In this lecture we shall prove the Law of Quadratic Reciprocity. We follow the treatment given in Hardy and Wright.

Let \(p \) and \(q \) be distinct odd primes, and let \(p_1 = \frac{1}{2}(p - 1) \) and \(q_1 = \frac{1}{2}(q - 1) \). Define

\[
S(q, p) = \sum_{i=1}^{p_1} \left[\frac{iq}{p} \right]
\]

(1)

Note that \(\left[\frac{iq}{p} \right] \) (the integer part of \(iq/p \)) can also be described as the quotient on division of \(iq \) by \(p \); thus, denoting the remainder by \(R_i \), we have \(0 < R_i < p \) (since \(p \nmid iq \)) and

\[
iq = p \left[\frac{iq}{p} \right] + R_i \quad \text{(for all } i \text{ from 1 to } p_1)\]

(2)

Using the terminology introduced in the discussion of Gauss's Lemma (in Lecture 21), the minimal residue of \(iq \) modulo \(p \) is the number congruent to \(iq \) (mod \(p \)) with smallest possible absolute value. If \(0 < R_i < (p/2) \) then \(R_i \) is the minimal residue, but if \((p/2) < R_i < p \) then the minimal residue is \(R_i - p \) (which lies between \(-p/2\) and 0). In this latter case the minimal residue is negative, and its absolute value is \(p - R_i \); in the former case the minimal residue is positive and its absolute value is \(R_i \). We proved last time that the absolute values of the minimal residues of \(q, 2q, \ldots, p_1q \) are \(1, 2, \ldots, p_1 \) in some order, and so it follows that

\[
\sum_{R_i < \frac{p}{2}} R_i + \sum_{R_i > \frac{p}{2}} (p - R_i) = 1 + 2 + \cdots + p_1.
\]

(3)

If \(w \) denotes the number of terms in the second sum on the left hand side, then \(w \) is also the number of values of \(i \) for which the minimal residue is negative, and so by Gauss’s Lemma, \(\left(\frac{q}{p} \right) = (-1)^w \). Our immediate aim is to prove that \(\left(\frac{q}{p} \right) = (-1)^{S(q,p)} \) (with \(S(q,p) \) as defined in Eq. (1) above). Thus we must show that \(S(q,p) \equiv w \) (mod 2).

Writing \(N = 1 + 2 + \cdots + p_1 \), Eq. (3) gives

\[
\left(\sum_{R_i < \frac{p}{2}} R_i \right) - \left(\sum_{R_i > \frac{p}{2}} R_i \right) + wp = N.
\]

(4)

But \(-1 \equiv +1 \) (mod 2), and \(p \equiv 1 \) (mod 2); so reading Eq. (4) mod 2 gives

\[
\left(\sum_{R_i < \frac{p}{2}} R_i \right) + \left(\sum_{R_i > \frac{p}{2}} R_i \right) + w \equiv N \quad \text{(mod 2)}.
\]
The two sums on the left combine to give all the values of \(i \); so

\[
\left(\sum_{i=1}^{p_1} R_i \right) + w \equiv N \pmod{2}.
\] (5)

On the other hand, summing Eq. (2) from \(i = 1 \) to \(p_1 \) gives

\[
q + 2q + \cdots + p_1q = \left(\sum_{i=1}^{p_1} p \left\lfloor \frac{iq}{p} \right\rfloor \right) + \left(\sum_{i=1}^{p_1} R_i \right),
\]

or, equivalently,

\[
qN = pS(q, p) + \sum_{i=1}^{p_1} R_i,
\] (6)

since \(\sum_{i=1}^{p_1} p[iq/p] = p \sum_{i=1}^{p_1} [iq/p] = pS(q, p) \) by Eq. (1). Now reading Eq. (6) mod 2, using the fact that \(q \equiv p \equiv 1 \pmod{2} \), gives

\[
N \equiv S(q, p) + \sum_{i=1}^{p_1} R_i \pmod{2}.
\]

Combining this with (5) above we deduce that

\[
S(q, p) \equiv N - \sum_{i=1}^{p_1} R_i \equiv w \pmod{2},
\]

and hence \((-1)^{S(q,p)} = (-1)^w = \left(\frac{q}{p} \right) \), as required.

We now complete the proof of the Law of Quadratic Reciprocity by proving the following result.

Proposition: With the notation as above, \(S(q, p) + S(p, q) = p_1q_1 \).

The proof proceeds by counting in two different ways the number of points \((i, j)\) in the \(xy\)-plane such that the coordinates \(i\) and \(j\) are integers satisfying \(0 < i < (p/2)\) and \(0 < j < (q/2)\). The first way is trivial: there are obviously \(p_1q_1\) such points, since the number of possible values for \(i\) is \(p_1 = \lfloor p/2 \rfloor\) and the number of possible values for \(j\) is \(q_1 = \lfloor q/2 \rfloor\).

Now we count these points according to whether they lie above or below the line with equation \(y = (q/p)x\). (Note that none of the points lie on this line, since \(j = (q/p)i \) with \(i, j \in \mathbb{Z} \) would imply that \(p|i \), which is impossible for \(0 < i < (p/2)\).) For a fixed integer \(i\) in the range \(0 < i < (p/2)\), the point \((i, j)\) lies below the line \(y = (q/p)x\) if and only if \(j < (q/p)i\). So the number of points satisfying our requirements (for this fixed \(i\)) is the number of integers \(j\) in the
range \(0 < j < (iq/p)\). This equals \([iq/p]\), and as \(i\) varies the total number of points obtained is \(\sum_{i=1}^{p_1} [iq/p] = S(q, p)\).

Writing the equation of the line as \(x = (p/q)y\) we see that, for a fixed value of \(j\), the point \((i, j)\) lies above the line if \(0 < i < (p/q)j\). This gives \([jp/q]\) points, and as \(j\) runs from 1 to \(q_1\), the total number of points obtained is \(\sum_{j=1}^{q_1} [jp/q] = S(p, q)\). Hence \(S(q, p) + S(p, q) = p_1q_1\), as required.

Since \(\left(\frac{q}{p}\right) = (-1)^{S(q,p)}\) and (symmetrically) \(\left(\frac{p}{q}\right) = (-1)^{S(p,q)}\), it follows from the Proposition that

\[
\left(\frac{q}{p}\right) \left(\frac{p}{q}\right) = (-1)^{p_1q_1} = \begin{cases} -1 & \text{if both } p_1 \text{ and } q_1 \text{ are odd,} \\ +1 & \text{otherwise.} \end{cases}
\]

Since \(p_1\) is odd if \(p \equiv 3 \pmod{4}\) and even if \(p \equiv 1 \pmod{4}\), and similarly \(q_1\) is odd or even as \(q \equiv 3 \pmod{4}\) or \(q \equiv 1 \pmod{4}\), we conclude that \(\left(\frac{q}{p}\right) = -(\frac{p}{q})\) if \(p\) and \(q\) are both congruent to 3 (mod 4), and \(\left(\frac{q}{p}\right) = (\frac{p}{q})\) if either \(p\) or \(q\) is congruent to 1 (mod 4). This is the Law of Quadratic Reciprocity.

Lecture 23

As an example of the use of the Law of Quadratic Reciprocity, let us see how to determine whether or not 407 is a square modulo 113. (The number 113 is prime.) The first step is to reduce 407 mod 113: we find that 407 = 3 × 113 + 68. So

\[
\left(\frac{68}{113}\right) = \left(\frac{2^2 \times 17}{113}\right) = \left(\frac{2}{113}\right)^2 \left(\frac{17}{113}\right) = \left(\frac{17}{113}\right)
\]

since \(\left(\frac{2}{113}\right) = \pm 1\). Now 17 ≡ 1 (mod 4); so without even worrying about the mod 4 congruence class of 113 we can say that \(\left(\frac{17}{113}\right) = \left(\frac{113}{17}\right)\). Now 113 ≡ 11 (mod 17); so

\[
\left(\frac{407}{113}\right) = \left(\frac{113}{11}\right) = \left(\frac{11}{11}\right) = \left(\frac{17}{11}\right)
\]

by another application of quadratic reciprocity. Now 17 ≡ 6 (mod 11); so

\[
\left(\frac{407}{113}\right) = \left(\frac{17}{11}\right) = \left(\frac{6}{11}\right) = \left(\frac{2 \times 3}{11}\right) = \left(\frac{2}{11}\right) \left(\frac{3}{11}\right) = \left(\frac{2}{11}\right) \left(\frac{3}{11}\right).
\]

Now \(\left(\frac{2}{11}\right) = -1\) since 11 ≡ 3 (mod 4), and \(\left(\frac{3}{11}\right) = -(\frac{11}{3})\) since 11 and 3 are both congruent to 3 (mod 4). Thus

\[
\left(\frac{407}{113}\right) = \left(\frac{2}{11}\right) \left(\frac{3}{11}\right) = \left(\frac{11}{3}\right) = \left(\frac{2}{3}\right) = -1.
\]

So 407 is a non-square modulo 113.
A real (or complex) valued function \(f \) defined on the positive integers is said to be “multiplicative” if \(f(ab) = f(a)f(b) \) whenever \(\gcd(a, b) = 1 \). We have already observed that the Euler phi function \(\varphi \) has this property. Another example is the function \(f \) defined by the rule that \(f(n) \) is the number of positive divisors of \(n \). For example, the number 4 has three positive divisors, namely 1, 2 and 4. So \(f(4) = 3 \).

Similarly, there are two positive divisors of 3, namely 1 and 3; so \(f(3) = 2 \). Since \(\gcd(4, 3) = 1 \) it is easy to see that every positive divisor of 12 = 4 \times 3 is uniquely expressible in the form \(xy \) with \(x \) a positive divisor of 4 and \(y \) a positive divisor of 3. So \(f(12) = f(4)f(3) = 6 \), as is readily checked.

Similarly, let \(\sigma : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) be the function defined by the rule that \(\sigma(n) \) is the sum of the positive divisors of \(n \). If \(\gcd(a, b) = 1 \) then \(d = xy \) establishes a one to one correspondence between positive integers \(d \) such that \(d|ab \) and pairs \((x, y)\) of positive integers \(x|a \) and \(y|b \); hence

\[
\sigma(ab) = \sum_{d|ab} d = \sum_{x|a} \sum_{y|b} xy = \left(\sum_{x|a} x \right) \left(\sum_{y|b} y \right) = \sigma(a)\sigma(b).
\]

Thus \(\sigma \) is multiplicative.

A positive integer \(n \) is said to be “perfect” if it is the sum of its proper positive divisors (the positive divisors other than \(n \) itself). For example, 28 is perfect, since \(1 + 2 + 4 + 7 + 14 = 28 \). In terms of the function \(\sigma \) defined above, \(n \) is perfect if \(\sigma(n) = 2n \). It is known that an even number \(n \) is perfect if and only if there exists a prime \(p \) such that \(2^p - 1 \) is also prime, and \(n = 2^{p-1}(2^p - 1) \). (We shall prove this below.) It is not known if there are any odd perfect numbers.

Numbers of the form \(2^p - 1 \), where \(p \) is prime, are called “Mersenne numbers”. Since \(2^{ab} - 1 = (2^a - 1)(1 + 2^b + 2^{2b} + \cdots + 2^{(a-1)b}) \) it is clear that \(2^K - 1 \) cannot be prime unless \(K \) is prime. For example, since \(3|15 \) and \(5|15 \) it follows that \(2^3 - 1 | 2^{15} - 1 \) and \(2^5 - 1 | 2^{15} - 1 \). However, a little experimentation suggests that there is a tendency for \(2^p - 1 \) to be prime when \(p \) is. Thus, \(2^2 - 1 = 3 \) is prime, \(2^3 - 1 = 7 \) is prime, \(2^5 - 1 = 31 \) is prime, and \(2^7 - 1 = 127 \) is prime. In general, suppose that \(p \) is prime and that \(r \) is a prime divisor of \(2^p - 1 \). Then \(2^p \equiv 1 \pmod{r} \), and so \(\text{ord}_r(2) | p \). Since the only divisors of \(p \) are \(p \) and \(1 \), and since \(\text{ord}_r(2) \) is certainly not \(1 \), it follows that \(\text{ord}_r(2) = p \). However, the Euler-Fermat Theorem tells us that \(\text{ord}_r(2) | r - 1 \). So \(r - 1 \) is a multiple of \(p \). Thus we have shown that all prime factors of \(2^p - 1 \) must be congruent to 1 modulo \(p \).

Thus, for example, the prime factors of \(2^{11} - 1 = 2047 \) must be congruent to 1 modulo 11. The first few numbers congruent to 1 modulo 11 are 1, 12, 23, 34, 45, 56, 67, 78, 89, \ldots\ For each prime \(r \) in this list we can easily check whether or not it is a factor of 2047; we immediately find that 2047 = 23 \times 89. So it is certainly not true that all Mersenne numbers are prime; however, testing primality of a Mersenne number involves significantly less computation than testing primality of an arbitrary number of a similar size. The largest prime known is in fact a Mersenne number.
Here is the proof that all even perfect numbers have the form $2^{p-1}(2^p - 1)$, where $2^p - 1$ is a Mersenne prime. Suppose that n is an even perfect number, and write $n = 2^k m$, where m is odd. Since n is perfect,

$$2^{k+1} m = 2n = \sigma(n) = \sigma(2^k m) = \sigma(2^k) \sigma(m) = (2^{k+1} - 1) \sigma(m)$$

where we have used the multiplicative property of σ and the trivial fact that $\sigma(2^k) = 1 + 2 + 2^2 + \cdots + 2^k = 2^{k+1} - 1$ (proved by summing this geometric series). So $\sigma(m)/m = 2^{k+1}/(2^{k+1} - 1)$, and since the fraction on the right hand side is clearly in its lowest terms, it follows that $m = (2^{k+1} - 1)r$ and $\sigma(m) = 2^{k+1}r$ for some positive integer r. Now m has at least the divisors r and $(2^{k+1} - 1)r$, the sum of which is $2^{k+1}r$. Since this is already equal to $\sigma(m)$ it follows that m has no further divisors. Thus $r = 1$ (or else 1 would be another divisor) and $2^{k+1} - 1$ is prime (or else it would contribute further divisors of m). (In fact a number that has only two divisors in total has to be prime.) So m is a Mersenne prime, as claimed.