {(0, 0), (0, 1), (0, 2)}
and f−1(S3) = {(0, 0), (1, 0), (2, 0), (3, 0)} respectively. /−−�

§1c Relations

We move now to the concept of a relation on a set X. For example, ‘<’ is a
relation on the set of natural numbers, in the sense that if m and n are any
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two natural numbers then m < n is a well-defined statement which is either
true or false. Likewise, ‘having the same birthday as’ is a relation on the set
of all people. If we were to use the symbol ‘∼’ for this relation then a ∼ b
would mean ‘a has the same birthday as b’ and a 6∼ b would mean ‘a does
not have the same birthday as b’.

If ∼ is a relation on X then { (x, y) | x ∼ y } is a subset of X ×X, and,
conversely, any subset of X ×X defines a relation on X. Formal treatments
of this topic usually define a relation on X to be a subset of X ×X.

1.1 Definition Let ∼ be a relation on a set X.
(i) The relation ∼ is said to be reflexive if x ∼ x for all x ∈ X.
(ii) The relation ∼ is said to be symmetric if x ∼ y whenever y ∼ x (for all

x and y in X).
(iii) The relation ∼ is said to be transitive if x ∼ z whenever x ∼ y and

y ∼ z (for all x, y, z ∈ X).
A relation which is reflexive, symmetric and transitive is called an equivalence
relation.

For example, the “birthday” relation above is an equivalence relation.
Another example would be to define sets X and Y to be equivalent if they
have the same number of elements; more formally, defineX ∼ Y if there exists
a bijection from X to Y . The reflexive property for this relation follows from
the fact that identity functions are bijective, the symmetric property from
the fact that the inverse of a bijection is also a bijection, and transitivity
from the fact that the composite of two bijections is a bijection.

It is clear that an equivalence relation ∼ on a set X partitions X into
nonoverlapping subsets, two elements x, y ∈ X being in the same subset if
and only if x ∼ y. (See #6 below.) These subsets are called equivalence
classes. The set of all equivalence classes is then called the quotient of X by
the relation ∼.

When dealing with equivalence relations it frequently simplifies matters
to pretend that equivalent things are equal—ignoring irrelevant aspects, as
it were. The concept of ‘quotient’ defined above provides a mathematical
mechanism for doing this. If X is the quotient of X by the equivalence
relation ∼ thenX can be thought of as the set obtained fromX by identifying
equivalent elements of X. The idea is that an equivalence class is a single
thing which embodies things we wish to identify. See #10 and #11 below,
for example.
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Examples

#7 Suppose that ∼ is an equivalence relation on the set X, and for each
x ∈ X define C(x) = { y ∈ X | x ∼ y }. Prove that for all y, z ∈ X, the sets
C(y) and C(z) are equal if y ∼ z, and have no elements in common if y 6∼ z.
Prove furthermore that C(x) 6= ∅ for all x ∈ X, and that for every y ∈ X
there is an x ∈ X such that y ∈ C(x).

�−−. Let y, z ∈ X with y ∼ z. Let x be an arbitrary element of C(y). Then
by definition of C(y) we have that y ∼ x. But z ∼ y (by symmetry of ∼,
since we are given that y ∼ z), and by transitivity it follows from z ∼ y and
y ∼ x that z ∼ x. This further implies, by definition of C(z), that x ∈ C(z).
Thus every element of C(y) is in C(z); so we have shown that C(y) ⊆ C(z).
On the other hand, if we let x be an arbitrary element of C(z) then we have
z ∼ x, which combined with y ∼ z yields y ∼ x (by transitivity of ∼), and
hence x ∈ C(y). So C(z) ⊆ C(y), as well as C(y) ⊆ C(z). Thus C(y) = C(z)
whenever y ∼ z.

Now let y, z ∈ X with y 6∼ z, and let x ∈ C(y) ∩ C(z). Then x ∈ C(y)
and x ∈ C(z), and so y ∼ x and z ∼ x. By symmetry we deduce that x ∼ z,
and now y ∼ x and x ∼ z yield y ∼ z by transitivity. This contradicts
our assumption that y 6∼ z. It follows that there can be no element x in
C(y) ∩ C(z); in other words, C(y) and C(z) have no elements in common
if y 6∼ z.

Finally, observe that if x ∈ X is arbitrary then x ∈ C(x), since by
reflexivity of ∼ we know that x ∼ x. Hence C(x) 6= ∅. Furthermore, for
every y ∈ X there is an x ∈ X with y ∈ C(x), since x = y has the required
property. /−−�

#8 Let f :X → S be an arbitrary function, and define a relation ∼ on X
by the following rule: x ∼ y if and only if f(x) = f(y). Prove that ∼ is an
equivalence relation. Prove furthermore that if X is the quotient of X by ∼
then there is a one-to-one correspondence between the sets X and im f .

�−−. Let x ∈ X. Since f(x) = f(x) it is certainly true that x ∼ x. So ∼ is
a reflexive relation.

Let x, y ∈ X with x ∼ y. Then f(x) = f(y) (by the definition of ∼);
thus f(y) = f(x), which shows that y ∼ x. So y ∼ x whenever x ∼ y, and
we have shown that ∼ is symmetric.

Now let x, y, z ∈ X with x ∼ y and y ∼ z. Then f(x) = f(y) and
f(y) = f(z), whence f(x) = f(z), and x ∼ z. So ∼ is also transitive, whence
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it is an eqivalence relation.
Using the notation of #7 above, X = {C(x) | x ∈ X } (since C(x)

is the equivalence class of the element x ∈ X). We show that there is a
bijective function f :X → im f such that if C ∈ X is any equivalence class,
then f(C) = f(x) for all x ∈ X such that C = C(x). In other words, we
wish to define f :X → im f by f(C(x)) = f(x) for all x ∈ X. To show that
this does give a well defined function from X to im f , we must show that

(i) every C ∈ X has the form C = C(x) for some x ∈ X (so that the given
formula defines f(C) for all C ∈ X),

(ii) if x, y ∈ X with C(x) = C(y) then f(x) = f(y) (so that the given
formula defines f(C) uniquely in each case), and

(iii) f(x) ∈ im f (so that the the given formula does define f(C) to be an
element of im f , the set which is meant to be the codomain of f .
The first and third of these points are trivial: since X is defined to be

the set of all equivalence classes its elements are certainly all of the form C(x),
and it is immediate from the definition of the image of f that f(x) ∈ im f for
all x ∈ X. As for the second point, suppose that x, y ∈ X with C(x) = C(y).
Then by one of the results proved in #7 above, y ∈ C(y) = C(x), whence
x ∼ y by the definition of C(x). And by the definition of ∼, this says that
f(x) = f(y), as required. Hence the function f is well-defined.

We must prove that f is bijective. Suppose that C, C ′ ∈ X with
f(C) = f(C ′). Choose x, y ∈ X such that C = C(x) and C ′ = C(y).
Then

f(x) = f(C(x)) = f(C) = f(C ′) = f(C(y)) = f(y),

and so x ∼ y, by definition of ∼. By #7 above, it follows that C(x) = C(y);
that is, C = C ′. Hence f is injective. But if s ∈ im f is arbitrary then by
definition of im f there exists an x ∈ X with s = f(x), and now the definition
of f gives f(C(x)) = f(x) = s. Since C(x) ∈ X, we have shown that for all
s ∈ im f there exists C ∈ X with f(C) = s. Thus f :X → im f is surjective,
as required. /−−�

§1d Fields

Vector space theory is concerned with two different kinds of mathematical ob-
jects, called vectors and scalars. The theory has many different applications,
and the vectors and scalars for one application will generally be different from
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the vectors and scalars for another application. Thus the theory does not say
what vectors and scalars are; instead, it gives a list of defining properties, or
axioms, which the vectors and scalars have to satisfy for the theory to be ap-
plicable. The axioms that vectors have to satisfy are given in Chapter Three,
the axioms that scalars have to satisfy are given below.

In fact, the scalars must form what mathematicians call a ‘field’. This
means, roughly speaking, that you have to be able to add scalars and multiply
scalars, and these operations of addition and multiplication have to satisfy
most of the familiar properties of addition and multiplication of real numbers.
Indeed, in almost all the important applications the scalars are just the real
numbers. So, when you see the word ‘scalar’, you may as well think ‘real
number’. But there are other sets equipped with operations of addition and
multiplication which satisfy the relevant properties; two notable examples
are the set of all complex numbers and the set of all rational numbers.†

1.2 Definition A set F which is equipped with operations of addition
and multiplication is called a field if the following properties are satisfied.

(i) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F .
(That is, addition is associative.)

(ii) There exists an element 0 ∈ F such that a + 0 = a = 0 + a for
all a ∈ F . (There is a zero element in F .)

(iii) For each a ∈ F there is a b ∈ F such that a+ b = 0 = b+ a.
(Each element has a negative.)

(iv) a+ b = b+ a for all a, b ∈ F . (Addition is commutative.)
(v) a(bc) = (ab)c for all a, b, c ∈ F . (Multiplication is associative.)
(vi) There exists an element 1 ∈ F , which is not equal to the zero element 0,

such that 1a = a = a1 for all a ∈ F .
(There is a unity element in F .)

(vii) For each a ∈ F with a 6= 0 there exists b ∈ F with ab = 1 = ba.
(Nonzero elements have inverses.)

(viii) ab = ba for all a, b ∈ F . (Multiplication is commutative.)
(ix) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ F .

(Both distributive laws hold.)

Comments ...
1.2.1 Although the definition is quite long the idea is simple: for a set

† A number is rational if it has the form n/m where n and m are integers.
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to be a field you have to be able to add and multiply elements, and all the
obvious desirable properties have to be satisfied.

1.2.2 It is possible to use set theory to prove the existence integers and
real numbers (assuming the correctness of set theory!) and to prove that the
set of all real numbers is a field. We will not, however, delve into these
matters in this book; we will simply assume that the reader is familiar with
these basic number systems and their properties. In particular, we will not
prove that the real numbers form a field.

1.2.3 The definition is not quite complete since we have not said what
is meant by the term operation. In general an operation on a set S is just a
function from S×S to S. In other words, an operation is a rule which assigns
an element of S to each ordered pair of elements of S. Thus, for instance,
the rule

(a, b) 7−→
√
a+ b3

defines an operation on the set R of all real numbers: we could use the nota-
tion a◦b =

√
a+ b3. Of course, such unusual operations are not likely to be of

any interest to anyone, since we want operations to satisfy nice properties like
those listed above. In particular, it is rare to consider operations which are
not associative, and the symbol ‘+’ is always reserved for operations which
are both associative and commutative. ...

The set of all real numbers is by far the most important example of a
field. Nevertheless, there are many other fields which occur in mathematics,
and so we list some examples. We omit the proofs, however, so as not to be
diverted from our main purpose for too long.

Examples

#9 As mentioned earlier, the set C of all complex numbers is a field, and
so is the set Q of all rational numbers.

#10 Any set with exactly two elements can be made into a field by defining
addition and multiplication appropriately. Let S be such a set, and (for
reasons that will become apparent) let us give the elements of S the names
odd and even . We now define addition by the rules

even + even = even even + odd = odd
odd + even = odd odd + odd = even
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and multiplication by the rules

even even = even even odd = even
odd even = even odd odd = odd .

These definitions are motivated by the fact that the sum of any two even
integers is even, and so on. Thus it is natural to associate odd with the
set of all odd integers and even with the set of all even integers. It is
straightforward to check that the field axioms are now satisfied, with even
as the zero element and odd as the unity.

Henceforth this field will be denoted by ‘Z2’ and its elements will simply
be called ‘0’ and ‘1’.

#11 A similar process can be used to construct a field with exactly three
elements; intuitively, we wish to identify integers which differ by a multiple
of three. Accordingly, let div be the set of all integers divisible by three,
div+1 the set of all integers which are one greater than integers divisible

by three, and div−1 the set of all integers which are one less than integers
divisible by three. The appropriate definitions for addition and multiplication
of these objects are determined by corresponding properties of addition and
multiplication of integers. Thus, since

(3k + 1)(3h− 1) = 3(3kh+ h− k)− 1

it follows that the product of an integer in div+1 and an integer in div−1
is always in div−1 , and so we should define

div+1 div−1 = div−1 .

Once these definitions have been made it is fairly easy to check that the field
axioms are satisfied.

This field will henceforth be denoted by ‘Z3’ and its elements by ‘0’, ‘1’
and ‘−1’. Since 1 + 1 = −1 in Z3 the element −1 is alternatively denoted
by‘2’ (or by ‘5’ or ‘−4’ or, indeed, ‘n’ for any integer n which is one less than
a multiple of 3).

#12 The above construction can be generalized to give a field with n ele-
ments for any prime number n. In fact, the construction of Zn works for any
n, but the field axioms are only satisfied if n is prime. Thus Z4 = {0, 1, 2, 3}
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with the operations of “addition and multiplication modulo 4” does not form
a field, but Z5 = {0, 1, 2, 3, 4} does form a field under addition and multipli-
cation modulo 5. Indeed, the addition and and multiplication tables for Z5

are as follows:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

It is easily seen that Z4 cannot possibly be a field, because multiplication
modulo 4 gives 22 = 0, whereas it is a consequence of the field axioms that
the product of two nonzero elements of any field must be nonzero. (This is
Exercise 4 at the end of this chapter.)

#13 Define

F =
{(

a b
2b a

) ∣∣∣ a, b ∈ Q
}

with addition and multiplication of matrices defined in the usual way. (See
Chapter Two for the relevant definitions.) It can be shown that F is a field.

Note that if we define I =
(

1 0
0 1

)
and J =

(
0 1
2 0

)
then F consists

of all matrices of the form aI+bJ , where a, b ∈ Q. Now since J2 = 2I (check
this!) we see that the rule for the product of two elements of F is

(aI + bJ)(cI + dJ) = (ac+ 2bd)I + (ad+ bc)J for all a, b, c, d ∈ Q.

If we define F ′ to be the set of all real numbers of the form a+ b
√

2, where
a and b are rational, then we have a similar formula for the product of two
elements of F ′, namely

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2 for all a, b, c, d ∈ Q.

The rules for addition in F and in F ′ are obviously similar as well; indeed,

(aI + bJ) + (cI + dJ) = (a+ c)I + (b+ d)J
and

(a+ b
√

2) + (c+ d
√

2) = (a+ c) + (b+ d)
√

2.
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Thus, as far as addition and multiplication are concerned, F and F ′ are
essentially the same as one another. This is an example of what is known as
isomorphism of two algebraic systems.

Note that F ′ is obtained by “adjoining”
√

2 to the field Q, in exactly the
same way as

√
−1 is “adjoined” to the real field R to construct the complex

field C.

#14 Although Z4 is not a field, it is possible to construct a field with
four elements. We consider matrices whose entries come from the field Z2.
Addition and multiplication of matrices is defined in the usual way, but
addition and multiplication of the matrix entries must be performed modulo 2
since these entries come from Z2. It turns out that

K =
{(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}

is a field. The zero element of this field is the zero matrix
(

0 0
0 0

)
, and

the unity element is the identity matrix
(

1 0
0 1

)
. To simplify notation,

let us temporarily use ‘0’ to denote the zero matrix and ‘1’ to denote the
identity matrix, and let us also use ‘ω’ to denote one of the two remaining
elements of K (it does not matter which). Remembering that addition and
multiplication are to be performed modulo 2 in this example, we see that(

1 0
0 1

)
+
(

1 1
1 0

)
=
(

0 1
1 1

)
and also (

1 0
0 1

)
+
(

0 1
1 1

)
=
(

1 1
1 0

)
,

so that the fourth element of K equals 1 + ω. A short calculation yields the
following addition and multiplication tables for K:

+ 0 1 ω 1 + ω

0 0 1 ω 1 + ω
1 1 0 1 + ω ω
ω ω 1 + ω 0 1

1 + ω 1 + ω ω 1 0

0 1 ω 1 + ω

0 0 0 0 0
1 0 1 ω 1 + ω
ω 0 ω 1 + ω 1

1 + ω 0 1 + ω 1 ω
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#15 The set of all expressions of the form

a0 + a1X + · · ·+ anX
n

b0 + b1X + · · ·+ bmXm

where the coefficients ai and bi are real numbers and the bi are not all zero,
can be regarded as a field.

The last three examples in the above list are rather outré, and will not
be used in this book. They were included merely to emphasize that lots of
examples of fields do exist.

Exercises

1. Let A and B be nonempty sets and f :A→ B a function.

(i) Prove that f has a left inverse if and only if it is injective.
(ii) Prove that f has a right inverse if and only if it is surjective.
(iii) Prove that if f has both a right inverse and a left inverse then they

are equal.

2. Let S be a set and ∼ a relation on S which is both symmetric and
transitive. If x and y are elements of S and x ∼ y then by symmetricity
we must have y ∼ x. Now by transitivity x ∼ y and y ∼ x yields x ∼ x,
and so it follows that x ∼ x for all x ∈ S. That is, the reflexive law is a
consequence of the symmetric and transitive laws. What is the error in
this “proof”?

3. Suppose that ∼ is an equivalence relation on a set X. For each x ∈ X
let E(x) = { z ∈ X | x ∼ z }. Prove that if x, y ∈ X then E(x) = E(y)
if x ∼ y and E(x) ∩ E(y) = ∅ if x 6∼ y.

The subsets E(x) of X are called equivalence classes. Prove that each
element x ∈ X lies in a unique equivalence class, although there may be
many different y such that x ∈ E(y).

4. Prove that if F is a field and x, y ∈ F are nonzero then xy is also
nonzero. (Hint: Use Axiom (vii).)

5. Prove that Zn is not a field if n is not prime.
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6. It is straightforward to check that Zn satisfies all the field axioms except

for part (vii) of 1.2. Prove that this axiom is satisfied if n is prime.
(Hint: Let k be a nonzero element of Zn. Use the fact that if k(i−j)
is divisible by the prime n then i − j must be divisible by n to
prove that k0, k1, . . . , k(n − 1) are all distinct elements of Zn,
and deduce that one of them must equal 1.)

7. Prove that the example in #14 above is a field. You may assume that
the only solution in integers of the equation a2 − 2b2 = 0 is a = b = 0,
as well as the properties of matrix addition and multiplication given in
Chapter Two.
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2
Matrices, row vectors and column vectors

Linear algebra is one of the most basic of all branches of mathematics. The
first and most obvious (and most important) application is the solution of
simultaneous linear equations: in many practical problems quantities which
need to be calculated are related to measurable quantities by linear equa-
tions, and consequently can be evaluated by standard row operation tech-
niques. Further development of the theory leads to methods of solving linear
differential equations, and even equations which are intrinsically nonlinear
are usually tackled by repeatedly solving suitable linear equations to find a
convergent sequence of approximate solutions. Moreover, the theory which
was originally developed for solving linear equations is generalized and built
on in many other branches of mathematics.

§2a Matrix operations

A matrix is a rectangular array of numbers. For instance,

A =

 1 2 3 4
2 0 7 2
5 1 1 8


is a 3×4 matrix. (That is, it has three rows and four columns.) The numbers
are called the matrix entries (or components), and they are easily specified
by row number and column number. Thus in the matrix A above the (2, 3)-
entry is 7 and the (3, 4)-entry is 8. We will usually use the notation ‘Xij ’ for
the (i, j)-entry of a matrix X. Thus, in our example, we have A23 = 7 and
A34 = 8.

A matrix with only one row is usually called a row vector, and a matrix
with only one column is usually called a column vector. We will usually call
them just rows and columns, since (as we will see in the next chapter) the
term vector can also properly be applied to things which are not rows or
columns. Rows or columns with n components are often called n-tuples.

The set of all m×n matrices over R will be denoted by ‘Mat(m× n,R)’,
and we refer to m×n as the shape of these matrices. We define Rn to be the

18
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set of all column n-tuples of real numbers, and tRn (which we use less fre-
quently) to be the set of all row n-tuples. (The ‘t’ stands for ‘transpose’. The
transpose of a matrix A ∈ Mat(m× n,R) is the matrix tA ∈ Mat(n×m,R)
defined by the formula (tA)ij = Aji.)

The definition of matrix that we have given is intuitively reasonable,
and corresponds to the best way to think about matrices. Notice, however,
that the essential feature of a matrix is just that there is a well-determined
matrix entry associated with each pair (i, j). For the purest mathematicians,
then, a matrix is simply a function, and consequently a formal definition is
as follows:

2.1 Definition Let n and m be nonnegative integers. An m × n matrix
over the real numbers is a function

A: (i, j) 7→ Aij

from the Cartesian product {1, 2, . . . ,m} × {1, 2, . . . , n} to R.

Two matrices with of the same shape can be added simply by adding
the corresponding entries. Thus if A and B are both m × n matrices then
A+B is the m× n matrix defined by the formula

(A+B)ij = Aij +Bij

for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. Addition of matrices satisfies
properties similar to those satisfied by addition of numbers—in particular,
(A + B) + C = A + (B + C) and A + B = B + A for all m × n matrices.
The m × n zero matrix, denoted by ‘0m×n’, or simply ‘0’, is the m × n
matrix all of whose entries are zero. It satisfies A + 0 = A = 0 + A for all
A ∈ Mat(m× n,R).

If λ is any real number and A any matrix over R then we define λA by

(λA)ij = λ(Aij) for all i and j.

Note that λA is a matrix of the same shape as A.

Multiplication of matrices can also be defined, but it is more compli-
cated than addition and not as well behaved. The product AB of matrices
A and B is defined if and only if the number of columns of A equals the
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number of rows of B. Then the (i, j)-entry of AB is obtained by multiplying
the entries of the ith row of A by the corresponding entries of the jth column
of B and summing these products. That is, if A has shape m × n and B
shape n× p then AB is the m× p matrix defined by

(AB)ij = Ai1B1j +Ai2B2j + · · ·+AinBnj

=
n∑

k=1

AikBkj

for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , p}.

This definition may appear a little strange at first sight, but the fol-
lowing considerations should make it seem more reasonable. Suppose that
we have two sets of variables, x1, x2, . . . , xm and y1, y2, . . . , yn, which are
related by the equations

x1 = a11y1 + a12y2 + · · ·+ a1nyn

x2 = a21y1 + a22y2 + · · ·+ a2nyn

...
xm = am1y1 + am2y2 + · · ·+ amnyn.

Let A be the m × n matrix whose (i, j)-entry is the coefficient of yj in the
expression for xi; that is, Aij = aij . Suppose now that the variables yj can
be similarly expressed in terms of a third set of variables zk with coefficient
matrix B:

y1 = b11z1 + b12z2 + · · ·+ b1pzp

y2 = b21z1 + b22z2 + · · ·+ b2pzp

...
yn = bn1z1 + bn2z2 + · · ·+ bnpzp

where bij is the (i, j)-entry of B. Clearly one can obtain expressions for the
xi in terms of the zk by substituting this second set of equations into the first.
It is easily checked that the total coefficient of zk in the expression for xi is
ai1b1k +ai2b2k + · · ·+ainbnk, which is exactly the formula for the (i, k)-entry
of AB. We have shown that if A is the coefficient matrix for expressing the
xi in terms of the yj , and B the coefficient matrix for expressing the yj in
terms of the zk, then AB is the coefficient matrix for expressing the xi in
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terms of the zk. If one thinks of matrix multiplication in this way, none of
the facts mentioned below will seem particularly surprising.

Note that if the matrix product AB is defined there is no guarantee that
the product BA is defined also, and even if it is defined it need not equal
AB. Furthermore, it is possible for the product of two nonzero matrices to
be zero. Thus the familiar properties of multiplication of numbers do not all
carry over to matrices. However, the following properties are satisfied:

(i) For each positive integer n there is an n×n identity matrix, commonly
denoted by ‘In×n’, or simply ‘I’, having the properties that AI = A for
matrices A with n columns and IB = B for all matrices B with n rows.
The (i, j)-entry of I is the Kronecker delta, δij , which is 1 if i and j are
equal and 0 otherwise:

Iij = δij =
{

1 if i = j
0 if i 6= j.

(ii) The distributive law A(B + C) = AB + AC is satisfied whenever
A is an m × n matrix and B and C are n × p matrices. Similarly,
(A+B)C = AC +BC whenever A and B are m× n and C is n× p.

(iii) If A is an m× n matrix, B an n× p matrix and C a p× q matrix then
(AB)C = A(BC).

(iv) If A is an m × n matrix, B an n × p matrix and λ any number, then
(λA)B = λ(AB) = A(λB).

These properties are all easily proved. For instance, for (iii) we have

(
(AB)C

)
ij

=
p∑

k=1

(AB)ikCkj =
p∑

k=1

(
n∑

l=1

AilBlk

)
Ckj =

p∑
k=1

n∑
l=1

AilBlkCkj

and similarly

(
A(BC)

)
ij

=
n∑

l=1

Ail(BC)lj =
n∑

l=1

Ail

(
p∑

k=1

BlkCkj

)
=

n∑
l=1

p∑
k=1

AilBlkCkj ,

and interchanging the order of summation we see that these are equal.

The following facts should also be noted.
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2.2 Proposition The jth column of a product AB is obtained by multi-
plying the matrix A by the jth column of B, and the ith row of AB is the ith

row of A multiplied by B.

Proof. Suppose that the number of columns of A, necessarily equal to the
number of rows of B, is n. Let bj be the jth column of B; thus the kth entry
of bj is Bkj for each k. Now by definition the ith entry of the jth column of
AB is (AB)ij =

∑n
k=1AikBkj . But this is exactly the same as the formula

for the ith entry of Abj .
The proof of the other part is similar. �

More generally, we have the following rule concerning multiplication of
“partitioned matrices”, which is fairly easy to see although a little messy to
state and prove. Suppose that the m× n matrix A is subdivided into blocks
A(rs) as shown, where A(rs) has shape mr × ns:

A =


A(11) A(12) . . . A(1q)

A(21) A(22) . . . A(2q)

...
...

...
A(p1) A(p2) . . . A(pq)

 .

Thus we have that m =
∑p

r=1mr and n =
∑q

s=1 ns. Suppose also that B is
an n× l matrix which is similarly partitioned into submatrices B(st) of shape
ns× lt. Then the product AB can be partitioned into blocks of shape mr× lt,
where the (r, t)-block is given by the formula

∑q
s=1A

(rs)B(st). That is,
A(11) A(12) . . . A(1q)

A(21) A(22) . . . A(2q)

...
...

...
A(p1) A(p2) . . . A(pq)



B(11) B(12) . . . B(1u)

B(21) B(22) . . . B(2u)

...
...

...
B(q1) B(q2) . . . B(qu)


=


∑q

s=1A
(1s)B(s1) . . .

∑q
s=1A

(1s)B(su)

...
...∑q

s=1A
(ps)B(s1) . . .

∑q
s=1A

(ps)B(sq)

 .($)

The proof consists of calculating the (i, j)-entry of each side, for arbitrary
i and j. Define

M0 = 0, M1 = m1, M2 = m1 +m2, . . . , Mp = m1 +m2 + · · ·+mp
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and similarly

N0 = 0, N1 = n1, N2 = n1 + n2, . . . , Nq = n1 + n2 + · · ·+ nq

L0 = 0, L1 = l1, L2 = l1 + l2, . . . , Lu = l1 + l2 + · · ·+ lu.

Given that i lies between M0 + 1 = 1 and Mp = m, there exists an r such
that i lies between Mr−1 + 1 and Mr. Write i′ = i −Mr−1. We see that
the ith row of A is partitioned into the i′ th rows of A(r1), A(r2), . . . , A(rq).
Similarly we may locate the jth column of B by choosing t such that j lies
between Lt−1 and Lt, and we write j′ = j − Lt−1. Now we have

(AB)ij =
n∑

k=1

AikBkj

=
q∑

s=1

 Ns∑
k=Ns−1+1

AikBkj


=

q∑
s=1

(
ns∑

k=1

(A(rs))i′k(B(st))kj′

)

=
q∑

s=1

(A(rs)B(st))i′j′

=

(
q∑

s=1

A(rs)B(st)

)
i′j′

which is the (i, j)-entry of the partitioned matrix ($) above.

Example

#1 Verify the above rule for multiplication of partitioned matrices by com-
puting the matrix product 2 4 1

1 3 3
5 0 1

 1 1 1 1
0 1 2 3
4 1 4 1


using the following partitioning: 2 4 1

1 3 3
5 0 1

 1 1 1 1
0 1 2 3
4 1 4 1

 .
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�−−. We find that(
2 4
1 3

)(
1 1 1 1
0 1 2 3

)
+
(

1
3

)
( 4 1 4 1 )

=
(

2 6 10 14
1 4 7 10

)
+
(

4 1 4 1
12 3 12 3

)
=
(

6 7 14 15
13 7 19 13

)
and similarly

( 5 0 )
(

1 1 1 1
0 1 2 3

)
+ ( 1 ) ( 4 1 4 1 )

= ( 5 5 5 5 ) + ( 4 1 4 1 )
= ( 9 6 9 6 ) ,

so that the answer is  6 7 14 15
13 7 19 13
9 6 9 6

 ,

as can easily be checked directly. /−−�

Comment ...
2.2.1 Looking back on the proofs in this section one quickly sees that
the only facts about real numbers which are made use of are the associative,
commutative and distributive laws for addition and multiplication, existence
of 1 and 0, and the like; in short, these results are based simply on the field
axioms. Everything in this section is true for matrices over any field. ...

§2b Simultaneous equations

In this section we review the procedure for solving simultaneous linear equa-
tions. Given the system of equations

(2.2.2)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm
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the first step is to replace it by a reduced echelon system which is equivalent
to the original. Solving reduced echelon systems is trivial. An algorithm is
described below for obtaining the reduced echelon system corresponding to
a given system of equations. The algorithm makes use of elementary row
operations, of which there are three kinds:

1. Replace an equation by itself plus a multiple of another.
2. Replace an equation by a nonzero multiple of itself.
3. Write the equations down in a different order.

The most important thing about row operations is that the new equations
should be consequences of the old, and, conversely, the old equations should
be consequences of the new, so that the operations do not change the solution
set. It is clear that the three kinds of elementary row operations do satisfy
this requirement; for instance, if the fifth equation is replaced by itself minus
twice the second equation, then the old equations can be recovered from the
new by replacing the new fifth equation by itself plus twice the second.

It is usual when solving simultaneous equations to save ink by simply
writing down the coefficients, omitting the variables, the plus signs and the
equality signs. In this shorthand notation the system 2.2.2 is written as the
augmented matrix

(2.2.3)


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

· · · ...
am1 am2 · · · amn bm

 .

It should be noted that the system of equations 2.2.2 can also be written as
the single matrix equation

a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
am1 am2 · · · amn



x1

x2
...
xn

 =


b1
b2
...
bm


where the matrix product on the left hand side is as defined in the previous
section. For the time being, however, this fact is not particularly relevant,
and 2.2.3 should simply be regarded as an abbreviated notation for 2.2.2.

The leading entry of a nonzero row of a matrix is the first (that is,
leftmost) nonzero entry. An echelon matrix is a matrix with the following
properties:
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(i) All nonzero rows must precede all zero rows.
(ii) For all i, if rows i and i + 1 are nonzero then the leading entry of

row i + 1 must be further to the right—that is, in a higher numbered
column—than the leading entry of row i.

A reduced echelon matrix has two further properties:
(iii) All leading entries must be 1.
(iv) A column which contains the leading entry of any row must contain no

other nonzero entry.
Once a system of equations is obtained for which the augmented matrix is
reduced echelon, proceed as follows to find the general solution. If the last
leading entry occurs in the final column (corresponding to the right hand side
of the equations) then the equations have no solution (since we have derived
the equation 0=1), and we say that the system is inconsistent. Otherwise
each nonzero equation determines the variable corresponding to the leading
entry uniquely in terms the other variables, and those variables which do not
correspond to the leading entry of any row can be given arbitrary values. To
state this precisely, suppose that rows 1, 2, . . . , k are the nonzero rows, and
suppose that their leading entries occur in columns i1, i2, . . . , ik respectively.
We may call xi1 , xi2 , . . . , xik

the pivot or basic variables and the remaining
n − k variables the free variables. The most general solution is obtained by
assigning arbitrary values to the free variables, and solving equation 1 for
xi1 , equation 2 for xi2 , . . . , and equation k for xik

, to obtain the values of
the basic variables. Thus the general solution of consistent system has n− k
degrees of freedom, in the sense that it involves n−k arbitrary parameters. In
particular a consistent system has a unique solution if and only if n− k = 0.

Example

#2 Suppose that after performing row operations on a system of five equa-
tions in the nine variables x1, x2, . . . , x9, the following reduced echelon aug-
mented matrix is obtained:

(2.2.4)


0 0 1 2 0 0 −2 −1 0 8
0 0 0 0 1 0 −4 0 0 2
0 0 0 0 0 1 1 3 0 −1
0 0 0 0 0 0 0 0 1 5
0 0 0 0 0 0 0 0 0 0

 .

The leading entries occur in columns 3, 5, 6 and 9, and so the basic variables
are x3, x5, x6 and x9. Let x1 = α, x2 = β, x4 = γ, x7 = δ and x8 = ε, where
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α, β, γ, δ and ε are arbitrary parameters. Then the equations give

x3 = 8− 2γ + 2δ + ε

x5 = 2 + 4δ
x6 = −1− δ − 3ε
x9 = 5

and so the most general solution of the system is

x1

x2

x3

x4

x5

x6

x7

x8

x9


=



α
β

8− 2γ + 2δ + ε
γ

2 + 4δ
−1− δ − 3ε

δ
ε
5



=



0
0
8
0
2
−1
0
0
5


+ α



1
0
0
0
0
0
0
0
0


+ β



0
1
0
0
0
0
0
0
0


+ γ



0
0
−2
1
0
0
0
0
0


+ δ



0
0
2
0
4
−1
1
0
0


+ ε



0
0
1
0
0
−3
0
1
0


.

It is not wise to attempt to write down this general solution directly from the
reduced echelon system 2.2.4. Although the actual numbers which appear
in the solution are the same as the numbers in the augmented matrix, apart
from some changes in sign, some care is required to get them in the right
places!

Comments ...

2.2.5 In general there are many different choices for the row operations
to use when putting the equations into reduced echelon form. It can be
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shown, however, that the reduced echelon form itself is uniquely determined
by the original system: it is impossible to change one reduced echelon system
into another by row operations.

2.2.6 We have implicitly assumed that the coefficients aij and bi which
appear in the system of equations 2.2.2 are real numbers, and that the un-
knowns xj are also meant to be real numbers. However, it is easily seen
that the process used for solving the equations works equally well for any
field. ...

There is a straightforward algorithm for obtaining the reduced echelon
system corresponding to a given system of linear equations. The idea is to
use the first equation to eliminate x1 from all the other equations, then use
the second equation to eliminate x2 from all subsequent equations, and so
on. For the first step it is obviously necessary for the coefficient of x1 in the
first equation to be nonzero, but if it is zero we can simply choose to call a
different equation the “first”. Similar reorderings of the equations may be
necessary at each step.

More exactly, and in the terminology of row operations, the process is
as follows. Given an augmented matrix with m rows, find a nonzero entry in
the first column. This entry is called the first pivot. Swap rows to make the
row containing this first pivot the first row. (Strictly speaking, it is possible
that the first column is entirely zero; in that case use the next column.) Then
subtract multiples of the first row from all the others so that the new rows
have zeros in the first column. Thus, all the entries below the first pivot will
be zero. Now repeat the process, using the (m − 1)-rowed matrix obtained
by ignoring the first row. That is, looking only at the second and subsequent
rows, find a nonzero entry in the second column. If there is none (so that
elimination of x1 has accidentally eliminated x2 as well) then move on to the
third column, and keep going until a nonzero entry is found. This will be
the second pivot. Swap rows to bring the second pivot into the second row.
Now subtract multiples of the second row from all subsequent rows to make
the entries below the second pivot zero. Continue in this way (using next the
m − 2-rowed matrix obtained by ignoring the first two rows) until no more
pivots can be found.

When this has been done the resulting matrix will be in echelon form,
but (probably) not reduced echelon form. The reduced echelon form is readily
obtained, as follows. Start by dividing all entries in the last nonzero row by
the leading entry—the pivot—in the row. Then subtract multiples of this
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row from all the preceding rows so that the entries above the pivot become
zero. Repeat this for the second to last nonzero row, then the third to last,
and so on. It is important to note the following:
2.2.7 The algorithm involves dividing by each of the pivots.

§2c Partial pivoting

As commented above, the procedure described in the previous section applies
equally well for solving simultaneous equations over any field. Differences
between different fields manifest themselves only in the different algorithms
required for performing the operations of addition, subtraction, multiplica-
tion and division in the various fields. For this section, however, we will
restrict our attention exclusively to the field of real numbers (which is, after
all, the most important case).

Practical problems often present systems with so many equations and
so many unknowns that it is necessary to use computers to solve them. Usu-
ally, when a computer performs an arithmetic operation, only a fixed number
of significant figures in the answer are retained, so that each arithmetic oper-
ation performed will introduce a minuscule round-off error. Solving a system
involving hundreds of equations and unknowns will involve millions of arith-
metic operations, and there is a definite danger that the cumulative effect of
the minuscule approximations may be such that the final answer is not even
close to the true solution. This raises questions which are extremely impor-
tant, and even more difficult. We will give only a very brief and superficial
discussion of them.

We start by observing that it is sometimes possible that a minuscule
change in the coefficients will produce an enormous change in the solution,
or change a consistent system into an inconsistent one. Under these circum-
stances the unavoidable roundoff errors in computation will produce large
errors in the solution. In this case the matrix is ill-conditioned, and there is
nothing which can be done to remedy the situation.

Suppose, for example, that our computer retains only three significant
figures in its calculations, and suppose that it encounters the following system
of equations:

x+ 5z = 0
12y + 12z = 36

.01x+ 12y + 12z = 35.9



30 Chapter Two: Matrices, row vectors and column vectors

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

Using the algorithm described above, the first step is to subtract .01 times
the first equation from the third. This should give 12y + 11.95z = 35.9,
but the best our inaccurate computer can get is either 12y + 11.9z = 35.9
or 12y + 12z = 35.9. Subtracting the second equation from this will either
give 0.1z = 0.1 or 0z = 0.1, instead of the correct 0.05z = 0.1. So the
computer will either get a solution which is badly wrong, or no solution at all.
The problem with this system of equations—at least, for such an inaccurate
computer—is that a small change to the coefficients can dramatically change
the solution. As the equations stand the solution is x = −10, y = 1, z = 2,
but if the coefficient of z in the third equation is changed from 12 to 12.1 the
solution becomes x = 10, y = 5, z = −2.

Solving an ill-conditioned system will necessarily involve dividing by a
number that is close to zero, and a small error in such a number will produce
a large error in the answer. There are, however, occasions when we may be
tempted to divide by a number that is close to zero when there is in fact no
need to. For instance, consider the equations

2.2.8
.01x+ 100y = 100

x+ y = 2

If we select the entry in the first row and first column of the augmented
matrix as the first pivot, then we will subtract 100 times the first row from
the second, and obtain (

.01 100 100
0 −9999 −9998

)
.

Because our machine only works to three figures, −9999 and −9998 will both
be rounded off to 10000. Now we divide the second row by −10000, then
subtract 100 times the second row from the first, and finally divide the first
row by .01, to obtain the reduced echelon matrix(

1 0 0
0 1 1

)
.

That is, we have obtained x = 0, y = 1 as the solution. Our value of y is
accurate enough; our mistake was to substitute this value of y into the first
equation to obtain a value for x. Solving for x involved dividing by .01, and
the small error in the value of y resulted in a large error in the value of x.
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A much more accurate answer is obtained by selecting the entry in the

second row and first column as the first pivot. After swapping the two rows,
the row operation procedure continues as follows:(

1 1 2
.01 100 100

)
R2:=R2−.01R1−−−−−−−−−→

(
1 1 2
0 100 100

)
R2:=

1
100 R2

R1:=R1−R2−−−−−−−→

(
1 0 1
0 1 1

)
.

We have avoided the numerical instability that resulted from dividing by .01,
and our answer is now correct to three significant figures.

In view of these remarks and the comment 2.2.7 above, it is clear that
when deciding which of the entries in a given column should be the next
pivot, we should avoid those that are too close to zero.

Of all possible pivots in the column, always
choose that which has the largest absolute value.

Choosing the pivots in this way is called partial pivoting. It is this procedure
which is used in most practical problems.†

Some refinements to the partial pivoting algorithm may sometimes be
necessary. For instance, if the system 2.2.8 above were modified by multiply-
ing the whole of the first equation by 200 then partial pivoting as described
above would select the entry in the first row and first column as the first
pivot, and we would encounter the same problem as before. The situation
can be remedied by scaling the rows before commencing pivoting, by divid-
ing each row through by its entry of largest absolute value. This makes the
rows commensurate, and reduces the likelihood of inaccuracies resulting from
adding numbers of greatly differing magnitudes.

Finally, it is worth noting that although the claims made above seem
reasonable, it is hard to justify them rigorously. This is because the best al-
gorithm is not necessarily the best for all systems. There will always be cases
where a less good algorithm happens to work well for a particular system.
It is a daunting theoretical task to define the “goodness” of an algorithm in
any reasonable way, and then use the concept to compare algorithms.

† In complete pivoting all the entries of all the remaining columns are compared

when choosing the pivots. The resulting algorithm is slightly safer, but much slower.
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§2d Elementary matrices

In this section we return to a discussion of general properties of matrices:
properties that are true for matrices over any field. Accordingly, we will
not specify any particular field; instead, we will use the letter ‘F ’ to denote
some fixed but unspecified field, and the elements of F will be referred to
as ‘scalars’. This convention will remain in force for most of the rest of
this book, although from time to time we will restrict ourselves to the case
F = R, or impose some other restrictions on the choice of F . It is conceded,
however, that the extra generality that we achieve by this approach is not of
great consequence for the most common applications of linear algebra, and
the reader is encouraged to think of scalars as ordinary numbers (since they
usually are).

2.3 Definition Let m and n be positive integers. An elementary row
operation is a function ρ:Mat(m× n, F ) → Mat(m× n, F ) such that either
ρ = ρij for some i, j ∈ I = {1, 2, . . . ,m}, or ρ = ρ

(λ)
i for some i ∈ I and

some nonzero scalar λ, or ρ = ρ
(λ)
ij for some i, j ∈ I and some scalar λ, where

ρij , ρ
(λ)
ij and ρ(λ)

i are defined as follows:
(i) ρij(A) is the matrix obtained from A by swapping the ith and jth rows;

(ii) ρ(λ)
i (A) is the matrix obtained from A by multiplying the ith row by λ;

(iii) ρ(λ)
ij (A) is the matrix obtained from A by adding λ times the ith row to

the jth row.

Comment ...
2.3.1 Elementary column operations are defined similarly. ...

2.4 Definition An elementary matrix is any matrix obtainable by apply-
ing an elementary row operation to an identity matrix. We use the following
notation:

Eij = ρij(I), E
(λ)
i = ρ

(λ)
i (I), E

(λ)
ij = ρ

(λ)
ij (I),

where I denotes an identity matrix.

It can be checked that all elementary row operations have inverses. So
it follows that they are bijective functions. The inverses are in fact also
elementary row operations:
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2.5 Proposition We have ρ−1

ij = ρij and (ρ(λ)
ij )−1 = ρ

(−λ)
ij for all i, j and

λ, and if λ 6= 0 then (ρ(λ)
i )−1 = ρ

(λ−1)
i .

The principal theorem about elementary row operations is that the ef-
fect of each is the same as premultiplication by the corresponding elementary
matrix:

2.6 Theorem If A is a matrix of m rows and I is as in 2.3 then for all
i, j ∈ I and λ ∈ F we have that ρij(A) = EijA, ρ

(λ)
i (A) = E

(λ)
i A and

ρ
(λ)
ij (A) = E

(λ)
ij A.

Once again there must be corresponding results for columns. However,
we do not have to define “column elementary matrices”, since it turns out
that the result of applying an elementary column operation to an identity
matrix I is the same as the result of applying an appropriate elementary
row operation to I. Let us use the following notation for elementary column
operations:

(i) γij swaps columns i and j,

(ii) γ(λ)
i multiplies column i by λ,

(iii) γ(λ)
ij adds λ times column i to column j.

We find that

2.7 Theorem If γ is an elementary column operation then γ(A) = Aγ(I)
for all A and the appropriate I. Furthermore, γij(I) = Eij , γ

(λ)
i (I) = E

(λ)
i

and γ
(λ)
ij (I) = E

(λ)
ji .

(Note that i and j occur in different orders on the two sides of the last
equation in this theorem.)

Example

#3 Performing the elementary row operation ρ(2)
21 (adding twice the second

row to the first) on the 3× 3 identity matrix yields the matrix

E =

 1 2 0
0 1 0
0 0 1

 .
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So if A is any matrix with three rows then EA should be the result of per-
forming ρ(2)

21 on A. Thus, for example 1 2 0
0 1 0
0 0 1

 a b c d
e f g h
i j k l

 =

 a+ 2e b+ 2f c+ 2g d+ 2h
e f g h
i j k l

 ,

which is indeed the result of adding twice the second row to the first. Observe
that E is also obtainable by performing the elementary column operation γ(2)

12

(adding twice the first column to the second) on the identity. So if B is any
matrix with three columns, BE is the result of performing γ(2)

12 on B. For
example, (

p q r
s t u

) 1 2 0
0 1 0
0 0 1

 =
(
p 2p+ q r
s 2s+ t u

)
.

The pivoting algorithm described in the previous section gives the fol-
lowing fact.

2.8 Proposition For each A ∈ Mat(m× n, F ) there exists a sequence of
m ×m elementary matrices E1, E2, . . . , Ek such that EkEk−1 . . . E1A is a
reduced echelon matrix.

If A is an n × n matrix then an inverse of A is a matrix B satisfying
AB = BA = I. Matrices which have inverses are said to be invertible. It
is easily proved that a matrix can have at most one inverse; so there can
be no ambiguity in using the notation ‘A−1’ for the inverse of an invert-
ible A. Elementary matrices are invertible, and, as one would expect in
view of 2.5, E−1

ij = Eij , (E(λ)
i )−1 = E

(λ−1)
i and (E(λ)

ij )−1 = E
(−λ)
ij . A ma-

trix which is a product of invertible matrices is also invertible, and we have
(AB)−1 = B−1A−1.

The proofs of all the above results are easy and are omitted. In contrast,
the following important fact is definitely nontrivial.

2.9 Theorem If A, B ∈ Mat(n× n, F ) and if AB = I then it is also true
that BA = I. Thus A and B are inverses of each other.

Proof. By 2.8 there exist n × n matrices T and R such that R is reduced
echelon, T is a product of elementary matrices, and TA = R. Let r be the
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number of nonzero rows of R, and let the leading entry of the ith nonzero
row occur in column ji.

Since the leading entry of each nonzero row of R is further to the right
than that of the preceding row, we must have 1 ≤ j1 < j2 < · · · < jr ≤ n,
and if all the rows of R are nonzero (so that r = n) this forces ji = i for all i.
So either R has at least one zero row, or else the leading entries of the rows
occur in the diagonal positions.

Since the leading entries in a reduced echelon matrix are all 1, and since
all the other entries in a column containing a leading entry must be zero, it
follows that if all the diagonal entries of R are leading entries then R must
be just the identity matrix. So in this case we have TA = I. This gives
T = TI = T (AB) = (TA)B = IB = B, and we deduce that BA = I, as
required.

It remains to prove that it is impossible for R to have a zero row. Note
that T is invertible, since it is a product of elementary matrices, and since
AB = I we have R(BT−1) = TABT−1 = TT−1 = I. But the ith row of
R(BT−1) is obtained by multiplying the ith row of R by BT−1, and will
therefore be zero if the ith row of R is zero. Since R(BT−1) = I certainly
does not have a zero row, it follows that R does not have a zero row. �

Note that Theorem 2.9 applies to square matrices only. If A and B
are not square it is in fact impossible for both AB and BA to be identity
matrices, as the next result shows.

2.10 Theorem If the matrix A has more rows than columns then it is
impossible to find a matrix B such that AB = I.

The proof, which we omit, is very similar to the last part of the proof
of 2.9, and hinges on the fact that the reduced echelon matrix obtained from
A by pivoting must have a zero row.

§2e Determinants

We will have more to say about determinants in Chapter Eight; for the
present, we confine ourselves to describing a method for calculating determi-
nants and stating some properties which we will prove in Chapter Eight.

Associated with every square matrix is a scalar called the determinant
of the matrix. A 1 × 1 matrix is just a scalar, and its determinant is equal
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to itself. For 2× 2 matrices the rule is

det
(
a b
c d

)
= ad− bc.

We now proceed recursively. Let A be an n× n matrix, and assume that we
know how to calculate the determinants of (n − 1) × (n − 1) matrices. We
define the (i, j)th cofactor of A, denoted ‘cofij(A)’, to be (−1)i+j times the
determinant of the matrix obtained by deleting the ith row and jth column
of A. So, for example, if n is 3 we have

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33


and we find that

cof21(A) = (−1)3 det
(
A12 A13

A32 A33

)
= −A12A33 +A13A32.

The determinant of A (for any n) is given by the so-called first row expansion:

detA = A11 cof11(A) +A12 cof12(A) + · · ·+A1n cof1n(A)

=
n∑

i=1

A1i cof1i(A).

(A better practical method for calculating determinants will be presented
later.)

It turns out that a matrix A is invertible if and only if detA 6= 0, and
if detA 6= 0 then the inverse of A is given by the formula

A−1 =
1

detA
adjA

where adjA (the adjoint matrix†) is the transposed matrix of cofactors; that
is,

(adjA)ij = cofji(A).

† called the adjugate matrix in an earlier edition of this book, since some mis-

guided mathematicians use the term ‘adjoint matrix’ for the conjugate transpose

of a matrix.
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In particular, in the 2× 2 case this says that(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
provided that ad − bc 6= 0, a formula that can easily be verified directly.
We remark that it is foolhardy to attempt to use the cofactor formula to
calculate inverses of matrices, except in the 2× 2 case and (occasionally) the
3× 3 case; a much quicker method exists using row operations.

The most important properties of determinants are as follows.
(i) A square matrix A has an inverse if and only if detA 6= 0.
(ii) Let A and B be n× n matrices. Then det(AB) = detAdetB.
(iii) Let A be an n × n matrix. Then detA = 0 if and only if there exists

a nonzero n × 1 matrix x (that is, a column) satisfying the equation
Ax = 0.

This last property is particularly important for the next section.

Example

#4 Calculate adjA and (adjA)A for the following matrix A:

A =

 3 −1 4
−2 −2 3

7 3 −2

 .

�−−. The cofactors are as follows:

(−1)2 det
(−2 3

3 −2

)
= −5 (−1)3 det

(−2 3

7 −2

)
= 17 (−1)4 det

(−2 −2

7 3

)
= 8

(−1)3 det
(−1 4

3 −2

)
= 10 (−1)4 det

( 3 4
7 −2

)
= −34 (−1)5 det

( 3 −1

7 3

)
= −16

(−1)4 det
(−1 4

−2 3

)
= 5 (−1)5 det

( 3 4
−2 3

)
= −17 (−1)6 det

( 3 −1

−2 −2

)
= −8.

So the transposed matrix of cofactors is

adjA =

−5 10 −16
17 −34 −17
8 −16 −8

 .
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Hence we find that

(adjA)A =

−5 10 5
17 −34 −17
8 −16 −8

 3 −1 4
−2 −2 3

7 3 −2


=

−15− 20 + 35 5− 20 + 15 −20 + 30− 10
51 + 68− 119 −17 + 68− 51 68− 102 + 34
24 + 32− 56 −8 + 32− 24 32− 48 + 16


=

 0 0 0
0 0 0
0 0 0

 .

Since (adjA)A should equal (detA)I, we conclude that detA = 0. /−−�

§2f Introduction to eigenvalues

2.11 Definition Let A ∈ Mat(n× n, F ). A scalar λ is called an eigenvalue
of A if there exists a nonzero v ∈ Fn such that Av = λv. Any such v is called
an eigenvector.

Comments ...
2.11.1 Eigenvalues are sometimes called characteristic roots or character-
istic values, and the words ‘proper’ and ‘latent’ are occasionally used instead
of ‘characteristic’.

2.11.2 Since the field Q of all rational numbers is contained in the field
R of all real numbers, a matrix over Q can also be regarded as a matrix over
R. Similarly, a matrix over R can be regarded as a matrix over C, the field
of all complex numbers. It is a perhaps unfortunate fact that there are some
rational matrices that have eigenvalues which are real or complex but not
rational, and some real matrices which have non-real complex eigenvalues.

...

2.12 Theorem Let A ∈ Mat(n× n, F ). A scalar λ is an eigenvalue of A if
and only if det(A− λI) = 0.

Proof. For all v ∈ Fn we have that Av = λv if and only if

(A− λI)v = Av − λv = 0.
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By the last property of determinants mentioned in the previous section, a
nonzero such v exists if and only if det(A− λI) = 0. �

Example

#5 Find the eigenvalues and corresponding eigenvectors of A =
(

3 1
1 3

)
.

�−−. We must find the values of λ for which det(A− λI) = 0. Now

det(A− λI) = det
(

3− λ 1
1 3− λ

)
= (3− λ)2 − 1.

So det(A− λI) = (4− λ)(2− λ), and the eigenvalues are 4 and 2.
To find eigenvectors corresponding to the eigenvalue 2 we must find

nonzero columns v satisfying (A− 2I)v = 0; that is, we must solve(
1 1
1 1

)(
x
y

)
=
(

0
0

)
.

Trivially we find that all solutions are of the form
(

ξ
−ξ

)
, and hence that

any nonzero ξ gives an eigenvector. Similarly, solving(
−1 1

1 −1

)(
x
y

)
=
(

0
0

)
we find that the columns of the form

(
ξ
ξ

)
with ξ 6= 0 are the eigenvectors

corresponding to 4 . /−−�

As we discovered in the above example the equation det(A − λI) = 0,
which we must solve in order to find the eigenvalues of A, is a polynomial
equation for λ. It is called the characteristic equation of A. The polynomial
involved is of considerable theoretical importance.

2.13 Definition Let A ∈ Mat(n× n, F ) and let x be an indeterminate.
The polynomial f(x) = det(A − xI) is called the characteristic polynomial
of A.

Some authors define the characteristic polynomial to be det(xI − A),
which is the same as ours if n is even, the negative of ours if n is odd. Observe
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that the characteristic roots (eigenvalues) are the roots of the characteristic
polynomial.

A square matrix A is said to be diagonal if Aij = 0 whenever i 6= j. As
we shall see in examples below and in the exercises, the following problem
arises naturally in the solution of systems simultaneous differential equations:

2.13.1 Given a square matrix A, find an invertible
matrix P such that P−1AP is diagonal.

Solving this problem is sometimes called “diagonalizing A”. Eigenvalue the-
ory is used to do it.

Examples

#6 Diagonalize the matrix A =
(

3 1
1 3

)
.

�−−. We have calculated the eigenvalues and eigenvectors of A in #5 above,
and so we know that (

3 1
1 3

)(
1

−1

)
=
(

2
−2

)
and (

3 1
1 3

)(
1
1

)
=
(

4
4

)
and using Proposition 2.2 to combine these into a single matrix equation
gives

2.13.2

(
3 1
1 3

)(
1 1

−1 1

)
=
(

2 4
−2 4

)
=
(

1 1
−1 1

)(
2 0
0 4

)
.

Defining now

P =
(

1 1
−1 1

)
we see that detP = 2 6= 0, and hence P−1 exists. It follows immediately
from 2.13.2 that P−1AP = diag(2, 4). /−−�
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#7 Solve the simultaneous differential equations

x′(t) = 3x(t) + y(t)
y′(t) = x(t) + 3y(t).

�−−. We may write the equations as

d

dt

(
x
y

)
= A

(
x
y

)
where A is the matrix from our previous example. The method is to find a
change of variables which simplifies the equations. Choose new variables u
and v related to x and y by(

x
y

)
= P

(
u
v

)
=
(
p11u+ p12v
p21u+ p22v

)
where pij is the (i, j)th entry of P . We require P to be invertible, so that it
is possible to express u and v in terms of x and y, and the entries of P must
constants, but there are no other restrictions. Differentiating, we obtain

d

dt

(
x
y

)
=
(
x′

y′

)
=
(

d
dt (p11u+ p12v)
d
dt (p21u+ p22v)

)
=
(
p11u

′ + p12v
′

p21u
′ + p22v

′

)
= P

(
u′

v′

)
since the pij are constants. In terms of u and v the equations now become

P

(
u′

v′

)
= AP

(
u
v

)
or, equivalently, (

u′

v′

)
= P−1AP

(
u
v

)
.

That is, in terms of the new variables the equations are of exactly the same
form as before, but the coefficient matrix A has been replaced by P−1AP .
We naturally wish choose the matrix P in such a way that P−1AP is as
simple as possible, and as we have seen in the previous example it is possible
(in this case) to arrange that P−1AP is diagonal. To do so we choose P to be
any invertible matrix whose columns are eigenvectors of A. Hence we define

P =
(

1 1
−1 1

)
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(which means that x = u+ v and y = −u+ v).
Our new equations now are(

u′

v′

)
=
(

2 0
0 4

)(
u
v

)
or, on expanding, u′ = 2u and v′ = 4v. The solution to this is u = He2t and
v = Ke4t where H and K are arbitrary constants, and this gives(

x
y

)
=
(

1 1
−1 1

)(
He2t

Ke4t

)
=
(

He2t +Ke4t

−He2t +Ke4t

)
so that the most general solution to the original problem is x = He2t +Ke4t

and y = −He2t +Ke4t, where H and K are arbitrary constants. /−−�

#8 Another typical application involving eigenvalues is the Leslie popula-
tion model. We are interested in how the size of a population varies as time
passes. At regular intervals the number of individuals in various age groups
is counted. At time t let

x1(t) = the number of individuals aged between 0 and 1
x2(t) = the number of individuals aged between 1 and 2

...
xn(t) = the number of individuals aged between n− 1 and n

where n is the maximum age ever attained. Censuses are taken at times
t = 0, 1, 2, . . . and it is observed that

x2(i+ 1) = b1x1(i)
x3(i+ 1) = b2x2(i)

...
xn(i+ 1) = bn−1xn−1(i).

Thus, for example, b1 = 0.95 would mean that 95% of those aged between 0
and 1 at one census survive to be aged between 1 and 2 at the next. We also
find that

x1(i+ 1) = a1x1(i) + a2x2(i) + · · ·+ anxn(i)
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for some constants a1, a2, . . . , an. That is, the ai measure the contributions
to the birth rate from the different age groups. In matrix notation

x1(i+ 1)
x2(i+ 1)
x3(i+ 1)

...
xn(i+ 1)

 =


a1 a2 a3 . . . an−1 an

b1 0 0 . . . 0 0
0 b2 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . bn−1 0



x1(i)
x2(i)
x3(i)

...
xn(i)


or x

˜
(i+ 1) = Lx

˜
(i), where x

˜
(t) is the column with xj(t) as its jth entry and

L =


a1 a2 a3 . . . an−1 an

b1 0 0 . . . 0 0
0 b2 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . bn−1 0


is the Leslie matrix.

Assuming this relationship between x
˜
(i+1) and x

˜
(i) persists indefinitely

we see that x
˜
(k) = Lkx

˜
(0). We are interested in the behaviour of Lkx

˜
(0)

as k → ∞. It turns out that in fact this behaviour depends on the largest
eigenvalue of L, as we can see in an oversimplified example.

Suppose that n = 2 and L =
(

1 1
1 0

)
. That is, there are just two age

groups (young and old), and
(i) all young individuals survive to become old in the next era (b1 = 1),
(ii) on average each young individual gives rise to one offspring in the next

era, and so does each old individual (a1 = a2 = 1).
The eigenvalues of L are (1 +

√
5)/2 and (1−

√
5)/2, and the corresponding

eigenvectors are
(

(1 +
√

5)/2
1

)
and

(
(1−

√
5)/2

1

)
respectively.

Suppose that there are initially one billion young and one billion old
individuals. This tells us x

˜
(0). By solving equations we can express x

˜
(0) in

terms of the eigenvectors:

x
˜
(0) =

(
1
1

)
=

1 +
√

5
2
√

5

(
(1 +

√
5)/2

1

)
− 1−

√
5

2
√

5

(
(1−

√
5)/2

1

)
.
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We deduce that

x
˜
(k) = Lkx

˜
(0)

=
1 +

√
5

2
√

5
Lk

(
(1 +

√
5)/2

1

)
− 1−

√
5

2
√

5
Lk

(
(1−

√
5)/2

1

)

=
1 +

√
5

2
√

5

(
1 +

√
5

2

)k (
(1 +

√
5)/2

1

)

− 1−
√

5
2
√

5

(
1−

√
5

2

)k (
(1−

√
5)/2

1

)
.

But
(
(1−

√
5)/2

)k becomes insignificant in comparison with
(
(1 +

√
5)/2

)k
as k →∞. We see that for k large

x
˜
(k) ≈ 1√

5

((
(1 +

√
5)/2

)k+2(
(1 +

√
5)/2

)k+1

)
.

So in the long term the ratio of young to old approaches (1+
√

5)/2, and the
size of the population is multiplied by (1+

√
5)/2 (the largest eigenvalue) per

unit time.

#9 Let f(x, y) be a smooth real valued function of two real variables,
and suppose that we are interested in the behaviour of f near some fixed
point. Choose that point to be the origin of our coordinate system. Under
appropriate conditions f(x, y) can be approximated by a Taylor series

f(x, y) ≈ p+ qx+ ry + sx2 + 2txy + uy2 + · · ·

where higher order terms become less and less significant as (x, y) is made
closer and closer to (0, 0). For the first few terms we can conveniently use
matrix notation, and write

2.13.3 f(x
˜
) ≈ p+ Lx

˜
+ tx

˜
Qx

˜

where L = ( q r ) and Q =
(
s t
t u

)
, and x

˜
is the two-component column

with entries x and y. Note that the entries of L are given by the first order
partial derivatives of f at 0

˜
, and the entries of Q are given by the second
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order partial derivatives of f at 0

˜
. Furthermore, 2.13.3 is equally valid when

x
˜

has more than two components.

In the case that 0
˜

is a critical point of f the terms of degree 1 disappear,
and the behaviour of f near 0

˜
is determined by the quadratic form tx

˜
Qx

˜
.

To understand tx
˜
Qx

˜
it is important to be able to rotate the axes so as to

eliminate product terms like xy and be left only with the square terms. We
will return to this problem in Chapter Five, and show that it can always be
done. That the eigenvalues of the matrix Q are of crucial importance can be
seen easily in the two variable case, as follows.

Rotating the axes through an angle θ introduces new variables x′ and
y′ related to the old variables by(

x
y

)
=
(

cos θ − sin θ
sin θ cos θ

)(
x′

y′

)
or, equivalently

(x y ) = (x′ y′ )
(

cos θ sin θ
− sin θ cos θ

)
.

That is, x
˜

= Tx
˜
′ and tx

˜
= t(x

˜
′)tT . Substituting this into the expression for

our quadratic form gives

t(x
˜
′)
(

cos θ sin θ
− sin θ cos θ

)(
s t
t u

)(
cos θ − sin θ
sin θ cos θ

)
x
˜
′

or t(x
˜
′) tTQTx

˜
′. Our aim is to choose θ so that Q′ = tTQT is diagonal.

Since it happens that the transpose of the rotation matrix T coincides with
its inverse, this is the same problem introduced in 2.13.1 above. It is because
Q is its own transpose that a diagonalizing matrix T can be found satisfying
T−1 = tT .

The diagonal entries of the diagonal matrix Q′ are just the eigenval-
ues of Q. It can be seen that if the eigenvalues are both positive then the
critical point 0 is a local minimum. The corresponding fact is true in the
n-variable case: if all eigenvalues of Q are positive then we have a local min-
imum. Likewise, if all are negative then we have a local maximum. If some
eigenvalues are negative and some are positive it is neither a maximum nor
a minimum. Since the determinant of Q′ is the product of the eigenvalues,
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and since detQ = detQ′, it follows in the two variable case that we have a
local maximum or minimum if and only if detQ > 0. For n variables the test
is necessarily more complicated.

#10 We remark also that eigenvalues are of crucial importance in questions
of numerical stability in the solving of equations. If x and b are related by
Ax = b where A is a square matrix, and if it happens that A has an eigenvalue
very close to zero and another eigenvalue with a large absolute value, then it
is likely that small changes in either x or b will produce large changes in the
other. For example, if

A =
(

100 0
0 0.01

)
then changing the first component of x by 0.1 changes the first component of
b by 10, while changing the second component of b by 0.1 changes the second
component of x by 10. If, as in this example, the matrix A is equal to its own
transpose, the condition number of A is defined as the ratio of the largest
eigenvalue of A to the smallest eigenvalue of A, and A is ill-conditioned (see
§2c) if the condition number is too large.

Whilst on numerical matters, we remark that numerical calculation of
eigenvalues is an important practical problem. One method is to make use of
the fact that (usually) if A is a square matrix and x a column then as k →∞
the columns Akx tend to approach scalar multiples of an eigenvector. (We
saw this in #8 above.) In practice, especially for large matrices, the best
numerical methods for calculating eigenvalues do not depend upon direct
solution of the characteristic equation.

Exercises

1. Prove that matrix addition is associative (A+ (B + C) = (A+ B) + C
for all A, B and C) and commutative (A+B = B+A for all A and B).

2. Prove that if A is an m×n matrix and Im and In are (respectively) the
m×m and n× n identity matrices then AIn = A = ImA.

3. Prove that if A, B and C are matrices of appropriate shapes and λ and
µ are arbitrary numbers then A(λB + µC) = λ(AB) + µ(AC).
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4. Use the properties of matrix addition and multiplication from the pre-

vious exercises together with associativity of matrix multiplication to
prove that a square matrix can have at most one inverse.

5. Check, by tedious expansion, that the formula A(adjA) = (detA)I is
valid for any 3× 3 matrix A.

6. Prove that t(AB) = (tB)(tA) for all matrices A and B such that AB
is defined. Prove that if the entries of A and B are complex numbers
then AB = AB. (If X is a complex matrix then X is the matrix whose
(i, j)-entry is the complex conjugate of Xij).)

7. A particle moves in the plane, its coordinates at time t being (x(t), y(t))
where x and y are differentiable functions on [0,∞). Suppose that

(∗)
x′(t) = − 2y(t)
y′(t) = x(t) + 3y(t)

Show (by direct calculation) that the equations (∗) can be solved by
putting x(t) = 2z(t) − w(t) and y(t) = −z(t) + w(t), and obtaining
differential equations for z and w.

8. (i) Show that if ξ is an eigenvalue of the 2× 2 matrix(
a b
c d

)
then ξ is a solution of the quadratic equation

x2 − (a+ d)x+ (ad− bc) = 0.

Hence find the eigenvalues of the matrix
(

0 −2
1 3

)
.

(ii) Find an eigenvector for each of these eigenvalues.

9. (i) Suppose that A is an n × n matrix and that ξ1, ξ2, . . . , ξn are
eigenvalues for A. For each i let vi be an eigenvector corresponding
to the eigenvalue ξ, and let P be the n×n matrix whose n columns
are v1, v2, . . . , vn (in that order). Show that AP = PD, where D
is the diagonal matrix with diagonal entries ξ1, ξ2, . . . , ξn. (That
is, Dij = ξiδij , where δij is the Kronecker delta.)



48 Chapter Two: Matrices, row vectors and column vectors

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

(ii) Use the previous exercise to find a matrix P such that(
0 −2
1 3

)
P = P

(
ξ 0
0 ν

)
where ξ and ν are the eigenvalues of the matrix on the left. (Note
the connection with Exercise 7.)

10. Calculate the eigenvalues of the following matrices, and for each eigen-
value find an eigenvector.

(a)
(

4 2
−1 1

)
(b)

 2 −2 7
0 −1 4
0 0 5

 (c)

 −7 −2 6
−2 1 2
−10 −2 9


11. Solve the system of differential equations

x′ = −7x− 2y + 6z
y′ = −2x+ y + 2z
z′ = −10x− 2y + 9z.

12. Let A be an n × n matrix. Prove that the characteristic polynomial
cA(x) of A has degree n. Prove also that the leading coefficient of cA(x)
is (−1)n, the coefficient of xn−1 is (−1)n−1

∑n
i=1Aii, and the constant

term is detA. (Hint: Use induction on n.)
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3
Introduction to vector spaces

Pure Mathematicians love to generalize ideas. If they manage, by means of a
new trick, to prove some conjecture, they always endeavour to get maximum
mileage out of the idea by searching for other situations in which it can be
used. To do this successfully one must discard unnecessary details and focus
attention only on what is really needed to make the idea work; furthermore,
this should lead both to simplifications and deeper understanding. It also
leads naturally to an axiomatic approach to mathematics, in which one lists
initially as axioms all the things which have to hold before the theory will be
applicable, and then attempts to derive consequences of these axioms. Poten-
tially this kills many birds with one stone, since good theories are applicable
in many different situations.

We have alreay used the axiomatic approach in Chapter 1 in the def-
inition of ‘field’, and in this chapter we proceed to the definition of ‘vector
space’. We start with a discussion of linearity, since one of the major reasons
for introducing vector spaces is to provide a suitable context for discussion
of this concept.

§3a Linearity

A common mathematical problem is to solve a system of equations of the
form

3.0.1 T (x) = 0.

Depending on the context the unknown x could be a number, or something
more complicated, such as an n-tuple, a function, or even an n-tuple of
functions. For instance the simultaneous linear equations

3.0.2

 3 1 1 1
−1 1 −1 2

4 4 0 6



x1

x2

x3

x4

 =

 0
0
0


49
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have the form 3.0.1 with x a 4-tuple, and the differential equation

3.0.3 t2 d2x/dt2 + t dx/dt+ (t2 − 4)x = 0

is an example in which x is a function. Similarly, the pair of simultaneous
differential equations

df/dt = 2f + 3g
dg/dt = 2f + 7g

could be rewritten as

3.0.4
d

dt

(
f
g

)
−
(

2 3
2 7

)(
f
g

)
=
(

0
0

)
which is also has the form 3.0.1, with x being an ordered pair of functions.

Whether or not one can solve the system 3.0.1 obviously depends on
the nature of the expression T (x) on the left hand side. In this course we
will be interested in cases in which T (x) is linear in x.

3.1 Definition An expression T (x) is said to be linear in the variable x if

T (x1 + x2) = T (x1) + T (x2)

for all values x1 and x2 of the variable, and

T (λx) = λT (x)

for all values of x and all scalars λ.

If we let T (x) denote the expression on the left hand side of the equa-
tion 3.0.3 above we find that

T (x1 + x2) = t2
d2

dt2
(x1 + x2) + t

d

dt
(x1 + x2) + (t2 − 4)(x1 + x2)

= t2(d2x1/dt
2 + d2x2/dt

2) + t(dx1/dt+ dx2/dt)
+ (t2 − 4)x1 + (t2 − 4)x2

=
(
t2d2x1/dt

2 + tdx1/dt+ (t2 − 4)x1

)
+
(
t2d2x2/dt

2 + tdx2/dt+ (t2 − 4)x2

)
= T (x1) + T (x2)

and

T (λx) = t2
d2

dt2
(λx) + t

d

dt
(λx) + (t2 − 4)λx

= λ(t2d2x/dt2 + tdx/dt+ (t2 − 4)x)
= λT (x).
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Thus T (x) is a linear expression, and for this reason 3.0.3 is called a linear
differential equation. It is left for the reader to check that 3.0.2 and 3.0.4
above are also linear equations.

Example

#1 Suppose that T is linear in x, and let x = x0 be a particular solution
of the equation T (x) = a. Show that the general solution of T (x) = a is
x = x0 + y for y ∈ S, where S is the set of all solutions of T (y) = 0.

�−−. We are given that T (x0) = a. Let y ∈ S, and put x = x0 + y. Then
T (y) = 0, and linearity of T yields

T (x) = T (x0 + y) = T (x0) + T (y) = a+ 0 = a,

and we have shown that x = x0 +y is a solution of T (x) = a whenever y ∈ S.
Now suppose that x is any solution of T (x) = a, and define y = x−x0.

Then we have that x = x0 + y, and by linearity of T we find that

T (y) = T (x− x0) = T (x)− T (x0) = a− a = 0,

so that y ∈ S. Hence all solutions of T (x) = a have the given form. /−−�

Our definition of linearity may seem reasonable at first sight, but a
closer inspection reveals some deficiencies. The term ‘expression in x’ is a
little imprecise; in fact T is simply a function, and we should really have said
something like this:

3.1.1 A function T :V → W is linear if T (x1 + x2) = T (x1) + T (x2)
and T (λx) = λT (x) for all x1, x2, x ∈ V and all scalars λ.

For this to be meaningful V and W have to both be equipped with operations
of addition, and one must also be able to multiply elements of V and W by
scalars.

The set of all m × n matrices (where m and n are fixed) provides an
example of a set equipped with addition and scalar multiplication: with
the definitions as given in Chapter 1, the sum of two m × n matrices is
another m× n matrix, and a scalar multiple of an m× n matrix is an m× n
matrix. We have also seen that addition and scalar multiplication of rows
and columns arises naturally in the solution of simultaneous equations; for
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instance, we expressed the general solution of 2.2.4 in terms of addition and
scalar multiplication of columns. Finally, we can define addition and scalar
multiplication for real valued differentiable functions. If x and y are such
functions then x + y is the real valued differentiable function defined by
(x + y)(t) = x(t) + y(t), and if λ ∈ R then λx is the function defined by
(λx)(t) = λx(t); these definitions were implicit in our discussion of 3.0.3
above.

Roughly speaking, a vector space is a set for which addition and scalar
multiplication are defined in some sensible fashion. By “sensible” I mean
that a certain list of obviously desirable properties must be satisfied. It will
then make sense to ask whether a function from one vector space to another
is linear in the sense of 3.1.1.

§3b Vector axioms

In accordance with the above discussion, a vector space should be a set
(whose elements will be called vectors) which is equipped with an operation
of addition, and a scalar multiplication function which determines an element
λx of the vector space whenever x is an element of the vector space and λ is
a scalar. That is, if x and y are two vectors then their sum x+ y must exist
and be another vector, and if x is a vector and λ a scalar then λx must exist
and be vector.

3.2 Definition Let F be a field. A set V is called a vector space over F
if there is an operation of addition

(x, y) 7−→ x + y

on V , and a scalar multiplication function

(λ, x) 7−→ λx

from F × V to V , such that the following properties are satisfied.
(i) (u+ v) + w = u+ (v + w) for all u, v, w ∈ V .
(ii) u+ v = v + u for all u, v ∈ V .
(iii) There exists an element 0 ∈ V such that 0 + v = v for all v ∈ V .
(iv) For each v ∈ V there exists a u ∈ V such that u+ v = 0.
(v) 1v = v for all v ∈ V .
(vi) λ(µv) = (λµ)v for all λ, µ ∈ F and all v ∈ V .
(vii) (λ+ µ)v = λv + µv for all λ, µ ∈ F and all v ∈ V .
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(viii) λ(u+ v) = λu+ λv for all λ ∈ F and all u, v ∈ V .

Comments ...
3.2.1 The field of scalars F and the vector space V both have zero
elements which are both commonly denoted by the symbol ‘0’. With a little
care one can always tell from the context whether 0 means the zero scalar or
the zero vector. Sometimes we will distinguish notationally between vectors
and scalars by writing a tilde underneath vectors; thus 0

˜
would denote the

zero of the vector space under discussion.

3.2.2 The 1 which appears in axiom (v) is the scalar 1; there is no
vector 1. ...

Examples

#2 Let P be the Euclidean plane and choose a fixed point O ∈ P. The
set of all line segments OP , as P varies over all points of the plane, can be
made into a vector space over R, called the space of position vectors relative
to O. The sum of two line segments is defined by the parallelogram rule; that
is, for P, Q ∈ P find the point R such that OPRQ is a parallelogram, and
define OP + OQ = OR. If λ is a positive real number then λOP is the line
segment OS such that S lies on OP or OP produced and the length of OS
is λ times the length of OP . For negative λ the product λOP is defined
similarly (giving a point on PO produced).

The proofs that the vector space axioms are satisfied are nontrivial
exercises in Euclidean geometry. The same construction is also applicable in
three dimensional Euclidean space.

#3 The set R3, consisting of all ordered triples of real numbers, is an
example of a vector space over R. Addition and scalar multiplication are
defined in the usual way:x1

y1
z2

+

x2

y2
z2

 =

x1 + x2

y1 + y2
z1 + z2


λ

x
y
z

 =

λx
λy
λz


for all real numbers λ, x, x1, . . . etc.. It is trivial to check that the axioms
listed in the definition above are satisfied. Of course, the use of Cartesian
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coordinates shows that this vector space is essentially the same as position
vectors in Euclidean space; you should convince yourself that componentwise
addition really does correspond to the parallelogram law.

#4 The set Rn of all n-tuples of real numbers is a vector space over R for
all positive integers n. Everything is completely analogous to R3. (Recall
that we have defined

Rn =
{

x1

x2
...
xn

 ∣∣∣∣ xi ∈ R for all i
}

tRn = { (x1 x2 . . . xn ) | xi ∈ R for all i }.

It is clear that tRn is also a vector space.)

#5 If F is any field then Fn and tFn are both vector spaces over F . These
spaces of n-tuples are the most important examples of vector spaces, and the
first examples to think of when trying to understand theoretical results.

#6 Let S be any set and let S be the set of all functions from S to F
(where F is a field). If f, g ∈ S and λ ∈ F define f + g, λf ∈ S as follows:

(f + g)(a) = f(a) + g(a)
(λf)(a) = λ

(
f(a)

)
for all a ∈ S. (Note that addition and multiplication on the right hand side
of these equations take place in F ; you do not have to be able to add and
multiply elements of S for the definitions to make sense.) It can now be
shown these definitions of addition and scalar multiplication make S into a
vector space over F ; to do this we must verify that all the axioms are satisfied.
In each case the proof is routine, based on the fact that F satisfies the field
axioms.

(i) Let f, g, h ∈ S. Then for all a ∈ S,(
(f + g) + h

)
(a) = (f + g)(a) + h(a) (by definition addition on S)

= (f(a) + g(a)) + h(a) (same reason)
= f(a) + (g(a) + h(a)) (addition in F is associative)
= f(a) + (g + h)(a) (definition of addition on S)
=
(
f + (g + h)

)
(a) (same reason)
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and so (f + g) + h = f + (g + h).

(ii) Let f, g ∈ S. Then for all a ∈ S,

(f + g)(a) = f(a) + g(a) (by definition)
= g(a) + f(a) (since addition in F is commutative)
= (g + f)(a) (by definition),

so that f + g = g + f .
(iii) Define z:S → F by z(a) = 0 (the zero element of F ) for all a ∈ S. We

must show that this zero function z satisfies f + z = f for all f ∈ S.
For all a ∈ S we have

(f + z)(a) = f(a) + z(a) = f(a) + 0 = f(a)

by the definition of addition in S and the Zero Axiom for fields, whence
the result.

(iv) Suppose that f ∈ S. Define g ∈ S by g(a) = −f(a) for all a ∈ S. Then
for all a ∈ S,

(g + f)(a) = g(a) + f(a) = 0 = z(a),

so that g + f = z. Thus each element of S has a negative.
(v) Suppose that f ∈ S. By definition of scalar multiplication for S and

the Identity Axiom for fields, we have, for all a ∈ S,

(1f)(a) = 1
(
f(a)

)
= f(a)

and therefore 1f = f .
(vi) Let λ, µ ∈ F and f ∈ S. Then for all a ∈ S,(

λ(µf)
)
(a) = λ

(
(µf)(a)

)
= λ(µ f(a)) = (λµ) f(a) =

(
(λµ)f

)
(a)

by the definition of scalar multiplication for S and associativity of mul-
tiplication in the field F . Thus λ(µf) = (λµ)f .

(vii) Let λ, µ ∈ F and f ∈ S. Then for all a ∈ S,(
(λ+ µ)f

)
(a) = (λ+ µ)

(
f(a)

)
= λ f(a) + µ f(a)

= (λf)(a) + (µf)(a) = (λf + µf)(a)



56 Chapter Three: Introduction to vector spaces

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

by the definition of addition and scalar multiplication for S and the
distributive law in F . Thus (λ+ µ)f = λf + µf .

(viii) Let λ ∈ F and f, g ∈ S. Then for all a ∈ S,(
λ(f + g)

)
(a) = λ

(
(f + g)(a)

)
= λ

(
f(a) + g(a)

)
= λ f(a) + λ g(a) = (λf)(a) + (λg)(a) = (λf + λg)(a),

whence λ(f + g) = λf + λg.

Observe that if S = {1, 2, . . . , n} then the set S is essentially the same

as Fn, since an n-tuple


a1

a2
...
an

 in Fn may be identified with the function

f : {1, 2, . . . , n} → F given by f(i) = ai for i = 1, 2, . . . , n; it is readily
checked that the definitions of addition and scalar multiplication for n-tuples
are consistent with the definitions of addition and scalar multiplication for
functions. (Indeed, since we have defined a column to be an n × 1 matrix,
and a matrix to be a function, Fn is in fact the set of all functions from
S ×{1} to F . There is an obvious bijective correspondence between the sets
S and S × {1}.)

#7 The set C of all continuous functions f : R → R is a vector space over R,
addition and scalar multiplication being defined as in the previous example.
It is necessary to show that these definitions do give well defined functions
C × C → C (for addition) and R×C → C (for scalar multiplication). In other
words, one must show that if f and g are continuous and λ ∈ R then f + g
and λf are continuous. This follows from elementary calculus. It is necessary
also to show that the vector space axioms are satisfied; this is routine to do,
and similar to the previous example.

#8 The set of all continuously differentiable functions from R to R, the
set of all three times differentiable functions from (−1, 1) to R, and the set of
all integrable functions from [0, 10] to R are further examples of vector spaces
over R, and there are many similar examples. It is also straightforward to
show that the set of all polynomial functions from R to R is a vector space
over R.

#9 The solution set of a linear equation T (x) = 0 is always a vector space.
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Thus, for instance, the subset of R3 consisting of all triples

x
y
z

 such that

 1 0 5
2 1 2
4 4 8

x
y
z

 =

 0
0
0


is a vector space.

Stating the result more precisely, if V and W are vector spaces over a
field F and T :V →W is a linear function then the set

U = {x ∈ V | T (x) = 0 }

is a vector space over F , relative to addition and scalar multiplication func-
tions “inherited” from V . To prove this one must first show that if x, y ∈ U
and λ ∈ F then x + y, λx ∈ U (so that we do have well defined addition
and scalar multiplication functions for U), and then check the axioms. If
T (x) = T (y) = 0 and λ ∈ F then linearity of T gives

T (x+ y) = T (x) + T (y) = 0 + 0 = 0
T (λx) = λT (x) = λ0 = 0

so that x+ y, λx ∈ U . The proofs that each of the vector space axioms are
satisfied in U are relatively straightforward, based in each case on the fact
that the same axiom is satisfied in V . A complete proof will be given below
(see 3.13).

To conclude this section we list some examples of functions which are
linear. For some unknown reason it is common in vector space theory to speak
of ‘linear transformations’ rather than ‘linear functions’, although the words
‘transformation’ and ‘function’ are actually synonomous in mathematics. As
explained above, the domain and codomain of a linear transformation should
both be vector spaces (such as the vector spaces given in the examples above).
The definition of ‘linear transformation’ was essentially given in 3.1.1 above,
but there is no harm in writing it down again:
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3.3 Definition Let V and W be vector spaces over the field F . A function
T :V → W is called a linear transformation if T (u + v) = T (u) + T (v) and
T (λu) = λT (u) for all u, v ∈ V and all λ ∈ F .

Comment ...
3.3.1 A function T which satisfies T (u+ v) = T (u) +T (v) for all u and
v is sometimes said to preserve addition. Likewise, a function T satisfying
T (λv) = λT (v) for all λ and v is said to preserve scalar multiplication.

...

Examples

#10 Let T : R3 → R2 be defined by

T

x
y
z

 =
(
x+ y + z
2x− y

)
.

Let u, v ∈ R3 and λ ∈ R. Then

u =

x1

y1
z1

 v =

x2

y2
z2


for some xi, yi, zi ∈ R, and we have

T (u+ v) = T

x1 + x2

y1 + y2
z1 + z2

 =
(
x1 + x2 + y1 + y2 + z1 + z2

2(x1 + x2)− (y1 + y2)

)

=
(
x1 + y1 + z1

2x1 − y1

)
+
(
x2 + y2 + z2

2x2 − y2

)
= T (u) + T (v),

T (λu) = T

λx1

λy1
λz1

 =
(
λx1 + λy1 + λz1

2λx1 − λy1

)

=
(
λ(x1 + y1 + z1)
λ(2x1 − y1)

)
= λ

(
x1 + y1 + z1

2x1 − y1

)
= λT (u).

Since these equations hold for all u, v and λ it follows that T is a linear
transformation.



Chapter Three: Introduction to vector spaces 59

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics
Note that the definition of this function T could be rewritten as

T

x
y
z

 =
(

1 1 1
2 −1 0

)x
y
z

 .

Writing A =
(

1 1 1
2 −1 0

)
, the calculations above amount to showing that

A(u + v) = Au + Av and A(λu) = λ(Au) for all u, v ∈ R3 and all λ ∈ R,
facts which we have already noted in Chapter One.

#11 Let F be any field and A any matrix of m rows and n columns with
entries from F . If the function f :Fn → Fm is defined by f(x

˜
) = Ax

˜
for

all x
˜
∈ Fn, then f is a linear transformation. The proof of this is straight-

forward, using Exercise 3 from Chapter 2. The calculations are reproduced
below, in case you have not done that exercise. We use the notation (v

˜
)i for

the ith entry of a column v
˜
.

Let u
˜
, v
˜
∈ Fn and λ ∈ F . Then

(f(u
˜

+ v
˜
))i = (A(u

˜
+ v

˜
))i =

n∑
j=1

Aij (u
˜

+ v
˜
)j =

n∑
j=1

Aij

(
(u
˜
)j + (v

˜
)j

)
=

n∑
j=1

Aij(u
˜
)j +Aij(v

˜
)j =

n∑
j=1

Aij(u
˜
)j +

n∑
j=1

Aij(v
˜
)j

= (Au
˜
)i + (Av

˜
)i = (f(u

˜
))i + (f(v

˜
))i = (f(u

˜
) + f(v

˜
))i

Similarly,

(f(λu
˜
))i = (A(λu

˜
))i =

n∑
j=1

Aij (λu
˜
)j =

n∑
j=1

Aijλ
(
(u
˜
)j

)
= λ

n∑
j=1

Aij(u
˜
)j = λ (Au

˜
)i = λ (f(u

˜
))i = (λf(u

˜
))i .

This holds for all i; so f(u
˜

+ v
˜
) = f(u

˜
) + f(v

˜
) and f(λu

˜
) = λf(u

˜
), and

therefore f is linear.

#12 Let F be the set of all functions with domain Z(the set of all integers)
and codomain R. By #6 above we know that F is a vector space over R.
Let G:F → R2 be defined by

G(f) =
(
f(−1)
f(2)

)
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for all f ∈ F . Then if f, g ∈ F and λ ∈ R we have

G(f + g) =
(

(f + g)(−1)
(f + g)(2)

)
(by definition of G)

=
(
f(−1) + g(−1)
f(2) + g(2)

)
(by the definition of

addition of functions)

=
(
f(−1)
f(2)

)
+
(
g(−1)
g(2)

)
(by the definition of
addition of columns)

= G(f) +G(g),

and similarly

G(λf) =
(

(λf)(−1)
(λf)(2)

)
(definition of G)

=
(
λ
(
f(−1)

)
λ
(
f(2)

) ) (definition of scalar multiplication
for functions)

= λ

(
f(−1)
f(2)

)
(definition of scalar multiplication

for columns)
= λG(f),

and it follows that G is linear.

#13 Let C be the vector space consisting of all continuous functions from
the open interval (−1, 7) to R, and define I: C → R by I(f) =

∫ 4

0
f(x) dx. Let

f, g ∈ C and λ ∈ R. Then

I(f + g) =
∫ 4

0

(f + g)(x) dx

=
∫ 4

0

f(x) + g(x) dx

=
∫ 4

0

f(x) dx+
∫ 4

0

g(x) dx (by basic integral
calculus)

= I(f) + I(g),

and similarly

I(λf) =
∫ 4

0

(λf)(x) dx
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=
∫ 4

0

λ
(
f(x)

)
dx

= λ

∫ 4

0

f(x) dx

= λI(f),

whence I is linear.

#14 It is as well to finish with an example of a function which is not linear.
If S is the set of all functions from R to R, then the function T :S → R
defined by T (f) = 1 + f(4) is not linear. For instance, if f ∈ S is defined by
f(x) = x for all x ∈ R then

T (2f) = 1 + (2f)(4) = 1 + 2
(
f(4)

)
6= 2 + 2

(
f(4)

)
= 2(1 + f(4)) = 2T (f),

so that T does not preserve scalar multiplication. Hence T is not linear. (In
fact, T does not preserve addition either.)

§3c Trivial consequences of the axioms

Having defined vector spaces in the previous section, our next objective is
to prove theorems about vector spaces. In doing this we must be careful
to make sure that our proofs use only the axioms and nothing else, for only
that way can we be sure that every system which satisfies the axioms will also
satisfy all the theorems that we prove. An unfortunate consequence of this
is that we must start by proving trivialities, or, rather, things which seem to
be trivialities because they are familiar to us in slightly different contexts. It
is necessary to prove that these things are indeed consequences of the vector
space axioms. It is also useful to learn the art of constructing proofs by doing
proofs of trivial facts before trying to prove difficult theorems.

Throughout this section F will be a field and V a vector space over F .

3.4 Proposition For all u, v, w ∈ V , if v + u = w + u then v = w.

Proof. Assume that v + u = w + u. By Axiom (iv) in Definition 3.2 there
exists t ∈ V such that u+ t = 0

˜
. Now adding t to both sides of the equation
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gives

(v + u) + t = (w + u) + t

v + (u+ t) = w + (u+ t) (by Axiom (i))
v + 0

˜
= w + 0

˜
(by the choice of t)

v = w (by Axiom (iii)).
�

3.5 Proposition For each v ∈ V there is a unique t ∈ V which satisfies
t+ v = 0

˜
.

Proof. The existence of such a t for each v is immediate from Axioms (iv)
and (ii). Uniqueness follows from 3.4 above since if t+ v = 0

˜
and t′ + v = 0

˜then, by 3.4, t = t′. �

By Proposition 3.5 there is no ambiguity in using the customary nota-
tion ‘−v’ for the negative of a vector v, and we will do this henceforward.

3.6 Proposition If u, v ∈ V and u+ v = v then u = 0
˜
.

Proof. Assume that u+ v = v. Then by Axiom (iii) we have u+ v = 0
˜
+ v,

and by 3.4, v = 0
˜
. �

We comment that 3.6 shows that V cannot have more than one zero
element.

3.7 Proposition Let λ ∈ F and v ∈ V . Then λ0
˜

= 0
˜

= 0v, and, con-
versely, if λv = 0

˜
then either λ = 0 or v = 0

˜
. We also have (−1)v = −v.

Proof. By definition of 0
˜

we have 0
˜

+ 0
˜

= 0
˜
, and therefore

λ(0
˜

+ 0
˜
) = λ0

˜
λ0
˜

+ λ0
˜

= λ0
˜

(by Axiom (viii))
λ0
˜

= 0
˜

(by 3.6).

By the field axioms (see (ii) of Definition 1.2) we have 0+0=0, and so by
Axiom (vii) (in Definition 3.2)

0v + 0v = (0 + 0)v = 0v,
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whence 0v = 0

˜
by 3.6. For the converse, suppose that λv = 0

˜
and λ 6= 0.

Field axioms guarantee that λ−1 exists, and we deduce that

v = 1v = (λ−1λ)v = λ−1(λv) = λ−10
˜

= 0
˜
.

For the last part, observe that we have (−1) + 1 = 0 by field axioms,
and therefore

(−1)v + v = (−1)v + 1v = ((−1) + 1)v = 0v = 0
˜

by Axioms (v) and (vii) and the first part. By 3.5 above we deduce that
(−1)v = −v. �

§3d Subspaces

If V is a vector space over a field F and U is a subset of V we may ask
whether the operation of addition on V gives rise to an operation of addition
on U . Since an operation on U is a function U × U → U , it does so if and
only if adding two elements of U always gives another element of U . Likewise,
the scalar multiplication function for V gives rise to a scalar multiplication
function for U if and only if multiplying an element of U by a scalar always
gives another element of U .

3.8 Definition A subset U of a vector space V is said to be closed under
addition and scalar multiplication if

(i) u1 + u2 ∈ U for all u1, u2 ∈ U
(ii) λu ∈ U for all u ∈ U and all scalars λ.

If a subset U of V is closed in this sense, it is natural to ask whether U
is a vector space relative to the addition and scalar multiplication inherited
from V ; if it is we say that U is a subspace of V .

3.9 Definition A subset U of a vector space V is called a subspace of
V if U is itself a vector space relative to addition and scalar multiplication
inherited from V .

It turns out that a subset which is closed under addition and scalar
multiplication is always a subspace, provided only that it is nonempty.
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3.10 Theorem If V is a vector space and U a subset of V which is non-
empty and closed under addition and scalar multiplication, then U is a sub-
space of V .

Proof. It is necessary only to verify that the inherited operations satisfy
the vector space axioms. In most cases the fact that a given axiom is satisfied
in V trivially implies that the same axiom is satisfied in U .

Let x, y, z ∈ U . Then x, y, z ∈ V , and so by Axiom (i) for V it follows
that (x+ y) + z = x+ (y + z). Thus Axiom (i) holds in U .

Let x, y ∈ U . Then x, y ∈ V , and so x + y = y + x. Thus Axiom (ii)
holds.

The next task is to prove that U has a zero element. Since V is a vector
space we know that V has a zero element, which we will denote by ‘0

˜
′, but at

first sight it seems possible that 0
˜

may fail to be in the subset U . However,
since U is nonempty there certainly exists at least one element in U . Let
x be such an element. By closure under scalar multiplication we have that
0x ∈ U . But Proposition 3.7 gives 0x = 0

˜
(since x is an element of V ), and

so, after all, it is necessarily true that 0
˜
∈ U . It is now trivial that 0

˜
is also

a zero element for U , since if y ∈ U is arbitrary then y ∈ V and Axiom (iii)
for V gives 0

˜
+ y = y.

For Axiom (iv) we must prove that each x ∈ U has a negative in U .
Since Axiom (iv) for V guarantees that x has a negative in V and since the
zero of U is the same as the zero of V , it suffices to show that −x ∈ U .
But x ∈ U gives (−1)x ∈ U (by closure under scalar multiplication), and
−x = (−1)x (by 3.7); so the result follows.

The remaining axioms are trivially proved by arguments similar to those
used for axioms (i) and (ii). �

Comments ...
3.10.1 It is easily seen that if V is a vector space then the set V itself is
a subspace of V , and the set {0} (consisting of just the zero element of V ) is
also a subspace of V .

3.10.2 In #9 above we claimed that if V and W are vector spaces over F
and T :V →W a linear transformation then the set U = { v ∈ V | T (v) = 0 }
is a subspace of V . In view of 3.10 it is no longer necessary to check all eight
vector space axioms in order to prove this; it suffices, instead, to prove merely
that U is nonempty and closed under addition and scalar multiplication.

...
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Examples

#15 Let F = R, V = R3 and U = {

 x
y

x+ y

 ∣∣∣∣ x, y ∈ R }. Prove that U

is a subspace of V .

�−−. In view of Theorem 3.10, we must prove that U is nonempty and
closed under addition and scalar multiplication.

It is clear that U is nonempty:

 0
0
0

 ∈ U .

Let u, v be arbitrary elements of U . Then

u =

 x
y

x+ y

 , v =

 x′

y′

x′ + y′


for some x, y, x′, y′ ∈ R, and we see that

u+ v =

 x′′

y′′

x′′ + y′′

 (where x′′ = x+ x′, y′′ = y + y′),

and this is an element of U . Hence U is closed under addition.
Let if u be an arbitrary element of U and λ an arbitrary scalar. Then

u =

 x
y

x+ y

 for some x, y ∈ R, and

λu =

 λx
λy

λ(x+ y)

 =

 λx
λy

λx+ λy

 ∈ U.

Thus U is closed under scalar multiplication. /−−�

#16 Use the result proved in #6 and elementary calculus to prove that the
set C of all real valued continuous functions on the closed interval [0, 1] is a
vector space over R.

�−−. By #6 the set S of all real valued functions on [0, 1] is a vector space
over R; so it will suffice to prove that C is a subspace of S. By Theorem 3.10
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then it suffices to prove that C is nonempty and closed under addition and
scalar multiplication.

The zero function is clearly continuous; so C is nonempty.
Let f, g ∈ C and t ∈ R. For all a ∈ [0, 1] we have

lim
x→a

(f + g)(x) = lim
x→a

(
f(x) + g(x)

)
(definition of f + g)

= lim
x→a

f(x) + lim
x→a

g(x) (basic calculus)

= f(a) + g(a) (since f, g are continuous)
= (f + g)(a)

and similarly

lim
x→a

(tf)(x) = lim
x→a

t
(
f(x)

)
(definition of tf)

= t lim
x→a

f(x) (basic calculus)

= t
(
f(a)

)
(since f is continuous)

= (tf)(a),

so that f + g and tf are continuous. Hence C is closed under addition and
scalar multiplication. /−−�

Since one of the major reasons for introducing vector spaces was to elu-
cidate the concept of ‘linear transformation’, much of our time will be devoted
to the study of linear transformations. Whenever T is a linear transforma-
tion, it is always of interest to find those vectors x such that T (x) is zero.

3.11 Definition Let V and W be vector spaces over a field F and let
T :V →W be a linear transformation. The subset of V

kerT = {x ∈ V | T (x) = 0W }

is called the kernel of T .

In this definition ‘0W ’ denotes the zero element of the space W . Since
the domain V and codomain W of the transformation T may very well be
different vector spaces, there are two different kinds of vectors simultaneously
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under discussion. Thus, for instance, it is important not to confuse the zero
element of V with the zero element of W , although it is normal to use the
same symbol ‘0’ for each. Occasionally, as here, we will append a subscript
to indicate which zero vector we are talking about.

By definition the kernel of T consists of those vectors in V which are
mapped to the zero vecor of W . It is natural to ask whether the zero of V is
one of these. In fact, it always is.

3.12 Proposition Let V and W be vector spaces over F and let 0V and
0W be the zero elements of V and W respectively. If T :V → W is a linear
transformation then T (0V ) = 0W .

Proof. Certainly T must map 0V to some element of W ; let w = T (0V ) be
this element. Since 0V + 0V = 0V we have

w = T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ) = w + w

since T preserves addition. By 3.6 it follows that w = 0. �

We now prove the theorem which was foreshadowed in #9:

3.13 Theorem If T :V → W is a linear transformation then kerT is a
subspace of V .

Proof. By 3.12 we know that 0V ∈ kerT , and therefore kerT is nonempty.
By 3.10 it remains to prove that kerT is closed under addition and scalar
multiplication.

Suppose that u, v ∈ kerT and λ is a scalar. Then by linearity of T ,

T (u+ v) = T (u) + T (v) = 0W + 0W = 0W

and
T (λu) = λT (u) = λ0W = 0W

(by 3.7 above). Thus u + v and λu are in kerT , and it follows that kerT is
closed under addition and scalar multiplication, as required. �
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Examples

#17 The solution set of the simultaneous linear equations

x+ y + z = 0
x− 2y − z = 0

may be viewed as the kernel of the linear transformation T : R3 → R2 given
by

T

x
y
z

 =
(

1 1 1
1 −2 −1

)x
y
z

 ,

and is therefore a subspace of R3.

#18 Let D be the vector space of all differentiable real valued functions on
R, and let F be the vector space of all real valued functions on R. For each
f ∈ D define Tf ∈ F by (Tf)(x) = f ′(x) + (cosx)f(x). Show that f 7→ Tf
is a linear map from D to F , and calculate its kernel.

�−−. Let f, g ∈ D and λ, µ ∈ R. Then for all x ∈ R we have

(T (λf + µg))(x) = (λf + µg)′(x) + (cosx)(λf + µg)(x)

=
d

dx
(λf(x) + µg(x)) + (cosx)(λf(x) + µg(x))

= λf ′(x) + λ(cosx)f(x) + µg′(x) + µ(cosx)g(x)
= λ((Tf)(x)) + µ((Tg)(x))
= (λ(Tf) + µ(Tg))(x),

and it follows that T (λf + µg) = λ(Tf) + µ(Tg). Hence T is linear.
By definition, the kernel of T is the set of all functions f ∈ D such that

Tf = 0. Hence, finding the kernel of T means solving the differential equation
f ′(x)+(cosx)f(x) = 0. Techniques for solving differential equations are dealt
with in other courses. In this case the method is to multiply through by the
“integrating factor” esin x, and then integrate. This gives f(x)esin x = C,
where C is any constant. Hence the kernel consists of all functions f such
that f(x) = Ce− sin x for some constant C. Note that the sum of two functions
of this form (corresponding to two constants C1 and C2) is again of the same
form. Similarly, any scalar multiple of a function of this form has the same
form. Thus the kernel of T is indeed a subspace of D, as we knew (by
Theorem 3.13) that it would be. /−−�
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Theorem 3.13 says that the kernel of a linear transformation T is a

subspace of the domain of T ; our next result is, in a sense, dual to 3.13, and
says that the image of a linear transformation is a subspace of the codomain.

3.14 Theorem If T :V → W is a linear transformation then the image of
T is a subspace of W .

Proof. Recall (see §0c) that the image of T is the set

imT = {T (v) | v ∈ V }.

We have by 3.12 that T (0V ) = 0W , and hence 0W ∈ imT . So imT 6= ∅. Let
x, y ∈ imT and let λ be a scalar. By definition of imT there exist u, v ∈ V
with T (u) = x and T (v) = y, and now linearity of T gives

x+ y = T (u) + T (v) = T (u+ v)
and

λx = λT (u) = T (λu),

so that x + y, λx ∈ imT . Hence imT is closed under addition and scalar
multiplication. �

Example

#19 Let T : R2 → R3 be defined by

T

(
x
y

)
=

 1 −3
4 −10

−2 9

(x
y

)
.

By #11 we know that T is a linear transformation, and so its image is a

subspace of R3. The image in fact consists of all triples

 a
b
c

 such that

there exist x, y ∈ R such that

(∗)
x− 3y = a

4x− 10y = b

−2x+ 9y = c.
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It turns out that this is the same as the set

{ a
b
c

 ∣∣∣∣ 16a− 3b+ 2c = 0
}
.

One way to prove this is to form the augmented matrix corresponding to the
system (∗) and apply row operations to obtain an echelon matrix. The result
is  1 −3 a

0 2 b− 4a
0 0 16a− 3b+ 2c

 .

Thus equations are consistent if and only if 16a− 3b+ 2c = 0, as claimed.

Our final result for this section gives a useful criterion for determining
whether a linear transformation is injective.

3.15 Proposition A linear transformation is injective if and only if its
kernel is the zero subspace, {0

˜
}.

Proof. Let θ:V → W be a linear transformation. Assume first that θ is
injective.

We have proved in 3.13 that the kernel of θ is a subspace of V ; hence it
contains the zero of V . That is, θ(0

˜
) = 0

˜
. (This was proved explicitly in the

proof of 3.13. Here we will use the same notation, 0
˜
, for the zero elements

of V and W—this should cause no confusion.) Now let v be an arbitrary
element of ker θ. Then we have

θ(v) = 0
˜

= θ(0
˜
),

and since θ is injective it follows that v = 0
˜
. Hence 0

˜
is the only element of

ker θ, and so ker θ = {0
˜
}, as required.

For the converse, assume that ker θ = {0
˜
}. We seek to prove that θ is

injective; so assume that u, v ∈ V with θ(u) = θ(v). By linearity of θ we
obtain

θ(u− v) = θ(u) + θ(−v) = θ(u)− θ(v) = 0
˜
,

so that u−v ∈ ker θ. Hence u−v = 0
˜
, and u = v. Hence θ is injective. �
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For completeness we state the analogous result for surjective linear

transformations, although it is immediate from the definitions concerned.

3.16 Proposition A linear transformation is surjective if and only if its
image is the whole codomain.

§3e Linear combinations

Let v1, v2, . . . , vn and w be vectors in some space V . We say that w is
a linear combination of v1, v2, . . . , vn if w = λ1v1 + λ2v2 + · · · + λnvn for
some scalars λ1, λ2, . . . , λn. This concept is, in a sense, the fundamental
concept of vector space theory, since it is made up of addition and scalar
multiplication.

3.17 Definition The vectors v1, v2, . . . , vn are said to span V if every
element w ∈ V can be expressed as a linear combination of the vi.

For example, the set S of all triples

x
y
z

 such that x+ y + z = 0 is a

subspace of R3, and it is easily checked that the triples

u =

 0
1
−1

 , v =

−1
0
1

 and w =

 1
−1
0


span S. For example, if x+ y + z = 0 thenx

y
z

 =
y − z

3

 0
1
−1

+
z − x

3

−1
0
1

+
x− y

3

 1
−1
0

 .

In this example it can be seen that there are infinitely many ways of
expressing each element of the set S in terms of u, v and w. Indeed, since
u + v + w = 0, if any number α is added to each of the coefficients of u, v
and w, then the answer will not be altered. Thus one can arrange for the
coefficient of u to be zero, and it follows that in fact S is spanned by v and w.
(It is equally true that u and v span S, and that u and w span S.) It is usual
to try to find spanning sets which are minimal, so that no element of the
spanning set is expressible in terms of the others. The elements of a minimal
spanning set are then linearly independent, in the following sense.
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3.18 Definition We say that vectors v1, v2, . . . , vr are linearly indepen-
dent if the only solution of

λ1v1 + λ2v2 + · · ·+ λrvr = 0

is given by
λ1 = λ2 = · · · = λr = 0.

For example, the triples u and v above are linearly independent, since
if

λ

 0
1
−1

+ µ

 1
0
−1

 =

 0
0
0


then inspection of the first two components immediately gives λ = µ = 0.

Vectors v1, v2, . . . , vr are linearly dependent if they are not linearly
independent; that is, if there is a solution of λ1v1 + λ2v2 + · · ·+ λrvr = 0 for
which the scalars λi are not all zero.

Example

#20 Show that the functions f , g and h defined by

f(x) = sinx
g(x) = sin(x+ π

4 )
h(x) = sin(x+ π

2 )

 for all x ∈ R

are linearly dependent over R.

�−−. We attempt to find α, β, γ ∈ R which are not all zero, and which
satisfy αf + βg + γh = 0. We require

3.18.1 αf(x) + βg(x) + γh(x) = 0 for all x ∈ R,

in other words

α sinx+ β sin(x+ π
4 ) + γ sin(x+ π

2 ) = 0 for all x ∈ R.

By some well known trigonometric formulae we find that

sin(x+ π
4 ) = sinx cos π

4 + cosx sin π
4 = 1√

2
sinx+ 1√

2
cosx
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and similarly

sin(x+ π
2 ) = sinx cos π

2 + cosx sin π
2 = cosx,

and so our equations become

(α+ β√
2
) sinx+ ( β√

2
+ γ) cosx = 0 for all x ∈ R.

Clearly α = 1, β = −
√

2 and γ = 1 solves this, since the coefficients of sinx
and cosx both become zero. Hence 3.18.1 has a nontrivial solution, and f , g
and h are linearly dependent, as claimed. /−−�

3.19 Definition If v1, v2, . . . , vn are linearly independent and span V we
say that they form a basis of V . The number n is called the dimension.

If a vector space V has a basis consisting of n vectors then a general
element of V can be completely described by specifying n scalar parameters
(the coefficients of the basis elements). The dimension can thus be thought
of as the number of “degrees of freedom” in the space. For example, the
subspace S of R3 described above has two degrees of freedom, since it has
a basis consisting of the two elements u and v. Choosing two scalars λ and
µ determines an element λu + µv of S, and each element of S is uniquely
expressible in this form. Geometrically, S represents a plane through the
origin, and so it certainly ought to be a two-dimensional space.

One of our major tasks is to show that the dimension is an invariant
of a vector space. That is, any two bases must have the same number of
elements. We will do this in the next chapter; see also Exercise 5 below.

We have seen in #11 above that if A ∈ Mat(m× n, F ) then T (x) = Ax
defines a linear transformation T :Fn → Fm. The set S = {Ax | x ∈ Fn }
is the image of T ; so (by 3.14) it is a subspace of Fm. Let a1, a2, . . . , an

be the columns of A. Since A is an m× n matrix these columns all have m
components; that is, ai ∈ Fm for each i. By multiplication of partitioned
matrices we find that

A


λ1

λ2
...
λn

 =
(
a1 a2 · · · an

)
λ1

λ2
...
λn

 = λ1a1 + λ2a2 + · · ·+ λnan,

and we deduce that S is precisely the set of all linear combinations of the
columns of A.
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3.20 Definition If A ∈ Mat(m× n, F ) the column space, CS(A), of the
matrix A is the subspace of Fm consisting of all linear combinations of the
columns of A. The row space, RS(A) is the subspace of tFn consisting of all
linear combinations of the rows of A.

Comment ...
3.20.1 Observe that the system of equations Ax = b is consistent if and
only if b is in the column space of A. ...

3.21 Proposition Let A ∈ Mat(m× n, F ) and B ∈ Mat(n× p, F ). Then

(i) RS(AB) ⊆ RS(B), and

(ii) CS(AB) ⊆ CS(A).

Proof. Let the (i, j)-entry of A be αij and let the ith row of B be b
˜
i. It is

a general fact that

the ith row of AB =
(
ith row of A

)
B,

and since the ith row of A is ( ai1 ai2 . . . ain ) we have

ith row of AB = ( ai1 ai2 . . . ain )


b
˜
1

b
˜
2
...
b
˜
n


= αi1b

˜
1 + αi2b

˜
2 + · · ·+ αinb

˜
n

∈ RS(B).

In words, we have shown that the ith row of AB is a linear combination of
the rows of B, the scalar coefficients being the entries in the ith row of A.
So all rows of AB are in the row space of B, and since the row space of B
is closed under addition and scalar multiplication it follows that all linear
combinations of the rows of AB are also in the row space of B. That is,
RS(AB) ⊆ RS(B).

The proof of (ii) is similar and is omitted. �
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Example

#21 Prove that if A is an m × n matrix and B an n × p matrix then the
ith row of AB is a

˜
B, where a

˜
is the ith row of A.

�−−. Note that since a
˜

is a 1 × n row vector and B is an n × m matrix,
a
˜
B is a 1 × m row vector. The jth entry of a

˜
B is

∑n
k=1 akBkj , where ak

is the kth entry of a
˜
. But since a

˜
is the ith row of A, the kth entry of a

˜
is

in fact the (i, k)-entry of A. So we have shown that the jth entry of a
˜
B is∑n

k=1AikBkj , which is equal to (AB)ij , the jth entry of the ith row of AB.
So we have shown that for all j, the ith row of AB has the same jth entry as
a
˜
B; hence a

˜
B equals the ith row of AB, as required. /−−�

3.22 Corollary Suppose that A ∈ Mat(n× n, F ) is invertible, and let
B ∈ Mat(n× p, F ) be arbitrary. Then RS(AB) = RS(B).

Proof. By 3.21 we have RS(AB) ⊆ RS(B). Moreover, applying 3.21 with
A−1, AB in place of A, B gives RS(A−1(AB)) ⊆ RS(AB). Thus we have
shown that RS(B) ⊆ RS(AB) and RS(AB) ⊆ RS(B), as required. �

From 3.22 it follows that if A is invertible then the function “premul-
tiplication by A”, which takes B to AB, does not change the row space. (It
is trivial to prove also the column space analogue: postmultiplication by in-
vertible matrices leaves the column space unchanged.) Since performing row
operations on a matrix is equivalent to premultiplying by elementary matri-
ces, and elementary matrices are invertible, it follows that row operations do
not change the row space of a matrix. Hence the reduced echelon matrix E
which is the end result of the pivoting algorithm described in Chapter 2 has
the same row space as the original matrix A. The nonzero rows of E therefore
span the row space of A. We leave it as an exercise for the reader to prove
that the nonzero rows of E are also linearly independent, and therefore form
a basis for the row space of A.

Examples

#22 Find a basis for the row space of the matrix 1 −3 5 5
−2 2 1 −3
−3 1 7 1

 .
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�−−.  1 −3 5 5
−2 2 1 −3
−3 1 7 −1

 R2:=R2+2R1
R3:=R3+3R1−−−−−−−→

 1 −3 5 5
0 −4 11 7
0 −8 22 14


R3:=R3−2R2−−−−−−−→

 1 −3 5 5
0 −4 11 7
0 0 0 0

 .

Since row operations do not change the row space, the echelon matrix we
have obtained has the same row space as the original matrix A. Hence the
row space consists of all linear combinations of the rows ( 1 −3 5 5 ) and
( 0 −4 11 7 ), since the zero row can clearly be ignored when computing
linear combinations of the rows. Furthermore, because the matrix is echelon,
it follows that its nonzero rows are linearly independent. Indeed, if

λ ( 1 −3 5 5 ) + µ ( 0 −4 11 7 ) = ( 0 0 0 0 )

then looking at the first entry we see immediately that λ = 0, whence (from
the second entry) µ must be zero also. Hence the two nonzero rows of the
echelon matrix form a basis of RS(A). /−−�

#23 Is the column vector v =

 1
1
1

 in the column space of the matrix

A =

 2 −1 4
−1 3 −1

4 3 2

?

�−−. The question can be rephrased as follows: can v be expressed as a
linear combination of the columns of A? That is, do the equations

x

 2
−1

4

+ y

−1
3
3

+ z

 4
−1

2

 =

 1
1
1


have a solution? Since these equations can also be written as 2 −1 4

−1 3 −1
4 3 2

x
y
z

 =

 1
1
1

 ,
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our task is to determine whether or not these equations are consistent. (This
is exactly the point made in 3.20.1 above.)

We simply apply standard row operation techniques: 2 −1 4 1
−1 3 −1 1

4 3 2 1

 R1↔R2
R2:=R2+2R1
R3:=R3+4R1−−−−−−−→

−1 3 −1 1
0 5 2 3
0 15 −2 5


R3:=R3−3R2−−−−−−−→

−1 3 −1 1
0 5 2 3
0 0 −8 −4


Now the coefficient matrix has been reduced to echelon form, and there is no
row for which the left hand side of the equation is zero and the right hand side
nonzero. Hence the equations must be consistent. Thus v is in the column
space of A. Although the question did not ask for the coefficients x, y and z
to be calculated, let us nevertheless do so, as a check. The last equation of
the echelon system gives z = 1/2, substituting this into the second equation
gives y = 2/5, and then the first equation gives x = −3/10. It is easily
checked that

(−3/10)

 2
−1

4

+ (2/5)

−1
3
3

+ (1/2)

 4
−1

2

 =

 1
1
1


/−−�

Exercises

1. Prove that the set T of all solutions of the simultaneous equations

(
1 1 1 1
1 2 1 2

)
x
y
z
w

 =
(

0
0

)

is a subspace of R4.

2. Prove that if A is an m×n matrix over R then the solution set of Av = 0
is a subspace of Rn.
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3. Let A be an n × n matrix over R, and λ any eigenvalue of A. Prove
that if S is the subset of Rn which consists of the zero column and all
eigenvectors associated to the eigenvalue λ then S is a subspace of Rn.

4. Prove that the nonzero rows of an echelon matrix are necessarily linearly
independent.

5. Let v1, v2, . . . , vm and w1, w2, . . . , wn be two bases of a vector space V ,
let A be the m×n coefficient matrix obtained when the vi are expressed
as linear combinations of the wj , and let B be the n × m coefficient
matrix obtained when the wj are expressed as linear combinations of
the vi. Combine these equations to express the vi as linear combinations
of themselves, and then use linear independence of the vi to deduce that
AB = I. Similarly, show that BA = I, and use 2.10 to deduce that
m = n.

6. In each case decide whether or not the set S is a vector space over the field
F , relative to obvious operations of addition and scalar multiplication.

(i) S = C (complex numbers), F = R.
(ii) S = C, F = C.
(iii) S = R, F = Q (rational numbers).
(iv) S = R[X] (polynomials over R in the variable X—that is, expres-

sions of the form a0 + a1X + · · ·+ anX
n with (ai ∈ R)), F = R.

(v) S = Mat(n,C) (n× n matrices over C), F = R.

7. Let V be a vector space and S any set. Show that the set of all functions
from S to V can be made into a vector space in a natural way.

8. Which of the following functions are linear transformations?

(i) T : R2 → R2 defined by T
(
x
y

)
=
(

1 2
2 1

)(
x
y

)
,

(ii) S: R2 → R2 defined by S
(
x
y

)
=
(

0 0
0 1

)(
x
y

)
,

(iii) g: R2 → R3 defined by g
(
x
y

)
=

 2x+ y
y

x− y

,

(iv) f : R → R2 defined by f(x) =
(

x
x+ 1

)
.
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9. Let V be a vector space and let S and T be subspaces of V .

(i) Prove that S ∩ T is a subspace of V .

(ii) Let S + T = {x + y | x ∈ S and y ∈ T }. Prove that S + T is a
subspace of V .

10. (i) Let U , V , W be vector spaces over a field F , and let f :V → W ,
g:U → V be linear transformations. Prove that fg:U → W de-
fined by

(fg)(u) = f
(
g(u)

)
for all u ∈ U

is a linear transformation.

(ii) Let U = R2, V = R3, W = R5 and suppose that f , g are defined
by

f

 a
b
c

 =


1 1 1
0 0 1
2 1 0

−1 −1 1
1 0 1


 a
b
c



g

(
a
b

)
=

 0 1
1 0
2 3

( a
b

)

Give a formula for (fg)
(
a
b

)
.

11. Let V , W be vector spaces over F .

(i) Prove that if φ and ψ are linear transformations from V to W then
φ+ ψ:V →W defined by

(φ+ ψ)(v) = φ(v) + ψ(v) for all v ∈ V

is also a linear transformation.

(ii) Prove that if φ:V →W is a linear transformation and α ∈ F then
αφ:V →W defined by

(αφ)(v) = α
(
φ(v)

)
for all v ∈ V

is also a linear transformation.
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12. Prove that the set U of all functions f : R → R which satisfy the differ-
ential equation f ′′(t)− f(t) = 0 is a vector subspace of the vector space
of all real-valued functions on R.

13. Let V be a vector space and let S and T be subspaces of V .

(i) Prove that if addition and scalar multiplication are defined in the
obvious way then

V 2 = {
(
u
v

)
| u, v ∈ V }

becomes a vector space. Prove that

S +̇ T = {
(
u
v

)
| u ∈ S, v ∈ T}

is a subspace of V 2.
(ii) Prove that f :S +̇ T → V defined by

f

(
u
v

)
= u+ v

is a linear transformation. Calculate ker f and im f .

14. (i) Let F be any field. Prove that for any a ∈ F the function f :F → F
given by f(x) = ax for all x ∈ F is a linear transformation. Prove
also that any linear transformation from F to F has this form.
(Note that this implicitly uses the fact that F is a vector space
over itself.)

(ii) Prove that if f is any linear transformation from F 2 to F 2 then

there exists a matrix A =
(
a b
c d

)
(where a, b, c, d ∈ F ) such

that f(x) = Ax for all x ∈ F 2.

(Hint: the formulae f
(

1
0

)
=
(
a
c

)
and f

(
0
1

)
=
(
b
d

)
define

the coefficients of A.)
(iii) Can these results be generalized to deal with linear transformations

from Fn to Fm for arbitrary n and m?
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4
The structure of abstract vector spaces

This chapter probably constitutes the hardest theoretical part of the course;
in it we investigate bases in arbitrary vector spaces, and use them to relate
abstract vector spaces to spaces of n-tuples. Throughout the chapter, unless
otherwise stated, V will be a vector space over the field F .

§4a Preliminary lemmas

If n is a nonnegative integer and for each positive integer i ≤ n we are given
a vector vi ∈ V then we will say that (v1, v2, . . . , vn) is a sequence of vectors.
It is convenient to formulate most of the results in this chapter in terms of
sequences of vectors, and we start by restating the definitions from §3e in
terms of sequences.

4.1 Definition Let (v1, v2, . . . , vn) be a sequence of vectors in V .
(i) An element w ∈ V is a linear combination of (v1, v2, . . . , vn) if there

exist scalars λi such that w =
∑n

i=1 λivi.
(ii) The subset of V consisting of all linear combinations of (v1, v2, . . . , vn)

is called the span of (v1, v2, . . . , vn):

Span(v1, v2, . . . , vn) = {
n∑

i=1

λivi | λi ∈ F }.

If Span(v1, v2, . . . , vn) = V then (v1, v2, . . . , vn) is said to span V .
(iii) The sequence (v1, v2, . . . , vn) is said to be linearly independent if the

only solution of

λ1v1 + λ2v2 + · · ·+ λnvn = 0
˜

(λ1, λ2, . . . , λn ∈ F )

is given by
λ1 = λ2 = · · · = λn = 0.

81
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(iv) The sequence (v1, v2, . . . , vn) is said to be a basis of V if it is linearly
independent and spans V .

Comments ...
4.1.1 The sequence of vectors (v1, v2, . . . , vn) is said to be linearly de-
pendent if it is not linearly independent; that is, if there is a solution of∑n

i=1 λivi = 0
˜

for which at least one of the λi is nonzero.

4.1.2 It is not difficult to prove that Span(v1, v2, . . . , vn) is always a sub-
space of V ; it is commonly called the subspace generated by v1, v2, . . . , vn.
(The word ‘generate’ is often used as a synonym for ‘span’.) We say that
the vector space V is finitely generated if there exists a finite sequence
(v1, v2, . . . , vn) of vectors in V such that V = Span(v1, v2, . . . , vn).

4.1.3 Let V = Fn and define ei ∈ V to be the column with 1 as its ith

entry and all other entries zero. It is easily proved that (e1, e2, . . . , en) is a
basis of Fn. We will call this basis the standard basis of Fn.

4.1.4 The notation ‘(v1, v2, . . . , vn)’ is not meant to imply that n ≥ 2,
and indeed we want all our statements about sequences of vectors to be valid
for one-term sequences, and even for the sequence which has no terms. Each
v ∈ V gives rise to a one-term sequence (v), and a linear combination of (v)
is just a scalar multiple of v; thus Span(v) = {λv | λ ∈ F }. The sequence
(0
˜
) is certainly not linearly independent, since λ = 1 is a nonzero solution

of λ0
˜

= 0
˜
. However, if v 6= 0

˜
then by 3.7 we know that the only solution of

λv = 0
˜

is λ = 0. Thus the sequence (v) is linearly independent if and only if
v 6= 0

˜
.

4.1.5 Empty sums are always given the value zero; so it seems reasonable
that an empty linear combination should give the zero vector. Accordingly
we adopt the convention that the empty sequence generates the subspace {0

˜
}.

Furthermore, the empty sequence is considered to be linearly independent;
so it is a basis for {0

˜
}.

4.1.6 (This is a rather technical point.) It may seem a little strange
that the above definitions have been phrased in terms of a sequence of vectors
(v1, v2, . . . , vn) rather than a set of vectors {v1, v2, . . . , vn}. The reason for
our choice can be illustrated with a simple example, in which n = 2. Suppose
that v is a nonzero vector, and consider the two-term sequence (v, v). The
equation λ1v + λ2v = 0

˜
has a nonzero solution—namely, λ1 = 1, λ2 = −1.

Thus, by our definitions, (v, v) is a linearly dependent sequence of vectors.
A definition of linear independence for sets of vectors would encounter the



Chapter Four: The structure of abstract vector spaces 83

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics
problem that {v, v} = {v}: we would be forced to say that {v, v} is linearly
independent. The point is that sets A and B are equal if and only if each
element of A is an element of B and vice versa, and writing an element down
again does not change the set; on the other hand, sequences (v1, v2, . . . , vn)
and (u1, u2, . . . , um) are equal if and only if m = n and ui = vi for each i.

4.1.7 Despite the remarks just made in 4.1.6, the concept of ‘linear
combination’ could have been defined perfectly satisfactorily for sets; in-
deed, if (v1, v2, . . . , vn) and (u1, u2, . . . , um) are sequences of vectors such that
{v1, v2, . . . , vn} = {u1, u2, . . . , um}, then a vector v is a linear combination of
(v1, v2, . . . , vn) if and only if it is a linear combination of (u1, u2, . . . , um).

4.1.8 One consequence of our terminology is that the order in which
elements of a basis are listed is important. If v1 6= v2 then the sequences
(v1, v2, v3) and (v2, v1, v3) are not equal. It is true that if a sequence of vectors
is linearly independent then so is any rearrangement of that sequence, and if
a sequence spans V then so does any rearrangement. Thus a rearrangement
of a basis is also a basis—but a different basis. Our terminology is a little
at odds with the mathematical world at large in this regard: what we are
calling a basis most authors call an ordered basis. However, for our discussion
of matrices and linear transformations in Chapter 6, it is the concept of an
ordered basis which is appropriate. ...

Our principal goal in this chapter is to prove that every finitely gener-
ated vector space has a basis and that any two bases have the same number
of elements. The next two lemmas will be used in the proofs of these facts.

4.2 Lemma Suppose that v1, v2, . . . , vn ∈ V , and let 1 ≤ j ≤ n. Write
S = Span(v1, v2, . . . , vn) and S′ = Span(v1, v2, . . . , vj−1, vj+1, . . . , vn). Then

(i) S′ ⊆ S,

(ii) if vj ∈ S′ then S′ = S,

(iii) if the sequence (v1, v2, . . . , vn) is linearly independent, then so also
is (v1, v2, . . . , vj−1, vj+1, . . . , vn).

Comment ...
4.2.1 By ‘(v1, v2, . . . , vj−1, vj+1, . . . , vn)’ we mean the sequence which
is obtained from (v1, v2 . . . , vn) by deleting vj ; the notation is not meant to
imply that 2 < j < n. However, n must be at least 1, so that there is a term
to delete. ...
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Proof of 4.2. (i) If v ∈ S′ then for some scalars λi,

v = λ1v1 + λ2v2 + · · ·+ λj−1vj−1 + λj+1vj+1 + · · ·+ λnvn

= λ1v1 + λ2v2 + · · ·+ λj−1vj−1 + 0vj + λj+1vj+1 + · · ·+ λnvn

∈ S.

Every element of S′ is in S; that is, S′ ⊆ S.
(ii) Assume that vj ∈ S′. This gives

vj = α1v1 + α2v2 + · · ·+ αj−1vj−1 + αj+1vj+1 + · · ·+ αnvn

for some scalars αi. Now let v be an arbitrary element of S. Then for some
λi we have

v = λ1v1 + λ2v2 + · · ·+ λnvn

= λ1v1 + λ2v2 + · · ·+ λj−1vj−1

+ λj(α1v1 + α2v2 + · · ·+ αj−1vj−1 + αj+1vj+1 + · · ·+ αnvn)
+ λj+1vj+1 + · · ·+ λnvn

= (λ1 + λjα1)v1 + (λ2 + λjα2)v2 + · · ·+ (λj−1 + λjαj−1)vj−1

+ (λj+1 + λjαj+1)vj+1 + · · ·+ (λn + λjαn)vn

∈ S′.

This shows that S ⊆ S′, and, since the reverse inclusion was proved in (i), it
follows that S′ = S.

(iii) Assume that (v1, v2 . . . , vn) is linearly independent, and suppose
that

($) λ1v1 + λ2v2 + · · ·+ λj−1vj−1 + λj+1vj+1 + · · ·+ λnvn = 0
˜

where the coefficients λi are elements of F . Then

λ1v1 + λ2v2 + · · ·+ λj−1vj−1 + 0vj + λj+1vj+1 + · · ·+ λnvn = 0
˜

and, by linear independence of (v1, v2, . . . , vn), all the coefficients in this
equation must be zero. Hence

λ1 = λ2 = · · · = λj−1 = λj+1 = · · · = λn = 0.

Since we have shown that this is the only solution of ($), we have shown that
(v1, . . . , vj−1, vj+1, . . . , vn) is linearly independent. �
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A subsequence of a sequence is a sequence obtained by deleting terms

from the original. (This is meant to include the possibility that the number
of terms deleted is zero; thus a sequence is considered to be a subsequence of
itself.) Repeated application of 4.2 (iii) gives

4.3 Corollary Any subsequence of a linearly independent sequence is
linearly independent.

In a similar vein to 4.2, and only slightly harder, we have:

4.4 Lemma Suppose that v1, v2, . . . , vr ∈ V are such that the sequence
(v1, v2, . . . , vr−1) is linearly independent, but (v1, v2, . . . , vr) is linearly de-
pendent. Then vr ∈ Span(v1, v2, . . . , vr−1).

Proof. Since (v1, v2, . . . , vr) is linearly dependent there exist coefficients
λ1, λ2, . . . , λr which are not all zero and which satisfy

(∗∗) λ1v1 + λ2v2 + · · ·+ λrvr = 0
˜
.

If λr = 0 then λ1, λ2, . . . , λr−1 are not all zero, and, furthermore, (∗∗) gives

λ1v1 + λ2v2 + · · ·+ λr−1vr−1 = 0
˜
.

But this contradicts the assumption that (v1, v2, . . . , vr−1) is linearly inde-
pendent. Hence λr 6= 0, and rearranging (∗∗) gives

vr = −λ−1
r (λ1v1 + λ2v2 + · · ·+ λr−1vr−1)

∈ Span(v1, v2, . . . , vr−1).
�

§4b Basis theorems

This section consists of a list of the main facts about bases which every
student should know, collected together for ease of reference. The proofs will
be given in the next section.

4.5 Theorem Every finitely generated vector space has a basis.

4.6 Proposition If (w1, w2, . . . , wm) and (v1, v2, . . . , vn) are both bases of
V then m = n.

As we have already remarked, if V has a basis then the number of
elements in any basis of V is called the dimension of V , denoted ‘dimV ’.
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4.7 Proposition Suppose that (v1, v2, . . . , vn) spans V , and no proper
subsequence of (v1, v2, . . . , vn) spans V . Then (v1, v2, . . . , vn) is a basis of V .

Dual to 4.7 we have

4.8 Proposition Suppose that (v1, v2, . . . , vn) is a linearly independent
sequence in V which is not a proper subsequence of any other linearly inde-
pendent sequence. Then (v1, v2, . . . , vn) is a basis of V .

4.9 Proposition If a sequence (v1, v2, . . . , vn) spans V then some subse-
quence of (v1, v2, . . . , vn) is a basis.

Again there is a dual result: any linearly independent sequence extends
to a basis. However, to avoid the complications of infinite dimensional spaces,
we insert the proviso that the space is finitely generated.

4.10 Proposition If (v1, v2, . . . , vn) a linearly independent sequence in a
finitely generated vector space V then there exist vn+1, vn+2, . . . , vd in V
such that (v1, v2, . . . , vn, vn+1, . . . , vd) is a basis of V .

4.11 Proposition If V is a finitely generated vector space and U is a
subspace of V then U is also finitely generated, and dimU ≤ dimV . Fur-
thermore, if U 6= V then dimU < dimV .

4.12 Proposition Let V be a finitely generated vector space of dimension
d and s = (v1, v2, . . . , vn) a sequence of elements of V .

(i) If n < d then s does not span V .

(ii) If n > d then s is not linearly independent.

(iii) If n = d then s spans V if and only if s is linearly independent.

§4c The Replacement Lemma

We turn now to the proofs of the results stated in the previous section. In
the interests of rigour, the proofs are detailed. This makes them look more
complicated than they are, but for the most part the ideas are simple enough.

The key fact is that the number of terms in a linearly independent se-
quence of vectors cannot exceed the number of terms in a spanning sequence,
and the strategy of the proof is to replace terms of the spanning sequence by
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terms of the linearly independent sequence and keep track of what happens.
More exactly, if a sequence s of vectors is linearly independent and another
sequence t spans V then it is possible to use the vectors in s to replace an
equal number of vectors in t, always preserving the spanning property. The
statement of the lemma is rather technical, since it is designed specifically
for use in the proof of the next theorem.

4.13 The Replacement Lemma Suppose that r, s are nonnegative in-
tegers, and v1, v2, . . . , vr, vr+1 and x1, x2, . . . , xs elements of V such that
(v1, v2, . . . , vr, vr+1) is linearly independent and (v1, v2, . . . , vr, x1, x2, . . . , xs)
spans V . Then another spanning sequence can be obtained from this by in-
serting vr+1 and deleting a suitable xj . That is, there exists a j with 1 ≤ j ≤ s
such that the sequence (v1, . . . , vr, vr+1, x1, . . . , xj−1, xj+1, . . . , xs) spans V .

Comments ...
4.13.1 If r = 0 the assumption that (v1, v2, . . . , vr+1) is linearly indepen-
dent reduces to v1 6= 0

˜
. The other assumption is that (x1, . . . , xs) spans V ,

and the conclusion that some xj can be replaced by v1 without losing the
spanning property.

4.13.2 One conclusion of the Lemma is that there is an xj to replace; so
the hypotheses of the Lemma cannot be satisfied if s = 0. In other words, in
the case s = 0 the Lemma says that it is impossible for (v1, . . . , vr+1) to be
linearly independent if (v1, . . . , vr) spans V . ...

Proof of 4.13. Since vr+1 ∈ V = Span(v1, v2, . . . , vr, x1, x2, . . . , xs) there
exist scalars λi and µk with

vr+1 =
( r∑

i=1

λivi

)
+
( s∑
k=1

µkxk

)
.

Writing λr+1 = −1 we have

λ1v1 + · · ·+ λrvr + λr+1vr+1 + µ1x1 + · · ·+ µsxs = 0
˜
,

which shows that (v1, . . . , vr, vr+1, x1, . . . , xs) is linearly dependent, since the
coefficient of λr+1 is nonzero. (Observe that this gives a contradiction if
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s = 0, justifying the remarks in 4.13.2 above.) Now consider the sequences

(v1, v2, . . . ,vr+1)
(v1, v2, . . . ,vr+1, x1)
(v1, v2, . . . ,vr+1, x1, x2)

...
(v1, v2, . . . ,vr+1, x1, x2, . . . , xs).

The first of these is linearly independent, and the last is linearly dependent.
We can therefore find the first linearly dependent sequence in the list: let j be
the least positive integer for which (v1, v2, . . . , vr+1, x1, x2, . . . , xj) is linearly
dependent. Then (v1, v2, . . . , vr+1, x1, x2, . . . , xj−1) is linearly independent,
and by 4.4,

xj ∈ Span(v1, v2, . . . , vr+1, x1, . . . , xj−1)
⊆ Span(v1, v2, . . . , vr+1, x1, . . . , xj−1, xj+1, . . . , xs) (by 4.2 (i)).

Hence, by 4.2 (ii),

Span(v1, . . . , vr+1, x1, . . . , xj−1, xj+1, . . . , xs)
= Span(v1, . . . , vr+1, x1, . . . , xj−1, xj , xj+1, . . . , xs).

Let us call this last space S. Obviously then S ⊆ V . But (by 4.2 (i)) we know
that Span(v1, . . . , vr, x1, . . . , xs) ⊆ S, while Span(v1, . . . , vr, x1, . . . , xs) = V
by hypothesis. So

Span(v1, . . . , vr+1, x1, . . . , xj−1, xj+1, . . . , xs) = V,

as required. �

We can now prove the key theorem, by repeated application of the
Replacement Lemma.

4.14 Theorem Let (w1, w2, . . . , wm) be a sequence of elements of V which
spans V , and let (v1, v2, . . . , vn) be a linearly independent sequence in V .
Then n ≤ m.

Proof. Suppose that n > m. We will use induction on i to prove the
following statement for all i ∈ {1, 2, . . . ,m}:

(∗)
There exists a subsequence (w(i)

1 , w
(i)
2 , . . . , w

(i)
m−i)

of (w1, w2, . . . , wm) such that
(v1, v2, . . . , vi, w

(i)
1 , w

(i)
2 , . . . , w

(i)
m−i) spans V .



Chapter Four: The structure of abstract vector spaces 89

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics
In other words, what this says is that i of the terms of (w1, w2, . . . , wm) can
be replaced by v1, v2, . . . , vi without losing the spanning property.

The fact that (w1, w2, . . . , wm) spans V proves (∗) in the case i = 0:
in this case the subsequence involved is the whole sequence (w1, w2, . . . , wm)
and there is no replacement of terms at all. Now assume that 1 ≤ k ≤ m
and that (∗) holds when i = k − 1. We will prove that (∗) holds for i = k,
and this will complete our induction.

By our hypothesis there is a subsequence (w(k−1)
1 , w

(k−1)
2 , . . . , w

(k−1)
m−k+1)

of (w1, w2, . . . , wm) such that (v1, v2, . . . , vk−1, w
(k−1)
1 , w

(k−1)
2 , . . . , w

(k−1)
m−k+1)

spans V . Repeated application of 4.2 (iii) shows that any subsequence of a
linearly independent sequence is linearly independent; so since (v1, v2, . . . , vn)
is linearly independent and n > m ≥ k it follows that (v1, v2, . . . , vk) is
linearly independent. Now we can apply the Replacement Lemma to conclude
that (v1, . . . , vk−1, vk, w

(k)
1 , w

(k)
2 , . . . , w

(k)
m−k) spans V , (w(k)

1 , w
(k)
2 , . . . , w

(k)
m−k)

being obtained by deleting one term of (w(k−1)
1 , w

(k−1)
2 , . . . , w

(k−1)
m−k+1). Hence

(∗) holds for i = k, as required.
Since (∗) has been proved for all i with 0 ≤ i ≤ m, it holds in particular

for i = m, and in this case it says that (v1, v2, . . . , vm) spans V . Since
m+ 1 ≤ n we have that vm+1 exists; so vm+1 ∈ Span(v1, v2, . . . , vm), giving
a solution of λ1v1 + λ2v2 + · · ·+ λm+1vm+1 = 0

˜
with λm+1 = −1 6= 0. This

contradicts the fact that the sequence of vj is linearly independent, showing
that the assumption that n > m is false, and completing the proof. �

It is now straightforward to deal with the theorems and propositions
stated in the previous section.

Proof of 4.6. Since (w1, w2, . . . , wm) spans and (v1, v2, . . . , vn) is linearly
independent, it follows from 4.14 that n ≤ m. Dually, since (v1, v2, . . . , vn)
spans and (w1, w2, . . . , wm) is linearly independent, it follows that m ≤ n.

�

Proof of 4.7. Suppose that the sequence (v1, v2, . . . , vn) is linearly depen-
dent. Then there exist λi ∈ F with

λ1v1 + λ2v2 + · · ·+ λnvn = 0
˜

and λr 6= 0 for some r. For such an r we have

vr = −λ−1
r (λ1v1 + · · ·+ λr−1vr−1 + λr+1vr+1 + · · ·+ λnvn)

∈ Span(v1, . . . , vr−1, vr+1, . . . , vn),
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and, by 4.2 (ii),

Span(v1, . . . , vr−1, vr+1, . . . , vn) = Span(v1, v2, . . . , vn).

This contradicts the assumption that (v1, v2, . . . , vn) spans V whilst proper
subsequences of it do not. Hence (v1, v2, . . . , vn) is linearly independent, and,
since it also spans, it is therefore a basis. �

Proof of 4.8. Let v ∈ V . By our hypotheses the sequence (v1, v2, . . . , vn, v)
is not linearly independent, but the sequence (v1, v2, . . . , vn) is. Hence, by
4.4, v ∈ Span(v1, v2, . . . , vn). Since this holds for all v ∈ V it follows that
V ⊆ Span(v1, v2, . . . , vn). Since the reverse inclusion is obvious we deduce
that (v1, v2, . . . , vn) spans V , and, since it is also linearly independent, is
therefore a basis. �

Proof of 4.9. Given that V = Span(v1, v2, . . . , vn), let S be the set of all
subsequences of (v1, v2, . . . , vn) which span V . Observe that the set S has at
least one element, namely (v1, . . . , vn) itself. Start with this sequence, and if
it is possible to delete a term and still be left with a sequence which spans
V , do so. Repeat this for as long as possible, and eventually (in at most
n steps) we will obtain a sequence (u1, u2, . . . , us) in S with the property
that no proper subsequence of (u1, u2, . . . , us) is in S. By 4.7 above, such a
sequence is necessarily a basis. �

Observe that Theorem 4.5 follows immediately from 4.9.

Proof of 4.10. Let S = Span(v1, v2, . . . , vn). If S is not equal to V then it
must be a proper subset of V , and we may choose vn+1 ∈ V with vn+1 /∈ S.
If the sequence (v1, v2, . . . , vn, vn+1) were linearly dependent 4.4 would give
vn+1 ∈ Span(v1, v2, . . . , vn), a contradiction. So we have obtained a longer
linearly independent sequence, and if this also fails to span V we may choose
vn+2 ∈ V which is not in Span(v1, v2, . . . , vn, vn+1) and increase the length
again. Repeat this process for as long as possible.

Since V is finitely generated there is a finite sequence (w1, w2, . . . , wm)
which spans V , and by 4.14 it follows that a linearly independent sequence
in V can have at most m elements. Hence the process described in the above
paragraph cannot continue indefinitely. Thus at some stage we obtain a lin-
early independent sequence (v1, v2, . . . , vn, . . . , vd) which cannot be extended,
and which therefore spans V . �
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The proofs of 4.11 and 4.12 are left as exercises. Our final result in this

section is little more than a rephrasing of the definition of a basis; however,
it is useful from time to time:

4.15 Proposition Let V be a vector space over the field F . A sequence
(v1, v2, . . . , vn) is a basis for V if and only if for each v ∈ V there exist unique
λ1, λ2, . . . , λn ∈ F with

(♥) v = λ1v1 + λ2v2 + · · ·+ λnvn.

Proof. Clearly (v1, v2, . . . , vn) spans V if and only if for each v ∈ V the
equation (♥) has a solution for the scalars λi. Hence it will be sufficient to
prove that (v1, v2, . . . , vn) is linearly independent if and only if (♥) has at
most one solution for each v ∈ V .

Suppose that (v1, v2, . . . , vn) is linearly independent, and suppose that
λi, λ

′
i ∈ F (i = 1, 2, . . . , n) are such that

n∑
i=1

λivi =
n∑

i=1

λ′ivi = v

for some v ∈ V . Collecting terms gives
∑n

i=1(λi − λ′i)vi = 0
˜
, and linear

independence of the vi gives λi − λ′i = 0 for each i. Thus λi = λ′i, and it
follows that (♥) cannot have more than one solution.

Conversely, suppose that (♥) has at most one solution for each v ∈ V .
Then in particular

∑n
i=1 λivi = 0

˜
has at most one solution, and so λi = 0 is

the unique solution to this. That is, (v1, v2, . . . , vn) is linearly independent.
�

§4d Two properties of linear transformations

Since linear transformations are of central importance in this subject, it is
natural to investigate their relationships with bases. This section contains
two theorems in this direction.

4.16 Theorem Let V and W be vector spaces over the same field F . Let
(v1, v2, . . . , vn) be a basis for V and let w1, w2, . . . , wn be arbitrary elements
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of W . Then there is a unique linear transformation θ:V → W such that
θ(vi) = wi for i = 1, 2, . . . , n.

Proof. We prove first that there is at most one such linear transformation.
To do this, assume that θ and ϕ are both linear transformations from V to
W and that θ(vi) = ϕ(vi) = wi for all i. Let v ∈ V . Since (v1, v2, . . . , vn)
spans V there exist λi ∈ F with v =

∑n
i=1 λivi, and we find

θ(v) = θ
( n∑

i=1

λivi

)
=

n∑
i=1

λiθ(vi) (by linearity of θ)

=
n∑

i=1

λiϕ(vi) (since θ(vi) = ϕ(vi))

= ϕ
( n∑

i=1

λivi

)
(by linearity of ϕ)

= ϕ(v).

Thus θ = ϕ, as required.

We must now prove the existence of a linear transformation with the
required properties. Let v ∈ V , and write v =

∑n
i=1 λivi as above. By

4.15 the scalars λi are uniquely determined by v, and therefore
∑n

i=1 λiwi is
a uniquely determined element of W . This gives us a well defined rule for
obtaining an element of W for each element of V ; that is, a function from V
to W . Thus there is a function θ:V →W satisfying

θ
( n∑

i=1

λivi

)
=

n∑
i=1

λiwi

for all λi ∈ F , and it remains for us to prove that it is linear.

Let u, v ∈ V and α, β ∈ F . Let u =
∑n

i=1 λivi and v =
∑n

i=1 µivi.
Then

αu+ βv =
n∑

i=1

(αλi + βµi)vi,
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and the definition of θ gives

θ(αu+ βv) =
n∑

i=1

(αλi + βµi)wi

= α
n∑

i=1

λiwi + β
n∑

i=1

µiwi

= αθ(u) + βθ(v).

Hence θ is linear. �

Comment ...
4.16.1 Theorem 4.16 says that a linearly transformation can be defined in
an arbitrary fashion on a basis; moreover, once its values on the basis elements
have been specified its values everywhere else are uniquely determined.

...

Our second theorem of this section, the proof of which is left as an
exercise, examines what injective and surjective linear transformations do to
a basis of a space.

4.17 Theorem Let (v1, v2, . . . , vn) be a basis of a vector space V and let
θ:V →W be a linear transformation. Then

(i) θ is injective if and only if (θ(v1), θ(v2), . . . , θ(vn)) is linearly indepen-
dent,

(ii) θ is surjective if and only if (θ(v1), θ(v2), . . . , θ(vn)) spans W .

Comment ...
4.17.1 If θ:V → W is bijective and (v1, v2, . . . , vn) is a basis of V then
it follows from 4.17 that (θ(v1), θ(v2), . . . , θ(vn) is a basis of W . Hence the
existence of a bijective linear transformation from one space to another guar-
antees that the spaces must have the same dimension. ...

§4e Coordinates relative to a basis

In this final section of this chapter we show that choosing a basis in a vector
space enables one to coordinatize the space, in the sense that each element
of the space is associated with a uniquely determined n-tuple, where n is the
dimension of the space. Thus it turns out that an arbitrary n-dimensional
vector space over the field F is, after all, essentially the the same as Fn.



94 Chapter Four: The structure of abstract vector spaces

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

4.18 Theorem Let V be a vector space over F and let v1, v2, . . . , vn be
arbitrary elements of V . Then the function T :Fn → V defined by

T


α1

α2
...
αn

 = α1v1 + α2v2 + · · ·+ αnvn

is a linear transformation. Moreover, T is surjective if and only if the sequence
(v1, v2, . . . , vn) spans V and injective if and only if (v1, v2, . . . , vn) is linearly
independent.

Proof. Let α, β ∈ Fn and λ, µ ∈ F . Let αi, βi be the ith entries of α, β
respectively. Then we have

T (λα+ µβ) = T



λα1

λα2
...

λαn

+


µβ1

µβ2
...

µβn


 = T


λα1 + µβ1

λα2 + µβ2
...

λαn + µβn


=

n∑
i=1

(λαi + µβi)vi = λ
n∑

i=1

αivi + µ
n∑

i=1

βivi = λT (α) + µT (β).

Hence T is linear.
By the definition of the image of a function, we have

imT =

{
T


λ1

λ2
...
λn


∣∣∣∣∣ λi ∈ F

}

= {λ1v1 + λ2v2 + · · ·+ λnvn | λi ∈ F }
= Span(v1, v2, . . . , vn).

By definition, T is surjective if and only if imT = W ; hence T is surjective
if and only if (v1, v2, . . . , vn) spans W .

By 3.15 we know that T is injective if and only if the unique solution

of T (α) = 0
˜

is α =

 0
...
0

. Since T (α) =
∑n

i=1 αivi (where αi is the ith entry

of α) this can be restated as follows: T is injective if and only if αi = 0 (for
all i) is the unique solution of

∑n
i=1 αivi = 0

˜
. That is, T is injective if and

only if (v1, v2, . . . , vn) is linearly independent. �
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Comment ...
4.18.1 The above proof can be shortened by using 4.16, 4.17 and the
standard basis of Fn. ...

Assume now that b = (v1, v2, . . . , vn) is a basis of V and let T :Fn → V
be as defined in 4.18 above. By 4.18 we have that T is bijective, and so it
follows that there is an inverse function T−1:V → Fn which associates to
every v ∈ V a column T−1(v); we call this column the coordinate vector of v
relative to the basis b, and we denote it by ‘cvb(v)’. That is,

4.19 Definition The coordinate vector of v ∈ V relative to the basis
b = (v1, v2, . . . , vn) is the unique column vector

cvb(v) =


λ1

λ2
...
λn

 ∈ Fn

such that v = λ1v1 + λ2v2 + · · ·+ λnvn.

Comment ...
4.19.1 Observe that this bijective correspondence between elements of
V and n-tuples also follows immediately from 4.15. We have, however, also
proved that the corresponding mapping Fn → V , satisfying cvb(v) 7→ v for
all v ∈ V , is linear. ...

Examples

#1 Let s = (e1, e2, . . . , en), the standard basis of Fn. If v =

 λ1
...
λn

 ∈ Fn

then clearly v = λ1e1 + · · ·+λnen, and so the coordinate vector of v relative
to s is the column with λi as its ith entry; that is, the coordinate vector of v
is just the same as v:

(4.19.2) If s is the standard basis of Fn

then cvs(v) = v for all v ∈ Fn.
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#2 Prove that b =

 1
0
1

 ,

 2
1
1

 ,

 1
1
1

 is a basis for R3 and calculate

the coordinate vectors of

 1
0
0

,

 0
1
0

 and

 0
0
1

 relative to b.

�−−. By 4.15 we know that b is a basis of R3 if and only if each element of
R3 is uniquely expressible as a linear combination of the elements of b. That
is, b is a basis if and only if the equations

x

 1
0
1

+ y

 2
1
1

+ z

 1
1
1

 =

 a
b
c


have a unique solution for all a, b, c ∈ R. We may rewrite these equations as 1 2 1

0 1 1
1 1 1

x
y
z

 =

 a
b
c

 ,

and we know that there is a unique solution for all a, b, c if and only if the
coefficient matrix has an inverse. It has an inverse if and only if the reduced
echelon matrix obtained from it by row operations is the identity matrix.
We are also asked to calculate x, y and z in three particular cases, and
again this involves finding the reduced echelon matrices for the corresponding
augmented matrices. We can do all these things at once by applying row
operations to the augmented matrix 1 2 1 1 0 0

0 1 1 0 1 0
1 1 1 0 0 1

 .

If the left hand half reduces to the identity it means that b is a basis, and
the three columns in the right hand half will be the coordinate vectors we
seek. 1 2 1 1 0 0

0 1 1 0 1 0
1 1 1 0 0 1

 R3:=R3−R1−−−−−−−→

 1 2 1 1 0 0
0 1 1 0 1 0
0 −1 0 −1 0 1
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R1:=R1−2R2
R3:=R3+R2−−−−−−−→

 1 0 −1 1 −2 0
0 1 1 0 1 0
0 0 1 −1 1 1


R1:=R1+R3
R2:=R2−R3−−−−−−−→

 1 0 0 0 −1 1
0 1 0 1 0 −1
0 0 1 −1 1 1

 .

Hence we have shown that b is indeed a basis, and, furthermore,

cvb

 1
0
0

 =

 0
1
−1

 , cvb

 0
1
0

 =

−1
0
1

 , cvb

 0
0
1

 =

 1
−1
1

 .

/−−�

#3 Let V be the set of all polynomials over R of degree at most three.
Let p0, p1, p2, p3 ∈ V be defined by pi(x) = xi (for i = 0, 1, 2, 3). For each
f ∈ V there exist unique coefficients ai ∈ R such that

f(x) = a0 + a1x+ a2x
2 + a3x

3

= a0p0(x) + a1p1(x) + a2p2(x) + a3p3(x).

Hence we see that b = (p0, p1, p2, p3) is a basis of V , and if f(x) =
∑
aix

i as
above then cvb(f) =t ( a0 a1 a2 a3 ).

Exercises

1. In each of the following examples the set S has a natural vector space
structure over the field F . In each case decide whether S is finitely
generated, and, if it is, find its dimension.

(i) S = C (complex numbers), F = R.

(ii) S = C, F = C.

(iii) S = R, F = Q (rational numbers).

(iv) S = R[X] (polynomials over R in the variable X), F = R.

(v) S = Mat(n,C) (n× n matrices over C), F = R.
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2. Determine whether or not the following two subspaces of R3 are the
same:

Span

 1
2
−1

 ,

 2
4
1

 and Span

 1
2
4

 ,

 2
4
−5

 .

3. Suppose that (v1, v2, v3) is a basis for a vector space V , and define
elements w1, w2, w3 ∈ V by w1 = v1 − 2v2 + 3v3, w2 = −v1 + v3,
w3 = v2 − v3.

(i) Express v1, v2, v3 in terms of w1, w2, w3.
(ii) Prove that w1, w2, w3 are linearly independent.
(iii) Prove that w1, w2, w3 span V .

4. Let V be a vector space and (v1, v2, . . . , vn) a sequence of vectors in V .
Prove that Span(v1, v2, . . . , vn) is a subspace of V .

5. Prove Proposition 4.11.

6. Prove Proposition 4.12.

7. Prove Theorem 4.17.

8. Let (v1, v2, . . . , vn) be a basis of a vector space V and let

w1 = α11v1 + α21v2 + · · ·+ αn1vn

w2 = α12v1 + α22v2 + · · ·+ αn2vn

...
wn = α1nv1 + α2nv2 + · · ·+ αnnvn

where the αij are scalars. Let A be the matrix with (i, j)-entry αij .
Prove that (w1, w2, . . . , wn) is a basis for V if and only if A is invert-

ible.
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5
Inner Product Spaces

To regard R2 and R3 merely as vector spaces is to ignore two basic concepts
of Euclidean geometry: the length of a line segment and the angle between
two lines. Thus it is desirable to give these vector spaces some additional
structure which will enable us to talk of the length of a vector and the angle
between two vectors. To do so is the aim of this chapter.

§5a The inner product axioms

If v and w are n-tuples over R we define the dot product of v and w to be the
scalar v · w =

∑n
i=1 viwi where vi is the ith entry of v and wi the ith entry

of w. That is, v ·w = v(tw) if v and w are rows, v ·w = (tv)w if v and w are
columns.

Suppose that a Cartesian coordinate system is chosen for 3-dimensional
Euclidean space in the usual manner. If O is the origin and P and Q are
points with coordinates v = (x1, y1, z1) and w = (x2, y2, z2) respectively, then
by Pythagoras’s Theorem the lengths of OP , OQ and PQ are as follows:

OP =
√
x2

1 + y2
1 + z2

1

OQ =
√
x2

2 + y2
2 + z2

2

PQ =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

By the cosine rule the cosine of the angle POQ is

(x2
1 + y2

1 + z2
1) + (x2

2 + y2
2 + z2

2)− ((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2)
2
√
x2

1 + y2
1 + z2

1

√
x2

2 + y2
2 + z2

2

=
x1x2 + y1y2 + z1z2√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2

= (v.w)
/
(
√
v.v

√
w.w).

99
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Thus we see that the dot product is closely allied with the concepts of ‘length’
and ‘angle’. Note also the following properties:

(a) The dot product is bilinear. That is,

(λu+ µv) · w = λ(u · w) + µ(v · w)
and

u · (λv + µw) = λ(u · v) + µ(u · w)

for all n-tuples u, v, w, and all λ, µ ∈ R.

(b) The dot product is symmetric. That is,

v · w = w · v for all n-tuples v, w.

(c) The dot product is positive definite. That is,

v · v ≥ 0 for every n-tuple v
and

v · v = 0 if and only if v = 0.

The proofs of these properties are straightforward and are omitted. It turns
out that all important properties of the dot product are consequences of
these three basic properties. Furthermore, these same properties arise in
other, slightly different, contexts. Accordingly, we use them as the basis of a
new axiomatic system.

5.1 Definition A real inner product space is a vector space over R which
is equipped with a scalar valued product which is bilinear, symmetric and
positive definite. That is, writing 〈v, w〉 for the scalar product of v and w,
we must have 〈v, w〉 ∈ R and

(i) 〈λu+ µv,w〉 = λ〈u,w〉+ µ〈v, w〉,
(ii) 〈v, w〉 = 〈w, v〉,
(iii) 〈v, v〉 > 0 if v 6= 0,
for all vectors u, v, w and scalars λ, µ.

Comment ...
5.1.1 Since the inner product is assumed to be symmetric, linearity in
the second variable is a consequence of linearity in the first. It also follows
from bilinearity that 〈v, w〉 = 0 if either v or w is zero. To see this, suppose
that w is fixed and define a function fw from the vector space to R by
fw(v) = 〈v, w〉 for all vectors v. By (i) above we have that fw is linear, and
hence fw(0) = 0 (by 3.12). ...
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Apart from Rn with the dot product, the most important example of

an inner product space is the set C[a, b] of all continuous real valued functions
on a closed interval [a, b], with the inner product of functions f and g defined
by the formula

〈f, g〉 =
∫ b

a

f(x)g(x) dx.

We leave it as an exercise to check that this gives a symmetric bilinear scalar
product. It is a theorem of calculus that if f is continuous and

∫ b

a
f(x)2 dx = 0

then f(x) = 0 for all x ∈ [a, b], from which it follows that the scalar product
as defined is positive definite.

Examples

#1 For all u, v ∈ R3, let 〈u, v〉 ∈ R be defined by the formula

〈u, v〉 = tu

 1 1 2
1 3 2
2 2 7

 v.

Prove that 〈 , 〉 is an inner product on R3.

�−−. Let A be the 3× 3 matrix appearing in the definition of 〈 , 〉 above.
Let u, v, w ∈ R3 and λ, µ ∈ R. Then using the distributive property of
matrix multiplication and linearity of the “transpose” map from R3 to tR3,
we have

〈λu+ µv,w〉 = t(λu+ µv)Aw
= (λ(tu) + µ(tv))Aw
= λ(tu)Aw + µ(tv)Aw
= λ〈u,w〉+ µ〈v, w〉,

and it follows that (i) of the definition is satisfied. Part (ii) follows since A
is symmetric: for all v, w ∈ R3

〈v, w〉 = (tv)Aw = (tv)(tA)w = t((tw)Av) = t(〈w, v〉) = 〈w, v〉

(the second of these equalities follows since A = tA, the third since transpos-
ing reverses the order of factors in a product, and the last because 〈w, v〉 is
a 1× 1 matrix—that is, a scalar—and hence symmetric).
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Now let v = t (x y z ) ∈ R3 be arbitrary. We find that

〈v, v〉 = (x y z )

 1 1 2
1 3 2
2 2 7

x
y
z


= (x2 + xy + 2xz) + (yx+ 3y2 + 2yz) + (2zx+ 2zy + 7z2).

Applying completion of the square techniques we deduce that

〈v, v〉 = (x+ y + 2z)2 + 2y2 + 4yz + 3z2 = (x+ y + 2z)2 + 2(y + z)2 + z2,

which is nonnegative, and can only be zero if z, y + z and x+ y + 2z are all
zero. This only occurs if x = y = z = 0. So we have shown that 〈v, v〉 > 0
whenever v 6= 0, which is the third and last requirement in Definition 5.1.

/−−�

#2 Show that if the matrix A in #1 above is replaced by either 1 2 3
0 3 1
1 3 7

 or

 1 1 2
1 3 2
2 2 1


then the resulting scalar valued product on R3 does not satisfy the inner
product axioms.

�−−. In the first case the fact that the matrix is not symmetric means that
the resulting product would not satisfy (ii) of Definition 5.1. For example,
we would have

〈

 1
0
0

 ,

 0
1
0

〉 = ( 1 0 0 )

 1 2 3
0 3 1
1 3 7

 0
1
0

 = 2

while on the other hand

〈

 0
1
0

 ,

 1
0
0

〉 = ( 0 1 0 )

 1 2 3
0 3 1
1 3 7

 1
0
0

 = 0.

In the second case Part (iii) of Definition 5.1 would fail. For example, we
would have

〈

−1
−1
1

 ,

−1
−1
1

〉 = (−1 −1 1 )

 1 1 2
1 3 2
2 2 1

−1
−1
1

 = −1,

contrary to the requirement that 〈v, v〉 ≥ 0 for all v. /−−�
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#3 The trace Tr(A) of an n× n matrix A is defined to be the sum of the
diagonal entries of A; that is, Tr(A) =

∑n
i=1Aii. Show that

〈M,N〉 = Tr((tM)N)

defines an inner product on the space of all m× n matrices over R.

�−−. The (i, i)-entry of (tM)N is

((tM)N)ii =
m∑

j=1

(tM)ijNji =
m∑

j=1

MjiNji

since the (i, j)-entry of tM is the (j, i)-entry of M . Thus the trace of (tM)N
is
∑n

i=1((
tM)N)ii =

∑n
i=1

∑m
j=1MjiNji. Thus, if we think of an m × n

matrix as an mn-tuple which is simply written as a rectangular array instead
of as a row or column, then the given formula for 〈M,N〉 is just the standard
dot product formula: the sum of the products of each entry of M by the
corresponding entry of N . So the verification that 〈 , 〉 as defined is an inner
product involves almost exactly the same calculations as involved in proving
bilinearity, symmetry and positive definiteness of the dot product on Rn.

Thus, let M, N, P be m× n matrices, and let λ, µ ∈ R. Then

〈λM + µN,P 〉 =
∑
i,j

(λM + µN)jiPji =
∑
i,j

(λMji + µNji)Pji

=
∑
i,j

(λMjiPji + µNjiPji) = λ
∑
i,j

MjiPji + µ
∑
i,j

NjiPji

= λ〈M,P 〉+ µ〈N,P 〉,

verifying Property (i) of 5.1. Furthermore,

〈M,N〉 =
∑
i,j

MjiNji =
∑
i,j

NjiMji = 〈N,M〉,

verifying Property (ii). Finally, 〈M,M〉 =
∑

i,j(Mji)2 is clearly nonnegative
in all cases, and can only be zero if Mji = 0 for all i and j. That is,
〈M,M〉 ≥ 0, with equality only if M = 0. Hence Property (iii) holds as
well. /−−�
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It is also possible to define a dot product on Cn. In this case the
definition is

v · w = (tv)w =
n∑

i=1

viwi

where the overline indicates complex conjugation. This apparent compli-
cation is introduced to preserve positive definiteness. If z is an arbitrary
complex number then zz is real and nonnegative, and zero only if z is zero.
It follows easily that if v is an arbitrary complex column vector then v · v as
defined above is real and nonnegative, and is zero only if v = 0.

The price to be paid for making the complex dot product positive def-
inite is that it is no longer bilinear. It is still linear in the second variable,
but semilinear or conjugate linear in the first:

(λu+ µv) · w = λ(u · w) + µ(v · w)
and

u · (λv + µw) = λ(u · v) + µ(u · w)
for all u, v, w ∈ Cn and λ, µ ∈ C. Likewise, the complex dot product is not
quite symmetric; instead, it satisfies

v · w = w · v for all v, w ∈ Cn.

Analogy with the real case leads to the following definition.

5.2 Definition A complex inner product space is a complex vector space
V which is equipped with a scalar product 〈 , 〉:V × V → C satisfying

(i) 〈u, λv + µw〉 = λ〈u, v〉+ µ〈u,w〉,
(ii) 〈v, w〉 = 〈w, v〉,
(iii) 〈v, v〉 ∈ R and 〈v, v〉 > 0 if v 6= 0,
for all u, v, w ∈ V and λ, µ ∈ C.

Comments ...
5.2.1 Note that 〈v, v〉 ∈ R is in fact a consequence of 〈v, w〉 = 〈w, v〉

5.2.2 Complex inner product spaces are often called unitary spaces, and
real inner product spaces are often called Euclidean spaces. ...

If V is any inner product space (real or complex) we define the length
or norm of a vector v ∈ V to be the nonnegative real number ‖v‖ =

√
〈v, v〉.

(This definition is suggested by the fact, noted above, that the distance from
the origin of the point with coordinates v = (x y z ) is

√
v.v.) It is an easy
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exercise to prove that if v ∈ V and λ is a scalar then ‖λv‖ = |λ| ‖v‖. (Recall
that the absolute value of a complex number λ is given by |λ| =

√
λλ.) In

particular, if λ = (1/‖v‖) then ‖λv‖ = 1.

Having defined the length of a vector it is natural now to say that the
distance between two vectors x and y is the length of x− y; thus we define

d(x, y) = ‖x− y‖.
It is customary in mathematics to reserve the term ‘distance’ for a function
d satisfying the following properties:

(i) d(x, y) = d(y, x),
(ii) d(x, y) ≥ 0, and d(x, y) = 0 only if x = y,
(iii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality),
for all x, y and z. It is easily seen that our definition meets the first two of
these requirements; the proof that it also meets the third is deferred for a
while.

Analogy with the dot product suggests also that for real inner product
spaces the angle θ between two nonzero vectors v and w should be defined
by the formula

cos θ = 〈v, w〉
/
(‖v‖ ‖w‖).

Obviously we want −1 ≤ cos θ ≤ 1; so to justify the definition we must prove
that |〈v, w〉| ≤ ‖v‖ ‖w‖ (the Cauchy-Schwarz inequality). We will do this
later.

5.3 Definition Let V be an inner product space. Vectors v, w ∈ V are
said to be orthogonal if 〈v, w〉 = 0. A set X of vectors is said to be or-
thonormal if 〈v, v〉 = 1 for all v in X and 〈v, w〉 = 0 for all v, w ∈ X such
that v 6= w.

Comments ...
5.3.1 In view of our intended definition of the angle between two vectors,
this definition will say that two nonzero vectors in a real inner product space
are orthogonal if and only if they are at rightangles to each other.

5.3.2 Observe that orthogonality is a symmetric relation, since if 〈v, w〉
is zero then 〈w, v〉 = 〈v, w〉 is too. Observe also that if v is orthogonal
to w then all scalar multiples of v are orthogonal to w. In particular, if
v1, v2, . . . , vn are nonzero vectors satisfying 〈vi, vj〉 = 0 whenever i 6= j, then
an othonormal set of vectors can be obtained by replacing vi by ‖vi‖−1vi for
each i. ...
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§5b Orthogonal projection

Note that the standard bases of Rn and Cn are orthonormal bases. As we
shall see below, such bases are of particular importance. It is easily shown
that orthonormal vectors are always linearly independent.

5.4 Proposition Let v1, v2, . . . , vn be nonzero elements of V (an inner
product space) and suppose that 〈vi, vj〉 = 0 whenever i 6= j. Then the vi

are linearly independent.

Proof. Suppose that
∑n

i=1 λivi = 0, where the λi are scalars. By 5.1.1
above we see that for all j,

0 = 〈vj ,
n∑

i=1

λivi〉

=
n∑

i=1

λi〈vj , vi〉 (by linearity in the second variable)

= λj〈vj , vj〉 (since the other terms are zero)

and since 〈vj , vj〉 6= 0 it follows that λj = 0. �

Under the hypotheses of 5.4 the vi form a basis of the subspace they
span. Such a basis is called an orthogonal basis of the subspace.

Example

#4 The space C[−1, 1] has a subspace of dimension 3 consisting of polyno-
mial functions on [−1, 1] of degree at most two. It can be checked that f0, f1
and f2 defined by f0(x) = 1, f1(x) = x and f2(x) = 3x2−1 form an orthogo-
nal basis of this subspace. Indeed, since f0(x)f1(x) and f1(x)f2(x) are both
odd functions it is immediate that

∫ 1

−1
f0(x)f1(x) dx and

∫ 1

−1
f1(x)f2(x) dx

are both zero, while

∫ 1

−1

f0(x)f2(x) dx =
∫ 1

−1

3x2 − 1 dx = (x3 − x)
]1
−1

= 0.
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5.5 Lemma Let (u1, u2, . . . , un) be an orthogonal basis of a subspace U
of V , and let v ∈ V . There is a unique element u ∈ U such that 〈x, u〉 = 〈x, v〉
for all x ∈ U , and it is given by the formula u =

∑n
i=1

(
〈ui, v〉

/
〈ui, ui〉

)
ui.

Proof. The elements of a basis must be nonzero; so we have that 〈ui, ui〉 6= 0
for all i. Write λi = 〈ui, v〉

/
〈ui, ui〉 and u =

∑n
i=1 λiui. Then for each j from

1 to n we have

〈uj , u〉 = 〈uj ,
n∑

i=1

λiui〉

=
n∑

i=1

λi〈uj , ui〉

= λj〈uj , uj〉 (since the other terms are zero)
= 〈uj , v〉.

If x ∈ U is arbitrary then x =
∑n

j=1 µjuj for some scalars µj , and we have

〈x, u〉 =
∑

j

µj〈uj , u〉 =
∑

j

µj〈uj , v〉 = 〈x, v〉

showing that u has the required property. If u′ ∈ U also has this property
then for all x ∈ U ,

〈x, u− u′〉 = 〈x, u〉 − 〈x, u′〉 = 〈x, v〉 − 〈x, v〉 = 0.

Since u−u′ ∈ U this gives, in particular, that 〈u−u′, u−u′〉 = 0, and hence
u− u′ = 0. So u is uniquely determined. �

Our first consequence of 5.5 is the Gram-Schmidt orthogonalization pro-
cess, by which an arbitrary finite dimensional subspace of an inner product
space is shown to have an orthogonal basis.

5.6 Theorem Let (v1, v2, v3, . . . ) be a sequence (finite or infinite) of vec-
tors in an inner product space, such that br = (v1, v2, . . . , vr) is linearly
independent for all r. Let Vr be the subspace spanned by br. Then there ex-
ist vectors u1, u2, u3, . . . in V such that cr = (u1, u2, . . . , ur) is an orthogonal
basis of Vr for each r.

Proof. This is proved by induction. The case r = 1 is easily settled by
defining u1 = v1; the statement that c1 is orthogonal is vacuously true.
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Assume now that r > 1 and that u1 to ur−1 have been found with the
required properties. By 5.5 there exists u ∈ Vr−1 such that 〈ui, u〉 = 〈ui, vr〉
for all i from 1 to r − 1. We define ur = vr − u, noting that this is nonzero
since, by linear independence of br, the vector vr is not in the subspace Vr−1.
To complete the proof it remains to check that 〈ui, uj〉 = 0 for all i, j ≤ r
with i 6= j. If i, j ≤ r − 1 this is immediate from our inductive hypothesis,
and the remaining case is clear too, since for all i < r,

〈ui, ur〉 = 〈ui, vr − u〉 = 〈ui, vr〉 − 〈ui, u〉 = 0

by the definition of u. �

In view of this we see from 5.5 that if U is any finite dimensional sub-
space of an inner product space V then there is a unique mapping P :V → U
such that 〈u, P (v)〉 = 〈u, v〉 for all v ∈ V and u ∈ U . Furthermore, if
(u1, u2, . . . , un) is any orthogonal basis of U then we have the formula

5.6.1 P (v) =
n∑

i=1

(
〈ui, v〉

/
〈ui, ui〉

)
ui.

5.7 Definition The transformation P :V → U defined above is called the
orthogonal projection of V onto U .

Comments ...
5.7.1 It follows easily from the formula 5.6.1 that orthogonal projections
are linear transformations; this is left as an exercise for the reader.

5.7.2 The Gram-Schmidt process, given in the proof of Theorem 5.6
above, is an algorithm for which the input is a linearly independent sequence
of vectors v1, v2, v3, . . . and the output an orthogonal sequence of vectors
u1, u2, u3, . . . which are linear combinations of the vi. The proof gives the
following formulae for the ui:

u1 = v1

u2 = v2 −
〈u1, v2〉
〈u1, u1〉

u1

u3 = v3 −
〈u1, v3〉
〈u1, u1〉

u1 −
〈u2, v3〉
〈u2, u2〉

u2

...

ur = vr −
〈u1, vr〉
〈u1, u1〉

u1 − · · · − 〈ur−1, vr〉
〈ur−1, ur−1〉

ur−1.
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In practice it is not necessary to remember the formulae for the coefficients
of the ui on the right hand side. Instead, if one remembers merely that

ur = vr + λ1u1 + λ2u2 + · · ·+ λr−1ur−1

then it is easy to find λi for each i < r by taking inner products with ui.
Indeed, since 〈ui, uj〉 = 0 for i 6= j, we get

0 = 〈ui, ur〉 = 〈ui, vr〉+ λi〈ui, ui〉
since the terms λj〈ui, uj〉 are zero for i 6= j, and this yields the stated formula
for λi. ...

Examples

#5 Let V = R4 considered as an inner product space via the dot product,
and let U be the subspace of V spanned by the vectors

v1 =


1
1
1
1

 , v2 =


2
3
2
−4

 and v3 =


−1
5
−2
−1

 .

Use the Gram-Schmidt process to find an orthonormal basis of U .

�−−. Using the formulae given in 5.7.2 above, if we define

u1 = v1 =


1
1
1
1



u2 = v2 −
u1 · v2
u1 · u1

u1 =


2
3
2
−4

− 3
4


1
1
1
1

 =


5/4
9/4
5/4
−19/4


and

u3 = v3 −
u1 · v3
u1 · u1

u1 −
u2 · v3
u2 · u2

u2

=


−1
5
−2
−1

− 1
4


1
1
1
1

− (49/4)
(492/16)


5/4
9/4
5/4
−19/4



=


−1
5
−2
−1

− 123
492


1
1
1
1

− 49
492


5
9
5
−19

 =


−860/492
1896/492
−1352/492
316/492
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then u1, u2 and u3 are mutually orthogonal and span U . It remains to “nor-
malize” the basis vectors; that is, replace each ui by a vector of length 1 which

is a scalar multiple of ui. This is achieved by the formula u′i =
1

√
ui · ui

ui.

We obtain

u′1 =


1/2
1/2
1/2
1/2

 , u′2 =


5/
√

492
9/
√

492
5/
√

492
−19/

√
492

 , u′3 =


−215/

√
391386

474/
√

391386
−338/

√
391386

79/
√

391386


as a suitable orthonormal basis for the given subspace. /−−�

#6 With U and V as in #5 above, let P :V → U be the orthogonal

projection, and let v =


−20
8
19
−1

. Calculate P (v).

�−−. Using the formula 5.6.1 and the orthonormal basis (u′1, u
′
2, u

′
3) found

in #5 gives

P


−20
8
19
−1

 = (u′1 · v)u′1 + (u′2 · v)u′2 + (u′3 · v)u′3

= 3


1/2
1/2
1/2
1/2

+
86√
492


5/
√

492
9/
√

492
5/
√

492
−19/

√
492

+
1591√
391386


−215/

√
391386

474/
√

391386
−338/

√
391386

79/
√

391386



=
3
2


1
1
1
1

+
43
246


5
9
5
−19

+
1

246


−215
474
−338
79

 =


3/2
5
1

−3/2


/−−�

Suppose that V = R3, with the dot product, and let U be a subspace
of V of dimension 2. Geometrically, U is a plane through the origin. The
geometrical process corresponding to the orthogonal projection is “dropping
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a perpendicular” to U from a given point v. Then P (v) is the point of U
which is the foot of the perpendicular. It is geometrically clear that u = P (v)
is the unique u ∈ U such that v− u is perpendicular to everything in U ; this
corresponds to the algebraic statement that 〈x, v − P (v)〉 = 0 for all x ∈ U .
It is also geometrically clear that P (v) is the point of U which is closest to v.
We ought to prove this algebraically.

5.8 Theorem Let U be a finite dimensional subspace of an inner product
space V , and let P be the orthogonal projection of V onto U . If v is any
element of V then ‖v − u‖ ≥ ‖v − P (v)‖ for all u ∈ U , with equality only if
u = P (v).

Proof. Given u ∈ U we have v − u = (v − P (v)) + x where x = P (v) − u
is an element of U . Since v − P (v) is orthogonal to all elements of U we see
that

‖v − u‖2 = 〈v − u, v − u〉
= 〈v − P (v) + x, v − P (v) + x〉
= 〈v − P (v), v − P (v)〉+ 〈v − P (v), x〉+ 〈x, v − P (v)〉+ 〈x, x〉
= 〈v − P (v), v − P (v)〉+ 〈x, x〉
≥ 〈v − P (v), v − P (v)〉

with equality if and only if x = 0. �

An extremely important application of this method of finding the point
of a subspace which is closest to a given point, is the approximate solution
of inconsistent systems of equations. The equations Ax = b have a solution
if and only if b is contained in the column space of the matrix A (see 3.20.1).
If b is not in the column space then it is reasonable to find that point b0
of the column space which is closest to b, and solve the equations Ax = b0
instead. Inconsistent systems commonly arise in practice in cases where we
can obtain as many (approximate) equations as we like by simply taking
more measurements.

Examples

#7 Three measurable variables A, B and C are known to be related by a
formula of the form xA + yB = C, and an experiment is performed to find
the values x and y. In four cases measurement yields the results tabulated
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below, in which, no doubt, there are some experimental errors. What are the
values of x and y which best fit this data?

A B C

1st case: 1.0 2.0 3.8
2nd case: 1.0 3.0 5.1
3rd case: 1.0 4.0 5.9
4th case: 1.0 5.0 6.8

�−−. We have a system of four equations in two unknowns:
A1 B1

A2 B2

A3 B3

A4 B4

(x
y

)
=


C1

C2

C3

C4


which is bound to be inconsistent. Viewing these equations as xA

˜
+ yB

˜
= C

˜(where A
˜
∈ R4 has ith entry Ai, and so on) we see that a reasonable choice

for x and y comes from the point in U = Span(A
˜
, B
˜
) which is closest to C

˜
;

that is, the point P (C
˜
) where P is the projection of R4 onto the subspace U .

To compute the projection we first need to find an orthogonal basis for U ,
which we do by means of the Gram-Schmidt process applied to A

˜
and B

˜
.

This gives the orthogonal basis (A
˜
′, B

˜
′) where A

˜
′ = A

˜
and

B
˜
′ = B

˜
− (〈A

˜
, B
˜
〉/〈A

˜
, A
˜
〉)A

˜
= B

˜
− (7/2)A

˜
= t (−1.5 −0.5 0.5 1.5 ) .

Now P (C
˜
) is given by the formula

P (C
˜
) = (〈A

˜
′, C

˜
〉/〈A

˜
′, A

˜
′〉)A

˜
′ + (〈B

˜
′, C

˜
〉/〈B

˜
′, B

˜
′〉)B

˜
′

and calculation gives the coefficients of A
˜
′ and B

˜
′ as 5.4 and 0.98. Expressing

this combination of A
˜
′ and B

˜
′ back in terms of A

˜
and B

˜
gives the coefficient

of B
˜

as y = 0.98 and the coefficient of A
˜

as x = 5.4 − 3.5 × 0.98 = 1.97.
(If these are the correct values of x and y then the values of C for the given
values of A and B should be, in the four cases, 3.93, 4.91, 5.89 and 6.87)

/−−�
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#8 Find the parabola y = ax2 + bx+ c which most closely fits the graph
of y = ex on the interval [−1, 1], in the sense that

∫ 1

−1
(f(x) − ex)2 dx is

minimized.

�−−. Let P be the orthogonal projection of C[a, b] onto the subspace of
polynomial functions of degree at most 2. We seek to calculate P (exp),
where exp is the exponential function. Using the orthogonal basis (f0, f1, f2)
from #4 above we find that P (exp) = λf0 + µf1 + νf2 where

λ =
∫ 1

−1

ex dx

/∫ 1

−1

1 dx

µ =
∫ 1

−1

xex dx

/∫ 1

−1

x2 dx

ν =
∫ 1

−1

(3x2 − 1)ex dx

/∫ 1

−1

(3x2 − 1)2 dx.

That is, the sought after function is f(x) = λ+µx+ν(3x2−1) for the above
values of λ, µ and ν. /−−�

#9 Define functions c0, c1, s1, c2, s2, . . . on the interval [−π, π] by

cn(x) = cos(nx) (for n = 0, 1, 2, . . . )
sn(x) = sin(nx) (for n = 1, 2, 3, . . . ).

Show that the cn for 0 ≤ n ≤ k and the sm for 1 ≤ m ≤ k together form
an orthogonal basis of a subspace of C[−π, π], and determine the formula for
the element of this subspace closest to a given f .

�−−. Recall the trigonometric formulae

2 sin(nx) cos(mx) = sin((n+m)x)− sin((n−m)x)
2 cos(nx) cos(mx) = cos((n+m)x) + cos((n−m)x)
2 sin(nx) sin(mx) = cos((n−m)x)− cos((n+m)x).

Since
∫ π

−π
sin(kx) dx = 0 for all k and∫ π

−π

cos(kx) dx =
{ 0 if k 6= 0

2π if k = 0
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we deduce that
(i) 〈sn, cm〉 = 0 for all n and m,
(ii) 〈sn, sm〉 = 〈cn, cm〉 = 0 if n 6= m,
(iii) 〈sn, sn〉 = 〈cn, cn〉 = π if n 6= 0,
(iv) 〈c0, c0〉 = 2π.
Hence if P is the orthogonal projection onto the subspace spanned by the cn
and sm then for an arbitrary f ∈ C[−π, π],

(
P (f)

)
(x) = (1/2π)a0 + (1/π)

k∑
n=1

(an cos(nx) + bn sin(nx))

where

an = 〈cn, f〉 =
∫ π

−π

f(x) cos(nx) dx

and

bn = 〈sn, f〉 =
∫ π

−π

f(x) sin(nx) dx.

We know from 5.8 that g = P (f) is the element of the subspace for which∫ π

−π
(f − g)2 is minimized. /−−�

We have been happily talking about orthogonal projections onto sub-
spaces and ignoring the fact that the word ‘onto’ should only be applied to
functions that are surjective. Fortunately, it is easy to see that the image
of the projection of V onto U is indeed the whole of U . In fact, if P is the
projection then P (u) = u for all u ∈ U . (A consequence of this is that P
is an idempotent transformation: it satisfies P 2 = P .) It is natural at this
stage to ask about the kernel of P .

5.9 Definition If U is a finite dimensional subspace of an inner product
space V and P the projection of V onto U then the subspace U⊥ = kerP is
called the orthogonal complement of U .

Comment ...
5.9.1 If 〈x, v〉 = 0 for all x ∈ U then u = 0 is clearly an element of
U satisfying 〈x, u〉 = 〈x, v〉 for all x ∈ U . Hence P (v) = 0. Conversely, if
P (v) = 0 we must have 〈x, v〉 = 〈x, P (v)〉 = 0 for all x ∈ U . Hence the
orthogonal complement of U consists of all v ∈ V which are orthogonal to
all elements of U . ...
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Our final task in this section is to prove the triangle and Cauchy-

Schwarz inequalities, and some related matters.

5.10 Proposition Assume that (u1, u2, . . . , un) is an orthogonal basis of
a subspace U of V .

(i) Let v ∈ V and for all i let αi = 〈ui, v〉. Then ‖v‖2 ≥
∑

i |αi|2
/
‖ui‖2.

(ii) If u ∈ U then u =
∑n

i=1

(
〈ui, u〉

/
〈ui, ui〉

)
ui.

(iii) If x, y ∈ U then 〈x, y〉 =
∑

i(〈x, ui〉〈ui, y〉)
/
〈ui, ui〉.

Proof. (i) If P :V → U is the orthogonal projection then 5.6.1 above gives
P (v) =

∑
i λiui, where

λi = 〈ui, v〉
/
〈ui, ui〉 = αi

/
‖ui‖2.

Since 〈ui, uj〉 = 0 for i 6= j we have

〈P (v), P (v)〉 =
∑
i,j

λiλj〈ui, uj〉 =
∑

i

|λi|2〈ui, ui〉 =
∑

i

|αi|2
/
‖ui‖2,

so that our task is to prove that 〈v, v〉 ≥ 〈P (v), P (v)〉.
Writing x = v − P (v) we have

〈v, v〉 = 〈x+ P (v), x+ P (v)〉
= 〈x, x〉+ 〈x, P (v)〉+ 〈P (v), x〉+ 〈P (v), P (v)〉
= 〈x, x〉+ 〈P (v), P (v)〉 (since P (v) ∈ U and x ∈ U⊥)
≥ 〈P (v), P (v)〉,

as required.
(ii) This amounts to the statement that P (u) = u for u ∈ U , and it is
immediate from 5.8 above, since the element of U which is closest to u is
obviously u itself. A direct proof is also trivial: we may write u =

∑
i λiui

for some scalars λi (since the ui span U), and now for all j,

〈uj , u〉 =
∑

i

λi〈uj , ui〉 = λj〈uj , uj〉

whence the result.
(iii) This is follows easily from (ii) and is left as an exercise. �
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5.11 Theorem If V is an inner product space (complex or real) then

(i) |〈v, w〉| ≤ ‖v‖ ‖w‖, and

(ii) ‖v + w‖ ≤ ‖v‖+ ‖w‖
for all v, w ∈ V .

Proof. (i) If v = 0 then both sides are zero. If v 6= 0 then v by itself
forms an orthogonal basis for a 1-dimensional subspace of V , and by part (i)
of 5.10 we have for all w,

‖w‖2 ≥ |〈v, w〉|2
/
‖v‖2

so that the result follows.

(ii) If z = x+ iy is any complex number then

z + z = 2x ≤ 2
√
x2 + y2 = 2|z|.

Hence for all v, w ∈ V ,

(‖v‖+ ‖w‖)2 − ‖v + w‖2 = (〈v, v〉+ 〈w,w〉+ 2‖v‖ ‖w‖)− 〈v + w, v + w〉
= (〈v, v〉+ 〈w,w〉+ 2‖v‖ ‖w‖)− (〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉)
= 2‖v‖ ‖w‖ − 2(〈v, w〉+ 〈v, w〉)
≥ 2‖v‖ ‖w‖ − 2|〈v, w〉|

which is nonnegative by the first part. Hence (‖v‖+ ‖w‖)2 ≥ ‖v +w‖2, and
the result follows. �

§5c Orthogonal and unitary transformations

As always in mathematics, we are particularly interested in functions which
preserve the mathematical structure. Hence if V and W are inner product
spaces it is of interest to investigate functions T :V → W which are linear
and preserve the inner product, in the sense that 〈T (u), T (v)〉 = 〈u, v〉 for
all u, v ∈ V . Such a transformation is called an orthogonal transformation
(for real inner product spaces) or a unitary transformation (in the complex
case). It turns out that preservation of length is an equivalent condition;
hence these transformations are sometimes called isometries.
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5.12 Proposition If V and W are inner product spaces then a linear
transformation T :V →W preserves inner products if and only if it preserves
lengths.

Proof. Since by definition the length of v is
√
〈v, v〉 it is trivial that a

transformation which preserves inner products preserves lengths. For the
converse, we assume that ‖T (v)‖ = ‖v‖ for all v ∈ V ; we must prove that
〈T (u), T (v)〉 = 〈u, v〉 for all u, v ∈ V .

Let u, v ∈ V . Note that (as in the proof of 5.11 above)

‖u+ v‖2 − ‖u‖2 − ‖v‖2 = 〈u, v〉+ 〈u, v〉,
and similarly

‖T (u) + T (v)‖2 − ‖T (u)‖2 − ‖T (v)‖2 = 〈T (u), T (v)〉+ 〈T (u), T (v)〉,
so that the real parts of 〈u, v〉 and 〈T (u), T (v)〉 are equal. By exactly the
same argument the real parts of 〈iu, v〉 and 〈T (iu), T (v)〉 are equal too. But
writing 〈u, v〉 = x+ iy with x, y ∈ R we see that

〈iu, v〉 = i〈u, v〉 = (−i)〈u, v〉 = (−i)(x+ iy) = y − ix

so that the real part of 〈iu, v〉 is the imaginary part of 〈u, v〉. Likewise,
the real part of 〈T (iu), T (v)〉 = 〈iT (u), T (v)〉 equals the imaginary part of
〈T (u), T (v)〉, and we conclude, as required, that 〈u, v〉 and 〈T (u), T (v)〉 have
the same imaginary part as well as the same real part. �

We know from §3b#11 that if T ∈ Mat(n× n,C) then the function
φ: Cn → Cn defined by φ(x) = Tx is linear, and, furthermore, it is easily
shown (see Exercise 14 of Chapter Three) that every linear transformation
from Cn to Cn has this form for some matrix T . Our next task is to describe
those matrices T for which the corresponding linear transformation is an
isometry. We need the following two definitions.

5.13 Definition If A is a matrix with complex entries we define the con-
jugate of A to be the matrix A whose (i, j)-entry is the conjugate of the
(i, j)-entry of A. The transpose of the conjugate of A will be denoted by
‘A∗’.†

By Exercise 6 of Chapter Two we deduce that (AB)∗ = B∗A∗ whenever
AB is defined.

† Some people call A∗ the adjoint of A, in conflict with the definition of “ad-

joint” given in Chapter 1.
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5.14 Definition An n × n complex matrix T is said to be unitary if
T ∗ = T−1. If T has real entries this becomes tT = T−1, and T is said
to be orthogonal.

5.15 Proposition Let T ∈ Mat(n× n,C). The linear transformation
φ: Cn → Cn defined by φ(x) = Tx is an isometry if and only if T is uni-
tary.

Proof. Suppose first that φ is an isometry, and let (e1, e2, . . . , en) be the
standard basis of Cn. Note that ei · ej = δij . Since Tei is the ith column of
T we see that (Tei)∗ is the ith row of T ∗, and (Tei)∗(Tej) is the (i, j)-entry
of T ∗T . However,

(Tei)∗(Tej) = Tei · Tej = φ(ei) · φ(ej) = ei · ej = δij

since φ preserves the dot product, whence T ∗T is the identity matrix. By
2.9 it follows that T is unitary.

Conversely, if T is unitary then T ∗T = I, and for all u, v ∈ Cn we have

φ(u) · φ(v) = Tu · Tv = (Tu)∗(Tv) = u∗T ∗Tv = u∗v = u · v.

Thus φ preserves the dot product, and is therefore an isometry. �

Comment ...
5.15.1 Since the (i, j)-entry of T ∗T is the dot product of the ith and
jth columns of T , we see that T is unitary if and only if the columns of T
form an orthonormal basis of Cn. Furthermore, the (i, j)-entry of TT ∗ is the
conjugate of the dot product of the ith and jth rows of T ; so it is also true
that T is unitary if and only if its rows form an orthonormal basis of tCn.

5.15.2 Of course, corresponding things are true in the real case, where
the complication due to complex conjugation is absent. Premultiplication
by a real n × n matrix is an isometry of Rn if and only if the matrix is
orthogonal; a real n× n matrix is orthogonal if and only if its columns form
an orthonormal basis of Rn; a real n× n matrix is orthogonal if and only if
its rows form an orthonormal basis of tRn.

5.15.3 It is easy to prove, and we leave it as an exercise, that the product
of two unitary matrices is unitary and the inverse of a unitary matrix is uni-
tary. The same is true in the real case, of course, with the word ‘orthogonal’
replacing the word ‘unitary’. ...
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Examples

#10 Find an orthogonal matrix P and an upper triangular matrix U such
that

PU =

 1 4 5
2 5 1
2 2 1

 .

�−−. Let the columns of P be v
˜
1, v

˜
2 and v

˜
3, and let U =

 a b c
0 d e
0 0 f

.

Then the columns of PU are av
˜
1, bv

˜
1 + dv

˜
2 and cv

˜
1 + ev

˜
2 + fv

˜
3. Thus we

wish to find a, b, c, d, e and f such that

av
˜
1 =

 1
2
2

 , bv
˜
1 + dv

˜
2 =

 4
5
2

 , cv
˜
1 + ev

˜
2 + fv

˜
3 =

 5
1
1

 ,

and (v
˜
1, v

˜
2, v

˜
3) is an orthonormal basis of R3. Now since we require ‖v

˜
1‖ = 1,

the first equation gives a = 3 and v
˜
1 = t ( 1/3 2/3 2/3 ). Taking the dot

product of both sides of the second equation with v
˜
1 now gives b = 6 (since

we require v
˜
2 · v

˜
1 = 0), and similarly taking the dot product of both sides

of the third equation with v
˜
1 gives c = 3. Substituting these values into the

equations gives

dv
˜
2 =

 2
1
−2

 , ev
˜
2 + fv

˜
3 =

 4
−1
−1

 .

The first of these equations gives d = 3 and v
˜
2 = t ( 2/3 1/3 −2/3 ), and

then taking the dot product of v
˜
2 with the other equation gives e = 3. After

substituting these values the remaining equation becomes

fv
˜
3 =

 2
−2
1

 ,

and we see that f = 3 and v
˜
3 = t ( 2/3 −2/3 1/3 ). Thus the only possible

solution to the given problem is

P =

 1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3

 , U =

 3 6 3
0 3 3
0 0 3

 .

It is easily checked that tPP = I and that PU has the correct value. (Note
that the method we used to calculate the columns of P was essentially just
the Gram-Schmidt process.) /−−�
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#11 Let u1, u2 and u3 be real numbers satisfying u2
1 +u2

2 +u2
3 = 1, and let

u be the 3× 1 column with ith entry ui. Define

X =

 u2
1 u1u2 u1u3

u2u1 u2
2 u2u3

u3u1 u3u2 u2
3

 , Y =

 0 u3 −u2

−u3 0 u1

u2 −u1 0

 .

Show that X2 = X and Y 2 = I − X, and XY = Y X = 0. Furthermore,
show that for all θ, the matrix R(u, θ) = cos θI + (1 − cos θ)X + sin θY is
orthogonal.

�−−. Observe that X = u(tu), and so

X2 =
(
u(tu)

)(
u(tu)

)
= u

(
(tu)u

)
(tu) = u(u · u)(tu) = X

since u · u = 1. By direct calculation we find that

Y u =

 0 u3 −u2

−u3 0 u1

u2 −u1 0

u1

u2

u3

 =

 0
0
0

 ,

and hence Y X = Y u(tu) = 0. Since tX = X and tY = −Y it follows that
Y X = −(tY )(tX) = −t(XY ) = −t0 = 0. And an easy calculation yields

Y 2 =

u2
2 + u2

3 −u1u2 −u1u3

−u2u1 u2
1 + u2

3 −u2u3

−u3u1 −u3u2 u2
1 + u2

2

 =

 1− u2
1 −u1u2 −u1u3

−u2u1 1− u2
2 −u2u3

−u3u1 −u3u2 1− u2
3

 = I −X.

To check that R = R(u, θ) is orthogonal we show that (tR)R = I. Now

tR = cos θI + (1− cos θ)X − sin θY,

since tX = X and tY = −Y . So

(tR)R = cos2 θI2 + (1− cos θ)2X2 + sin2 θY 2

+ 2 cos θ(1− cos θ)IX + (1− cos θ) sin θ(XY − Y X)

= cos2 θI + (1− cos θ)2X + sin2 θ(I −X) + 2 cos θ(1− cos θ)X

= (cos2 θ + sin2 θ)I + ((1− cos θ)(1 + cos θ)− sin2 θ)X
= I as required.

/−−�
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It can be shown that the matrix R(u, θ) defined in #11 above corre-

sponds geometrically to a rotation through the angle θ about an axis in the
direction of the vector u.

§5d Quadratic forms

When using Cartesian coordinates to investigate geometrical problems, it in-
variably simplifies matters if one can choose coordinate axes which are in
some sense natural for the problem concerned. It therefore becomes impor-
tant to be able keep track of what happens when a new coordinate system is
chosen.

If T ∈ Mat(n× n,R) is an orthogonal matrix then, as we have seen, the
transformation φ defined by φ(x

˜
) = Tx

˜
preserves lengths and angles. Hence

if S is any set of points in Rn then the set φ(S) = {Tx
˜
| x
˜
∈ S } is congruent

to S (in the sense of Euclidean geometry). Clearly such transformations will
be important in geometrical situations. Observe now that if

Tx
˜

= µ1e1 + µ2e2 + · · ·+ µnen

where (e1, e2, . . . , en) is the standard basis of Rn, then

x
˜

= µ1(T−1e1) + µ2(T−1e2) + · · ·+ µn(T−1en),

whence the coordinates of Tx
˜

relative to the standard basis are the same as
the coordinates of x

˜
relative to the basis (T−1e1, T

−1e2, . . . , T
−1en). Note

that these vectors are the columns of T−1, and they form an orthonormal
basis of Rn since T−1 is an orthogonal matrix. So choosing a new orthonormal
basis is effectively the same as applying an orthogonal transformation, and
doing so leaves all lengths and angles unchanged. We comment that in the
three-dimensional case the only length preserving linear transformations are
rotations and reflections.

A quadratic form over R in variables x1, x2, . . . , xn is an expression of
the form

∑
i aiix

2
i + 2

∑
i<j aijxixj where the coefficients are real numbers.

If A is the matrix with diagonal entries Aii = aii and off-diagonal entries
Aij = Aji = aij (for i < j) then the quadratic form can be written as
Q(x

˜
) = tx

˜
Ax

˜
, where x is the column with xi as its ith entry. For example,

multiplying out

(x y z )

 a p q
p b r
q r c

x
y
z
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gives ax2 + by2 + cz2 + 2pxy + 2qxz + 2ryz.

In the above situation we call A the matrix of the quadratic form Q.
Since Aij = Aji for all i and j we have that A is a symmetric matrix, in the
sense of the following definition.

5.16 Definition A real n×n matrix A is said to be symmetric if tA = A,
and a complex n× n matrix A is said to be Hermitian if A∗ = A.

The following remarkable facts concerning eigenvalues and eigenvectors
of Hermitian matrices are very important, and not hard to prove.

5.17 Theorem Let A be an Hermitian matrix. Then

(i) All eigenvalues of A are real, and

(ii) if λ and µ are two distinct eigenvalues of A, and if u and v are corre-
sponding eigenvectors, then u · v = 0

The proof is left as an exercise (although a hint is given). Of course the
theorem applies to Hermitian matrices which happen to be real; that is, the
same results hold for real symmetric matrices.

If f is an arbitrary smooth real valued function on Rn, and if we choose
a critical point of f as the origin of our coordinate system, then the terms of
degree one in the Taylor series for f vanish. Ignoring the terms of degree three
and higher then gives an approximation to f of the form c + Q(x

˜
), where

c = f(0) is a constant and Q is a quadratic form, the coefficients of the
corresponding symmetric matrix being the second order partial derivatives
of f at the critical point. We would now like to be able to rotate the axes
so as to simplify the expression for Q(x

˜
) as much as possible, and hence

determine the behaviour of f near the critical point.

From our discussion above we know that introducing a new coordinate
system corresponding to an orthonormal basis of Rn amounts to introducing
new variables x

˜
′ which are related to the old variables x

˜
by x = Tx′, where T

is the orthogonal matrix whose columns are the new basis vectors.† In terms
of the new variables the quadratic form Q(x

˜
) = tx

˜
Ax

˜
becomes

Q′(x
˜
′) = t(Tx

˜
′)A(Tx

˜
′) = tx

˜
′(tTAT )x

˜
′ = tx

˜
′A′x

˜
′

where A′ = tTAT .

† The T in this paragraph corresponds to the T−1 above.
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5.18 Definition Two n× n real matrices A and A′ are said to be orthog-
onally similar if there exists an orthogonal matrix T such that A′ = tTAT .
Two n×n complex matrices A and A′ are said to be unitarily similar if there
exists a unitary matrix T such that A′ = T ∗AT .

Comment ...
5.18.1 In both parts of the above definition we could alternatively have
written A′ = T−1AT , since T−1 = tT in the real case and T−1 = T ∗ in the
complex case. ...

We have shown that the change of coordinates corresponding to choos-
ing a new orthonormal basis for Rn induces an orthogonal similarity transfor-
mation on the matrix of a quadratic form. The main theorem of this section
says that it is always possible to diagonalize a symmetric matrix by an or-
thogonal similarity transformation. Unfortunately, we have to make use of
the following fact, whose proof is beyond the scope of this book:

5.18.2 Every square complex matrix has
at least one complex eigenvalue.

(In fact 5.18.2 is a trivial consequence of the “Fundamental Theorem of Al-
gebra”, which asserts that the field C is algebraically closed. See also §9c.)

5.19 Theorem (i) If A is an n×n real symmetric matrix then there exists
an orthogonal matrix T such that tTAT is a diagonal matrix.

(ii) If A is an n×n Hermitian matrix then there exists a unitary matrix U
such that U∗AU is a real diagonal matrix.

Proof. We prove only part (i) since the proof of part (ii) is virtually identi-
cal. The proof is by induction on n. The case n = 1 is vacuously true, since
every 1× 1 matrix is diagonal.

Assume then that all k×k symmetric matrices over R are orthogonally
similar to diagonal matrices, and let A be a (k+ 1)× (k+ 1) real symmetric
matrix. By 5.18.2 we know that A has at least one complex eigenvalue λ, and
by 5.17 we know that λ ∈ R. Let v ∈ Rn be an eigenvector corresponding to
the eigenvalue λ.

Since v constitutes a basis for a one-dimensional subspace of Rn, we can
apply the Gram-Schmidt process to find an orthogonal basis (v1, v2, . . . , vn)
of Rn with v1 = v. Replacing each vi by ‖vi‖−1vi makes this into an or-
thonormal basis, with v1 still a λ-eigenvector for A. Now define P to be the
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(real) matrix which has vi as its ith column (for each i). By the comments
in 5.15.1 above we see that P is orthogonal.

The first column of P−1AP is P−1Av, since v is the first column of P ,
and since v is a λ-eigenvector of A this simplifies to P−1(λv) = λP−1v. But
the same reasoning shows that P−1v is the first column of P−1P = I, and
so we deduce that the first entry of the first column of P−1AP is λ, all the
other entries in the first column are zero. That is

P−1AP =
(
λ z

˜0
˜

B

)
for some k-component row z

˜
and some k × k matrix B, with 0

˜
being the

k-component zero column.

Since P is orthogonal and A is symmetric we have that

P−1AP = tP tAP = t(tPAP ) = t(P−1AP ),

so that P−1AP is symmetric. It follows that z = 0 and B is symmetric: we
have

P−1AP =
(
λ t0

˜0
˜

B

)
.

By the inductive hypothesis there exists a real orthogonal matrix Q such that
Q−1BQ is diagonal. By multiplication of partitioned matrices we find that

(
1 t0

˜0
˜

Q

)−1(
λ t0

˜0
˜

B

)(
1 t0

˜0
˜

Q

)
=
(

1 t0
˜0

˜
Q−1

)(
λ t0

˜0
˜

BQ

)
=
(
λ t0

˜0
˜

Q−1BQ

)

which is diagonal since Q−1BQ is. Thus (PQ′)−1A(PQ′) is diagonal, where

Q′ =
(

1 0
˜0

˜
Q

)
.

It remains to prove that PQ′ is orthogonal. It is clear by multiplication
of block matrices and the fact that (tQ)Q = I that (tQ′)Q′ = I. Hence Q′ is
orthogonal, and since the product of two orthogonal matrices is orthogonal
(see 5.15.3) it follows that PQ′ is orthogonal too. �
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Comments ...
5.19.1 Given a n × n symmetric (or Hermitian) matrix the problem of
finding an orthogonal (or unitary) matrix which diagonalizes it amounts to
finding an orthonormal basis of Rn (or Cn) consisting of eigenvectors of the
matrix. To do this, proceed in the same way as for any matrix: find the
characteristic equation and solve it. If there are n distinct eigenvalues then
the eigenvectors are uniquely determined up to a scalar factor, and the theory
above guarantees that they will be a right angles to each other. So if the
eigenvectors you find for two different eigenvalues do not have the property
that their dot product is zero, it means that you have made a mistake. If
the characteristic equation has a repeated root λ then you will have to find
more than one eigenvector corresponding to λ. In this case, when you solve
the linear equations (A−λI)x = 0 you will find that the number of arbitrary
parameters in the general solution is equal to the multiplicity of λ as a root
of the characteristic polynomial. You must find an orthonormal basis for this
solution space (by using the Gram-Schmidt process, for instance).

5.19.2 Let A be a Hermitian matrix and let U be a Unitary matrix
which diagonalizes A. It is clear from the above discussion that the diag-
onal entries of U−1AU are exactly the eigenvalues of A. Note also that
detU−1AU = detU−1 detAdetU = detA, and since the determinant of the
diagonal matrix U−1AU is just the product of the diagonal entries we con-
clude that the determinant of A is just the product of its eigenvalues. (This
can also be proved by observing that the determinant and the product of the
eigenvalues are both equal to the constant term of the characteristic polyno-
mial.) ...

The quadratic form Q(x) = txAx and the symmetric matrix A are both
said to be positive definite if Q(x) > 0 for all nonzero x ∈ Rn. If A is positive
definite and T is an invertible matrix then certainly t(Tx)A(Tx) > 0 for all
nonzero x ∈ Rn, and it follows that tTAT is positive definite also. Note that
tTAT is also symmetric. The matrices A and tTAT are said to be congruent.
Obviously, symmetric matrices which are orthogonally similar are congruent;
the reverse is not true. It is easily checked that a diagonal matrix is positive
definite if and only if the diagonal entries are all positive. It follows that
an arbitrary real symmetric matrix is positive definite if and only if all its
eigenvalues are positive. The following proposition can be used as a test for
positive definiteness.

5.20 Proposition A real symmetric n× n matrix A is positive definite if
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and only if for all k from 1 to n the k × k matrix Ak with (i, j)-entry Aij

(obtained by deleting the last n − k rows and columns of A) has positive
determinant.

Proof. Assume that A is positive definite. Then the eigenvalues of A are
all positive, and so the determinant, being the product of the eigenvalues,
is positive also. Now if x is any nonzero k-component column and y the
n-component column obtained from x by appending n− k zeros then, since
A is positive definite,

0 < tyAy = ( tx 0 )
(
Ak ∗
∗ ∗

)(
x
0

)
= txAkx

and it follows that Ak is positive definite. Thus the determinant of each Ak

is positive too.

We must prove, conversely, that if all the Ak have positive determinants
then A is positive definite. We use induction on n, the case n = 1 being
trivial. For the case n > 1 the inductive hypothesis gives that An−1 is
positive definite, and it immediately follows that the n×n matrix A′ defined
by

A′ =
(
An−1 0

0 λ

)
is positive definite whenever λ is a positive number. Note that since the
determinant of An−1 is positive, λ is positive if and only if detA′ is positive.

We now prove that A is congruent to A′ for an appropriate choice of λ.
We have

A =
(
An−1 v

tv µ

)
for some (n − 1)-component column v and some real number µ. Defining
λ = µ− tvA−1

n−1v and

X =
(
In−1 A−1

n−1v
0 1

)
an easy calculation gives tXA′X = A. Furthermore, we have that detX = 1,
and hence detA′ = detA > 0. So A′ is positive definite, and hence A is
too. �
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Suppose that a surface in three dimensional Euclidean space is defined

by an equation of the form Q(x, y, z) = constant, where Q is a quadratic
form. We can find an orthogonal matrix to diagonalize the symmetric ma-
trix associated with Q. It is easily seen that an orthogonal matrix necessarily
has determinant either equal to 1 or −1, and by multiplying a column by −1
if necessary we can make sure that our diagonalizing matrix has determi-
nant 1. Orthogonal transition matrices of determinant 1 correspond simply
to rotations of the coordinate axes, and so we deduce that a suitable rotation
transforms the equation of the surface to

λ(x′)2 + µ(y′)2 + ν(z′)2 = constant

where the coefficients λ, µ and ν are the eigenvalues of the matrix we started
with. The nature of these surfaces depends on the signs of the coefficients,
and the separate cases are easily enumerated.

Exercises

1. Prove that the dot product is an inner product on Rn.

2. Prove that 〈f, g〉 =
∫ b

a
f(x)g(x) dx defines an inner product on C[a, b].

Assume any theorems of calculus you need.

3. Define the distance between two elements v and w of an inner product
space by d(v, w) = ‖v − w‖. Prove that

(i) d(v, w) = d(w, v),
(ii) d(v, w) ≥ 0, with d(v, w) = 0 only if v = w,
(iii) d(u,w) ≤ d(u, v) + d(v, w),
(iv) d(u+ v, u+ w) = d(v, w),

for all u, v, w ∈ V .

4. Prove that orthogonal projections are linear transformations.

5. Prove part (iii) of Proposition 5.10.

6. (i) Let V be a real inner product space and v, w ∈ V . Use calculus
to prove that the minimum value of 〈v − λw, v − λw〉 occurs at
λ = 〈v, w〉

/
〈w,w〉.

(ii) Put λ = 〈v, w〉
/
〈w,w〉 and use 〈v − λw, v − λw〉 ≥ 0 to prove the

Cauchy-Schwarz inequality in any inner product space.
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7. Prove that (AB)∗ = (B∗)(A∗) for all complex matrices A and B such
that AB is defined. Hence prove that the product of two unitary matrices
is unitary. Prove also that the inverse of a unitary matrix is unitary.

8. (i) Let A be a Hermitian matrix and λ an eigenvalue of A. Prove that
λ is real.

(Hint: Let v be a nonzero column satisfying Av = λv. Prove
that v∗A∗ = λv∗, and then calculate v∗Av in two different
ways.)

(ii) Let λ and µ be two distinct eigenvalues of the Hermitian matrix A,
and let u and v be corresponding eigenvectors. Prove that u and
v are orthogonal to each other.

(Hint: Consider u∗Av.)
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6
Relationships between spaces

In this chapter we return to the general theory of vector spaces over an
arbitrary field. Our first task is to investigate isomorphism, the “sameness”
of vector spaces. We then consider various ways of constructing spaces from
others.

§6a Isomorphism

Let V = Mat(2× 2,R), the set of all 2× 2 matrices over R, and let W = R4,
the set of all 4-component columns over R. Then V and W are both vector
spaces over R, relative the usual addition and scalar multiplication for matri-
ces and columns. Furthermore, there is an obvious one-to-one correspondence
between V and W : the function f from V to W defined by

f

(
a b
c d

)
=


a
b
c
d


is bijective. It is clear also that f interacts in the best possible way with the
addition and scalar multiplication functions corresponding to V and W : the
column which corresponds to the sum of two given matrices A and B is the
sum of the column corresponding to A and the column corresponding to B,
and the column corresponding to a scalar multiple of A is the same scalar
times the column corresponding to A. One might even like to say that V
and W are really the same space; after all, whether one chooses to write four
real numbers in a column or a rectangular array is surely a notational matter
of no great substance. In fact we say that V and W are isomorphic vector
spaces, and the function f is called an isomorphism. Intuitively, to say that
V and W are isomorphic, is to say that, as vector spaces, they are the same.

129
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The property of the one-to-one correspondence f which was written out
in words in the last paragraph, becomes, when written symbolically,

f(A+B) = f(A) + f(B)
f(λA) = λf(A)

for all A, B ∈ V and λ ∈ R. That is, f is a linear transformation.

6.1 Definition Let V and W be vector spaces over the same field F . A
function f :V →W which is bijective and linear is called an isomorphism of
vector spaces. If there is an isomorphism from V to W then V and W are
said to be isomorphic, and we write V ∼= W .

Comments ...
6.1.1 Rephrasing the definition, an isomorphism is a one-to-one corre-
spondence which preserves addition and scalar multiplication. Alternatively,
an isomorphism is a linear transformation which is one-to-one and onto.

6.1.2 Every vector space is obviously isomorphic to itself: the identity
function i (defined by i(x) = x for all x) is an isomorphism. This says that
isomorphism is a reflexive relation.

6.1.3 Since isomorphisms are bijective functions they have inverses. We
leave it as an exercise to prove that the inverse of an isomorphism is also an
isomorphism. Thus if V is isomorphic to W then W is isomorphic to V ; in
other words, isomorphism is a symmetric relation.

6.1.4 If f :U →W and g:V → U are isomorphisms then the composite
function fg:V → W is also an isomorphism. Thus if V is isomorphic to U
and U is isomorphic to W then V is isomorphic to W—isomorphism is a
transitive relation. This proof is also left as an exercise. ...

The above comments show that isomorphism is an equivalence relation
(see §1e), and it follows that vector spaces can be separated into mutually
nonoverlapping classes—which are known as isomorphism classes—such that
spaces in the same class are isomorphic to one another. Restricting attention
to finitely generated vector spaces, the next proposition shows that (for a
given field F ) there is exactly one equivalence class for each nonnegative
integer: there is, essentially, only one vector space of each dimension.
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6.2 Proposition If U and V are finitely generated vector spaces over F
of the same dimension d then they are isomorphic.

Proof. Let b be a basis of V . We have seen (see 4.19.1 and 6.1.3) that
v 7→ cvb(v) defines a bijective linear transformation from F d to V ; that is,
V and F d are isomorphic. By the same argument, so are U and F d. �

Examples

#1 Prove that the function f from Mat(2,R) to R4 defined at the start
of this section is an isomorphism.

�−−. Let A, B ∈ Mat(2,R) and λ ∈ R. Then

A =
(
a b
c d

)
B =

(
e k
g h

)
for some a, b, . . . , h ∈ R, and we find

f(A+B) = f

(
a+ e b+ k
c+ g d+ h

)
=


a+ e
b+ k
c+ g
d+ h

 =


a
b
c
d

+


e
k
g
h


= f

(
a b
c d

)
+ f

(
e k
g h

)
= f(A) + f(B)

and

f(λA) = f

(
λa λb
λc λd

)
=


λa
λb
λc
λd

 = λ


a
b
c
d

 = λf(A).

Hence f is a linear transformation.

Let v
˜
∈ R4 be arbitrary. Then v

˜
=


x
y
z
w

 for some x, y, z, w ∈ R, and

f

(
x y
z w

)
=


x
y
z
w

 = v
˜
.
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Hence f is surjective.
Suppose that A, B ∈ Mat(2,R) are such that f(A) = f(B). Writing

A =
(
a b
c d

)
and B =

(
e k
g h

)
we have


a
b
c
d

 = f(A) = f(B) =


e
k
g
h

 ,

whence a = e, b = k, c = g and d = h, showing that A = B. Thus f is
injective. Since it is also surjective and linear, f is an isomorphism. /−−�

#2 Let P be set of all polynomial functions from R to R of degree two or
less, and let F be the set of all functions from the set {1, 2, 3} to R. Show
that P and F are isomorphic vector spaces over R.

�−−. Observe that P is a subset of the set of all functions from R to R, which
we know to be a vector space over R (by §3b#6). A function f : R → R is in
the subset P if and only if there exist a, b, c ∈ R such that f(x) = ax2+bx+c
for all x ∈ R. Now let f, g ∈ P and λ ∈ R be arbitrary. We have

f(x) = ax2 + bx+ c, g(x) = a′x2 + b′x+ c′

for some a, a′, b, b′, c, c′ ∈ R. Now by the definitions of addition and scalar
multiplication for functions we have for all x ∈ R

(f + g)(x) = f(x) + g(x)
= (ax2 + bx+ c) + (a′x2 + b′x+ c′)
= (a+ a′)x2 + (b+ b′) + (c+ c′)

and similarly

(λf)(x) = λ
(
f(x)

)
= λ(ax2 + bx+ c)
= (λa)x2 + (λb)x+ (λc),

so that f + g and λf are both in P. Hence P is closed under addition and
scalar multiplication, and is therefore a subspace.

Since §3b#6 also gives that F is a vector space over R, it remains to
find an isomorphism φ:P → S. There are many ways to do this. One is as
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follows: if f ∈ P let φ(f) be the restriction of f to {1, 2, 3}. That is, if f ∈ P
then φ(f) ∈ F is defined by

(φ(f))(1) = f(1), (φ(f))(2) = f(2), (φ(f))(3) = f(3).

We prove first that φ as defined above is linear. Let f, g ∈ P and
λ, µ ∈ R. Then for each i ∈ {1, 2, 3} we have

φ(λf + µg)(i) = (λf + µg)(i) = (λf)(i) + (µg)(i) = λf(i) + µg(i)
= λ

(
φ(f)(i)

)
+ µ

(
φ(g)(i)

)
=
(
λφ(f)

)
(i) +

(
µφ(g)

)
(i) =

(
λφ(f) + µφ(g)

)
(i),

and so φ(λf + µg) = λφ(f) + µφ(g). Thus φ preserves addition and scalar
multiplication.

To prove that φ is injective we must prove that if f and g are polynomi-
als of degree at most two such that φ(f) = φ(g) then f = g. The assumption
that φ(f) = φ(g) gives f(i) = g(i), and hence (f − g)(i) = 0, for i = 1, 2, 3.
Thus x− 1, x− 2 and x− 3 are all factors of (f − g)(x), and so

(f − g)(x) = q(x)(x− 1)(x− 2)(x− 3)

for some polynomial q. Now since f − g cannot have degree greater than
two we see that the only possibility is q = 0, and it follows that f = g, as
required.

Finally, we must prove that φ is surjective, and this involves showing
that for every α: {1, 2, 3} → R there is a polynomial f of degree at most two
with f(i) = α(i) for i = 1, 2, 3. In fact one can immediately write down a
suitable f :

f(x) = 1
2 (x− 2)(x− 3)α(1)− (x− 1)(x− 3)α(2) + 1

2 (x− 1)(x− 2)α(3).

(This formula is an instance of Lagrange’s interpolation formula.) /−−�

There is an alternative and possibly shorter proof using (instead of φ)
an isomorphism which maps the polynomial ax2 + bx+ c to α ∈ F given by
α(1) = a, α(2) = b and α(3) = c.
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§6b Direct sums

Let F be a field, and consider the space F 6, consisting of all 6-component
columns over F . The subset

S1 =

{
α
β
0
0
0
0


∣∣∣∣∣ α, β ∈ F

}

is a subspace of F 6 isomorphic to F 2; the map which appends four zero
components to the bottom of a 2-component column is an isomorphism from
F 2 to S1. Likewise,

S2 =

{
0
0
γ
δ
0
0


∣∣∣∣∣ γ, δ ∈ F

}
and S3 =

{
0
0
0
0
ε
ζ


∣∣∣∣∣ ε, ζ ∈ F

}

are also subspaces of F 6. It is easy to see that for an arbitrary v ∈ F 6 there
exist uniquely determined v1, v2 and v3 such that v = v1+v2+v3 and vi ∈ Si;
specifically, we have 

α
β
γ
δ
ε
ζ

 =


α
β
0
0
0
0

+


0
0
γ
δ
0
0

+


0
0
0
0
ε
ζ

 .

We say that F 6 is the “direct sum” of its subspaces S1, S2 and S3.

More generally, suppose that b = (v1, v2, . . . , vn) is a basis for the vector
space V , and suppose that we split b into k parts:

b1 = (v1, v2, . . . , vr1)
b2 = (vr1+1, vr1+2, . . . , vr2)
b3 = (vr2+1, vr2+2, . . . , vr3)

...
bk = (vrk−1+1, vrk−1+2, . . . , vn)

where the rj are integers with 0 = r0 < r1 < r2 < · · · < rk−1 < rk = n. For
each j = 1, 2, . . . , k let Uj be the subspace of V spanned by bj . It is not hard
to see that bj is a basis of Uj , for each j. Furthermore,
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6.3 Proposition In the situation described above, for each v ∈ V there
exist uniquely determined u1, u2, . . . , uk such that v = u1 +u2 + · · ·+uk and
uj ∈ Uj for each j.

Proof. Let v ∈ V . Since b spans V there exist scalars λi with

v =
n∑

i=1

λivi

=
r1∑

i=1

λivi +
r2∑

i=r1+1

λivi + · · ·+
n∑

i=rk−1+1

λivi.

Defining for each j

uj =
rj∑

i=rj−1

λivi

we see that uj ∈ Span bj = Uj and v =
∑k

j=1 uj , so that each v can be
expressed in the required form.

To prove that the expression is unique we must show that if uj , u
′
j ∈ Uj

and
∑k

j=1 uj =
∑k

j=1 u
′
j then uj = u′j for each j. Since Uj = Span bj we

may write (for each j)

uj =
rj∑

i=rj−1+1

λivi and u′j =
rj∑

i=rj−1+1

λ′ivi

for some scalars λi and λ′i. Now we have

n∑
i=1

λivi =
k∑

j=1

rj∑
i=rj−1+1

λivi =
k∑

j=1

uj

=
k∑

j=1

u′j =
k∑

j=1

rj∑
i=rj−1+1

λ′ivi =
n∑

i=1

λ′ivi

and since b is a basis for V it follows from 4.15 that λi = λ′i for each i. Hence
for each j,

uj =
rj∑

i=rj−1+1

λivi =
rj∑

i=rj−1+1

λ′ivi = u′j

as required. �
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6.4 Definition A vector space V is said to be the direct sum of subspaces
U1, U2, . . . , Uk if every element of V is uniquely expressible in the form
u1 + u2 + · · · + uk with uj ∈ Uj for each j. To signify that V is the direct
sum of the Uj we write

V = U1 ⊕ U2 ⊕ · · · ⊕ Uk.

Example

#3 Let b = (v1, v2, . . . , vn) be a basis of V and for each i let Ui be the
one-dimensional space spanned by vi. Prove that V = U1 ⊕ U2 ⊕ · · · ⊕ Un.

�−−. Let v be an arbitrary element of V . Since b spans V there exist λi ∈ F
such that v =

∑n
i=1 λivi. Now since ui = λivi is an element of Ui this shows

that v can be expressed in the required form
∑n

i=1 ui. It remains to prove
that the expression is unique, and this follows directly from 4.15. For suppose
that we also have v =

∑n
i=1 u

′
i with u′i ∈ Ui. Letting u′i = λ′ivi we find that

v =
∑n

i=1 λ
′
ivi, whence 4.15 gives λ′i = λi, and it follows that u′i = ui, as

required. /−−�

Observe that this corresponds to the particular case of 6.3 for which
the parts into which the basis is split have one element each.

The case of two direct summands is the most important:

6.5 Definition If V = U1 ⊕U2 then U1 and U2 are called complementary
subspaces.

6.6 Theorem If U1 and U2 are subspaces of the vector space V then
V = U1 ⊕ U2 if and only if V = U1 + U2 and U1 ∩ U2 = {0

˜
}.

Proof. Recall that, by definition, U1 + U2 consists of all elements of V of
the form u1 + u2 with u1 ∈ U1, u2 ∈ U2. (See Exercise 9 of Chapter Three.)
Thus V = U1 +U2 if and only if each element of V is expressible as u1 + u2.

Assume that V = U1 +U2 and U1 ∩U2 = {0
˜
}. Then each element of V

can be expressed in the form u1+u2, and to show that V = U1⊕U2 it suffices
to prove that these expressions are unique. So, assume that u1+u2 = u′1+u′2
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with ui, u

′
i ∈ Ui for i = 1, 2. Then u1− u′1 = u′2− u2; let us call this element

v. By closure properties for the subspace U1 we have

v = u1 − u′1 ∈ U1 (since u1, u
′
1 ∈ U1),

and similarly closure of U2 gives

v = u′2 − u2 ∈ U2 (since u2, u2 ∈ U2).

Hence v ∈ U1 ∩ U2 = {0
˜
}, and we have shown that

u1 − u′1 = 0
˜

= u′2 − u2.

Thus ui = u′i for each i, and uniqueness is proved.
Conversely, assume that V = U1 ⊕ U2. Then certainly each element of

V can be expressed as u1 + u2 with ui ∈ Ui; so V = U1 + U2. It remains
to prove that U1 ∩ U2 = {0

˜
}. Subspaces always contain the zero vector; so

{0
˜
} ⊆ U1 ∩ U2. Now let v ∈ U1 ∩ U2 be arbitrary. If we define

u1 = 0
˜

u2 = v
and

u′1 = v

u′2 = 0
˜

then we see that u1, u
′
1 ∈ U1 and u2, u

′
2 ∈ U2 and also u1 +u2 = v = u′1 +u′2.

Since each element of V is uniquely expressible as the sum of an element of
U1 and an element of U2 this equation implies that u1 = u′1 and u2 = u′2;
that is, v = 0

˜
. �

The above theorem can be generalized to deal with the case of more
than two direct summands. If U1, U2, . . . , Uk are subspaces of V it is natural
to define their sum to be

U1 + U2 + · · ·+ Uk = {u1 + u2 + · · ·+ uk | ui ∈ Ui }

and it is easy to prove that this is always a subspace of V . One might hope
that V is the direct sum of the Ui if the Ui generate V , in the sense that V
is the sum of the Ui, and we also have that Ui ∩ Uj = {0} whenever i 6= j.
However, consideration of #3 above shows that this condition will not be
sufficient even in the case of one-dimensional summands, since to prove that
(v1, v2, . . . , vn) is a basis it is not sufficient to prove that vi is not a scalar
multiple of vj for i 6= j. What we really need, then, is a generalization of the
notion of linear independence.
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6.7 Definition The subspaces U1, U2, . . . , Uk of V are said to be inde-
pendent if the only solution of

u1 + u2 + · · ·+ uk = 0
˜
, ui ∈ Ui for each i

is given by u1 = u2 = · · · = uk = 0
˜
.

We can now state the correct generalization of 6.6:

6.8 Theorem Let U1, . . . , Uk be subspaces of the vector space V . Then
V = U1⊕U2⊕· · ·⊕Uk if and only if the Ui are independent and generate V .

We omit the proof of this since it is a straightforward adaption of the
proof of 6.6. Note in particular that the uniqueness part of the definition
corresponds to the independence part of 6.8.

We have proved in 6.3 that a direct sum decomposition of a space is
obtained by splitting a basis into parts, the summands being the subspaces
spanned by the various parts. Conversely, given a direct sum decomposition
of V one can obtain a basis of V by combining bases of the summands.

6.9 Theorem Let V = U1 ⊕U2 ⊕ · · · ⊕Uk, and for each j = 1, 2, . . . , k let

bj = (v(j)
1 , v

(j)
2 , . . . , v

(j)
dj

) be a basis of the subspace Uj . Then

b = (v(1)
1 , . . . , v

(1)
d1
, v

(2)
1 , . . . , v

(2)
d2
, . . . . . . . . . , v

(k)
1 , . . . , v

(k)
dk

)

is a basis of V and dimV =
∑k

j=1 dimUj .

Proof. Let v ∈ V . Then v =
∑k

j=1 uj for some uj ∈ Uj , and since bj spans

Uj we have uj =
∑dj

i=1 λijv
(j)
i for some scalars λij . Thus

v =
d1∑

i=1

λi1v
(1)
i +

d2∑
i=1

λi2v
(2)
i + · · ·+

dk∑
i=1

λikv
(k)
i ,

a linear combination of the elements of b. Hence b spans V .
Suppose we have an expression for 0

˜
as a linear combination of the

elements of b. That is, assume that

0
˜

=
d1∑

i=1

λi1v
(1)
i +

d2∑
i=1

λi2v
(2)
i + · · ·+

dk∑
i=1

λikv
(k)
i
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for some scalars λij . If we define uj =

∑dj

i=1 λijv
(j)
i for each j then we have

uj ∈ Uj and
u1 + u2 + · · ·+ uk = 0

˜
.

Since V is the direct sum of the Uj we know from 6.8 that the Ui are inde-
pendent, and it follows that uj = 0

˜
for each j. So

∑dj

i=1 λijv
(j)
i = uj = 0

˜
,

and since bj = (v(j)
1 , . . . , v

(j)
dj

) is linearly independent it follows that λij = 0
for all i and j. We have shown that the only way to write 0

˜
as a linear

combination of the elements of b is to make all the coefficients zero; thus b
is linearly independent.

Since b is linearly independent and spans, it is a basis for V . The
number of elements in b is

∑k
j=1 dj =

∑k
j=1 dimUj ; hence the statement

about dimensions follows. �

As a corollary of the above we obtain:

6.10 Proposition Any subspace of a finite dimensional space has a com-
plement.

Proof. Let U be a subspace of V and let d be the dimension of V . By
4.11 we know that U is finitely generated and has dimension less than d.
Assume then that (u1, u2, . . . , ur) is a basis for U . By 4.10 we may choose
w1, w2, . . . , wd−r ∈ V such that (u1, . . . , ur, w1, . . . , wd−r) is a basis of V .
Now by 6.3 we have

V = Span(u1, . . . , ur)⊕ Span(w1, . . . , wd−r).

That is, W = Span(w1, . . . , wd−r) is a complement to U . �

§6c Quotient spaces

Let U be a subspace of the vector space V . If v is an arbitrary element of V
we define the coset of U containing v to be the subset v+U of V defined by

v + U = { v + u | u ∈ U }.

We have seen that subspaces arise naturally as solution sets of linear equa-
tions of the form T (x) = 0. Cosets arise naturally as solution sets of linear
equations when the right hand side is nonzero.
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6.11 Proposition Suppose that T :V →W is a linear transformation. Let
w ∈ W and let S be the set of solutions of the equation T (x) = w; that is,
S = {x ∈ V | T (x) = w }. If w /∈ imT then S is empty. If w ∈ imT then S
is a coset of the kernel of T :

S = x0 +K

where x0 is a particular solution of T (x) = w and K is the set of all solutions
of T (x) = 0.

Proof. By definition imT is the set of all w ∈ W such that w = T (x) for
some x ∈ V ; so if w /∈ imT then S is certainly empty.

Suppose that w ∈ imT and let x0 be any element of V such that
T (x0) = w. If x ∈ S then x− x0 ∈ K, since linearity of T gives

T (x− x0) = T (x)− T (x0) = w − w = 0,

and it follows that
x = x0 + (x− x0) ∈ x0 +K.

Thus S ⊆ x0 + K. Conversely, if x is an element of x0 + K then we have
x = x0 + v with v ∈ K, and now

T (x) = T (x0 + v) = T (x0) + T (v) = w + 0 = w

shows that x ∈ S. Hence x0 +K ⊆ S, and therefore x0 +K = S. �

Cosets can also be described as equivalence classes, in the following
way. Given that U is a subspace of V , define a relation ≡ on V by
(∗) x ≡ y if and only if x − y ∈ U .
It is straightforward to check that ≡ is reflexive, symmetric and transitive,
and that the resulting equivalence classes are precisely the cosets of U .

The set of all cosets of U in V can be made into a vector space in a
manner totally analogous to that used in Chapter Two to construct a field
with three elements. It is easily checked that if x + U and y + U are cosets
of U then the sum of any element of x+U and any element of y+U will lie
in the coset (x + y) + U . Thus it is natural to define addition of cosets by
the rule

6.11.1 (x+ U) + (y + U) = (x+ y) + U.
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Similarly, if λ is a scalar and x+ U a coset then multiplying any element of
x+ U by λ gives an element of (λx) + U , and so we define

6.11.2 λ(x+ U) = (λx) + U.

It is routine to check that addition and scalar multiplication of cosets as
defined above satisfy the vector space axioms. (Note in particular that the
coset 0 + U , which is just U itself, plays the role of zero.)

6.12 Theorem Let U be a subspace of the vector space V and let V/U be
the set of all cosets of U in V . Then V/U is a vector space over F relative
to the addition and scalar multiplication defined in 6.11.1 and 6.11.2 above.

Comments ...
6.12.1 The vector space defined above is called the quotient of V by U .
Note that it is precisely the quotient, as defined in §1e, of V by the equivalence
relation ≡ (see (∗) above).

6.12.2 Note that it is possible to have x+U = x′+U and y+U = y′+U
without having x = x′ or y = y′. However, it is necessarily true in these
circumstances that (x+ y) + U = (x′ + y′) + U , so that addition of cosets is
well-defined. A similar remark is valid for scalar multiplication. ...

The quotient space V/U can be thought of as the space obtained from
V by identifying things which differ by an element of U , or, equivalently,
pretending that all the elements of U are zero. Thus it is reasonable to
regard V as being in some sense made up of U and V/U . The next proposition
reinforces this idea.

6.13 Proposition Let U be a subspace of V and letW be any complement
to U . Then W is isomorphic to V/U .

Proof. Define T :W → V/U by T (w) = w + U . We will prove that T is
linear and bijective.

By the definitions of addition and scalar multiplication of cosets we
have

T (λx+ µy) = (λx+ µy) + U = λ(x+ U) + µ(y + U) = λT (x) + µT (y)

for all x, y ∈W and all λ, µ ∈ F . Hence T is linear.
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Let w ∈ kerT . Then T (w) = w+U is the zero element of V/U ; that is,
w+U = U . Since w = w+ 0 ∈ w+U it follows that w ∈ U , and hence that
w ∈ U ∩W . But W and U are complementary, and so it follows from 6.6
that U ∩W = {0}, and we deduce that w = 0. So kerT = {0}, and therefore
(by 3.15) T is injective.

Finally, an arbitrary element of V/U has the form v + U for some
v ∈ V , and since V is the sum of U and W there exist u ∈ U and w ∈ W
with v = w + u. We see from this that v ≡ w in the sense of (∗) above, and
hence

v + U = w + U = T (w) ∈ imT.

Since v+U was an arbitrary element of V/U this shows that T is surjective.
�

Comment ...
6.13.1 In the situation of 6.13 suppose that (u1, . . . , ur) is a basis for
U and (w1, . . . , ws) a basis for W . Since w 7→ w + U is an isomorphism
W → V/U we must have that the elements w1 +U , . . . , ws +U form a basis
for V/U . This can also be seen directly. For instance, to see that they span
observe that since each element v of V = W ⊕ U is expressible in the form

v =
s∑

j=1

µjwj +
r∑

i=1

λiui,

it follows that

v + U =

 s∑
j=1

µjwj

+ U =
s∑

j=1

µj(wj + U).

...

§6d The dual space

Let V and W be vector spaces over F . It is easily checked, by arguments
almost identical to those used in §3b#6, that the set of all functions from V to
W becomes a vector space if addition and scalar multiplication are defined in
the natural way. We have also seen in Exercise 11 of Chapter Three that the
sum of two linear transformations from V toW is also a linear transformation
from V to W , and the product of a linear transformation by a scalar also
gives a linear transformation. The set L(V,W ) of all linear transformations
from V to W is nonempty (the zero function is linear) and so it follows from
3.10 that L(V,W ) is a vector space. The special case W = F is of particular
importance.
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6.14 Definition Let V be a vector space over F . The space of all linear
transformations from V to F is called the dual space of V , and it is commonly
denoted ‘V ∗’.

Comment ...
6.14.1 In another strange tradition, elements of the dual space are com-
monly called linear functionals. ...

6.15 Theorem Let b = (v1, v2, . . . , vn) be a basis for the vector space V .
For each i = 1, 2, . . . , n there exists a unique linear functional fi such that
fi(vj) = δij (Kronecker delta) for all j. Furthermore, (f1, f2, . . . , fn) is a
basis of V ∗.

Proof. Existence and uniqueness of the fi is immediate from 4.16. If∑n
i=1 λifi is the zero function then for all j we have

0 =

(
n∑

i=1

λifi

)
(vj) =

n∑
i=1

λifi(vj) =
n∑

i=1

λiδij = λj

and so it follows that the fi are linearly independent. It remains to show
that they span.

Let f ∈ V ∗ be arbitrary, and for each i define λi = f(vi). We will show
that f =

∑n
i=1 λifi. By 4.16 it suffices to show that f and

∑n
i=1 λifi take

the same value on all elements of the basis b. This is indeed satisfied, since(
n∑

i=1

λifi

)
(vj) =

n∑
i=1

λifi(vj) =
n∑

i=1

λiδij = λj = f(vj).

�

Comment ...
6.15.1 The basis of V ∗ described in the theorem is called the dual basis
of V ∗ corresponding to the basis b of V . ...

To accord with the normal use of the word ‘dual’ it ought to be true that
the dual of the dual space is the space itself. This cannot strictly be satisfied:
elements of (V ∗)∗ are linear functionals on the space V ∗, whereas elements
of V need not be functions at all. Our final result in this chapter shows that,
nevertheless, there is a natural isomorphism between V and (V ∗)∗.



144 Chapter Six: Relationships between spaces

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

6.16 Theorem Let V be a finite dimensional vector space over the field
F . For each v ∈ V define ev:V ∗ → F by

ev(f) = f(v) for all f ∈ V ∗.

Then ev is an element of (V ∗)∗, and furthermore the mapping V → (V ∗)∗

defined by v 7→ ev is an isomorphism.

We omit the proof. All parts are in fact easy, except for the proof
that v 7→ ev is surjective, which requires the use of a dimension argument.
This will also be easy once we have proved the Main Theorem on Linear
Transformations, which we will do in the next chapter. It is important to
note, however, that Theorem 6.16 becomes false if the assumption of finite
dimensionality is omitted.

Exercises

1. Prove that isomorphic spaces have the same dimension.

2. Let U and V be finite dimensional vector spaces over the field F and let
f :U → V be a linear transformation which is injective. Prove that U is
isomorphic to a subspace of V , and hence prove that dimU ≤ dimV .

3. Prove that the inverse of a vector space isomorphism is a vector space
isomorphism, and that the composite of two vector space isomorphisms
is a vector space isomorphism.

4. In each case determine (giving reasons) whether the given linear trans-
formation is a vector space isomorphism. If it is, give a formula for its
inverse.

(i) ρ: R2 → R3 defined by ρ
(
α
β

)
=

 1 1
2 1
0 −1

(α
β

)

(ii) σ: R3 → R3 defined by σ

α
β
γ

 =

 1 1 0
0 1 1
0 0 1

α
β
γ
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5. Let φ:V → V be a linear transformation such that φ2 = φ. (Note that

multiplication of linear transformations is always defined to be compo-
sition; thus φ2(v) = φ

(
φ(v)

)
). Let i denote the identity transformation

V → V ; that is, i(v) = v for all v ∈ V .

(i) Prove that i−φ:V → V (defined by (i−φ)(v) = v−φ(v)) satisfies

(i− φ)2 = i− φ.

(ii) Prove that imφ = ker(i− φ) and kerφ = im(id− φ).
(iii) Prove that for each element v ∈ V there exist unique x ∈ imφ and

y ∈ kerφ with v = x+ y.

6. Let W be the space of all twice differentiable functions f : R → R satis-

fying d2f/dt2 = 0. For all
(
α
β

)
∈ R2 let φ

(
α
β

)
be the function from

R to R given by

φ

(
α
β

)
(t) = αt+ (β − α).

Prove that φ(v) ∈ W for all v ∈ R2, and that φ: v 7→ φ(v) is an isomor-
phism from R2 to W . Give a formula for the inverse isomorphism φ−1.

7. Let V be a vector space and S and T subspaces of V such that V = S⊕T .
Prove or disprove the following assertion:

If U is any subspace of V then U = (U ∩ S)⊕ (U ∩ T ).

8. Express R2 as the sum of two one dimensional subspaces in two different
ways.

9. Is it possible to find subspaces U , V and W of R4 such that

R4 = U ⊕ V = V ⊕W = W ⊕ U ?

10. Let U1, U2, . . . , Uk be subspaces of V . Prove that the Ui are independent
if and only if each element of U1 +U2 + · · ·+Uk (the subspace generated
by the Ui) is uniquely expressible in the form

∑k
i=1 ui with ui ∈ Ui for

each i.
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11. Let U1, U2, . . . , Uk be subspaces of V . Prove that the Ui are independent
if and only if

Uj ∩ (U1 + · · ·+ Uj−1 + Uj+1 + · · ·+ Uk) = {0
˜
}

for all j = 1, 2, . . . , k.

12. (i) Let V be a vector space over F and let v ∈ V . Prove that the
function ev:V ∗ → F defined by ev(f) = f(v) (for all f ∈ V ∗) is
linear.

(ii) With ev as defined above, prove that the function e:V → (V ∗)∗

defined by
e(v) = ev for all v in V

is a linear transformation.
(iii) Prove that the function e defined above is injective.

13. (i) Let V and W be vector spaces over F . Show that the Cartesian
product of V and W becomes a vector space if addition and scalar
multiplication are defined in the natural way. (This space is called
the external direct sum of V and W , and is sometimes denoted by
‘V uW ’.)

(ii) Show that V ′ = { (v, 0) | v ∈ V } and W ′ = { (0, w) | w ∈ W }
are subspaces of V u W with V ′ ∼= V and W ′ ∼= W , and that
V uW = V ′ ⊕W ′.

(iii) Prove that dim(V uW ) = dimV + dimW .

14. Let S and T be subspaces of a vector space V . Prove that (s, t) 7→ s+ t
defines a linear transformation from SuT to V which has image S+T .

15. Suppose that V is the direct sum of subspaces Vi (for i = 1, 2, . . . , n) and
each Vi is the direct sum of subspaces Vij (for j = 1, 2, . . . ,mi). Prove
that V is the direct sum of all the subspaces Vij .

16. Let V be a real inner product space, and for all w ∈ V define fw:V → R
by fw(v) = 〈v, w〉 for all v ∈ V .

(i) Prove that for each element w ∈ V the function fw:V → R is
linear.

(ii) By (i) each fw is an element of the dual space V ∗ of V . Prove that
f :V → V ∗ defined by f(w) = fw is a linear transformation.
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(iii) By considering fw(w) prove that fw = 0 only if w = 0. Hence

prove that the kernel of the linear transformation f in (ii) is {0}.
(iv) Assume that V is finite dimensional. Use Exercise 2 above and

the fact that V and V ∗ have the same dimension to prove that the
linear transformation f in (ii) is an isomorphism.
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7
Matrices and Linear Transformations

We have seen in Chapter Four that an arbitrary finite dimensional vector
space is isomorphic to a space of n-tuples. Since an n-tuple of numbers is
(in the context of pure mathematics!) a fairly concrete sort of thing, it is
useful to use these isomorphisms to translate questions about abstract vector
spaces into questions about n-tuples. And since we introduced vector spaces
to provide a context in which to discuss linear transformations, our first task
is, surely, to investigate how this passage from abstract spaces to n-tuples
interacts with linear transformations. For instance, is there some concrete
thing, like an n-tuple, which can be associated with a linear transformation?

§7a The matrix of a linear transformation

We have shown in 4.16 that the action of a linear transformation on a basis
of a space determines it uniquely. Suppose then that T :V → W is a linear
transformation, and let b = (v1, . . . , vn) be a basis for the space V and
c = (w1, . . . , wm) a basis for W . If we know expressions for each Tvi in
terms of the wj then for any scalars λi we can calculate T (

∑n
i=1 λivi) in

terms of the wj . Thus there should be a formula expressing cvc(Tv) (for any
v ∈ V ) in terms of the cvc(Tvi) and cvb(v).

7.1 Theorem Let V and W be vector spaces over the field F with bases
b = (v1, v2, . . . , vn) and c = (w1, w2, . . . , wm), and let T :V → W be a linear
transformation. Define Mcb(T ) to be the m× n matrix whose ith column is
cvc(Tvi). Then for all v ∈ V ,

cvc(Tv) = Mcb(T ) cvb(v).

Proof. Let v ∈ V and let v =
∑n

i=1 λivi, so that cvb(v) is the column with
λi as its ith entry. For each vj in the basis b let T (vj) =

∑m
i=1 αijwi. Then

148
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αij is the ith entry of the column cvc(Tvj), and by the definition of Mcb(T )
this gives

Mcb(T ) =


α11 α12 . . . α1n

α21 α22 . . . α2n
...

...
...

αm1 αm2 . . . αmn

 .

We obtain

Tv = T (λ1v1 + λ2v2 + · · ·+ λnvn)
= λ1Tv1 + λ2Tv2 + · · ·+ λnTvn

= λ1

(
m∑

i=1

αi1wi

)
+ λ2

(
m∑

i=1

αi2wi

)
+ · · ·+ λn

(
m∑

i=1

αinwi

)

=
m∑

i=1

(αi1λ1 + αi2λ2 + · · ·+ αinλn)wi,

and since the coefficient of wi in this expression is the ith entry of cvc(Tv)
it follows that

cvc(Tv) =


α11λ1 + α12λ2 + · · ·+ α1nλn

α21λ1 + α22λ2 + · · ·+ α2nλn
...

αm1λ1 + αm2λ2 + · · ·+ αmnλn



=


α11 α12 . . . α1n

α21 α22 . . . α2n
...

...
...

αm1 αm2 . . . αmn



λ1

λ2
...
λn


= Mcb(T ) cvb(v).

�

Comments ...
7.1.1 The matrix Mcb(T ) is called the matrix of T relative to the bases
c and b. The theorem says that in terms of coordinates relative to bases c
and b the effect of a linear transformation T is multiplication by the matrix
of T relative to these bases.

7.1.2 The matrix of a transformation from an m-dimensional space to
an n-dimensional space is an n ×m matrix. (One column for each element
of the basis of the domain.) ...
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Examples

#1 Let V be the space considered in §4e#3, consisting of all polynomials
over R of degree at most three, and define a transformation D:V → V by
(Df)(x) = d

dxf(x). That is, Df is the derivative of f . Since the derivative
of a polynomial of degree at most three is a polynomial of degree at most
two, it is certainly true that Df ∈ V if f ∈ V , and hence D is a well-defined
transformation from V to V . Moreover, elementary calculus gives

D(λf + µg) = λ(Df) + µ(Dg)

for all f, g ∈ V and all λ, µ ∈ R; hence D is a linear transformation. Now,
if b = (p0, p1, p2, p3) is the basis defined in §4e#3, we have

Dp0 = 0, Dp1 = p0, Dp2 = 2p1, Dp3 = 3p2,

and therefore

cvb(Dp0) =


0
0
0
0

 , cvb(Dp1) =


1
0
0
0

 ,

cvb(Dp2) =


0
2
0
0

 , cvb(Dp3) =


0
0
3
0

 .

Thus the matrix of D relative to b and b is

Mbb(D) =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

(Note that the domain and codomain are equal in this example; so we may
use the same basis for each. We could have, if we had wished, used a basis
for V considered as the codomain of D different from the basis used for V
considered as the domain of D. Of course, this would result in a different
matrix.)

By linearity of D we have, for all ai ∈ R,

D(a0p0 + a1p1 + a2p2 + a3p3) = a0Dp0 + a1Dp1 + a2Dp2 + a3Dp3

= a1p0 + 2a2p1 + 3a3p2.
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so that if cvc(p) =


a0

a1

a2

a3

 then cvb(Dp) =


a1

2a2

3a3

0

. To verify the assertion

of the theorem in this case it remains to observe that
a1

2a2

3a3

0

 =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0



a0

a1

a2

a3

 .

#2 Let b =


 1

0
1

 ,

 2
1
1

 ,

 1
1
1

, a basis of R3, and let s be the

standard basis of R3. Let i: R3 → R3 be the identity transformation, defined
by i(v) = v for all v ∈ R3. Calculate Msb(i) and Mbs(i). Calculate also the

coordinate vector of

−2
−1

2

 relative to b.

�−−. We proved in §4e#2 that b is a basis. The ith column of Msb(i) is
the coordinate vector cvs(i(vi)), where b = (v1, v2, v3). But, by 4.19.2 and
the definition of i,

cvs(i(v)) = cvs(v) = v (for all v ∈ R3)

and it follows that

Msb(i) =

 1 2 1
0 1 1
1 1 1

 .

The ith column of Mbs(i) is cvb(i(ei)) = cvb(ei), where e1, e2 and e3
are the vectors of s. Hence we must solve the equations

(∗)

 1
0
0

 = x11

 1
0
1

+ x21

 2
1
1

+ x31

 1
1
1


 0

1
0

 = x12

 1
0
1

+ x22

 2
1
1

+ x32

 1
1
1


 0

0
1

 = x13

 1
0
1

+ x23

 2
1
1

+ x33

 1
1
1

 .
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The solution

x11

x21

x31

 of the first of these equations gives the first column

of Mbs(i), the solution of the second equation gives the second column, and
likewise for the third. In matrix notation the equations can be rewritten as 1

0
0

 =

 1 2 1
0 1 1
1 1 1

x11

x21

x31


 0

1
0

 =

 1 2 1
0 1 1
1 1 1

x12

x22

x32


 0

0
1

 =

 1 2 1
0 1 1
1 1 1

x13

x23

x33

 ,

or, more succinctly still, 1 0 0
0 1 0
0 0 1

 =

 1 2 1
0 1 1
1 1 1

x11 x12 x13

x21 x22 x23

x31 x32 x33


in which the matrix (xij) is Mbs(i). Thus

Mbs(i) =

 1 2 1
0 1 1
1 1 1

−1

=

 0 −1 1
1 0 −1

−1 1 1


as calculated in §4e#2. (This is an instance of the general fact that if
T :V → W is a vector space isomorphism and b, c are bases for V, W then
Mbc(T−1) = Mcb(T )−1. The present example is slightly degenerate since
i−1 = i. Note also that if we had not already proved that b is a basis, the
fact that the equations (∗) have a solution proves it. For, once the ei have
been expressed as linear combinations of b it is immediate that b spans R3,
and since R3 has dimension three it then follows from 4.12 that b is a basis.)

Finally, with v =

−2
−1

2

, 7.1 yields that

cvb(v) = cvb

(
i(v)

)
= Mbs(i) cvS

(
i(v)

)
= MBS(i) v
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=

 0 −1 1
1 0 −1

−1 1 1

−2
−1

2

 =

 3
−4

3


/−−�

Let T :Fn → Fm be an arbitrary linear transformation, and let b and
c be the standard bases of Fn and Fm respectively. If M is the matrix of T
relative to c and b then by 4.19.2 we have, for all v ∈ Fn,

T (v) = cvc

(
T (v)

)
= Mcb(T ) cvb(v) = Mv.

Thus we have proved

7.2 Proposition Every linear transformation from Fn to Fm is given by
multiplication by an m × n matrix; furthermore, the matrix involved is the
matrix of the transformation relative to the standard bases.

7.3 Definition Let b and c be bases for the vector space V . Let i be the
identity transformation from V to V and let Mcb = Mcb(i), the matrix of i
relative to c and b. We call Mcb the transition matrix from b-coordinates to
c-coordinates.

The reason for this terminology is clear: if the coordinate vector of v
relative to b is multiplied by Mcb the result is the coordinate vector of v
relative to c.

7.4 Proposition In the notation of 7.3 we have

cvc(v) = Mcb cvb(v) for all v ∈ V .

The proof of this is trivial. (See #2 above.)

§7b Multiplication of transformations and matrices

We saw in Exercise 10 of Chapter Three that if φ:U → V and ψ:V → W
are linear transformations then their product is also a linear transforma-
tion. (Remember that multiplication of linear transformations is composi-
tion; ψφ:U →W is φ followed by ψ.) In view of the correspondence between
matrices and linear transformations given in the previous section it is natural
to seek a formula for the matrix of ψφ in terms of the matrices of ψ and φ.
The answer is natural too: the matrix of a product is the product the matri-
ces. Of course this is no fluke: matrix multiplication is defined the way it is
just so that it corresponds like this to composition of linear transformations.
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7.5 Theorem Let U, V, W be vector spaces with bases b, c, d respec-
tively, and let φ:U → V and ψ:V → W be linear transformations. Then

Mdb(ψφ) = Mdc(ψ) Mcb(φ).

Proof. Let b = (u1, . . . , um), c = (v1, . . . , vn) and d = (w1, . . . , wp). Let
the (i, j)th entries of Mdc(ψ), Mcb(φ) and Mdb(ψφ) be (respectively) αij , βij

and γij . Thus, by the definition of the matrix of a transformation,

ψ(vk) =
p∑

i=1

αikwi (for k = 1, 2, . . . , n),(a)

φ(uj) =
n∑

k=1

βkjvk (for j = 1, 2, . . . ,m),(b)

and

(ψφ)(uj) =
p∑

i=1

γijwi (for j = 1, 2, . . . ,m).(c)

But, by the definition of the product of linear transformations,

(ψφ)(uj) = ψ
(
φ(uj)

)
= ψ

(
n∑

k=1

βkjvk

)
(by (b))

=
n∑

k=1

βkjψ(vk) (by linearity of ψ)

=
n∑

k=1

βkj

p∑
i=1

αikwi (by (a))

=
p∑

i=1

(
n∑

k=1

αikβkj

)
wi,

and comparing with (c) we have (by 4.15 and the fact that the wi form a
basis) that

γij =
n∑

k=1

αikβkj

for all i = 1, 2, . . . , p and j = 1, 2, . . . ,m. Since the right hand side of
this equation is precisely the formula for the (i, j)th entry of the prod-
uct of the matrices Mdc(ψ) = (αij) and Mcb(φ) = (βij) it follows that
Mdb(ψφ) = Mdc(ψ)Mcb(φ). �
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Comments ...
7.5.1 Here is a shorter proof of 7.5. The jth column of Mdc(ψ)Mcb(φ)
is, by the definition of matrix multiplication, the product of Mdc(ψ) and the
jth column of Mcb(φ). Hence, by the definition of Mcb(φ), it equals

Mdc(ψ) cvc(φ
(
uj)
)
,

which in turn equals cvd

(
ψ(φ(uj))

)
(by 7.1). But this is just cvd

(
(ψφ)(uj)

)
,

the jth column of Mdb(ψφ).

7.5.2 Observe that the shapes of the matrices are right. Since the di-
mension of V is n and the dimension of W is p the matrix Mdc(ψ) has n
columns and p rows; that is, it is a p×n matrix. Similarly Mcb(φ) is an n×m
matrix. Hence the product Mdc(ψ) Mcb(φ) exists and is a p ×m matrix—
the right shape to be the matrix of a transformation from an m-dimensional
space to a p-dimensional space. ...

It is trivial that if b is a basis of V and i:V → V the identity then
Mbb(i) is the identity matrix (of the appropriate size). Hence,

7.6 Corollary If f :V →W is an isomorphism then

Mbc(f−1) = (Mcb(f))−1

for any bases b, c of V, W .

Proof. Let I be the d× d identity matrix, where d = dimV = dimW (see
Exercise 1 of Chapter Six). Then by 7.5 we have

Mbc(f−1) Mcb(f) = Mbb(f−1f) = Mbb(i) = I

and

Mcb(f) Mbc(f−1) = Mcc(ff−1) = Mcc(i) = I

whence the result. �

As another corollary we discover how changing the bases alters the
matrix of a transformation:
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7.7 Corollary Let T :V → W be a linear transformation. Let b1, b2 be
bases for V and let c1, c2 be bases for W . Then

Mcb
(T ) = Mcc Mcb

(T )Mbb
.

Proof. By their definitions Mcc = Mcc(iW ) and Mbb = Mbb(iV )
(where iV and iW are the identity transformations); so 7.5 gives

Mcc Mcb
(T ) Mbb

= Mcb
(iWTiV ),

and since iWTiV = T the result follows. �

Our next corollary is a special case of the last; it will be of particular
importance later.

7.8 Corollary Let b and c be bases of V and let T :V → V be linear.
Let X = Mbc be the transition matrix from c-coordinates to b-coordinates.
Then

Mcc(T ) = X−1 Mbb(T )X.

Proof. By 7.6 we see that X−1 = Mcb, so that the result follows immedi-
ately from 7.7. �

Example

#3 Let f : R3 → R3 be defined by

f

x
y
z

 =

 8 85 −9
0 −2 0
6 49 −7

x
y
z



and let b =

 1
0
1

 ,

 3
0
2

 ,

−4
1
5

. Prove that b is a basis for R3 and

calculate Mbb(f).

�−−. As in previous examples, b will be a basis if and only if the matrix
with the elements of b as its columns is invertible. If it is invertible it is the
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transition matrix Msb, and its inverse is Mbs. Now 1 3 −4 1 0 0

0 0 1 0 1 0
1 2 5 0 0 1

 R3:=R3−R1−−−−−−−→

 1 3 −4 1 0 0
0 0 1 0 1 0
0 −1 9 −1 0 1


R2↔R3

R2:=−1R2−−−−−−→

 1 3 −4 1 0 0
0 1 −9 1 0 −1
0 0 1 0 1 0


R2:=R2+9R3
R1:=R1+4R3
R1:=R1−R2−−−−−−−→

 1 0 0 −2 −23 3
0 1 0 1 9 −1
0 0 1 0 1 0

 ,

so that b is a basis. Moreover, by 7.8,

Mbb(f) =

−2 −23 3
1 9 −1
0 1 0

 8 85 −9
0 −2 0
6 49 −7

 1 3 −4
0 0 1
1 2 5


=

−2 −23 3
1 9 −1
0 1 0

−1 6 8
0 0 −2

−1 4 −10


=

−1 0 0
0 2 0
0 0 −2

 .

/−−�

§7c The Main Theorem on Linear Transformations

If A and B are finite sets with the same number of elements then a function
from A to B which is one-to-one is necessarily onto as well, and, likewise, a
function from A to B which is onto is necessarily one-to-one. There is an
analogous result for linear transformations between finite dimensional vector
spaces: if V and U are spaces of the same finite dimension then a linear trans-
formation from V to U is one-to-one if and only if it is onto. More generally,
if V and U are arbitrary finite dimensional vector spaces and φ:V → U a
linear transformation then the dimension of the image of φ equals the dimen-
sion of V minus the dimension of the kernel of φ. This is one of the assertions
of the principal result of this section:



158 Chapter Seven: Matrices and Linear Transformations

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

7.9 The Main Theorem on Linear Transformations Let V and U
be vector spaces over the field F and φ:V → U a linear transformation. Let
W be a subspace of V complementing kerφ. Then

(i) W is isomorphic to imφ,

(ii) if V is finite dimensional then

dimV = dim(imφ) + dim(kerφ).

Comments ...
7.9.1 Recall that ‘W complements kerφ’ means that V = W ⊕ kerφ.
We have proved in 6.10 that if V is finite dimensional then there always exists
such a W . In fact it is also true in the infinite dimensional case, but the proof
(using Zorn’s Lemma) is beyond the scope of this course.

7.9.2 In physical examples the dimension of the space V can be thought
of intuitively as the number of degrees of freedom of the system. Then the
dimension of kerφ is the number of degrees of freedom which are killed by φ
and the dimension of imφ the number which survive φ. ...

Proof. (i) Define ψ:W → imφ by

ψ(v) = φ(v) for all v ∈W .

Thus ψ is simply φ with the domain restricted to W and the codomain
restricted to imφ. Note that it is legitimate to restrict the codomain like this
since φ(v) ∈ imφ for all v ∈W . We prove that ψ is an isomorphism.

Since φ is linear, ψ is certainly linear also:

ψ(λx+ µy) = φ(λx+ µy) = λφ(x) + µφ(y) = λψ(x) + µψ(y)

for all x, y ∈W and λ, µ ∈ F . We have

kerψ = {x ∈W | ψ(x) = 0 } = {x ∈W | φ(x) = 0 } = W ∩ kerφ = {0}

by 6.6, since the sum of W and kerφ is direct. Hence ψ is injective, by 3.15,
and it remains to prove that ψ is surjective.

Let u ∈ imφ. Then u = φ(v) for some v ∈ V , and since V = W + kerφ
we may write v = w + z with w ∈W and z ∈ kerφ. Then we have

u = φ(v) = φ(w + z) = φ(w) + φ(z) = φ(w) + 0
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since z ∈ kerφ, and so u = φ(w) = ψ(w). This holds for all u ∈ imφ; so
we have shown that ψ:W → imφ is surjective, as required. Hence W is
isomorphic to imφ.
(ii) Let (x1, x2, . . . , xr) be a basis for W . Since ψ is an isomorphism it
follows from 4.17 that (ψ(x1), ψ(x2), . . . , ψ(xr)) is a basis for imφ, and so
dim(imφ) = dimW . Hence 6.9 yields

dimV = dimW + dim(kerφ) = dim(imφ) + dim(kerφ).
�

Example

#4 Let φ: R3 → R3 be defined by

φ

x
y
z

 =

 1 1 1
1 1 1
2 2 2

x
y
z

 .

It is easily seen that the image of φ consists of all scalar multiples of the

column

 1
1
2

, and is therefore a space of dimension 1. By the Main Theorem

the kernel of φ must have dimension 2, and, indeed, it is easily checked that 1
−1
0

 ,

 0
1
−1


is a basis for kerφ.

In our treatment of the Main Theorem we have avoided mentioning
quotient spaces, so that §6c would not be a prerequisite. This does, however,
distort the picture somewhat; a more natural version of the theorem is as
follows:

7.10 Theorem Let V and U be vector spaces and φ:V → U a linear
transformation. Then the image of φ is isomorphic to the quotient of V by
the kernel of φ. That is, symbolically, imφ ∼= (V/ kerφ).

Proof. Let I = imφ and K = kerφ. Elements of V/K are cosets, of the
form v +K where v ∈ V . Now if x ∈ K then

φ(v + x) = φ(v) + φ(x) = φ(v) + 0 = φ(v)
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and so it follows that φ maps all elements of the coset x + K to the same
element u = φ(v) in the subspace I of U . Hence there is a well-defined
mapping ψ: (V/K) → I satisfying

ψ(v +K) = φ(v) for all v ∈ V .

Linearity of ψ follows easily from linearity of φ and the definitions of
addition and scalar multiplication for cosets:

ψ(λ(x+K) + µ(y +K)) = ψ((λx+ µy) +K) = φ(λx+ µy)
= λφ(x) + µφ(y) = λψ(x+K) + µψ(y +K)

for all x, y ∈ V and λ, µ ∈ F .

Since every element of I has the form φ(v) = ψ(v+K) it is immediate
that ψ is surjective. Moreover, if v+K ∈ kerψ then since φ(v) = ψ(v+K) = 0
it follows that v ∈ K, whence v +K = K, the zero element of V/K. Hence
the kernel of ψ consists of the zero element alone, and therefore ψ is injective.

�

We leave to the exercises the proof of the following consequence of the
Main Theorem.

7.11 Proposition If S and T are subspaces of V then

dim(S + T ) + dim(S ∩ T ) = dimS + dimT.

Another consequence of the Main Theorem is that it is possible to
choose bases of the domain and codomain so that the matrix of a linear
transformation has a particularly simple form.

7.12 Theorem Let V, U be vector spaces of dimensions n, m respectively,
and φ:V → U a linear transformation. Then there exist bases b, c of V, U
and a positive integer r such that

Mcb(φ) =
(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
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where Ir×r is an r×r identity matrix, and the other blocks are zero matrices
of the sizes indicated. Thus, the (i, j)-entry of Mcb(φ) is zero unless i = j ≤ r,
in which case it is one.

Proof. By 6.10 we may write V = W ⊕ kerφ, and, as in the proof of the
Main Theorem, let (x1, x2, . . . , xr) be a basis of W . Choose any basis of
kerφ; by 6.9 it will have n − r elements, and combining it with the basis of
W will give a basis of V . Let (xr+1, . . . , xn) be the chosen basis of kerφ, and
let b = (x1, x2, . . . , xn) the resulting basis of V .

As in the proof of the Main Theorem, (φ(x1), . . . , φ(xr)) is a basis for
the subspace imφ of U . By 4.10 we may choose ur+1, ur+2, . . . , um ∈ U so
that

c = (φ(x1), φ(x2), . . . , φ(xr), ur+1, ur+2, . . . , um)

is a basis for U .

The bases b and c having been defined, it remains to calculate the
matrix of φ and check that it is as claimed. By definition the ith column of
Mcb(φ) is the coordinate vector of φ(xi) relative to c. If r + 1 ≤ i ≤ n then
xi ∈ kerφ and so φ(xi) = 0. So the last n− r columns of the matrix are zero.
If 1 ≤ i ≤ r then φ(xi) is actually in the basis c; in this case the solution of

φ(xi) = λ1φ(x1) + · · ·+ λrφ(xr) + λr+1ur+1 + · · ·+ λmum

is λi = 1 and λj = 0 for j 6= i. Thus for 1 ≤ i ≤ r the ith column of the
matrix has a 1 in the ith position and zeros elsewhere. �

Comment ...
7.12.1 The number r which appears in 7.12 is called the rank of φ. Note
that r is an invariant of φ, in the sense that it depends only on φ and not on
the bases b and c. Indeed, r is just the dimension of the image of φ. ...

§7d Rank and nullity of matrices

Because of the connection between matrices and linear transformations,
the Main Theorem on Linear Transformations ought to have an analogue for
matrices. This section is devoted to the relevant concepts. Our first aim is
to prove the following important theorem:

7.13 Theorem Let A be any rectangular matrix over the field F . The
dimension of the column space of A is equal to the dimension of the row
space of A.
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7.14 Definition The rank of A, rank(A), is defined to be the dimension
of the row space of A.

In view of 7.13 we could equally well define the rank to be the dimension
of the column space. However, we are not yet ready to prove 7.13; there are
some preliminary results we need first. The following is trivial:

7.15 Proposition The dimension of RS(A) does not exceed the number
of rows of A, and the dimension of CS(A) does not exceed the number of
columns.

Proof. Immediate from 4.12 (i), since the rows span the row space and the
columns span the column space. �

We proved in Chapter Three (see 3.21) that if A and B are matrices
such that AB exists then the row space of AB is contained in the row space
of B, and the two are equal if A is invertible. It is natural to ask whether
there is any relationship between the column space of AB and the column
space of B.

7.16 Proposition If A ∈ Mat(m× n, F ) and B ∈ Mat(n× p, F ) then
φ(x) = Ax defines a surjective linear transformation from CS(B) to CS(AB).

Proof. Let the columns of B be x1, x2, . . . , xp. Then the columns of AB
are Ax1, Ax2, . . . , Axm. Now if v ∈ CS(B) then v =

∑m
i=1 λixi for some

λi ∈ F , and so

φ(v) = Av = A
( p∑

i=1

λixi

)
=

p∑
i=1

λiAxi ∈ CS(AB).

Thus φ is a function from CS(B) to CS(AB). It is trivial that φ is linear:

φ(λx+ µy) = A(λx+ µy) = λ(Ax) + µ(Ay) = λφ(x) + µφ(y).

It remains to prove that φ is surjective. If y ∈ CS(AB) is arbitrary then y
must be a linear combination of the Axi (the columns of AB); so for some
scalars λi

y =
p∑

i=1

λiAxi = A
( p∑

i=1

λixi

)
.

Defining x =
∑n

i=1 λixi we have that x ∈ CS(B), and y = Ax = φ(x) ∈ imφ,
as required. �
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7.17 Corollary The dimension of CS(AB) is less than or equal to the
dimension of CS(B).

Proof. This follows from the Main Theorem on Linear Transformations:
since φ is surjective we have

dim CS(B) = dim(CS(AB)) + dim(kerφ),

and since dim(kerφ) is certainly nonnegative the result follows. �

If the matrix A is invertible then we may apply 7.17 with B replaced by
AB and A replaced by A−1 to deduce that dim(CS(A−1AB) ≤ dim(CS(AB),
and combining this with 7.17 itself gives

7.18 Corollary If A is invertible then CS(B) and CS(AB) have the same
dimension.

We have already seen that elementary row operations do not change the
row space at all; so they certainly do not change the dimension of the row
space. In 7.18 we have shown that they do not change the dimension of the
column space either. Note, however, that the column space itself is changed
by row operations, it is only the dimension of the column space which is
unchanged.

The next three results are completely analogous to 7.16, 7.17 and 7.18,
and so we omit the proofs.

7.19 Proposition If A and B are matrices such that AB exists then
x 7→ xB is a surjective linear transformation from RS(A) to RS(AB).

7.20 Corollary The dimension of RS(AB) is less than or equal to the
dimension of RS(A).

7.21 Corollary If B is invertible then dim(RS(AB)) = dim(RS(A)).

By 7.18 and 7.21 we see that premultiplying and postmultiplying by
invertible matrices both leave unchanged the dimensions of the row space
and column space. Given a matrix A, then, it is natural to look for invertible
matrices P and Q for which PAQ is as simple as possible. Then, with any
luck, it may be obvious that dim(RS(PAQ)) = dim(CS(PAQ)). If so we will
have achieved our aim of proving that dim(RS(A)) = dim(CS(A)). Theorem
7.12 readily provides the result we seek:
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7.22 Theorem Let A ∈ Mat(m× n, F ). Then there exist invertible ma-
trices P ∈ Mat(m×m,F ) and Q ∈ Mat(n× n, F ) such that

PAQ =
(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
where the integer r equals both the dimension of the row space of A and the
dimension of the column space of A.

Proof. Let φ:Fn → Fm be given by φ(x) = Ax. Then φ is a linear
transformation, and A = Mss

(φ), where s1, s2 are the standard bases of
Fn, Fm. (See 7.2 above.) By 7.12 there exist bases b, c of Fn, Fm such that

Mcb(φ) =
(
I 0
0 0

)
, and if we let P and Q be the transition matrices Mcs

and Msb (respectively) then 7.7 gives

PAQ = Mcs Mss
(φ) Msb = Mcb(φ) =

(
I 0
0 0

)
.

Note that since P and Q are transition matrices they are invertible (by 7.6);
hence it remains to prove that if the identity matrix I in the above equation
is of shape r × r, then the row space of A and the column space of A both
have dimension r.

By 7.21 and 3.22 we know that RS(PAQ) and RS(A) have the same

dimension. But the row space of
(
I 0
0 0

)
consists of all n-component rows

of the form (α1, . . . , αr, 0, . . . , 0), and is clearly an r-dimensional space iso-

morphic to tF r. Indeed, the nonzero rows of
(
I 0
0 0

)
—that is, the first r

rows—are linearly independent, and therefore form a basis for the row space.
Hence r = dim(RS(PAQ)) = dim(RS(A)), and by totally analogous reason-
ing we also obtain that r = dim(CS(PAQ)) = dim(CS(A)). �

Comments ...
7.22.1 We have now proved 7.13.

7.22.2 The proof of 7.22 also shows that the rank of a linear transfor-
mation (see 7.12.1) is the same as the rank of the matrix of that linear
transformation, independent of which bases are used.

7.22.3 There is a more direct computational proof of 7.22, as follows.
Apply row operations to A to obtain a reduced echelon matrix. As we have



Chapter Seven: Matrices and Linear Transformations 165

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics
seen in Chapter One, row operations are performed by premultiplying by
invertible matrices; so the echelon matrix obtained has the form PA with P
invertible. Now apply column operations to PA; this amounts to postmulti-
plying by an invertible matrix. It can be seen that a suitable choice of column
operations will transform an echelon matrix to the desired form. ...

As an easy consequence of the above results we can deduce the following
important fact:

7.23 Theorem An n×n matrix has an inverse if and only if its rank is n.

Proof. Let A ∈ Mat(n× n, F ) and suppose that rank(A) = n. By 7.22
there exist n×n invertible P and Q with PAQ = I. Multiplying this equation
on the left by P−1 and on the right by P gives P−1PAQP = P−1P , and
hence A(QP ) = I. We conclude that A is invertible (QP being the inverse).

Conversely, suppose that A is invertible, and let B = A−1. By 7.20 we
know that rank(AB) ≤ rank(A), and by 7.15 the number of rows of A is an
upper bound on the rank of A. So n ≥ rank(A) ≥ rank(AB) = rank(I) = n
since (reasoning as in the proof of 7.22) it is easily shown that the n × n
identity has rank n. Hence rank(A) = n. �

Let A be an m × n matrix over F and let φ:Fn → Fm be the linear
transformation given by multiplication by A. Since

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



x1

x2
...
xn

 =
n∑

i=1


a1i

a2i
...
ami

xi

we see that for every v ∈ Fn the column φ(v) is a linear combination of the
columns of A, and, conversely, every linear combination of the columns of A
is φ(v) for some v ∈ Fn. In other words, the image of φ is just the column
space of A. The kernel of φ involves us with a new concept:

7.24 Definition The right null space of a matrix A ∈ Mat(m× n, F ) is
the set RN(A) consisting of all v ∈ Fn such that Av = 0. The dimension of
RN(A) is called the right nullity , rn(A), of A. Similarly, the left null space
LN(A) is the set of all w ∈ tFm such that wA = 0, and its dimension is called
the left nullity , ln(A), of A.
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It is obvious that if A and φ are as in the above discussion, the kernel
of φ is the right null space of A. The domain of φ is Fn, which has dimension
equal to n, the number of columns of A. Hence the Main Theorem on Linear
Transformations applied to φ gives:

7.25 Theorem For any rectangular matrix A over the field F , the rank of
A plus the right nullity of A equals the number of columns of A. That is,

rank(A) + rn(A) = n

for all A ∈ Mat(m× n, F ).

Comment ...
7.25.1 Similarly, the linear transformation x 7→ xA has kernel equal to
the left null space of A and image equal to the row space of A, and it follows
that rank(A)+ln(A) = m, the number of rows of A. Combining this equation
with the one in 7.25 gives ln(A)− rn(A) = m− n. ...

Exercises

1. Let U be the vector space consisting of all functions f : R → R which
satisfy the differential equation f ′′(t) − f(t) = 0, and assume that that
b1 = (u1, u2) and b2 = (v1, v2) are two different bases of U , where u1,
u2, v1, v2 are defined as follows:

u1(t) = et

u2(t) = e−t

v1(t) = cosh(t)
v2(t) = sinh(t)

for all t ∈ R. Find the (b1, b2)-transition matrix.

2. Let f , g, h be the functions from R to R defined by

f(t) = sin(t), g(t) = sin(t+
π

4
), h(t) = sin(t+

π

2
).

(i) What is the dimension of the vector space V (over R) spanned by
(f, g, h)? Determine two different bases b1 and b2 of V .

(ii) Show that differentiation yields a linear transformation from V to
V , and calculate the matrix of this transformation relative to the
bases b1 and b2 found in (i). (That is, use b1 as the basis of V
considered as the domain, b2 as the basis of V considered as the
codomain.)
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3. Regard C as a vector space over R. Show that the function θ: C → C

defined by θ(z) = z̄ (complex conjugate of z) is a linear transformation,
and calculate the matrix of θ relative to the basis (1, i) (for both the
domain and codomain).

4. Let b1 = (v1, v2, . . . , vn), b2 = (w1, w2, . . . wn) be two bases of a vector
space V . Prove that Mbb

= M−1
bb

.

5. Let θ: R3 → R2 be defined by

θ

x
y
z

 =
(

1 1 1
2 0 4

)x
y
z

 .

Calculate the matrix of θ relative to the bases 1
−1
1

 ,

 3
−2
2

 ,

−2
4
−3

 and
((

0
1

)
,

(
1
1

))

of R3 and R2.

6. (i) Let φ: R2 → R be defined by φ

(
x
y

)
= ( 1 2 )

(
x
y

)
. Calculate

the matrix of φ relative to the bases
((

0
1

)
,

(
1
1

))
and (−1) of

R2 and R.

(ii) With φ as in (i) and θ as in Exercise 5, calculate φθ and its matrix
relative the two given bases. Hence verify Theorem 7.5 in this case.

7. Let S and T be subspaces of a vector space V and let U be a subspace
of T such that T = (S ∩ T )⊕ U . Prove that S + T = S ⊕ U , and hence
deduce that dim(S + T ) = dimS + dimT − dim(S ∩ T ).

8. Give an alternative proof of the result of the previous exercise by use of
the Main Theorem and Exercise 14 of Chapter Six.

9. Prove that the rank of a linear transformation is an invariant. (See
7.12.1.)
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10. Let S = span(v1, v2, . . . , vs), T = span(w1, w2, . . . , wt) where the vi and
wj are n-component rows over F . Form the matrix



v1 v1
v2 v2
...

...
vs vs

w1 0
w2 0
...

...
wt 0


and use row operations to reduce it to echelon form. If the result is



x1 ∗
...

...
xl ∗
0 y1
...

...
0 yk

0 0
...

...
0 0


then (x1, x2, . . . , xl) is a basis for S+T and (y1, y2, . . . , yk) is a basis for
S ∩ T .

Do this for the following example:

v1 = ( 1 1 1 1 )
v2 = ( 2 0 −2 3 )
v3 = ( 1 3 5 0 )
v4 = ( 7 −3 8 −1 )

w1 = ( 0 −2 −4 1 )
w2 = ( 1 5 9 −1 )
w3 = ( 3 −3 −9 6 )
w4 = ( 1 1 0 0 ) .

Think about why it works.
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11. Let V , W be vector spaces over the field F and let b = (v1, v2, . . . , vn),

c = (w1, w2, . . . , wm) be bases of V , W respectively. Let L(V,W ) be the
set of all linear transformations from V to W , and let Mat(m×n, F ) be
the set of all m× n matrices over F .

Prove that the function Ω: L(V,W ) → Mat(m × n, F ) defined by
Ω(θ) = Mbc(θ) is a vector space isomorphism. Find a basis for L(V,W ).

(Hint: Elements of the basis must be linear transformations from
V to W , and to describe a linear transformation θ from V to
W it suffices to specify θ(vi) for each i. First find a basis for
Mat(m×n, F ) and use the isomorphism above to get the required
basis of L(V,W ).)

12. For each of the following linear transformations calculate the dimensions
of the kernel and image, and check that your answers are in agreement
with the Main Theorem on Linear Transformations.

(i) θ: R4 → R2 given by θ


x
y
z
w

 =
(

2 −1 3 5
1 −1 1 0

)
x
y
z
w

.

(ii) θ: R2 → R3 given by θ
(
x
y

)
=

 4 −2
−2 1
−6 3

(x
y

)
.

(iii) θ:V → V given by θ(p(x)) = p′(x), where V is the space of all
polynomials over R of degree less than or equal to 3.

13. Suppose that θ: R6 → R4 is a linear transformation with kernel of di-
mension 2. Is θ surjective?

14. Let θ: R3 → R3 be defined by θ

x
y
z

 =

 1 −4 2
−1 −2 2
1 −5 3

x
y
z

, and let

b be the basis of R3 given by b =

 1
1
2

 ,

 1
1
1

 ,

 2
1
3

. Calculate

Mbb(θ) and find a matrix X such that

X−1

 1 −4 2
−1 −2 2
1 −5 3

X = Mbb(θ).
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15. Let θ: R3 → R4 be defined by

θ

x
y
z

 =


1 −1 3
2 −1 −2
1 −1 1
4 −2 −4


x
y
z

 .

Find bases b = (u1, u2, u3) of R3 and c = (v1, v2, v3, v4) of R4 such that

the matrix of θ relative to b and c is


1 0 0
0 1 0
0 0 1
0 0 0

.

16. Let V and W be finitely generated vector spaces of the same dimension,
and let θ:V → W be a linear transformation. Prove that θ is injective
if and only if it is surjective.

17. Give an example, or prove that no example can exist, for each of the
following.

(i) A surjective linear transformation θ: R8 → R5 with kernel of di-
mension 4.

(ii) A ∈ Mat(3× 2,R), B ∈ Mat(2× 2,R), C ∈ Mat(2× 3,R) with

ABC =

 2 2 2
3 3 0
4 0 0

 .

18. Let A be the 50 × 100 matrix with (i, j)th entry 100(i − 1) + j. (Thus
the first row consists of the numbers from 1 to 100, the second consists
of the numbers from 101 to 200, and so on.) Let V be the space of all
50-component rows v over R such that vA = 0 and W the space of 100-
component columns w over R such that Aw = 0. (That is, V and W are
the left null space and right null space of A.) Calculate dimW − dimV .

(Hint: You do not really have to do any calculation!)

19. Let U and V be vector spaces over F and φ:U → V a linear transfor-
mation. Let b, b′ be bases for U and d, d′ bases for V . Prove that the
matrices Mbd(φ) and Mb′d′(φ) have the same rank.
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Permutations and determinants

This chapter is devoted to studying determinants, and in particular to prov-
ing the properties which were stated without proof in Chapter Two. Since
a proper understanding of determinants necessitates some knowledge of per-
mutations, we investigate these first.

§8a Permutations

Our discussion of this topic will be brief since all we really need is the
definition of the parity of a permutation (see Definition 8.3 below), and some
of its basic properties.

8.1 Definition A permutation of the set {1, 2, . . . , n} is a bijective func-
tion {1, 2, . . . , n} → {1, 2, . . . , n}. The set of all permutations of {1, 2, . . . , n}
will be denoted by ‘Sn’.

For example, the function σ: {1, 2, 3} → {1, 2, 3} defined by

σ(1) = 2, σ(2) = 3, σ(3) = 1

is a permutation. In a notation which is commonly used one would write

σ =
[

1 2 3
2 3 1

]
for this permutation. In general, the notation

τ =
[

1 2 3 · · · n
r1 r2 r3 · · · rn

]
means

τ(1) = r1, τ(2) = r2, . . . , τ(n) = rn.

171
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Comments ...
8.1.1 Altogether there are six permutations of {1, 2, 3}, namely[

1 2 3
1 2 3

] [
1 2 3
1 3 2

] [
1 2 3
2 1 3

]
[

1 2 3
2 3 1

] [
1 2 3
3 1 2

] [
1 2 3
3 2 1

]
.

8.1.2 It is usual to give a more general definition than 8.1 above: a
permutation of any set S is a bijective function from S to itself. However,
we will only need permutations of {1, 2, . . . , n}. ...

Multiplication of permutations is defined to be composition of functions.
That is,

8.2 Definition For σ, τ ∈ Sn define στ : {1, 2, . . . , n} → {1, 2, . . . , n} by
(στ)(i) = σ(τ(i)).

Comments ...
8.2.1 We proved in Chapter One that the composite of two bijections
is a bijection; hence the product of two permutations is a permutation. Fur-
thermore, for each permutation σ there is an inverse permutation σ−1 such
that σσ−1 = σ−1σ = i (the identity permutation).

In fact, permutations form an algebraic system known as a group. We
leave the study of groups to another course.

8.2.2 Unfortunately, there are two conflicting conventions within the
mathematical community, both widespread, concerning multiplication of per-
mutations. Some people, perhaps most people, write permutations as right
operators, rather than left operators (which is the convention that we will
follow). If σ ∈ Sn and i ∈ {1, 2, . . . , n} our convention is to write ‘σ(i)’ for
the image of of i under the action of σ; the permutation is written to the
left of the the thing on which it acts. The right operator convention is to
write either ‘iσ’ or ‘iσ’ instead of σ(i). This seems at first to be merely a
notational matter of no mathematical consequence. But, naturally enough,
right operator people define the product στ of two permutations σ and τ by
the rule iστ = (iσ)τ , instead of by the rule given in 8.2 above. Thus for right
operators, ‘στ ’ means ‘apply σ first, then apply τ ’, while for left operators
it means ‘apply τ first, then apply σ’ (since ‘(στ)(i)’ means ‘σ applied to (τ
applied to i)’). The upshot is that we multiply permutations from right to
left, others go from left to right. ...
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Example

#1 Compute the following product of permutations:[
1 2 3 4
2 3 4 1

] [
1 2 3 4
3 2 4 1

]
.

�−−. Let σ =
[

1 2 3 4
2 3 4 1

]
and τ =

[
1 2 3 4
3 2 4 1

]
. Then

(στ)(1) = σ(τ(1)) = σ(3) = 4.

The procedure is immediately clear: to find what the product does to 1, first
find the number underneath 1 in the right hand factor—it is 3 in this case—
then look under this number in the next factor to get the answer. Repeat
this process to find what the product does to 2, 3 and 4. We find that[

1 2 3 4
2 3 4 1

] [
1 2 3 4
3 2 4 1

]
=
[

1 2 3 4
4 3 1 2

]
.

/−−�

Note that the right operator convention leads to exactly the same
method for computing products, but starting with the left hand factor and

proceeding to the right. This would give
[

1 2 3 4
2 4 1 3

]
as the answer.

#2 It is equally easy to compute a product of more than two factors.
Thus, for instance[

1 2 3
3 1 2

] [
1 2 3
2 1 3

] [
1 2 3
1 3 2

] [
1 2 3
3 1 2

] [
1 2 3
3 2 1

]
=
[

1 2 3
2 1 3

]
.

Starting from the right one finds, for example, that 3 goes to 1, then to 3,
then 2, then 1, then 3.

The notation adopted above is good, but can be somewhat cumbersome.
The trouble is that each number in {1, 2, . . . , n} must written down twice.
There is a shorter notation which writes each number down at most once. In
this notation the permutation

σ =
[

1 2 3 4 5 6 7 8 9 10 11
8 6 3 2 1 9 7 5 4 11 10

]
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would be written as σ = (1, 8, 5)(2, 6, 9, 4)(10, 11). The idea is that the
permutation is made up of disjoint “cycles”. Here the cycle (2, 6, 9, 4) means
that 6 is the image of 2, 9 the image of 6, 4 the image of 9 and 2 the
image of 4 under the action of σ. Similarly (1, 8, 5) indicates that σ maps 1
to 8, 8 to 5 and 5 to 1. Cycles of length one (like (3) and (7) in the above
example) are usually omitted, and the cycles can be written in any order.
The computation of products is equally quick, or quicker, in the disjoint cycle
notation, and (fortunately) the cycles of length one have no effect in such
computations. The reader can check, for example, that if σ = (1)(2, 3)(4)
and τ = (1, 4)(2)(3) then στ and τσ are both equal to (1, 4)(2, 3).

8.3 Definition For each σ ∈ Sn define l(σ) to be the number of ordered
pairs (i, j) such that 1 ≤ i < j ≤ n and σ(i) > σ(j). If l(σ) is an odd number
we say that σ is an odd permutation; if l(σ) is even we say that σ is an even
permutation. We define ε:Sn → {+1,−1} by

ε(σ) = (−1)l(σ) =
{+1 if σ is even
−1 if σ is odd

for each σ ∈ Sn, and call ε(σ) the parity or sign of σ.

The reason for this definition becomes apparent (after a while!) when
one considers the polynomial E in n variables x1, x2, . . . , xn defined by
E = Πi<j(xi − xj). That is, E is the product of all factors (xi − xj) with
i < j. In the case n = 4 we would have

E = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

Now take a permutation σ and in the expression for E replace each subscript
i by σ(i). For instance, if σ = (4, 2, 1, 3) then applying σ to E in this way
gives

σ(E) = (x3 − x1)(x3 − x4)(x3 − x2)(x1 − x4)(x1 − x2)(x4 − x2).

Note that one gets exactly the same factors, except that some of the signs are
changed. With some thought it can be seen that this will always be the case.
Indeed, the factor (xi−xj) in E is transformed into the factor (xσ(i)−xσ(j))
in σ(E), and (xσ(i) − xσ(j)) appears explicitly in the expression for E if
σ(i) < σ(j), while (xσ(j) − xσ(i)) appears there if σ(i) > σ(j). Thus the
number of sign changes is exactly the number of pairs (i, j) with i < j such
that σ(i) > σ(j); that is, the number of sign changes is l(σ). It follows that
σ(E) equals E if σ is even and −E if σ is odd; that is, σE = ε(σ)E.

The following definition was implicitly used in the above argument:
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8.4 Definition Let σ ∈ Sn and let f be a real-valued function of n real
variables x1, x2, . . . , xn. Then σf is the function defined by

(σf)(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

If f and g are two real valued functions of n variables it is usual to
define their product fg by

(fg)(x1, x2, . . . , xn) = f(x1, x2, . . . , xn)g(x1, x2, . . . , xn).

(Note that this is the pointwise product, not to be confused with the compos-
ite, given by f(g(x)), which is the only kind of product of functions previously
encountered in this book. In fact, since f is a function of n variables, f(g(x))
cannot make sense unless n = 1. Thus confusion is unlikely.)

We leave it for the reader to check that, for the pointwise product,
σ(fg) = (σf)(σg) for all σ ∈ Sn and all functions f and g. In particular if c
is a constant this gives σ(cf) = c(σf). Furthermore

8.5 Proposition For all σ, τ ∈ Sn and any function f of n variables we
have (στ)f = σ(τf).

Proof. Let σ, τ ∈ Sn. Let x1, x2, . . . , xn be variables and define yi = xσ(i)

for each i. Then by definition

(σ(τf))(x1, x2, . . . , xn) = (τf)(y1, y2, . . . , yn)
and

(τf)(y1, y2, . . . , yn) = f(yτ(1), yτ(2), . . . , yτ(n))
= f(xσ(τ(1)), xσ(τ(2)), . . . , xσ(τ(n))).

Thus we have shown that

(σ(τf))(x1, x2, . . . , xn) = f(x(στ)(1), x(στ)(2), . . . , x(στ)(n))

for all values of the xi, and so σ(τf) = (στ)f , as claimed. �
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It can now be seen that for all σ, τ ∈ Sn, with E as above,

ε(στ)E = (στ)E = σ(τE) = σ(ε(τ)E) = ε(τ)σE = ε(τ)ε(σ)E

and we deduce that ε(στ) = ε(σ)ε(τ). Since the proof of this fact is the chief
reason for including a section on permutations we give another proof, based
on properties of cycles of length two.

8.6 Definition A permutation in Sn which is of the form (i, j) for some
i, j ∈ I = {1, 2, . . . , n} is called a transposition. That is, if τ is a transposition
then there exist i, j ∈ I such that τ(i) = j and τ(j) = i, and τ(k) = k for all
other k ∈ I. A transposition of the form (i, i+ 1) is called simple.

8.7 Lemma Suppose that τ = (i, i + 1) is a simple transposition in Sn. If
σ ∈ Sn and σ′ = στ then

l(σ′) =
{
l(σ) + 1 if σ(i) < σ(i+ 1)
l(σ)− 1 if σ(i) > σ(i+ 1).

Proof. Observe that σ′(i) = σ(i+ 1) and σ′(i+ 1) = σ(i), while for other
values of j we have σ′(j) = σ(j). In our original notation for permutations, σ′

is obtained from σ by swapping the numbers in the ith and (i+1)th positions
in the second row. The point is now that if r > s and r occurs to the left
of s in the second row of σ then the same is true in the second row of σ′,
except in the case of the two numbers we have swapped. Hence the number
of such pairs is one more for σ′ than it is for σ if σ(i) < σ(i+ 1), one less if
σ(i) > σ(i+ 1), as required.

At the risk of making an easy argument seem complicated, let us spell
this out in more detail. Define

N = { (j, k) | j < k and σ(j) > σ(k) }
and

N ′ = { (j, k) | j < k and σ′(j) > σ′(k) }

so that by definition the number of elements of N is l(σ) and the number of
elements of N ′ is l(σ′). We split N into four pieces as follows:

N1 = { (j, k) ∈ N | j /∈ {i, i+ 1} and k /∈ {i, i+ 1} }
N2 = { (j, k) ∈ N | j ∈ {i, i+ 1} and k /∈ {i, i+ 1} }
N3 = { (j, k) ∈ N | j /∈ {i, i+ 1} and k ∈ {i, i+ 1} }
N4 = { (j, k) ∈ N | j ∈ {i, i+ 1} and k ∈ {i, i+ 1} }.
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Define also N ′

1, N
′
2, N

′
3 and N ′

4 by exactly the same formulae with N replaced
by N ′. Every element of N lies in exactly one of the Ni, and every element
of N ′ lies in exactly one of the N ′

i .
If neither j nor k is in {i, i + 1} then σ′(j) and σ′(k) are the same as

σ(j) and σ(k), and so (j, k) is in N ′ if and only if it is in N . Thus N1 = N ′
1.

Consider now pairs (i, k) and (i+ 1, k), where k /∈ {i, i+ 1}. We show
that (i, k) ∈ N if and only if (i + 1, k) ∈ N ′. Obviously i < k if and
only if i + 1 < k, and since σ(i) = σ′(i + 1) and σ(k) = σ′(k) we see that
σ(i) > σ(k) if and only if σ′(i + 1) > σ′(k); hence i < k and σ(i) > σ(k)
if and only if i + 1 < k and σ′(i + 1) > σ′(k), as required. Furthermore,
since σ(i + 1) = σ′(i), exactly the same argument gives that i + 1 < k and
σ(i+1) > σ(k) if and only if i < k and σ′(i) > σ′(k). Thus (i, k) 7→ (i+1, k)
and (i+1, k) 7→ (i, k) gives a one to one correspondence between N2 and N ′

2.
Moving on now to pairs of the form (j, i) and (j, i+1) where j /∈ {i, i+1},

we have that σ(j) > σ(i) if and only if σ′(j) > σ′(i+ 1) and σ(j) > σ(i+ 1)
if and only if σ′(j) > σ′(i). Since also j < i if and only if j < i + 1 we see
that (j, i) ∈ N if and only if (j, i + 1) ∈ N ′ and (j, i + 1) ∈ N if and only if
(j, i) ∈ N ′. Thus (j, i) 7→ (j, i + 1) and (j, i + 1) 7→ (j, i) gives a one to one
correspondence between N3 and N ′

3.
We have now shown that the number of elements in N and not in N4

equals the number of elements in N ′ and not in N ′
4. But N4 and N ′

4 each
have at most one element, namely (i, i+ 1), which is in N4 and not in N ′

4 if
σ(i) > σ(i + 1), and in N ′

4 and not N4 if σ(i) < σ(i + 1). Hence N has one
more element than N ′ in the former case, one less in the latter. �

8.8 Proposition (i) If σ = τ1τ2 . . . τr where the τi are simple transposi-
tions, then l(σ) is odd is r is odd and even if r is even.

(ii) Every permutation σ ∈ Sn can be expressed as a product of simple
transpositions.

Proof. The first part is proved by an easy induction on r, using 8.7. The
point is that

l((τ1τ2 . . . τr−1)τr) = l(τ1τ2 . . . τr−1)± 1

and in either case the parity of τ1τ2 . . . τr is opposite that of τ1τ2 . . . τr−1.
The details are left as an exercise.

The second part is proved by induction on l(σ). If l(σ) = 0 then
σ(i) < σ(j) whenever i < j. Hence

1 ≤ σ(1) < σ(2) < · · · < σ(n) ≤ n
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and it follows that σ(i) = i for all i. Hence the only permutation σ with
l(σ) = 0 is the identity permutation. This is trivially a product of simple
transpositions—an empty product. (Just as empty sums are always defined
to be 0, empty products are always defined to be 1. But if you don’t like
empty products, observe that τ2 = i for any simple transposition τ .)

Suppose now that l(σ) = l > 1 and that all permutations σ′ with
l(σ′) < l can be expressed as products of simple transpositions. There must
exist some i such that σ(i) > σ(i + 1), or else the same argument as used
above would prove that σ = i. Choosing such an i, let τ = (i, i + 1) and
σ′ = στ .

By 8.7 we have l(σ′) = l−1, and by the inductive hypothesis there exist
simple transpositions τi with σ′ = τ1τ2 . . . τr. This gives σ = τ1τ2 . . . τrτ , a
product of simple transpositions. �

8.9 Corollary If σ, τ ∈ Sn then ε(στ) = ε(σ)ε(τ).

Proof. Write σ and τ as products of simple transpositions, and suppose
that there are s factors in the expression for σ and t in the expression for τ .
Multiplying these expressions expresses στ as a product of r+s simple trans-
positions. By 8.8 (i),

ε(στ) = (−1)r+s = (−1)r(−1)s = ε(σ)ε(τ).
�

Our next proposition shows that if the disjoint cycle notation is em-
ployed then calculation of the parity of a permutation is a triviality.

8.10 Proposition Transpositions are odd permutations. More generally,
any cycle with an even number of terms is an odd permutation, and any cycle
with an odd number of terms is an even permutation.

Proof. It is easily seen (by 8.7 with σ = i or directly) that if τ = (m,m+1)
is a simple transposition then l(τ) = 1, and so τ is odd: ε(τ) = (−1)1 = −1.

Consider next an arbitrary transposition σ = (i, j) ∈ Sn, where i < j.
A short calculation yields (i+1, i+2, . . . , j)(i, j) = (i, i+1)(i+1, i+2, . . . , j),
with both sides equal to (i, i+1, . . . , j). That is, ρσ = τρ, where τ = (i, i+1)
and ρ = (i+ 1, i+ 2, . . . , j). By 8.5 we obtain

ε(ρ)ε(σ) = ε(ρσ) = ε(τρ) = ε(τ)ε(ρ),
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and cancelling ε(ρ) gives ε(σ) = ε(τ) = −1 by the first case. (It is also easy
to directly calculate l(σ) in this case; in fact, l(σ) = 2(j − i)− 1.)

Finally, let ϕ = (r1, r2, . . . , rk) be an arbitrary cycle of k terms. Another
short calculation shows that ϕ = (r1, r2)(r2, r3) . . . (rk−1, rk), a product of
k − 1 transpositions. So 8.9 gives ε(τ) = (−1)k−1, which is −1 if k is even
and +1 if k is odd. �

Comment ...
8.10.1 Proposition 8.10 shows that a permutation is even if and only if,
when it is expressed as a product of cycles, the number of even-term cycles
is even. ...

The proof of the final result of this section is left as an exercise.

8.11 Proposition (i) The number of elements of Sn is n!.
(ii) The identity i ∈ Sn, defined by i(i) = i for all i, is an even permutation.

(iii) The parity of σ−1 equals that of σ (for any σ ∈ Sn).

(iv) If σ, τ, τ ′ ∈ Sn are such that στ = στ ′ then τ = τ ′. Thus if σ is fixed
then as τ varies over all elements of Sn so too does στ .

§8b Determinants

8.12 Definition Let F be a field and A ∈ Mat(n× n, F ). Let the entry
in ith row and jth column of A be aij . The determinant of A is the element
of F given by

detA =
∑

σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . anσ(n)

=
∑

σ∈Sn

ε(σ)
n∏

i=1

aiσ(i).

Comments ...
8.12.1 Determinants are only defined for square matrices.

8.12.2 Let us examine the definition first in the case n = 3. That is, we
seek to calculate the determinant of a matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
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The definition involves a sum over all permutations in S3. There are six, listed
in 8.1.1 above. Using the disjoint cycle notation we find that there are two 3-
cycles ((1, 2, 3) and (1, 3, 2)), three transpositions ((1, 2), (1, 3) and (2, 3)) and
the identity i = (1). The 3-cycles and the identity are even and the trans-
positions are odd. So, for example, if σ = (1, 2, 3) then ε(σ) = +1, σ(1) = 2,
σ(2) = 3 and σ(3) = 1, so that ε(σ)a1σ(1)a2σ(2)a3σ(3) = (+1)a12a23a31. The
results of similar calculations for all the permutations in S3 are listed in the
following table, in which the matrix entries aiσ(i) are also indicated in each
case.

Permutation Matrix entries aiσ(i) ε(σ)a1σ(1)a2σ(2)a3σ(3)

(1)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (+1)a11a22a33

(2, 3)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (−1)a11a23a32

(1, 2)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (−1)a12a21a33

(1, 2, 3)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (+1)a12a23a31

(1, 3, 2)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (+1)a13a21a32

(1, 3)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (−1)a13a22a31

The determinant is the sum of the six terms in the third column. So, the
determinant of the 3× 3 matrix A = (aij) is given by

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

8.12.3 Notice that in each of the matrices in the middle column of the
above table there three boxed entries, each of the three rows contains exactly
one boxed entry, and each of the three columns contains exactly one boxed
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entry. Furthermore, the above six examples of such a boxing of entries are
the only ones possible. So the determinant of a 3× 3 matrix is a sum, with
appropriate signs, of all possible terms obtained by multiplying three factors
with the property that every row contains exactly one of the factors and
every column contains exactly one of the factors.

Of course, there is nothing special about the 3×3 case. The determinant
of a general n×nmatrix is obtained by the natural generalization of the above
method, as follows. Choose n matrix positions in such a way that no row
contains more than one of the chosen positions and no column contains more
than one of the chosen positions. Then it will necessarily be true that each
row contains exactly one of the chosen positions and each column contains
exactly one of the chosen positions. There are exactly n! ways of doing this.
In each case multiply the entries in the n chosen positions, and then multiply
by the sign of the corresponding permutation. The determinant is the sum
of the n! terms so obtained.

We give an example to illustrate the rule for finding the permutation
corresponding to a choice of matrix positions of the above kind. Suppose
that n = 4. If one chooses the 4th entry in row 1, the 2nd in row 2, the 1st in

row 3 and the 3rd in row 4, then the permutation is
[

1 2 3 4
4 2 1 3

]
= (1, 4, 3).

That is, if the jth entry in row i is chosen then the permutation maps i to
j. (In our example the term would be multiplied by +1 since (1, 4, 3) is an
even permutation.)

8.12.4 So far in this section we have merely been describing what the
determinant is; we have not addressed the question of how best in practice
to calculate the determinant of a given matrix. We will come to this question
later; for now, suffice it to say that the definition does not provide a good
method itself, except in the case n = 3. It is too tiresome to compute and
add up the 24 terms arising in the definition of a 4 × 4 determinant or the
120 for a 5× 5, and things rapidly get worse still. ...

We start now to investigate properties of determinants. Several are
listed in the next theorem.

8.13 Theorem Let F be a field and A ∈ Mat(n× n, F ), and let the rows
of A be a

˜
1, a

˜
2, . . . , a

˜
n ∈ tFn.

(i) Suppose that 1 ≤ k ≤ n and that a
˜

k = λa
˜
′
k + µa

˜
′′
k . Then

detA = λ detA′ + µdetA′′
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where A′ is the matrix with a′k as kth row and all other rows the same
as A, and, likewise, A′′ has a′′k as its kth row and other rows the same
as A.

(ii) Suppose that B is the matrix obtained from A by permuting the rows
by a permutation τ ∈ Sn. That is, suppose that the first row of B is
aτ(1), the second aτ(2), and so on. Then detB = ε(τ) detA.

(iii) The determinant of the transpose of A is the same as the determinant
of A.

(iv) If two rows of A are equal then detA = 0.

(v) If A has a zero row then detA = 0.

(vi) If A = I, the identity matrix, then detA = 1.

Proof. (i) Let the (i, j)th entries of A, A′ and A′′ be (respectively) aij , a′ij
and a′′ij . Then we have aij = a′ij = a′′ij if i 6= k, and

akj = λa′kj + µa′′kj

for all j. Now by definition detA is the sum over all σ ∈ Sn of the terms
ε(σ)a1σ(1)a2σ(2) . . . anσ(n). In each of these terms we may replace akσ(k) by
λa′kσ(k) + µa′′kσ(k), so that the term then becomes the sum of the two terms

λε(σ)a1σ(1) . . . a(k−1)σ(k−1)a
′
kσ(k)a(k+1)σ(k+1) . . . anσ(n)

and
µε(σ)a1σ(1) . . . a(k−1)σ(k−1)a

′′
kσ(k)a(k+1)σ(k+1) . . . anσ(n)

In the first of these we replace aiσ(i) by a′iσ(i) (for all i 6= k) and in the second
we likewise replace aiσ(i) by a′′iσ(i). This shows that detA is equal to

λ
(∑
σ∈Sn

ε(σ)a′1σ(1)a
′
2σ(2) . . . a

′
nσ(n)

)
+ µ

(∑
σ∈Sn

ε(σ)a′′1σ(1)a
′′
2σ(2) . . . a

′′
nσ(n)

)
which is λ detA′ + µdetA′′.
(ii) Let aij and bij be the (i, j)th entries of A and B respectively. We are
given that if b

˜
i is the ith row of B then b

˜
i = a

˜τ(i); so bij = aτ(i)j for all i and
j. Now

detB =
∑

σ∈Sn

ε(σ)
n∏

i=1

biσ(i)

=
∑

σ∈Sn

ε(στ)
n∏

i=1

bi(στ)(i)

(since στ runs through all of Sn as σ does—see 8.11)
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=
∑

σ∈Sn

ε(τ)ε(σ)
n∏

i=1

biσ(τ(i)) (by 8.5)

= ε(τ)
∑

σ∈Sn

ε(σ)
n∏

i=1

aτ(i)σ(τ(i))

= ε(τ)
∑

σ∈Sn

ε(σ)
n∏

j=1

ajσ(j)

since j = τ(i) runs through all of the set {1, 2, . . . , n} as i does. Thus
detB = ε(τ) detA.
(iii) Let C be the transpose of A and let the (i, j)th entry of C be cij . Then
cij = aji, and

detC =
∑

σ∈Sn

ε(σ)
n∏

i=1

ciσ(i) =
∑

σ∈Sn

ε(σ)
n∏

i=1

aσ(i)i.

For a fixed σ, if j = σ(i) then i = σ−1(j), and j runs through all of
{1, 2, . . . , n} as i does. Hence

detC =
∑

σ∈Sn

ε(σ)
n∏

j=1

ajσ−1(j).

But if we let ρ = σ−1 then ρ runs through all of Sn as σ does, and since
ε(σ−1) = ε(σ) our expression for detC becomes

∑
ρ∈Sn

ε(ρ)
∏n

j=1 ajρ(j),
which equals detA.
(iv) Suppose that a

˜
i = a

˜
j where i 6= j. Let τ be the transposition (i, j),

and let B be the matrix obtained from A by permuting the rows by τ , as
in part (ii). Since we have just swapped two equal rows we in fact have
that B = A, but by (ii) we know that detB = ε(τ) detA = −detA since
transpositions are odd permutations. We have proved that detA = −detA;
so detA = 0.
(v) Suppose that a

˜
k = 0

˜
. Then a

˜
k = a

˜
k + a

˜
k, and applying part (i) with

a
˜
′
k = a

˜
′′
k = a

˜
k and λ = µ = 1 we obtain detA = detA + detA. Hence

detA = 0.
(vi) We know that detA is the sum of terms ε(σ)a1σ(1)a2σ(2) . . . anσ(n), and
obviously such a term is zero if aiσ(i) = 0 for any value of i. Now if A = I the
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only nonzero entries are the diagonal entries; aij = 0 if i 6= j. So the term
in the expression for detA corresponding to the permutation σ is zero unless
σ(i) = i for all i. Thus all n! terms are zero except the one corresponding to
the identity permutation. And that term is 1 since all the diagonal entries
are 1 and the identity permutation is even. �

Comment ...
8.13.1 The first part of 8.13 says that if all but one of the rows of A are
kept fixed, then detA is a linear function of the remaining row. In other
words, given a

˜
1, . . . , a

˜
k−1 and a

˜
k+1, . . . , a

˜
n ∈ tFn the function φ: tFn → F

defined by

φ(x
˜
) = det



a
˜
1
...

a
˜

k−1

x
˜a

˜
k+1

...
a
˜

n


is a linear transformation. Moreover, since detA = det tA it follows that the
determinant function is also linear in each of the columns. ...

8.14 Proposition Suppose that E ∈ Mat(n× n, F ) is any elementary ma-
trix. Then det(EA) = detE detA for all A ∈ Mat(n× n, F ).

Proof. We consider the three kinds of elementary matrices separately. First
of all, suppose that E = Eij , the matrix obtained by swapping rows i and j
of I. By 2.6, B = EA is the matrix obtained from A by swapping rows i and
j. By 8.13 (ii) we know that detB = ε(τ) detA, where τ = (i, j). Thus, in
this case, det(EA) = −detA for all A.

Next, consider the case E = E
(λ)
ij , the matrix obtained by adding λ

times row i to row j. In this case 2.6 says that row j of EA is λa
˜

i +a
˜

j (where
a
˜
1, . . . , a

˜
n are the rows of A), and all other rows of EA are the same as the cor-

responding rows of A. So by 8.13 (i) we see that det(EA) is λ detA′+detA,
where A′ has the same rows as A, except that row j of A′ is a

˜
i. In particular,

A′ has row j equal to row i. By 8.13 (iv) this gives detA′ = 0, and so in this
case we have det(EA) = detA.
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The third possibility is E = E

(λ)
i . In this case the rows of EA are the

same as the rows of A except for the ith, which gets multiplied by λ. Writing
λa
˜

i as λa
˜

i + 0a
˜

i we may again apply 8.13 (i), and conclude that in this case
det(EA) = λ detA+ 0 detA = λ detA for all matrices A.

In every case we have that det(EA) = cdetA for all A, where c is
independent of A; explicitly, c = −1 in the first case, 1 in the second, and λ
in the third. Putting A = I this gives

detE = det(EI) = cdet I = c

since det I = 1. So we may replace c by detE in the formula for det(EA),
giving the desired result. �

As a corollary of the above proof we have

8.15 Corollary The determinants of the three kinds of elementary ma-

trices are as follows: detEij = −1 for all i and j; detE(λ)
ij = 1 for all i, j and

λ; detE(λ)
i = λ for all i and λ.

As an easy consequence of 8.14 we deduce

8.16 Proposition If B, A ∈ Mat(n× n, F ) and B can be written as a
product of elementary matrices, then det(BA) = detB detA.

Proof. Let B = E1E2 . . . Er where the Ei are elementary. We proceed by
induction on r; the case r = 1 is 8.14 itself. Now let r = k + 1, and assume
the result for k. By 8.14 we have

det(BA) = det(E1(B′A)) = detE1 det(B′A)

where B′ = E2 . . . Ek+1 is a product of k elementary matrices, so that the
inductive hypothesis gives

detE1 det(B′A) = detE1 detB′ detA = det(E1B
′) detA

by 8.14 again. Since E1B
′ = B these equations combine to give the desired

result. �
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In fact the formula det(BA) = detB detA for square matrices A and
B is valid for all A and B without restriction, and we will prove this shortly.

As we observed in Chapter 2 (see 2.8) it is possible to obtain a reduced
echelon matrix from an arbitrary matrix by premultiplying by a suitable
sequence of elementary matrices. Hence

8.17 Lemma For any A ∈ Mat(n× n, F ) there exist B, R ∈ Mat(n× n, F )
such that B is a product of elementary matrices and R is a reduced echelon
matrix, and BA = R.

Furthermore, as in the proof of 2.9, it is easily shown that the reduced
echelon matrix R obtained in this way from a square matrix A is either equal
to the identity or else has a zero row. Since the rank of A is just the number
of nonzero rows in R (since the rows of R are linearly independent and span
RS(R) = RS(A)) this can be reformulated as follows:

8.18 Lemma In the situation of 8.17, if the rank of A is n then R = I, and
if the rank of A is not n then R has at least one zero row.

An important consequence of this is

8.19 Theorem The determinant of any n × n matrix of rank less than n
is zero.

Proof. Let A ∈ Mat(n× n, F ) have rank less than n. By 8.17 there exist
elementary matrices E1, E2, . . . , Ek and a reduced echelon matrix R with
E1E2 . . . EkA = R. By 8.18 R has a zero row. By 2.5 elementary matrices
have inverses which are themselves elementary matrices, and we deduce that
A = E−1

k . . . E−1
2 E−1

1 R. Now 8.16 gives detA = det(E−1
k . . . E−1

1 ) detR = 0
since detR = 0 (by 8.13 (v)). �

8.20 Theorem If A, B ∈ Mat(n× n, F ) then det(AB) = detAdetB.

Proof. Suppose first that the rank of A is n. As in the proof of 8.19 we
have detA = det(E−1

k . . . E−1
1 ) detR where the E−1

i are elementary and R is
reduced echelon. In this case, however, 8.18 yields that R = I, whence A is a
product of elementary matrices and our conclusion comes at once from 8.16.

The other possibility is that the rank of A is less than n. Then by
3.21 (ii) and 7.13 it follows that the rank of AB is also less than n, so that
det(AB) = detA = 0 (by 8.19). So det(AB) = detAdetB, both sides being
zero. �
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Comment ...
8.20.1 Let A be a n× n matrix over the field F . From the theory above
and in the preceding chapters it can be seen that the following conditions are
equivalent:

(i) A is expressible as a product of elementary matrices.
(ii) The rank of A is n.
(iii) The nullity of A is zero.
(iv) detA 6= 0.
(v) A has an inverse.
(vi) The rows of A are linearly independent.
(vii) The rows of A span tFn.
(viii) The columns of A are linearly independent.
(ix) The columns of A span Fn.
(x) The right null space of A is zero. (That is, the only solution of Av = 0

is v = 0.)
(xi) The left null space of A is zero.

...

8.21 Definition A matrix A ∈ Mat(n× n, F ) possessing the properties
listed in 8.20.1 is said to be nonsingular. Other matrices in Mat(n× n, F )
are said to be singular.

We promised above to present a good practical method for calculating
determinants, and we now address this matter. Let A ∈ Mat(n× n, F ). As
we have seen, there exist elementary matrices Ei such that (E1 . . . Ek)A = R,
with R reduced echelon. Furthermore, if R is not the identity matrix then
detA = 0, and if R is the identity matrix then detA is the product of the
determinants of the inverses of E1, . . . , Ek. We also know the determinants
of all elementary matrices. This gives a good method. Apply elementary row
operations to A and at each step write down the determinant of the inverse
of the corresponding elementary matrix. Stop when the identity matrix, or
a matrix with a zero row, is reached. In the zero row case tha determinant
is 0, otherwise it is the product of the numbers written down. Effectively, all
one is doing is simplifying the matrix by row operations and keeping track of
how the determinant is changed. There is a refinement worth noting: column
operations are as good as row operations for calculating determinants; so one
can use either, or a combination of both.
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Example

#3 Calculate the determinant of
2 6 14 −4
2 5 10 1
0 −1 2 1
2 7 11 −3

 .

�−−. Apply row operations, keeping a record.
2 6 14 −4
2 5 10 1
0 −1 2 1
2 7 11 −3

 R1:=
1
2 R1

R2:=R2−2R1
R4:=R4−2R1−−−−−−−→


1 3 7 −2
0 −1 −4 5
0 −1 2 1
0 1 −3 1

 2

1

1

R2:=−1R2
R3:=R3+R2
R4:=R4−R2−−−−−−−→


1 3 7 −2
0 1 4 −5
0 0 6 −4
0 0 −7 6

 −1

1

1

−→


1 0 0 0
0 1 0 0
0 0 6 −4
0 0 −7 6


where in the last step we applied column operations, first adding suitable
multiples of the first column to all the others, then suitable multiples of
column 2 to columns 3 and 4. For our first row operation the determinant
of the inverse of the elementary matrix was 2, and later when we multiplied
a row by −1 the number we recorded was −1. The determinant of the
original matrix is therefore equal to 2 times −1 times the determinant of the
simplified matrix we have obtained. We could easily go on with row and
column operations and obtain the identity, but there is no need since the
determinant of the last matrix above is obviously 8—all but two of the terms
in its expansion are zero. Hence the original matrix had determinant −16.

/−−�

§8c Expansion along a row

We should show that the definition of the determinant that we have given is
consistent with the formula we gave in Chapter Two. We start with some
elementary propositions.
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8.22 Proposition Let A be an r × r matrix. Then for any n > r,

det
(
A 0
0 I

)
= detA

where I is the (n− r)× (n− r) identity.

Proof. If A is an elementary matrix then it is clear that
(
A 0
0 I

)
is an

elementary matrix of the same type, and the result is immediate from 8.15. If
A = E1E2 . . . Ek is a product of elementary matrices then, by multiplication
of partitioned matrices,(

A 0
0 I

)
=
(
E1 0
0 I

)(
E2 0
0 I

)
. . .

(
Ek 0
0 I

)
and by 8.20,

det
(
A 0
0 I

)
=

k∏
i=1

det
(
Ei 0
0 I

)
=

k∏
i=1

detEi = detA.

Finally, if A is not a product of elementary matrices then it is singular. We

leave it as an exercise to prove that
(
A 0
0 I

)
is also singular and conclude

that both determinants are zero. �

Comments ...
8.22.1 This result is also easy to derive directly from the definition.

8.22.2 It is clear that exactly the same proof applies for matrices of the

form
(
I 0
0 A

)
. ...

8.23 Proposition If C is any s×r matrix then the (r+s)×(r+s) matrix

T =
(
Ir 0
C Is

)
has determinant equal to 1.

Proof. Observe that T is obtainable from the (r + s)× (r + s) identity by
adding appropriate multiples of the first r rows to the last s rows. To be
precise, T is the product (in any order) of the elementary matrices E(Cij)

i,r+j

(for i = 1, 2, . . . , r and j = 1, 2, . . . , s). Since these elementary matrices all
have determinant 1 the result follows. �
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8.24 Proposition For any square matrices A and B and any C of appro-
priate shape,

det
(
A 0
C B

)
= detAdetB.

The proof of this is left as an exercise.

Using the above propositions we can now give a straightforward proof
of the first row expansion formula. If A has (i, j)-entry aij then the first
row of A can be expressed as a linear combination of standard basis rows as
follows:

( a11 a12 . . . a1n ) = a11 ( 1 0 . . . 0 ) + a12 ( 0 1 . . . 0 ) + · · ·
· · ·+ a1n ( 0 0 . . . 1 ) .

Since the determinant is a linear function of the first row

($)
detA = a11 det

(
1 0 . . . 0

A′

)
+ a12 det

(
0 1 . . . 0

A′

)
+ · · ·

· · ·+ a1n det
(

0 0 . . . 1
A′

)
where A′ is the matrix obtained from A by deleting the first row. We apply
column operations to the matrices on the right hand side to bring the 1’s in
the first row to the (1, 1) position. If ei is the ith row of the standard basis
(having jth entry δij) then(

ei

A′

)
Ei,i−1Ei−1,i−2 . . . E21 =

(
1 0

˜∗ Ai

)
where Ai is the matrix obtained from A by deleting the 1st row and ith

column. (The entries designated by the asterisk are irrelevant, but in fact
come from the ith column of A.) Taking determinants now gives

det
(
ei

A′

)
= (−1)i−1 detAi = cof1i(A)

by definition of the cofactor. Substituting back in ($) gives

detA =
n∑

i=1

a1i cof1i(A)
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as required.

We remark that it follows trivially by permuting the rows that one
can expand along any row: detA =

∑n
k=1 ajk cofjk(A) is valid for all j.

Furthermore, since the determinant of a matrix equals the determinant of its
transpose, one can also expand along columns.

Our final result for the chapter deals with the adjoint matrix, and im-
mediately yields the formula for the inverse mentioned in Chapter Two.

8.25 Theorem If A is an n× n matrix then A(adjA) = (detA)I.

Proof. Let aij be the (i, j)-entry of A. The (i, j)-entry of A(adjA) is

n∑
k=1

aik cofjk(A)

(since adjA is the transpose of the matrix of cofactors). If i = j this is just
the determinant of A, by the ith row expansion. So all diagonal entries of
A(adjA) are equal to the determinant.

If the jth row of A is changed to be made equal to the ith row (i 6= j)
then the cofactors cofjk(A) are unchanged for all k, but the determinant of
the new matrix is zero since it has two equal rows. The jth row expansion
for the determinant of this new matrix gives

0 =
n∑

k=1

aik cofjk(A)

(since the (j, k)-entry of the new matrix is aik), and we conclude that the
off-diagonal entries of A(adjA) are zero. �

Exercises

1. Compute the given products of permutations.

(i)
[

1 2 3 4
2 1 4 3

] [
1 2 3 4
2 3 4 1

]
(ii)

[
1 2 3 4 5
4 1 5 2 3

] [
1 2 3 4 5
5 4 3 2 1

]
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(iii)

([
1 2 3 4
2 1 4 3

] [
1 2 3 4
2 3 4 1

])[
1 2 3 4
4 3 1 2

]
(iv)

[
1 2 3 4
2 1 4 3

]([
1 2 3 4
2 3 4 1

] [
1 2 3 4
4 3 1 2

])
2. Calculate the parity of each permutation appearing in Exercise 1.

3. Let σ and τ be permutations of {1, 2, . . . , n}. Let S be the matrix with
(i, j)th entry equal to 1 if i = σ(j) and 0 if i 6= σ(j), and similarly let
T be the matrix with (i, j)th entry 1 if i = τ(j) and 0 otherwise. Prove
that the (i, j)th entry of ST is 1 if i = στ(j) and 0 otherwise.

4. Prove Proposition 8.11.

5. Use row and column operations to calculate the determinant of
1 5 11 2
2 11 −6 8
−3 0 −452 6
−3 −16 −4 13



6. Consider the determinant

det

∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

...
1 xn x2

n . . . xn−1
n

∣∣∣∣∣∣∣∣ .
Use row and column operations to evaluate this in the case n = 3.
Then do the case n = 4. Then do the general case. (The answer is∏

i>j(xi − xj).)

7. Let p(x) = a0+a1x+a2x
2, q(x) = b0+b1x+b2x2, r(x) = c0+c1x+c2x2.

Prove that

det

∣∣∣∣∣∣
p(x1) q(x1) r(x1)
p(x2) q(x2) r(x2)
p(x3) q(x3) r(x3)

∣∣∣∣∣∣ = (x2−x1)(x3−x1)(x3−x2) det

∣∣∣∣∣∣
a0 b0 c0
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ .
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8. Prove that if A is singular then so is

(
A 0
0 I

)
.

9. Use 8.22 and 8.23 to prove that

det
(
A 0
C B

)
= detAdetB.

(Hint: Factorize the matrix on the left hand side.)

10. (i) Write out the details of the proof of the first part of Proposition 8.8.
(ii) Modify the proof of the second part of 8.8 to show that any σ ∈ Sn

can be written as a product of l(σ) simple transpositions.
(iii) Use 8.7 to prove that σ ∈ Sn cannot be written as a product of

fewer than l(σ) simple transpositions.
(Because of these last two properties, l(σ) may be termed the length

of σ.)
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9
Classification of linear operators

A linear operator on a vector space V is a linear transformation from V to V .
We have already seen that if T :V →W is linear then there exist bases of V
and W for which the matrix of T has a simple form. However, for an operator
T the domain V and codomain W are the same, and it is natural to insist
on using the same basis for each when calculating the matrix. Accordingly,
if T :V → V is a linear operator on V and b is a basis of V , we call Mbb(T )
the matrix of T relative to b; the problem is to find a basis of V for which
the matrix of T is as simple as possible.

Tackling this problem naturally involves us with more eigenvalue theory.

§9a Similarity of matrices

9.1 Definition Square matrices A and B are said to be similar if there
exists a nonsingular matrix X with A = X−1BX.

It is an easy exercise to show that similarity is an equivalence relation
on Mat(n× n, F ).

We proved in 7.8 that if b and c are two bases of a space V and T is a
linear operator on V then the matrix of T relative to b and the matrix of T
relative to c are similar. Specifically, if A = Mbb(T ) and B = Mcc(T ) then
B = X−1AX where X = Mbc, the c to b transition matrix. Moreover, since
any invertible matrix can be a transition matrix (see Exercise 8 of Chapter
Four), finding a simple matrix for a given linear operator corresponds exactly
to finding a simple matrix similar to a given one.

In this context, ‘simple’ means ‘as near to diagonal as possible’. We
investigated diagonalizing real matrices in Chapter One, but failed to men-
tion the fact that not all matrices are diagonalizable. It is true, however,
that many—and over some fields most—matrices are are diagonalizable; for

194
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instance, we will show that if an n×n matrix has n distinct eigenvalues then
it is diagonalizable.

The following definition provides a natural extension of concepts previ-
ously introduced.

9.2 Definition Let A ∈ Mat(n× n, F ) and λ ∈ F . The set of all v ∈ Fn

such that Av = λv is called the λ-eigenspace of A.

Comments ...
9.2.1 Observe that λ is an eigenvalue if and only if the λ-eigenspace is
nonzero.

9.2.2 The λ-eigenspace of A contains zero and is closed under addition
and scalar multiplication. Hence it is a subspace of Fn.

9.2.3 Since Av = λv if and only if (A − λI)v = 0 we see that the λ-
eigenspace of A is exactly the right null space of A − λI. This is nonzero if
and only if A− λI is singular.

9.2.4 We can equally well use rows instead of columns, defining the
left eigenspace to be the set of all v ∈ tFn satisfying vA = λv. For square
matrices the left and right null spaces have the same dimension; hence the
eigenvalues are the same whether one uses rows or columns. However, there
is no easy way to calculate the left (row) eigenvectors from the right (column)
eigenvectors, or vice versa. ...

The same terminology is also applied to linear operators. The λ-
eigenspace of T :V → V is the set of all v ∈ V such that T (v) = λv. That is,
it is the kernel of the linear operator T −λi, where i is the identity operator
on V . And λ is an eigenvalue of T if and only if the λ-eigenspace of T is
nonzero. If b is any basis of V then the eigenvalues of T are the same as the
eigenvalues of Mbb(T ), and v is in the λ-eigenspace of T if and only if cvb(v)
is in the λ-eigenspace of Mbb(T ).

Since choosing a different basis for V replaces the matrix of T by a
similar matrix, the above remarks indicate that similar matrices must have
the same eigenvalues. In fact, more is true: similar matrices have the same
characteristic polynomial. This enables us to define the characteristic poly-
nomial cT (x) of a linear operator T to be the characteristic polynomial of
Mbb(T ), for arbitrarily chosen b. That is, cT (x) = det(Mbb(T )− xI).
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9.3 Proposition Similar matrices have the same characteristic polyno-
mial.

Proof. Suppose that A and B are similar matrices. Then there exists a
nonsingular P with A = P−1BP . Now

det(A− xI) = det(P−1BP − xP−1P )
= det

(
(P−1B − xP−1)P

)
= det

(
P−1(B − xI)P

)
= detP−1 det(B − xI) detP,

where we have used the fact that the scalar x commutes with the matrix
P−1, and the multiplicative property of determinants. In the last line above
we have the product of three scalars, and since multiplication of scalars is
commutative this last line equals

detP−1 detP det(B − xI) = det(P−1P ) det(B − xI) = det(B − xI)

since det I = 1. Hence det(A− xI) = det(B − xI), as required. �

The next proposition gives the precise criterion for diagonalizability of
a matrix.

9.4 Proposition (i) If A ∈ Mat(n× n, F ) then A is diagonalizable if and
only if there is a basis of Fn consisting entirely of eigenvectors for A.

(ii) If A, X ∈ Mat(n× n, F ) and X is nonsingular then X−1AX is diagonal
if and only if the columns of X are all eigenvectors of A.

Proof. Since a matrix X ∈ Mat(n× n, F ) is nonsingular if and only if its
columns are a basis for Fn the first part is a consequence of the second. If the
columns of X are t

˜
1, t

˜
2, . . . , t

˜
n then the ith column of AX is At

˜
i, while the

ith column of X diag(λ1, λ2, . . . , λn) is λit
˜
i. So AX = X diag(λ1, λ2, . . . , λn)

if and only if for each i the column t
˜
i is in the λi-eigenspace of A, and the

result follows. �
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It is perhaps more natural to state the above criterion for operators

rather than matrices. A linear operator T :V → V is said to be diagonalizable
if there is a basis b of V such that Mbb(T ) is a diagonal matrix. Now if
b = (v1, v2, . . . , vn) then

Mbb(T ) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


if and only if T (vi) = λivi for all i. Hence we have proved the following:

9.5 Proposition A linear operator T on a vector space V is diagonalizable
if and only if there is a basis of V consisting entirely of eigenvectors of T .
If T is diagonalizable and b is such a basis of eigenvectors, then Mbb(T ),
the matrix of T relative to b, is diag(λ1, . . . , λn), where λi is the eigenvalue
corresponding to the ith basis vector.

Of course, if c is an arbitrary basis of V then T is diagonalizable if and
only if Mcc(T ) is.

When one wishes to diagonalize a matrix A ∈ Mat(n× n, F ) the proce-
dure is to first solve the characteristic equation to find the eigenvalues, and
then for each eigenvalue λ find a basis for the λ-eigenspace by solving the
simultaneous linear equations (A−λI)x

˜
= 0

˜
. Then one combines all the ele-

ments from the bases for all the different eigenspaces into a single sequence,
hoping thereby to obtain a basis for Fn. Two questions naturally arise: does
this combined sequence necessarily span Fn, and is it necessarily linearly
independent? The answer to the first of these questions is no, as we will soon
see by examples, but the answer to the second is yes. This follows from our
next theorem.

9.6 Theorem Let T :V → V be a linear operator, and let the distinct
eigenvalues of T be λ1, λ2, . . . , λk. For each i let Vi be the λi-eigenspace.
Then the spaces Vi are independent. That is, if U is the subspace defined by

U = V1 + V2 + · · ·+ Vk = { v1 + v2 + · · ·+ vk | vi ∈ Vi for all i }

then U = V1 ⊕ V2 ⊕ · · · ⊕ Vk.

Proof. We use induction on r to prove that for all r ∈ {1, 2, . . . , n} the
spaces V1, V2, . . . , Vr are independent. This is trivially true in the case r = 1.
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Suppose then that r > 1 and that V1, V2, . . . , Vr−1 are independent; we
seek to prove that V1, V2, . . . , Vr are independent. According to Definition
6.7, our task is to prove the following statement:
($) If ui ∈ Vi for i = 1, 2, . . . , r and

∑r
i=1 ui = 0 then each ui = 0.

Assume that we have elements ui satisfying the hypotheses of ($). Since
T is linear we have

0 = T (0) = T
( r∑

i=1

ui

)
=

r∑
i=1

T (ui) =
r∑

i=1

λiui

since ui is in the λi-eigenspace of T . Multiplying the equation
∑r

i=1 ui = 0
by λr and combining with the above allows us to eliminate ur, and we obtain

r−1∑
i=1

(λi − λr)ui = 0.

Since the ith term in this sum is in the space Vi and our inductive hypothesis
is that V1, V2, . . . , Vr−1 are independent, it follows that (λi − λr)ui = 0 for
i = 1, 2, . . . , r − 1. Since the eigenvalues λ1, λ2, . . . , λk were assumed to
be all distinct we have that each λi − λr above is nonzero, and multiplying
through by (λi−λr)−1 gives ui = 0 for i = 1, 2, . . . , r−1. Since

∑r
i=1 ui = 0

it follows that ur = 0 also. This proves ($) and completes our induction.
�

As an immediate consequence of this we may rephrase our diagonaliz-
ability criterion:

9.7 Corollary A linear operator T :V → V is diagonalizable if and only
V is the direct sum of eigenspaces of T .

Proof. Let λ1, . . . , λk be the distinct eigenvalues of T and let V1, . . . , Vk

be the corresponding eigenspaces. If V is the direct sum of the Vi then
by 6.9 a basis of V can be obtained by concatenating bases of V1, . . . , Vk,
which results in a basis of V consisting of eigenvectors of T and shows that
T is diagonalizable. Conversely, assume that T is diagonalizable, and let
b = (x1, x2, . . . , xn) be a basis of V consisting of eigenvectors of T . Let
I = {1, 2, . . . , n}, and for each j = 1, 2, . . . , k let Ij = { i ∈ I | xi ∈ Vj}.
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Each xi lies in some eigenspace; so I is the union of the Ij . Since B spans V ,
for each v ∈ V there exist scalars λi such that

v =
∑
i∈I

λivi =
∑
i∈I1

λixi +
∑
i∈I2

λixi + · · ·+
∑
i∈Ik

λixi.

Writing uj =
∑

i∈Ij
λixi we have that uj ∈ Vj , and

v = u1 + u2 + · · ·+ uk ∈ V1 + V2 + · · ·+ Vk.

Since the sum
∑k

j=1 Vj is direct (by 9.6) and since we have shown that every
element of V lies in this subspace, we have shown that V is the direct sum
of eigenspaces of T , as required. �

The implication of the above for the practical problem of diagonalizing
an n × n matrix is that if the sum of the dimensions of the eigenspaces is
n then the matrix is diagonalizable, otherwise the sum of the dimensions is
less than n and it is not diagonalizable.

Example

#1 Is the the following matrix A diagonalizable?

A =

−2 1 −1
2 −1 2
4 −1 3


�−−. Expanding the determinant

det

−2− x 1 −1
2 −1− x 2
4 −1 3− x


we find that

(−2− x)(−1− x)(3− x)− (−2− x)(−1)(2)− (1)(2)(3− x)
+(1)(2)(4) + (−1)(2)(−1)− (−1)(−1− x)(4)

is the characteristic polynomial of A. (Note that for calculating character-
istic polynomials it seems to be easier to work with the first row expansion



200 Chapter Nine: Classification of linear operators

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

technique, rather than attempt to do row operations with polynomials.) Sim-
plifying the above expression and factorizing it gives −(x+1)2(x−2), so that
the eigenvalues are −1 and 2. When, as here, the characteristic equation has
a repeated root, one must hope that the dimension of the corresponding
eigenspace is equal to the multiplicity of the root; it cannot be more, and if
it is less then the matrix is not diagonalizable.

Alas, in this case it is less. Solving−1 1 −1
2 0 2
4 −1 4

α
β
γ

 =

 0
0
0



we find that the solution space has dimension one,

 1
0

−1

 being a basis. For

the other eigenspace (for the eigenvalue 2) one must solve−4 1 −1
2 −3 2
4 −1 1

α
β
γ

 =

 0
0
0

 ,

and we obtain solution space of dimension one with

−1
6

10

 as basis. The

sum of the dimensions of the eigenspaces is not sufficient; the matrix is not
diagonalizable. /−−�

Here is a practical point which deserves some emphasis. If when calcu-
lating the eigenspace corresponding to some eigenvalue λ you find that the
equations have only the trivial solution zero, then you have made a mistake.
Either λ was not an eigenvalue at all and you made a mistake when solving
the characteristic equation, or else you have made a mistake solving the lin-
ear equations for the eigenspace. By definition, an eigenvalue of A is a λ for
which the equations (A− λI)v = 0 have a nontrivial solution v.

§9b Invariant subspaces

9.8 Definition If T is an operator on V and U is a subspace of V then U
is said to be invariant under T if T (u) ∈ U for all u ∈ U .
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Observe that the 1-dimensional subspace spanned by an eigenvector of

T is invariant under T . Conversely, if a 1-dimensional subspace is T -invariant
then it must be contained in an eigenspace.

Example

#2 Let A be a n×n matrix. Prove that the column space of A is invariant
under left multiplication by A3 + 5A− 2I.

�−−. We know that the column space of A equals {Av | v ∈ Fn }. Multi-
plying an arbitrary element of this on the left by A3 +5A−2I yields another
element of the same space:

(A3 + 5A− 2I)Av = (A4 + 5A2 − 2A)v = A(A3 + 5A− 2I)v = Av′

where v′ = (A3 + 5A− 2I)v. /−−�

Discovering T -invariant subspaces aids one’s understanding of the op-
erator T , since it enables T to be described in terms of operators on lower
dimensional subspaces.

9.9 Theorem Let T be an operator on V and suppose that V = U ⊕W
for some T -invariant subspaces U and W . If b and c are bases of U and W
then the matrix of T relative to the basis (b, c) of V is(

Mbb(TU ) 0
0 Mcc(TW )

)
where TU and TW are the operators on U and W given by restricting T to
these subspaces.

Proof. Let b = (v1, v2, . . . , vr) and c = (vr+1, vr+2, . . . , vn), and write
B = Mbb(TU ), C = Mcc(TW ). Let A be the matrix of T relative to the
combined basis (v1, v2, . . . , vn). If j ≤ r then vj ∈ U and so

n∑
i=1

Aijvi = T (vj) = TU (vj) =
r∑

i=1

Bijvi

and by linear independence of the vi we deduce that Aij = Bij for i ≤ r and
Aij = 0 for i > r. This gives

A =
(
B ∗
0 ∗

)
and a similar argument for the remaining basis vectors vj completes the
proof. �
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Comment ...
9.9.1 In the situation of this theorem it is common to say that T is the
direct sum of TU and TW , and to write T = TU ⊕ TW . The matrix in the
theorem statement can be called the diagonal sum of Mbb(TU ) and Mcc(TW ).

...

Example

#3 Describe geometrically the effect on 3-dimensional Euclidean space of
the operator T defined by

(?) T

x
y
z

 =

−2 1 −2
4 1 2
2 −3 3

x
y
z

 .

�−−. Let A be the 3× 3 matrix in (?). We look first for eigenvectors of A
(corresponding to 1-dimensional T -invariant subspaces). Since

det

−2− x 1 −2
4 1− x 2
2 −3 3− x

 = x3 − 2x2 + x− 2 = (x2 + 1)(x− 2)

we find that 2 is an eigenvalue, and solving−4 1 −2
4 −1 2
2 −3 1

x
y
z

 =

 0
0
0


we find that v1 = t(−1 0 2 ) spans the 2-eigenspace.

The other eigenvalues of A are complex. However, since ker(T − 2i)
has dimension 1, we deduce that im(T − 2i) is a 2-dimensional T -invariant
subspace. Indeed, im(T − 2i) is the column space of A− 2I, which is clearly
of dimension 2 since the first column is twice the third. We may choose a
basis (v2, v3) of this subspace by choosing v2 arbitrarily (for instance, let v2
be the third column of A− 2I) and letting v3 = T (v2). (We make this choice
simply so that it is easy to express T (v2) in terms of v2 and v3.) A quick
calculation in fact gives that v3 = t( 4 −4 −7 ) and T (v3) = −v2. It is
easily checked that v1, v2 and v3 are linearly independent and hence form
a basis of R3, and the action of T is given by the equations T (v1) = 2v1,
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T (v2) = v3 and T (v3) = −v2. In matrix terms, the matrix of T relative to
this basis is  2 0 0

0 0 −1
0 1 0

 .

On the one-dimensional subspace spanned by v1 the action of T is just multi-
plication by 2. Its action on the two dimensional subspace spanned by v2 and
v3 is also easy to visualize. If v2 and v3 were orthogonal to each other and of
equal lengths then v2 7→ v3 and v3 7→ −v2 would give a rotation through 90◦.
Although they are not orthogonal and equal in length the action of T on the
plane spanned by v2 and v3 is nonetheless rather like a rotation through 90◦:
it is what the rotation would become if the plane were “squashed” so that
the axes are no longer perpendicular. Finally, an arbitrary point is easily
expressed (using the parallelogram law) as a sum of a multiple of v1 and
something in the plane of v2 and v3. The action of T is to double the v1
component and “rotate” the (v2, v3) part. /−−�

If U is an invariant subspace which does not have an invariant com-
plement W it is still possible to obtain some simplification. Choose a basis
b = (v1, v2, . . . , vr) of U and extend it to a basis (v1, v2, . . . , vn) of V . Exactly
as in the proof of 9.9 above we see that the matrix of T relative to this basis

has the form
(
B D
0 C

)
, for B = Mbb(TU ) and some matrices C and D. A

little thought shows that

TV/U : v + U 7→ T (v) + U

defines an operator TV/U on the quotient space V/U , and that C is the matrix
of TV/U relative to the basis (vr+1 + U, vr+2 + U, . . . , vn + U). It is less easy
to describe the significance of the matrix D.

The characteristic polynomial also simplifies when invariant subspaces
are found.

9.10 Theorem Suppose that V = U⊕W where U and W are T -invariant,
and let T1, T2 be the operators on U and W given by restricting T . If
f1(x), f2(x) are the characteristic polynomials of T1, T2 then the character-
istic polynomial of T is the product f1(x)f2(x).
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Proof. Choose bases b and c of U and W , and let B and C be the cor-
responding matrices of T1 and T2. Using 9.9 we find that the characteristic
polynomial of T is

cT (x) = det
(
B − xI 0

0 C − xI

)
= det(B − xI) det(C − xI) = f1(x)f2(x)

(where we have used 8.24) as required. �

In fact we do not need a direct decomposition for this. If U is a T -
invariant subspace then the characteristic polynomial of T is the product
of the characteristic polynomials of TU and TV/U , the operators on U and
V/U induced by T . As a corollary it follows that the dimension of the λ-
eigenspace of an operator T is at most the multiplicity of x− λI as a factor
of the characteristic polynomial cT (x).

9.11 Proposition Let U be the λ-eigenspace of T and let r = dimU .
Then cT (x) is divisible by (x− λ)r.

Proof. Relative to a basis (v1, v2, . . . , vn) of V such that (v1, v2, . . . , vr) is

a basis of U , the matrix of T has the form
(
λIr D
0 C

)
. By 8.24 we deduce

that cT (x) = (λ− x)r det(C − xI). �

§9c Algebraically closed fields

Up to now the field F has played only a background role, and which field
it is has been irrelevant. But it is not true that all fields are equivalent,
and differences between fields are soon encountered when solving polynomial
equations. For instance, over the field R of real numbers the polynomial

x2 + 1 has no roots (and so the matrix
(

0 1
−1 0

)
has no eigenvalues), but

over the field C of complex numbers it has two roots, i and −i. So which field
one is working over has a big bearing on questions of diagonalizability. (For
example, the above matrix is not diagonalizable over R but is diagonalizable
over C.)

9.12 Definition A field F is said to be algebraically closed if every poly-
nomial of degree greater than zero with coefficients in F has a zero in F .
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A trivial induction based on the definition shows that over an alge-

braically closed field every polynomial of degree greater than zero can be
expressed as a product of factors of degree one. In particular

9.13 Proposition If F is an algebraically closed field then for every matrix
A ∈ Mat(n× n, F ) there exist λ1, λ2, . . . , λn ∈ F (not necessarily distinct)
such that

cA(x) = (λ1 − x)(λ2 − x) . . . (λn − x)

(where cA(x) is the characteristic polynomial of A).

As a consequence of 9.13 the analysis of linear operators is significantly
simpler if the ground field is algebraically closed. Because of this it is con-
venient to make use of complex numbers when studying linear operators on
real vector spaces.

9.14 The Fundamental Theorem of Algebra The complex field C
is algebraically closed.

The traditional name of this theorem is somewhat inappropriate, since
it is proved by methods of complex analysis. We will not prove it here. There
is an important theorem, which really is a theorem of algebra, which asserts
that for every field F there is an algebraically closed field containing F as
a subfield. The proof of this is also beyond the scope of this book, but it
proceeds by “adjoining” new elements to F , in much the same way as

√
−1

is adjoined to R in the construction of C.

§9d Generalized eigenspaces

Let T be a linear operator on an n-dimensional vector space V and suppose
that the characteristic polynomial of T can be factorized into factors of degree
one:

cT (x) = (λ1 − x)m1(λ2 − x)m2 . . . (λk − x)mk

where λi 6= λj for i 6= j. (If the field F is algebraically closed this will always
be the case.) Let Vi be the λi-eigenspace and let ni = dimVi. Certainly
ni ≥ 1 for each i, since λi is an eigenvalue of T ; so, by 9.11,

9.14.1 1 ≤ ni ≤ mi for all i = 1, 2, . . . , k.
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If mi = 1 for all i then since cT has degree n (by Exercise 12 of Chapter
Two) it follows that k = n and

dim(V1 ⊕ V2 ⊕ · · · ⊕ Vk) =
n∑

i=1

dimVi = n = dimV

so that V is the direct sum of the eigenspaces.

If the mi are not all equal to 1 then, as we have seen by example, V need
not be the sum of the eigenspaces Vi = ker(T −λii). A question immediately
suggests itself: instead of Vi, should we perhaps use Wi = ker(T − λii)mi?

9.15 Definition Let λ be an eigenvalue of the operator T and let m be
the multiplicity of λ − x as a factor of the characteristic polynomial cT (x).
Then ker(T − λi)m is called the generalized λ-eigenspace of T .

9.16 Proposition Let T be a linear operator on V . The generalized
eigenspaces of T are T -invariant subspaces of V .

Proof. It is immediate from Definition 9.15 and Theorem 3.13 that gen-
eralized eigenspaces are subspaces; hence invariance is all that needs to be
proved.

Let λ be an eigenvalue of T and m the multiplicity of x−λ in cT (x), and
let W be the generalized λ-eigenspace of T . By definition, v ∈W if and only
if (T−λi)m(v) = 0; let v be such an element. Since (T−λi)mT = T (T−λi)m

we see that

(T − λi)m(T (v)) = T ((T − λi)m(v)) = T (0) = 0,

and it follows that T (v) ∈W . Thus T (v) ∈W for all v ∈W , as required.
�

If (T−λi)i(x) = 0 then clearly (T−λi)j(x) = 0 whenever j ≥ i. Hence

9.16.1 ker(T − λi) ⊆ ker(T − λi)2 ⊆ ker(T − λi)3 ⊆ · · ·
and in particular the λ-eigenspace of T is contained in the generalized λ-
eigenspace. Because our space V is finite dimensional the subspaces in the
chain 9.16.1 cannot get arbitrarily large. We will show below that in fact the
generalized eigenspace is the largest, the subsequent terms in the chain all
being equal:

ker(T − λi)m = ker(T − λi)m+1 = ker(T − λi)m+2 = · · ·
where m is the multiplicity of x− λ in cT (x).
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9.17 Lemma Let S:V → V be a linear operator and x ∈ V . If r is a
positive integer such that Sr(x) = 0 but Sr−1(x) 6= 0 then the elements
x, S(x), . . . , Sr−1(x) are linearly independent.

Proof. Suppose that λ0x + λ1S(x) + · · · + λr−1S
r−1(x) = 0 and suppose

that the scalars λi are not all zero. Choose k minimal such that λk 6= 0.
Then the above equation can be written as

λkS
k(x) + λk+1S

k+1(x) + · · ·+ λr−1S
r−1(x) = 0.

Applying Sr−k−1 to both sides gives

λkS
r−1(x) + λk+1S

r(x) + · · ·+ λr−1S
2r−k−2(x) = 0

and this reduces to λkS
r−1(x) = 0 since Si(x) = 0 for i ≥ r. This contradicts

3.7 since both λk and Sr−1(x) are nonzero. �

9.18 Proposition Let T :V → V be a linear operator, and let λ and m be
as in Definition 9.15. If r is an integer such that ker(T−λi)r 6= ker(T−λi)r−1

then r ≤ m.

Proof. By 9.16.1 we have ker(T −λi)r−1 ⊆ ker(T −λi)r; so if they are not
equal there must be an x in ker(T − λi)r and not in ker(T − λi)r−1. Given
such an x, define xi = (T − λi)i(x) for i from 1 to r, noting that this gives

9.18.1 T (xi) =
{
λxi + xi+1 (for i = 1, 2, . . . , r − 1)
λxi (for i = r).

Lemma 9.17, applied with S = T − λi, shows that x1, x2, . . . , xr are lin-
early independent, and by 4.10 there exist xr+1, xr+2 . . . , xn ∈ V such that
b = (x1, x2, . . . , xn) is a basis.

The first r columns of Mbb(T ) can be calculated using 9.18.1, and we
find that

Mbb(T ) =
(
Jr(λ) C

0 D

)
for some D ∈ Mat((n− r)× (n− r), F ) and C ∈ Mat(r × (n− r), F ), where
Jr(λ) ∈ Mat(r × r, F ) is the matrix

9.18.2 Jr(λ) =



λ 0 0 . . . 0 0
1 λ 0 · · · 0 0
0 1 λ · · · 0 0
...

...
...

...
...

0 0 0 . . . λ 0
0 0 0 . . . 1 λ
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(having diagonal entries equal to λ, entries immediately below the diagonal
equal to 1, and all other entries zero).

Since Jr(λ) − xI is lower triangular with all diagonal entries equal to
λ− x we see that

det(Jr(λ)− xI) = (λ− x)r

and hence the characteristic polynomial of Mbb(T ) is (λ−x)rf(x), where f(x)
is the characteristic polynomial of D. So cT (x) is divisible by (x− λ)r. But
by definition the multiplicity of x− λ in cT (x) is m; so we must have r ≤ m.

�

It follows from Proposition 9.18 that the intersection of ker(T − λi)m

and im(T − λi)m is {0}. For if x ∈ im(T − λi)m ∩ ker(T − λi)m then
x = (T − λi)m(y) for some y, and (T − λi)m(x) = 0. But from this we
deduce that (T − λi)2m(y) = 0, whence

y ∈ ker(T − λi)2m = ker(T − λi)m (by 9.18)

and it follows that x = (T − λi)m(y) = 0.

9.19 Theorem In the above situation,

V = ker(T − λi)m ⊕ im(T − λi)m.

Proof. We have seen that ker(T −λi)m and im(T −λi)m have trivial inter-
section, and hence their sum is direct. Now by Theorem 6.9 the dimension of
ker(T −λi)m⊕ im(T −λi)m equals dim(ker(T −λi)m)+dim(im(T −λi)m),
which equals the dimension of V by the Main Theorem on Linear Transfor-
mations. Since ker(T − λi)m ⊕ im(T − λi)m ⊆ V the result follows. �

Let U = ker(T − λi)m (the generalized eigenspace) and let W be the
image of (T − λi)m. We have seen that U is T -invariant, and it is equally
easy to see that W is T -invariant. Indeed, if x ∈ W then x = (T − λi)m(y)
for some y, and hence

T (x) = T ((T − λi)m(y) = (T − λi)m(T (y)) ∈ im(T − λi)m = W.

By 9.10 we have that cT (x) = f(x)g(x) where f(x) and g(x) are the charac-
teristic polynomials of TU and TW , the restrictions of T to U and W .
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Let µ be an eigenvalue of TU . Then T (x) = µx for some nonzero

x ∈ U , and this gives (T − λi)(x) = (µ − λ)x. It follows easily by induc-
tion that (T − λi)m(x) = (µ − λ)mx, and therefore (µ − λ)mx = 0 since
x ∈ U = ker(T − λi)m. But x 6= 0; so we must have µ = λ. We have proved
that λ is the only eigenvalue of TU .

On the other hand, λ is not an eigenvalue of TW , since if it were then
we would have (T − λi)(x) = 0 for some nonzero x ∈ W , a contradiction
since ker(T − λi) ⊆ U and U ∩W = {0}.

We are now able to prove the main theorem of this section:

9.20 Theorem Suppose that T :V → V is a linear operator whose char-
acteristic polynomial factorizes into factors of degree 1. Then V is a direct
sum of the generalized eigenspaces of T . Furthermore, the dimension of each
generalized eigenspace equals the multiplicity of the corresponding factor of
the characteristic polynomial.

Proof. Let cT (x) = (x− λ1)m1(x− λ2)m2 . . . (x− λk)mk and let U1 be the
generalized λ1-eigenspace, W1 the image of (T − λi)m1 .

As noted above we have a factorization cT (x) = f1(x)g1(x), where f1(x)
and g1(x) are the characteristic polynomials of TU1 and TW1 , and since cT (x)
can be expressed as a product of factors of degree 1 the same is true of f1(x)
and g1(x). Moreover, since λ1 is the only eigenvalue of T restricted to U1

and λ1 is not an eigenvalue of T restricted to W1, we must have

f(x) = (x− λ1)m1

and
g(x) = (x− λ2)m2 . . . (x− λk)mk .

One consequence of this is that dimU1 = m1; similarly for each i the gener-
alized λi-eigenspace has dimension mi.

Applying the same argument to the restriction of T to W1 and the
eigenvalue λ2 gives W1 = U2 ⊕W2 where U2 is contained in ker(T − λ2i)m2

and the characteristic polynomial of T restricted to U2 is (x− λ2)m2 . Since
the dimension of U2 is m2 it must be the whole generalized λ2-eigenspace.
Repeating the process we eventually obtain

V = U1 ⊕ U2 ⊕ · · · ⊕ Uk

where Ui is the generalized λi-eigenspace of T . �



210 Chapter Nine: Classification of linear operators

Copyright
U
niversity

of Sydney

School of M
athem

atics
and

Statistics

Comments ...
9.20.1 Theorem 9.20 is a good start in our quest to understand an ar-
bitrary linear operator; however, generalized eigenspaces are not as simple
as eigenspaces, and we need further investigation to understand the action
of T on each of its generalized eigenspaces. Observe that the restriction of
(T − λi)m to the kernel of (T − λi)m is just the zero operator; so if λ is
an eigenvalue of T and N the restriction of T − λi to the generalized λ-
eigenspace, then Nm = 0 for some m. We investigate operators satisfying
this condition in the next section.

9.20.2 Let A be an n × n matrix over an algebraically closed field F .
Theorem 9.20 shows that there exists a nonsingular T ∈ Mat(n× n, F ) such
that the first m1 columns of T are in the null space of (A − λ1I)m1 , the
next m2 are in the null space of (A − λ2I)m2 , and so on, and that T−1AT
is a diagonal sum of blocks Ai ∈ Mat(mi ×mi, F ). Furthermore, each block
Ai satisfies (Ai − λiI)mi = 0 (since the matrix A − λiI corresponds to the
operator N in 9.20.1 above).

9.20.3 We will say that an operator T is λ-primary if its characteristic
polynomial cT (x) is a power of x− λ. An equivalent condition is that some
power of T − λi is zero. ...

§9e Nilpotent operators

9.21 Definition A linear operator N on a space V is said to be nilpotent
if there exists a positive integer q such that Nq(v) = 0 for all v ∈ V . The
least such q is called the index of nilpotence of N .

As we commented in 9.20.1, an understanding of nilpotent operators
is crucial for an understanding of operators in general. The present section
is devoted to a thorough investigation of nilpotent operators. We start by
considering a special case.

9.22 Proposition Let b = (v1, v2, . . . , vq) be a basis of the space V , and
T :V → V a linear operator satisfying T (vi) = vi+1 for i from 1 to q − 1,
and T (vq) = 0. Then T is nilpotent of index q. Moreover, for each l with
1 ≤ l ≤ q the l elements vq−l+1, . . . , vq−1, vq form a basis for the kernel
of T l.
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The proof of this is left as an exercise. Note that the matrix of T

relative to b is the q × q matrix

Jq(0) =


0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0


(where the entries immediately below the main diagonal are 1 and all other
entries are 0.)

We consider now an operator which is a direct sum of operators like T
in 9.22. Thus we suppose that V = V1 ⊕ V2 ⊕ · · · ⊕ Vk with dimVj = qj , and
that Tj :Vj → Vj is an operator with matrix Jqj (0) relative to some basis bj

of Vj . Let N :V → V be the direct sum of the Tj . We may write

bj = (xj , N(xj), N2(xj), . . . , Nqj−1(xj))

and combine the bj to give a basis b = (b1, b2, . . . , bk) of V ; the elements of
b are all the elements N i(xj) for j = 1 to k and i = 0 to qj − 1. We see that
the matrix of N relative to b is the diagonal sum of the Jqj

(0) for j = 1 to k.

For each i = 1, 2, 3, . . . let ki be the number of j for which qj ≥ i.
Thus k1 is just k, the total number of summands Vj , while k2 is the number
of summands of dimension 2 or more, k3 the number of dimension 3 or more,
and so on.

9.23 Proposition For each l ( = 1, 2, 3, . . . ) the dimension of the kernel
of N l is k1 + k2 + · · ·+ kl.

Proof. In the basis b there are k1 elementsN i(xj) for which i = qj−1, there
are k2 for which i = qj − 2, and so on. Hence the total number of elements
N i(xj) in b such that i ≥ qj − l is

∑l
i=1 ki. So to prove the proposition it

suffices to show that these elements form a basis for the kernel of N l.
Let v ∈ V be arbitrary. Expressing v as a linear combination of the

elements of the basis b we have

9.23.1 v =
k∑

j=1

qj−1∑
i=0

λijN
i(xj)
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for some scalars λij . Now

N l(v) =
k∑

j=1

qj−1∑
i=0

λijN
i+l(xj)

=
k∑

j=1

qj+l−1∑
i=l

λi−l,jN
i(xj)

=
k∑

j=1

qj−1∑
i=l

λi−l,jN
i(xj)

since N i(xj) = 0 for i > qj − 1. Since the above expresses N l(v) in terms of
the basis b we see that N l(v) is zero if and only if the coefficients λi−l,j are
zero for all j = 1, 2, . . . , k and i such that l ≤ i ≤ qj − 1. That is, v ∈ kerN l

if and only if λij = 0 for all i and j satisfying 0 ≤ i < qj − l. So kerN l

consists of arbitrary linear combinations of the N i(xj) for which i ≥ qj − l.
Since these elements are linearly independent they form a basis of kerN l, as
required. �

Our main theorem asserts that every nilpotent operator has the above
form.

9.24 Theorem Let N be a nilpotent linear operator on the finite dimen-
sional space V . Then V has a direct decomposition V = V1⊕V2⊕· · ·⊕Vk in
which each Vj has a basis bj = (xj , N(xj), . . . , Nqj−1(xj)) with Nqj (xj) = 0.
Furthermore, in any such decomposition the number of summands Vj of di-
mension l equals 2(dim kerN l)− dim kerN l−1 − dim kerN l+1.

The construction of the subspaces Vj is somewhat tedious, and occupies
the rest of this section. Note, however, that once this has been done the
second assertion of the theorem follows from Proposition 9.23; if ki is the
number of j with qj ≥ i then the number of summands Vj of dimension l is
kl − kl+1, while 9.23 gives that 2(dim kerN l)− dim kerN l−1 − dim kerN l+1

is equal to 2
(∑l

i=1 ki

)
−
(∑l−1

i=1 ki

)
−
(∑l+1

i=1 ki

)
, which is kl − kl+1.

Before beginning the construction of the Vj we state a lemma which
can be easily proved using 6.10.
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9.25 Lemma Let W be a subspace of the vector space V . If Y is a subspace
of V such that Y ∩ W = {0} then there exists a subspace X of V which
contains Y and is complementary to W .

The proof proceeds by noting first that the sum Y +W is direct, then
choosing Y ′ complementing Y ⊕W , and defining X = Y ′ ⊕ Y .

We return now to the proof of 9.24. Assume then that N :V → V is a
nilpotent operator on the finite dimensional space V . It is in fact convenient
for us to prove slightly more than was stated in 9.24. Specifically, we will
prove the following:

9.26 Theorem Let q be the index of nilpotence of N and let z1, z2, . . . , zr

be any elements of V which form a basis for a complement to the kernel
of Nq−1. Then the elements x1, x2, . . . , xk in 9.24 can be chosen so that
xi = zi for i = 1, 2, . . . , r.

The proof uses induction on q. If q = 1 then N is the zero operator and
kerNq−1 = ker i = {0}; if (x1, x2, . . . , xk) is any basis of V and we define Vj

to be the 1-dimensional space spanned by xj then it is trivial to check that
the assertions of Theorem 9.24 are satisfied.

Assume then that q > 1 and that the assertions of 9.26 hold for nilpotent
operators of lesser index. Suppose that (x1, x2, . . . , xr) is a basis of a subspace
X of V which is complementary to the kernel of Nq−1; observe that 6.10
guarantees the existence of at least one such.

9.27 Lemma The qr vectors N i(xj) (for i from 0 to q − 1 and j from 1
to r) are linearly independent.

Proof. Suppose that

9.27.1
q−1∑
i=0

r∑
j=1

λijN
i(xj) = 0

and suppose that the coefficients λij are not all zero. Choose k minimal such
that λkj 6= 0 for some j, so that the equation 9.27.1 may be written as

r∑
j=1

q−1∑
i=k

λijN
i(xj) = 0,
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and apply the operator Nq−1−k to both sides. This gives
r∑

j=1

q−1∑
i=k

λijN
i+q−1−k(xj) = Nq−1−k(0) = 0

and since Nh(xj) = 0 for all h ≥ q we obtain

0 =
r∑

j=1

q−1∑
i=k

λijN
i+q−1−k(xj) =

r∑
j=1

λkjN
q−1(xj) = Nq−1

 r∑
j=1

λkjxj


giving

∑r
j=1 λkjxj ∈ kerNq−1. But the xj lie in X, and X∩kerNq−1 = {0}.

Hence
∑r

j=1 λkjxj = 0, and by linear independence of the xj we deduce that
λkj = 0 for all j, a contradiction. We conclude that the λij must all be
zero. �

For j = 1, 2, . . . , r we set bj = (xj , N(xj), . . . , Nq−1(xj)); by Lemma
9.27 these are bases of independent subspaces Vj , so that V1 ⊕ V2 ⊕ · · · ⊕ Vr

is a subspace of V . We need to find further summands Vr+1, Vr+2, . . . , Vk

to make this into a direct decomposition of V , and the inductive hypothesis
(that 9.24 holds for nilpotent operators of index less than q) will enable us
to do this.

Observe that V ′ = kerNq−1 is an N -invariant subspace of V , and if
N ′ is the restriction of N to V ′ then N ′ is nilpotent of index q − 1. It is to
N ′ that the inductive hypothesis will be applied. Before doing so we need a
basis of a subspace X ′ of V ′ complementary to ker(N ′)q−2. This basis will
consist of the N(xj) (for j = 1 to r) and (possibly) some extra elements.
(Note that N ′-invariant subspaces of V ′ are exactly the same as N -invariant
subspaces of V ′, since N ′ is simply the restriction of N . Similarly, since
kerNq−2 ⊆ kerNq−1 = V ′ it follows that kerNq−2 and ker(N ′)q−2 coincide.)

9.28 Lemma The elements N(xj) (for j = 1, 2, . . . , r) form a basis of a
subspace Y of V ′ for which Y ∩ (kerNq−2) = {0}.

Proof. By 9.27 the elements N(xj) are linearly independent, and they lie
in V ′ = kerNq−1 since Nq−1(N(xj)) = Nq(xj) = 0. Let Y be the space they
span, and suppose that v ∈ Y ∩kerNq−2. Writing v =

∑r
j=1 λjN(xj) we see

that v = N(x) with x =
∑j

j=1 λjxj ∈ X. Now

Nq−1(x) = Nq−2(N(x)) = Nq−2(v) = 0

shows that x ∈ X ∩ kerNq−1 = {0}, whence x = 0 and v = N(x) = 0. �
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By 9.25 we may choose a subspace X ′ of V ′ containing Y and com-

plementary to kerNq−2, and by 4.10 we may choose a basis (z′1, z
′
2, . . . , z

′
s)

of X ′ such that z′j = N(xj) for j from 1 to r. Now applying the inductive
hypothesis we conclude that V ′ contains elements x′1, x

′
2, . . . , x

′
k such that:

(i) x′j = z′j for j = 1, 2, . . . , s; in particular, x′j = N(xj) for j = 1, 2, . . . , r.

(ii) b′j = (x′j , N(x′j), . . . , N
tj−1(x′j)) is a basis of a subspace V ′j of V ′, where

tj is the least integer such that N tj (x′j) = 0 (for all j = 1, 2, . . . , k).
(iii) V ′ = V ′1 ⊕ V ′2 ⊕ . . .⊕ V ′k.

For j from r + 1 to k we define Vj = V ′j and bj = b′j ; in particular,
xj = x′j and qj = tj . For j from 1 to r let qj = q. Then for all j (from 1
to k) we have that bj = (xj , N(xj), . . . , Nqj−1(xj)) is a basis for Vj and qj
is the least integer with Nqj (xj) = 0. For j from 1 to r we see that the basis
b′j of V ′j is obtained from the basis bj of Vj by deleting xj . Thus

Vj = Xj ⊕ V ′j for j = 1, 2, . . . , r

where Xj is the 1-dimensional space spanned by xj .

To complete the proofs of 9.24 and 9.26 it remains only to prove that
V is the direct sum of the Vj .

Since (x1, x2, . . . , xr) is a basis of X we have

X = X1 ⊕X2 ⊕ · · · ⊕Xr

and since X complements V ′ this gives

V = X1 ⊕X2 ⊕ · · · ⊕Xr ⊕ V ′.

Combining this with the direct decomposition of V ′ above and rearranging
the order of summands gives

V = (X1 ⊕ V ′1)⊕ (X2 ⊕ V ′2)⊕ · · · ⊕ (Xr ⊕ V ′r )⊕ V ′r+1 ⊕ V ′r+2 ⊕ · · · ⊕ V ′k

= V1 ⊕ V2 ⊕ · · · ⊕ Vk

as required.
Comments ...
9.28.1 We have not formally proved anywhere that it is legitimate to
rearrange the terms in a direct sum as in the above proof. But it is a trivial
task. Note also that we have used Exercise 15 of Chapter Six.
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9.28.2 It is clear that we may choose the ordering of the summands Vj in
9.24 so that q1 ≥ q2 ≥ · · · ≥ qk. (Indeed, this is the ordering which our proof
gives.) The matrix of N relative to b is the diagonal sum of the matrices
Jqj

(0) (for j from 1 to k); that is, if A = Mbb(N) then

A = diag(Jq1(0), Jq2(0), . . . , Jqk
(0)) q1 ≥ q2 ≥ · · · ≥ qk.

We call such a matrix a canonical nilpotent matrix, and it is a corollary of
9.24 that every nilpotent matrix is similar to a unique canonical nilpotent
matrix. ...

§9f The Jordan canonical form

Let V be a finite dimensional vector space T :V → V a linear operator. If λ is
an eigenvalue of T and U the corresponding generalized eigenspace then TU

is λ-primary, and so there is a basis b of U such that the matrix of TU − λi
is a canonical nilpotent matrix. Now since

Mbb(TU − λi) = Mbb(TU )− λMbb(i) = Mbb(TU )− λI

we see that the matrix of TU is a canonical nilpotent matrix plus λI. Since
Jr(0) + λI = Jr(λ) (defined in 9.18.2 above) it follows that the matrix of TU

is a diagonal sum of blocks of the form Jr(λ).

9.29 Definition Matrices of the form Jr(λ) are called Jordan blocks. A
matrix of the form diag(Jr1(λ), Jr2(λ), . . . , Jrk

(λ)) with r1 ≥ r2 ≥ · · · ≥ rk
(a diagonal sum of Jordan blocks in order of nonincreasing size) is called a
canonical λ-primary matrix. A diagonal sum of canonical primary matrices
for different eigenvalues is called a Jordan matrix, or a matrix in Jordan
canonical form.

Comment ...
9.29.1 Different books use different terminology. In particular, some au-
thors use bases which are essentially the same as ours taken in the reverse
order. This has the effect of making Jordan blocks upper triangular rather
than lower triangular; in fact, their Jordan blocks are the transpose of ours.

...
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Combining the main theorems of the previous two sections gives our

final verdict on linear operators.

9.30 Theorem Let V be a finite dimensional vector space over an alge-
braically closed field F , and let T be a linear operator on V . Then there
exists a basis b of V such that the matrix of T relative to b is a Jordan
matrix. Moreover, the Jordan matrix is unique apart from reordering the
eigenvalues.

Equivalently, every square matrix over an algebraically closed field is
similar to a Jordan matrix, the primary components of which are uniquely
determined.

Examples

#4 Find a nonsingular matrix T such that T−1AT is in Jordan canonical
form, where

A =


1 1 0 −2
1 5 3 −10
0 1 1 −2
1 2 1 −4

 .

�−−. Using expansion along the first row we find that the determinant of
A− xI is equal to

(1− x) det

 5− x 3 −10
1 1− x −2
2 1 −4− x

− det

 1 3 −10
0 1− x −2
1 1 −4− x


+2det

 1 5− x 3
0 1 1− x
1 2 1


= (1− x)(−x3 + 2x2)− (x2 − 7x+ 2) + 2(x2 − 4x+ 1) = x4 − 3x3 + 3x2 − x

so that the eigenvalues are 0 and 1, with the corresponding generalized
eigenspaces having dimensions 1 and 3 respectively. We find a basis for
the 0-eigenspace by solving Ax = 0 as usual. Solving (A − I)x = 0 we find
that the 1-eigenspace has dimension equal to 1, and it follows that there
will be only one Jordan block corresponding to this eigenvalue. Thus the
Jordan canonical form will be diag(J3(1), J1(0)). We could find a basis for
the generalized 1-eigenspace by solving (A− I)3x = 0, but it is easier to use
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Theorem 9.19. The generalized 1-eigenspace is the unique invariant comple-
ment to the generalized 0-eigenspace, and by 9.19 it is simply the column
space of A − 0I. Choose x1 to be any column of A. Certainly x1 will lie in
the kernel of (A− I)3; we will be unlucky if it lies in the kernel of (A− I)2,
but if it does we will just choose a different column of A instead. Then set
x2 = Ax1− x1 and x3 = Ax2− x2 (and hope that x3 6= 0). Finally, let x4 be
an eigenvector for the eigenvalue 0. The matrix T that we seek has the xi as
its columns. We find

T =


1 −1 −1 0
1 −5 −4 2
0 −1 −1 0
1 −2 −2 1


and it is easily checked that

AT = T


1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 0

 .

The theory we have developed guarantees that T is nonsingular; there is no
point calculating T−1. /−−�

#5 Given that the matrix A below is nilpotent, find a nonsingular T such
that T−1AT is a canonical nilpotent matrix.

A =


1 1 1 0
1 −1 −1 −1

−2 0 0 1
2 2 2 0

 .

�−−. We first solve Ax = 0, and we find that the null space has dimen-
sion 2. Hence the canonical form will have two blocks. At this stage there
are two possibilities: either diag(J2(0), J2(0)) or diag(J3(0), J1(0)). Finding
the dimension of the null space of A2 will settle the issue. In fact we see
immediately that A2 = 0, which rules out the latter of our possibilities. Our
task now is simply to find two linearly independent columns x and y which
lie outside the null space of A. Then we can let T be the matrix with columns
x, Ax, y and Ay. The theory guarantees that T will be nonsingular.
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Practically any two columns you care to choose for x and y will do. For

instance, a suitable matrix is

T =


1 1 0 1
0 1 1 −1
0 −2 0 0
0 2 0 2


and it is easily checked that AT = T diag(J2(0), J2(0)). /−−�

We will not investigate the question of how best to compute the Jordan
canonical form in general. Note, however, the following points.
(a) Once the characteristic polynomial has been factorized, it is simply a

matter of solving simultaneous equations to find the dimensions of the
null spaces of the matrices (A − λI)m for all eigenvalues λ and the
relevant values of m. Knowing these dimensions determines the Jordan
canonical form (by the last sentence of Theorem 9.24).

(b) Knowing what the Jordan canonical form for A has to be, it is in prin-
ciple a routine task to calculate a matrix T such that AT = TJ (where
J is the Jordan matrix). Let the columns of T be v1, v2, . . . , vn. If
the first Jordan block in J is Jr(λ) then the first r columns of T must
satisfy T (vi) = λvi + vi+1 (for i from 1 to r− 1) and T (vr) = λvr. The
next batch of columns of T satisfy a similar condition determined by
the second Jordan block in J . Finding suitable columns for T is then a
matter of solving simultaneous equations.

Let T be a linear operator on V , and assume that the field is al-
gabraically closed. Let U1, U2, . . . , Uk be the generalized eigenspaces of T ,
and for each i let Ti be the restriction of T to Ui. Thus T is the direct
sum of the Ti, in the sense of 9.9.1. For each i let Si:Ui → Ui be given by
Si(u) = λiu, where λi is the eigenvalue of T associated with the space Ui,
and let S be the direct sum of the operators Si. It can be seen that S is
the unique linear operator on V having the same eigenvalues as T and such
that for each i the generalized λi-eigenspace of T is the λi-eigenspace of S.
Because Si is simply λii, it is clear that SiTi = TiSi for each i, and from
this it follows that ST = TS. Furthermore, if we write N = T − S then
the restriction of N to Ui is equal to the nilpotent operator T − λii, and it
follows that N , being a direct sum of nilpotent operators, is itself nilpotent.
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The operator S is called the semisimple part of T , and the operator
N is called the nilpotent part of T . They are uniquely determined by the
properties that S is diagonalizable, N is nilpotent, SN = NS and S+N = T .

If A ∈ Mat(n× n,C) we define the exponential of A by

exp(A) = eA = I +A+
1
2
A2 +

1
6
A3 + · · · =

∞∑
i=0

1
n!
An.

It can be proved that this infinite series converges. Furthermore, if T is any
nonsingular matrix then

exp(T−1AT ) = T−1 exp(A)T.
For a Jordan matrix the calculation of its exponential is relatively easy; so
for an arbitrary matrix A it is reasonable to proceed by first finding T so that
T−1AT is in Jordan form. If A is diagonalizable this works out particularly
well since

exp(diag(λ1, λ2, . . . , λn)) = diag(eλ1 , eλ2 , . . . , eλn).

It is unfortunately not true that exp(A + B) = exp(A) exp(B) for
all A and B; however, this property is valid if AB = BA, and so, in
particular, if S and N are the semisimple and nilpotent parts of A then
exp(A) = exp(S) exp(N). Calculation of the exponential of a nilpotent ma-
trix is easy, since the infinite series in the definition becomes a finite series.
For example,

exp

 0 0 0
1 0 0
0 1 0

 = I +

 0 0 0
1 0 0
0 1 0

+

 0 0 0
0 0 0
1
2 0 0

 .

Matrix exponentials occur naturally in the solution of simultaneous
differential equations of the kind we have already considered. Specifically,
the solution of the system

d

dt

 x1(t)
...

xn(t)

 = A

 x1(t)
...

xn(t)

 subject to

 x1(0)
...

xn(0)

 =

 x0
...
xn


(where A is an n× n matrix) can be written as x1(t)

...
xn(t)

 = exp(tA)

 x0
...
xn

 ,

a formula which is completely analogous to the familiar one-variable case.
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Example

#6 Solve

d

dt

x(t)
y(t)
z(t)

 =

 1 0 0
1 1 0
0 1 1

x(t)
y(t)
z(t)


subject to x(0) = 1 and y(0) = z(0) = 0.

�−−. Since A is (conveniently) already in Jordan form we can immediately
write down the semisimple and nilpotent parts of tA. The semisimple part
is S = tI and the nilpotent part is

N =

 0 0 0
t 0 0
0 t 0

 .

Calculation of the exponential of N is easy since N3 = 0, and, even easier,
exp(S) = etI. Hence the solution isx(t)

y(t)
z(t)

 = et

 1 0 0
t 1 0
t2

2 t 1

 1
0
0


=

 et

tet

1
2 t

2et

 .

/−−�

§9g Polynomials

Our behaviour concerning polynomials has, up to now, been somewhat rep-
rehensible. We have not even defined them, and we have used, without proof,
several important properties. Let us therefore, belatedly, rectify this situa-
tion a little.

9.31 Definition A polynomial in the indeterminate x over the field F is
an expression of the form a0 + a1x + · · · + anx

n, where n is a nonnegative
integer and the ai are elements of F .

9.32 Definition Let a(x) be a nonzero polynomial over the field F , and
let a(x) = a0 + a1x + · · · + anx

n with an 6= 0. Then n is called the degree
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of a(x), and an the leading coefficient. If the leading coefficient is 1 then the
polynomial is said to be monic.

Let F [x] be the set of all polynomials over F in the indeterminate x.
Addition and scalar multiplication of polynomials is definable in the obvi-
ous way, and it is easily seen that the polynomials of degree less than or
equal to n form a vector space of dimension n + 1. The set F [x] itself is an
infinite dimensional vector space. However, F [x] has more algebraic struc-
ture than this, since one can also multiply polynomials (by the usual rule:
(
∑

i aix
i)(
∑

j bjx
j) =

∑
r(
∑

i aibr−i)xr).

The set of all integers and the set F [x] of all polynomials in x over
the field F enjoy many similar properties. Notably, in each case there is a
division algorithm:

If n and m are integers and n 6= 0 then there exist unique integers q and r
with m = qn+ r and 0 ≤ r < n.

For polynomials:

If n(x) andm(x) are polynomials over F and n(x) 6= 0 then there exist unique
polynomials q(x) and r(x) with m(x) = q(x)n(x) + r(x) and the degree of
r(x) less than that of n(x).

A minor technical point: the degree of the zero polynomial is undefined.
For the purposes of the division algorithm, however, the zero polynomial
should be considered to have degree less than that of any other polynomial.
Note also that for nonzero polynomials the degree of a product is the sum of
the degrees of the factors; thus if the degree of the zero polynomial is to be
defined at all it should be set equal to −∞.

If n and m are integers which are not both zero then one can use the
division algorithm to find an integer d such that

(i) d is a factor of both n and m, and
(ii) d = rn+ sm for some integers r and s.

(Obviously, if n and m are both positive then either r < 0 or s < 0.) The
process by which one finds d is known as the Euclidean algorithm, and it goes
as follows. Assuming that m > n, replace m by the remainder on dividing
m by n. Now we have a smaller pair of integers, and we repeat the process.
When one of the integers is replaced by 0, the other is the sought after
integer d. For example, starting with m = 1001 and n = 35, divide m by n.
The remainder is 21. Divide 35 by 21; the remainder is 14. Divide 21 by 14;
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the remainder is 7. Now 14 is divisible by 7, and we conclude that d = 7. It
is easily checked that 7 is a factor of both 1001 and 35, and furthermore

7 = 21− 14 = 21− (35− 21) = 2× 21− 35 = 2× (1001− 28× 35)− 35
= 2× 1001− 57× 35.

Properties (i) and (ii) above determine d uniquely up to sign. The
positive d satisfying (i) and (ii) is called the greatest common divisor of m
and n, denoted by ‘gcd(m,n)’. Using the gcd theorem and induction one can
prove the unique factorization theorem for integers: each nonzero integer
is expressible in the form (±1)p1p2 . . . pk where each pi is positive and has
no divisors other than ±1 and ±pi, and the expression is unique except for
reordering the factors.

All of the above works for F [x]. Given two polynomials m(x) and n(x)
which are not both zero there exists a polynomial d(x) which is a divisor
of each and which can be expressed in the form r(x)n(x) + s(x)m(x); the
Euclidean algorithm can be used to find one. The polynomial d(x) is unique
up to multiplication by a scalar, and multiplying by a suitable scalar ensures
that d(x) is monic; the resulting d(x) is the greatest common divisor of m(x)
and n(x). There is a unique factorization theorem which states that every
nonzero polynomial is expressible uniquely (up to order of the factors) in the
form cp1(x)p2(x) . . . pk(x) where c is a scalar and the pi(x) are monic poly-
nomials all of which have no divisors other than scalars and scalar multiples
of themselves. Note that if the field F is algebraically closed then the pi(x)
are all necessarily of the form x− λ.

If two integers n and m have no common divisors (other than ±1)
then the Euclidean algorithm shows that there exist integers r and s such
that rn + sm = 1. A double application can be used to show that if three
integers n, m and p have no common divisors then there exist r, s and t with
rn+ sm+ tp = 1. For example, starting with 6, 10 and 15 we first find that
2 = 2 × 6 − 10 and then that 1 = 15 − 7 × 2, and combining these gives
1 = 15 − 14 × 6 + 7 × 10. The result clearly generalizes to any number of
integers.

The same is also true for polynomials. For instance, it is possible to
find polynomials r(x), s(x) and t(x) such that

x(x− 1)r(x) + (x− 1)(x+ 1)s(x) + x(x+ 1)t(x) = 1.

We have a linear algebra application of this:
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9.33 Theorem Let T be a linear operator on V and suppose that the
characteristic polynomial factorizes as

∏k
i=1(x − λi)mi . If for each i from 1

to k we define fi(x) =
∏

j 6=i(x−λj)mj , then the image of the operator fi(T )
is equal to the generalized λi-eigenspace.

Proof. Since the only polynomials which are divisors of all the fi(x) are
scalars, it follows from the Euclidean algorithm that there exist polynomials
ri(x) such that

∑k
i=1 ri(x)fi(x) = 1. Clearly we may replace x by T in this

equation, obtaining
∑k

j=1 rj(T )fj(T ) = i.
Let v ∈ ker(T − λii)mi . If j 6= i then fj(T )(v) = 0, since fj(x) is

divisible by (x− λi)mi . Now we have

v = i(v) =
k∑

j=1

rj(T )(fj(T )(v)) = fi(T )(ri(T )(v)) ∈ im fi(T ).

Hence we have shown that the generalized eigenspace is contained in the im-
age of fi(T ). To prove the reverse inclusion we must show that if u ∈ im fi(T )
then u is in the kernel of (T − λii)mi . Thus we must show that(

(T − λii)mifi(T )
)
(w) = 0

for all w ∈ V . But since (x − λi)mifi(x) = cT (x), this amounts to showing
that the operator cT (T ) is zero. This fact, that a linear operator satisfies
its own characteristic equation, is the Cayley-Hamilton Theorem, which is
proved below. See also Exercise 10 at the end of this chapter. �

9.34 The Cayley-Hamilton Theorem If A is an n× n matrix over the
field F and c(x) = det(A− xI) the characteristic polynomial of A, then the
matrix c(A) is zero.

Proof. Let E = A − xI. The diagonal entries of E are polynomials of
degree 1, and the other entries are scalars. We investigate the cofactors of E.

Calculating cofij(E) involves addition and subtraction of various prod-
ucts of n − 1 elements of E. Since elements of E have degree at most 1,
a product of n − 1 elements of E is a polynomial of degree at most n − 1.
Hence cofij(E) is also a ploynomial of degree at most n− 1. Let B(r)

ij be the
coefficient of xr in cofij(E), so that

cofij(E) = B
(0)
ij + xB

(1)
ij + · · ·+ xn−1B

(n−1)
ij .
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For each r from 0 to n− 1 let B(r) be the matrix with (i, j)-entry B(r)

ij ,
and consider the matrix

B = B(0) + xB(1) + · · ·+ xn−1B(n−1).

The (i, j)-entry of B is just
∑n−1

r=1 x
rB

(r)
ij , which is cofij(E), and so we see

that B = adjE, the adjoint of E. Hence Theorem 8.25 gives

9.34.1 (A− xI)(B(0) + xB(1) + · · ·+ xn−1B(n−1)) = c(x)I

since c(x) is the determinant of A− xI.
Let the coefficient of xr in c(x) be cr, so that the right hand side of

9.34.1 may be written as c0I+xc1I+ · · ·+xncnI. Since two polynomials are
equal if and only if they have the same coefficient of xr for each r, it follows
that we may equate the coefficients of xr in 9.34.1. This gives

AB(0) = c0I(0)
−B(0) +AB(1) = c1I(1)
−B(1) +AB(2) = c2I(2)

...
−B(n−2) +AB(n−1) = cn−1I(n− 1)
−B(n−1) = cnI.(n)

Multiply equation (i) by Ai and add the equations. On the left hand side
everything cancels, and we deduce that

0 = c0I + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n,

which is what we were to prove. �

Exercises

1. Find a matrix T such that T−1AT is in Jordan canonical form, where
A is the matrix in #1 above.

2. Let A =

 1 −1 2
−2 1 3
−1 −1 4

. Find T such that T−1AT is in Jordan form.
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3. Let b = (v, w, x, y, z) be a basis for a vector space V and let T be a linear
operator on V such that Tv = x+ 5z, Tw = 2y, Tx = 4v, Ty = 2w and
Tz = v.

(i) Let A be the matrix of T relative to b. Find A.
(ii) Find B, the matrix of T relative to the basis (w, y, v, x, z).
(iii) Find P such that P−1AP = B.
(iv) Show that T is diagonalizable, and find the dimensions of the

eigenspaces.

4. Let T :V → V be a linear operator. Prove that a subspace of V of
dimension 1 is T -invariant if and only if it is contained in an eigenspace
of T .

5. Prove Proposition 9.22.

6. Prove Lemma 9.25.

7. How many similarity classes are there of 10× 10 nilpotent matrices?

8. Describe all diagonalizable nilpotent matrices.

9. Find polynomials r(x), s(x) and t(x) such that

x(x− 1)r(x) + (x− 1)(x+ 1)s(x) + x(x+ 1)t(x) = 1.

10. Use Theorem 9.20 to prove the Cayley-Hamilton Theorem for alge-
braically closed fields.

(Hint: Let v ∈ V and use the decomposition of V as the di-
rect sum of generalized eigenspaces to write v =

∑
i vi with vi

in the generalized λi eigenspace. Observe that it is sufficient
to prove that cT (T )(vi) = 0 for all i. But since we may write
cT (T ) = fi(T )(T − λii)mi this is immediate from the fact that
vi ∈ ker(T − λii)mi .)

11. Prove that every complex matrix is similar to its transpose, by proving
it first for Jordan blocks.

12. The minimal polynomial of a matrix A is the monic polynomial m(x) of
least degree such that m(A) = 0. Use the division algorithm for poly-
nomials and the Cayley-Hamilton Theorem to prove that the minimal
polynomial is a divisor of the characteristic polynomial.
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13. Prove that a complex matrix is diagonalizable if and only if its minimal

polynomial has no repeated factors.

14. Let J be a Jordan matrix, with eigenvalues λi for i from 1 to k. For
each i let qi be the size of the largest Jordan block in the λi-primary
component. Prove that the minimal polynomial of J is

∏
i(x− λi)qi .

15. How many similarity classes of complex matrices are there for which
the characteristic polynomial is x4(x − 2)2(x + 1)2 and the minimal
polynomial is x2(x− 2)(x+ 1)2? (Hint: Use Exercise 14.)
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